Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102271477
example.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Feb 18, 23:32
Size
4 KB
Mime Type
text/x-c
Expires
Thu, Feb 20, 23:32 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
24321110
Attached To
rGOOSEFEM GooseFEM
example.cpp
View Options
#include <GMatElastic/Cartesian3d.h>
#include <GooseFEM/GooseFEM.h>
#include <GooseFEM/MatrixPartitioned.h>
#include <highfive/H5Easy.hpp>
int main()
{
// mesh
// ----
// define mesh
GooseFEM::Mesh::Quad4::Regular mesh(5, 5);
// mesh dimensions
size_t nelem = mesh.nelem();
size_t nne = mesh.nne();
size_t ndim = mesh.ndim();
// mesh definitions
xt::xtensor<double, 2> coor = mesh.coor();
xt::xtensor<size_t, 2> conn = mesh.conn();
xt::xtensor<size_t, 2> dofs = mesh.dofs();
// node sets
xt::xtensor<size_t, 1> nodesLft = mesh.nodesLeftOpenEdge();
xt::xtensor<size_t, 1> nodesRgt = mesh.nodesRightOpenEdge();
xt::xtensor<size_t, 1> nodesTop = mesh.nodesTopEdge();
xt::xtensor<size_t, 1> nodesBot = mesh.nodesBottomEdge();
// periodicity and fixed displacements DOFs
// ----------------------------------------
for (size_t j = 0; j < coor.shape(1); ++j) {
xt::view(dofs, xt::keep(nodesRgt), j) = xt::view(dofs, xt::keep(nodesLft), j);
}
dofs = GooseFEM::Mesh::renumber(dofs);
xt::xtensor<size_t, 1> iip = xt::concatenate(xt::xtuple(
xt::view(dofs, xt::keep(nodesBot), 0),
xt::view(dofs, xt::keep(nodesBot), 1),
xt::view(dofs, xt::keep(nodesTop), 0),
xt::view(dofs, xt::keep(nodesTop), 1)));
// simulation variables
// --------------------
// vector definition
GooseFEM::VectorPartitioned vector(conn, dofs, iip);
// allocate system matrix
GooseFEM::MatrixPartitioned K(conn, dofs, iip);
GooseFEM::MatrixPartitionedSolver<> Solver;
// nodal quantities
xt::xtensor<double, 2> disp = xt::zeros<double>(coor.shape());
xt::xtensor<double, 2> fint = xt::zeros<double>(coor.shape());
xt::xtensor<double, 2> fext = xt::zeros<double>(coor.shape());
xt::xtensor<double, 2> fres = xt::zeros<double>(coor.shape());
// element vectors
xt::xtensor<double, 3> ue = xt::empty<double>({nelem, nne, ndim});
xt::xtensor<double, 3> fe = xt::empty<double>({nelem, nne, ndim});
xt::xtensor<double, 3> Ke = xt::empty<double>({nelem, nne * ndim, nne * ndim});
// element/material definition
// ---------------------------
// element definition
GooseFEM::Element::Quad4::QuadraturePlanar elem(vector.AsElement(coor));
size_t nip = elem.nip();
// material definition
GMatElastic::Cartesian3d::Matrix mat(nelem, nip);
xt::xtensor<size_t, 2> Ihard = xt::zeros<size_t>({nelem, nip});
xt::view(Ihard, xt::keep(0, 1, 5, 6), xt::all()) = 1;
xt::xtensor<size_t, 2> Isoft = xt::ones<size_t>({nelem, nip}) - Ihard;
mat.setElastic(Isoft, 10.0, 1.0);
mat.setElastic(Ihard, 10.0, 10.0);
// integration point tensors
xt::xtensor<double, 4> Eps = xt::empty<double>({nelem, nip, 3ul, 3ul});
xt::xtensor<double, 4> Sig = xt::empty<double>({nelem, nip, 3ul, 3ul});
xt::xtensor<double, 6> C = xt::empty<double>({nelem, nip, 3ul, 3ul, 3ul, 3ul});
// solve
// -----
// strain
vector.asElement(disp, ue);
elem.symGradN_vector(ue, Eps);
// stress & tangent
mat.tangent(Eps, Sig, C);
// internal force
elem.int_gradN_dot_tensor2_dV(Sig, fe);
vector.assembleNode(fe, fint);
// stiffness matrix
elem.int_gradN_dot_tensor4_dot_gradNT_dV(C, Ke);
K.assemble(Ke);
// set fixed displacements
xt::view(disp, xt::keep(nodesTop), 0) = +0.1;
// residual
xt::noalias(fres) = fext - fint;
// solve
Solver.solve(K, fres, disp);
// post-process
// ------------
// compute strain and stress
vector.asElement(disp, ue);
elem.symGradN_vector(ue, Eps);
mat.stress(Eps, Sig);
// internal force
elem.int_gradN_dot_tensor2_dV(Sig, fe);
vector.assembleNode(fe, fint);
// apply reaction force
vector.copy_p(fint, fext);
// residual
xt::noalias(fres) = fext - fint;
// print residual
std::cout << xt::sum(xt::abs(fres))[0] / xt::sum(xt::abs(fext))[0] << std::endl;
// average stress per node
xt::xtensor<double, 4> dV = elem.AsTensor<2>(elem.dV());
xt::xtensor<double, 3> SigAv = xt::average(Sig, dV, {1});
// write output
H5Easy::File file("output.h5", H5Easy::File::Overwrite);
H5Easy::dump(file, "/coor", coor);
H5Easy::dump(file, "/conn", conn);
H5Easy::dump(file, "/disp", disp);
H5Easy::dump(file, "/Sig", SigAv);
return 0;
}
Event Timeline
Log In to Comment