<area href="classGooseFEM_1_1Element_1_1QuadratureBase.html" title="CRTP base class for quadrature." alt="GooseFEM::Element::QuadratureBase< D >" shape="rect" coords="0,0,404,24"/>
<tr class="memdesc:a781fc6404ac098aee2179dc7abb1617c"><td class="mdescLeft"> </td><td class="mdescRight">Constructor: use default <a class="el" href="namespaceGooseFEM_1_1Element_1_1Quad4_1_1Gauss.html" title="Gauss quadrature: quadrature points such that integration is exact for this bi-linear element:">Gauss</a> integration. <br /></td></tr>
<tr class="memdesc:aee12cd15642c3c6e33856b940cc84ea6 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Shape function gradients (in global coordinates). <br /></td></tr>
<tr class="memdesc:a34440ca3cdbfe4c1990c62e60d4d4870 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Interpolate element vector and evaluate at each quadrature point. <br /></td></tr>
<tr class="memitem:aba5493ba65dd662d8b501a47d4a2bc8d inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian" id="r_aba5493ba65dd662d8b501a47d4a2bc8d"><td class="memItemLeft" align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#aba5493ba65dd662d8b501a47d4a2bc8d">interpQuad_vector</a> (const T &elemvec, R &qvector) const</td></tr>
<tr class="memdesc:aba5493ba65dd662d8b501a47d4a2bc8d inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Same as <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#a34440ca3cdbfe4c1990c62e60d4d4870" title="Interpolate element vector and evaluate at each quadrature point.">InterpQuad_vector()</a>, but writing to preallocated return. <br /></td></tr>
<tr class="memdesc:ab9f823466911faf3fea4422d273eb646 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Element-by-element: dyadic product of the shape function gradients and a nodal vector. <br /></td></tr>
<tr class="memitem:a1fe0e91a6e05d6a7ba9f1a5958c78c2c inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian" id="r_a1fe0e91a6e05d6a7ba9f1a5958c78c2c"><td class="memItemLeft" align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#a1fe0e91a6e05d6a7ba9f1a5958c78c2c">gradN_vector</a> (const T &elemvec, R &qtensor) const</td></tr>
<tr class="memdesc:a1fe0e91a6e05d6a7ba9f1a5958c78c2c inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Same as <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#ab9f823466911faf3fea4422d273eb646" title="Element-by-element: dyadic product of the shape function gradients and a nodal vector.">GradN_vector()</a>, but writing to preallocated return. <br /></td></tr>
<tr class="memdesc:a58b300ec716450ae2b9a745350c26fa2 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">The transposed output of <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#ab9f823466911faf3fea4422d273eb646" title="Element-by-element: dyadic product of the shape function gradients and a nodal vector.">GradN_vector()</a>. <br /></td></tr>
<tr class="memdesc:a291c7611adb50777b07bee44d8d9a117 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">The symmetric output of <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#ab9f823466911faf3fea4422d273eb646" title="Element-by-element: dyadic product of the shape function gradients and a nodal vector.">GradN_vector()</a>. <br /></td></tr>
<tr class="memdesc:af437256edeb36b609727b904ebf75eb5 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Element-by-element: integral of a continuous vector-field. <br /></td></tr>
<tr class="memitem:a89ffbafef9213f985d9050566379a225 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian" id="r_a89ffbafef9213f985d9050566379a225"><td class="memItemLeft" align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#a89ffbafef9213f985d9050566379a225">int_N_vector_dV</a> (const T &qvector, R &elemvec) const</td></tr>
<tr class="memdesc:a89ffbafef9213f985d9050566379a225 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Same as <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#af437256edeb36b609727b904ebf75eb5" title="Element-by-element: integral of a continuous vector-field.">Int_N_vector_dV()</a>, but writing to preallocated return. <br /></td></tr>
<tr class="memdesc:a1aa18f92d9b306d1432a7cebf9e51971 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Element-by-element: integral of the scalar product of the shape function with a scalar. <br /></td></tr>
<tr class="memitem:ae1a863625e39fb4591cd9b0d273615ad inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian" id="r_ae1a863625e39fb4591cd9b0d273615ad"><td class="memItemLeft" align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#ae1a863625e39fb4591cd9b0d273615ad">int_N_scalar_NT_dV</a> (const T &qscalar, R &elemmat) const</td></tr>
<tr class="memdesc:ae1a863625e39fb4591cd9b0d273615ad inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Same as <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#a1aa18f92d9b306d1432a7cebf9e51971" title="Element-by-element: integral of the scalar product of the shape function with a scalar.">Int_N_scalar_NT_dV()</a>, but writing to preallocated return. <br /></td></tr>
<tr class="memdesc:a141fd191a14371a3a7586fc6ab8dbaca inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Element-by-element: integral of the dot product of the shape function gradients with a second order tensor. <br /></td></tr>
<tr class="memitem:a30f1c3cfdbe823a8031431aee85bb62c inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian" id="r_a30f1c3cfdbe823a8031431aee85bb62c"><td class="memItemLeft" align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#a30f1c3cfdbe823a8031431aee85bb62c">int_gradN_dot_tensor2_dV</a> (const T &qtensor, R &elemvec) const</td></tr>
<tr class="memdesc:a30f1c3cfdbe823a8031431aee85bb62c inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Same as <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#a141fd191a14371a3a7586fc6ab8dbaca" title="Element-by-element: integral of the dot product of the shape function gradients with a second order t...">Int_gradN_dot_tensor2_dV()</a>, but writing to preallocated return. <br /></td></tr>
<tr class="memdesc:a941d37b127f89ff155d0c3465a1a4a53 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Element-by-element: integral of the dot products of the shape function gradients with a fourth order tensor. <br /></td></tr>
<tr class="memitem:a344568660d182f9dd10cf38458b6f29c inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian" id="r_a344568660d182f9dd10cf38458b6f29c"><td class="memItemLeft" align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#a344568660d182f9dd10cf38458b6f29c">int_gradN_dot_tensor4_dot_gradNT_dV</a> (const T &qtensor, R &elemmat) const</td></tr>
<tr class="memdesc:a344568660d182f9dd10cf38458b6f29c inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Same as <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#a941d37b127f89ff155d0c3465a1a4a53" title="Element-by-element: integral of the dot products of the shape function gradients with a fourth order ...">Int_gradN_dot_tensor4_dot_gradNT_dV()</a>, but writing to preallocated return. <br /></td></tr>
<tr class="memdesc:ab06d8566d914abb7c19990bbfe35d3fa inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Number of dimensions for integration point tensors. <br /></td></tr>
<tr class="memdesc:a3e8e9a5e93537d2f68470d23d897cb87 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Convert "qscalar" to "qtensor" of certain rank. <br /></td></tr>
<tr class="memdesc:aa95fbcd9f4e414be9ebb10b8a76fb114 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Convert "qscalar" to "qtensor" of certain rank. <br /></td></tr>
<tr class="memdesc:ae89567d9ddd4c5c302841223d02edaae inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Convert "qscalar" to "qtensor" of certain rank. <br /></td></tr>
<tr class="memdesc:a80006f899e25aebf5f1dbd341645583d inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get the shape of an "elemvec". <br /></td></tr>
<tr class="memdesc:a1cb514623a224dc008404ab6686e9f36 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get the shape of an "elemvec". <br /></td></tr>
<tr class="memdesc:a55379d38c9126822f831e76a9a4ab546 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get the shape of an "elemmat". <br /></td></tr>
<tr class="memdesc:a46ab2f3271523c41986aecf3424fcec2 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get the shape of a "qtensor" of a certain rank (0 = scalar, 1, vector, 2 = 2nd-order tensor, etc.). <br /></td></tr>
<tr class="memdesc:ab70a315b07641bb2ce67725f808850ca inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get the shape of a "qtensor" of a certain rank (0 = scalar, 1, vector, 2 = 2nd-order tensor, etc.). <br /></td></tr>
<tr class="memdesc:ac94648657f043704468a8e7e679635bc inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get the shape of a "qtensor" of a certain rank (0 = scalar, 1, vector, 2 = 2nd-order tensor, etc.). <br /></td></tr>
<tr class="memdesc:a11c72c19fa398fd890ca8fccff7844ad inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get the shape of a "qtensor" of a certain rank (0 = scalar, 1, vector, 2 = 2nd-order tensor, etc.). <br /></td></tr>
<tr class="memdesc:a0a8466aa11abb81774f293081a2b2a52 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get the shape of a "qscalar" (a "qtensor" of rank 0) <br /></td></tr>
<tr class="memdesc:a1d349785c0ac22d417960e7915a627b0 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get the shape of a "qvector" (a "qtensor" of rank 1) <br /></td></tr>
<tr class="memdesc:a63b34b880b9ad49b854b267fdf6eabc7 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get the shape of a "qvector" (a "qtensor" of rank 1) <br /></td></tr>
<tr class="memdesc:a5c92bb0a15c36e26a918b6be756e2a95 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get an allocated and initialised <code>xt::xarray</code> to store a "elemvec". <br /></td></tr>
<tr class="memdesc:a711f50e0c1109bd938d1e26c555eb36d inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get an allocated and initialised <code>xt::xarray</code> to store a "elemmat". <br /></td></tr>
<tr class="memdesc:ab9d87863a29447f4205f308d05aec383 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get an allocated <code><a class="el" href="namespaceGooseFEM_1_1array__type.html#adad35bf4db4c7eb54c25136f0f3d34d1" title="Fixed (static) rank array.">array_type::tensor</a></code> to store a "qtensor" of a certain rank (0 = scalar, 1, vector, 2 = 2nd-order tensor, etc.). <br /></td></tr>
<tr class="memdesc:ae94ca51f565362904bc530673edfa4d8 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get an allocated and initialised <code><a class="el" href="namespaceGooseFEM_1_1array__type.html#adad35bf4db4c7eb54c25136f0f3d34d1" title="Fixed (static) rank array.">array_type::tensor</a></code> to store a "qtensor" of a certain rank (0 = scalar, 1, vector, 2 = 2nd-order tensor, etc.). <br /></td></tr>
<tr class="memdesc:ab4fa267392fb435ba9425f148aa05fe9 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get an allocated <code>xt::xarray</code> to store a "qtensor" of a certain rank (0 = scalar, 1, vector, 2 = 2nd-order tensor, etc.). <br /></td></tr>
<tr class="memdesc:abf3f1aea7ef3d8a69d4b5d92089ca84b inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get an allocated and initialised <code>xt::xarray</code> to store a "qtensor" of a certain rank (0 = scalar, 1, vector, 2 = 2nd-order tensor, etc.). <br /></td></tr>
<tr class="memdesc:ae1baa79dc3c6d125ca0e78319a7049c6 inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get an allocated <code><a class="el" href="namespaceGooseFEM_1_1array__type.html#adad35bf4db4c7eb54c25136f0f3d34d1" title="Fixed (static) rank array.">array_type::tensor</a></code> to store a "qscalar" (a "qtensor" of rank 0). <br /></td></tr>
<tr class="memdesc:aa0113a9f649cdea13af780449ab4021f inherit pub_methods_classGooseFEM_1_1Element_1_1QuadratureBase"><td class="mdescLeft"> </td><td class="mdescRight">Get an allocated and initialised <code>xt::xarray</code> to store a "qscalar" (a "qtensor" of rank 0). <br /></td></tr>
<tr class="memdesc:abca2ae97d6cb943b0d1b9732058d0cdb inherit pro_methods_classGooseFEM_1_1Element_1_1QuadratureBaseCartesian"><td class="mdescLeft"> </td><td class="mdescRight">Update the shape function gradients (called when the nodal positions are updated). <br /></td></tr>
<div class="textblock"><p>Interpolation and quadrature. </p>
<p>Similar to <a class="el" href="classGooseFEM_1_1Element_1_1Quad4_1_1Quadrature.html" title="Interpolation and quadrature.">Element::Quad4::Quadrature</a> with the only different that quadrature point tensors are 3d ("plane strain") while the mesh is 2d.</p>
<p>Fixed dimensions:</p><ul>
<li><code>ndim = 2</code>: number of dimensions.</li>
<li><code>tdim = 3</code>: number of dimensions or tensor.</li>
<li><code>nne = 4</code>: number of nodes per element.</li>
</ul>
<p>Naming convention:</p><ul>
<li><code>elemmat</code>: matrices stored per element, [<a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#a3738b014ac32a22ac40bc5a5c5508313" title="Number of elements.">nelem</a>, <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#a397a91e672d4db8fd053aac04df52f7a" title="Number of nodes per element.">nne</a> * <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#ad9791371bd63e28cef83bd88b85b7ba1" title="Number of dimensions for node vectors.">ndim</a>, <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#a397a91e672d4db8fd053aac04df52f7a" title="Number of nodes per element.">nne</a> * <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#ad9791371bd63e28cef83bd88b85b7ba1" title="Number of dimensions for node vectors.">ndim</a>]</li>
<li><code>elemvec</code>: nodal vectors stored per element, [<a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#a3738b014ac32a22ac40bc5a5c5508313" title="Number of elements.">nelem</a>, <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#a397a91e672d4db8fd053aac04df52f7a" title="Number of nodes per element.">nne</a>, <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#ad9791371bd63e28cef83bd88b85b7ba1" title="Number of dimensions for node vectors.">ndim</a>]</li>
<li><code>qtensor</code>: integration point tensor, [<a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#a3738b014ac32a22ac40bc5a5c5508313" title="Number of elements.">nelem</a>, <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#a2a15c8faa8a9962308dc6b4d7c734432" title="Number of integration points.">nip</a>, <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#ab06d8566d914abb7c19990bbfe35d3fa" title="Number of dimensions for integration point tensors.">tdim</a>, <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#ab06d8566d914abb7c19990bbfe35d3fa" title="Number of dimensions for integration point tensors.">tdim</a>]</li>
<li><code>qscalar</code>: integration point scalar, [<a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#a3738b014ac32a22ac40bc5a5c5508313" title="Number of elements.">nelem</a>, <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#a2a15c8faa8a9962308dc6b4d7c734432" title="Number of integration points.">nip</a>] </li>
</ul>
<p class="definition">Definition at line <a class="el" href="ElementQuad4Planar_8h_source.html#l00038">38</a> of file <a class="el" href="ElementQuad4Planar_8h_source.html">ElementQuad4Planar.h</a>.</p>
</div><h2 class="groupheader">Constructor & Destructor Documentation</h2>
<p>Constructor: use default <a class="el" href="namespaceGooseFEM_1_1Element_1_1Quad4_1_1Gauss.html" title="Gauss quadrature: quadrature points such that integration is exact for this bi-linear element:">Gauss</a> integration. </p>
<p>The following is pre-computed during construction:</p><ul>
<li>the shape functions,</li>
<li>the shape function gradients (in local and global) coordinates,</li>
<li>the integration points volumes. They can be reused without any cost. They only have to be recomputed when the nodal position changes (note that they are assumed to be constant under a small-strain assumption). In that case use <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#aecc585697501ecfe88c99bbec0cb5842" title="Update the nodal positions.">update_x()</a> to update the nodal positions and to recompute the above listed quantities.</li>
<tr><td class="paramname">thick</td><td>out-of-plane thickness (incorporated in the element volume). </td></tr>
</table>
</dd>
</dl>
<p class="definition">Definition at line <a class="el" href="ElementQuad4Planar_8h_source.html#l00058">58</a> of file <a class="el" href="ElementQuad4Planar_8h_source.html">ElementQuad4Planar.h</a>.</p>
<p>The following is pre-computed during construction:</p><ul>
<li>the shape functions,</li>
<li>the shape function gradients (in local and global) coordinates,</li>
<li>the integration points volumes. They can be reused without any cost. They only have to be recomputed when the nodal position changes (note that they are assumed to be constant under a small-strain assumption). In that case use <a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html#aecc585697501ecfe88c99bbec0cb5842" title="Update the nodal positions.">update_x()</a> to update the nodal positions and to recompute the above listed quantities.</li>
<tr><td class="paramname">xi</td><td>Integration point coordinates (local coordinates) [<a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#a2a15c8faa8a9962308dc6b4d7c734432" title="Number of integration points.">nip</a>]. </td></tr>
<tr><td class="paramname">w</td><td>Integration point weights [<a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html#a2a15c8faa8a9962308dc6b4d7c734432" title="Number of integration points.">nip</a>]. </td></tr>
<tr><td class="paramname">thick</td><td>out-of-plane thickness (incorporated in the element volume). </td></tr>
</table>
</dd>
</dl>
<p class="definition">Definition at line <a class="el" href="ElementQuad4Planar_8h_source.html#l00081">81</a> of file <a class="el" href="ElementQuad4Planar_8h_source.html">ElementQuad4Planar.h</a>.</p>
</div>
</div>
<hr/>The documentation for this class was generated from the following file:<ul>