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Abstract

The theory of the Finite Element Method in Continuum Mechanics is discussed in a compact way. This discussion
is by no means comprehensive and one is invited to dive in more complete textbooks, but also to get one’s hands
dirty by implementing some (simple) examples.
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1 Statics

1.1 The basic concept
The discussion starts by considering a static, solid mechanics, problem. Loosely speaking the goal is to find a
deformation map, x⃗ = φ(X⃗, t), that maps a body Ω0 to a deformed state Ω that satisfies equilibrium and the
boundary conditions applied on Γ. This is illustrated in Fig. 1, whereby it is emphasized that the body can be
subjected to two kinds of boundary conditions:

• Essential or Dirichlet boundary conditions on Γp, whereby the displacements are prescribed.

• Natural orNeumann boundary conditions onΓu, whereby the tractions are prescribed. Note that traction-free
natural boundary conditions are also perfectly acceptable.
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Figure 1. Generic problem definition

In practice, one is not looking for the map x⃗ = φ(X⃗, t), but for the deformation gradient F , or in fact for a
displacement field u⃗ = x⃗− X⃗ . To make things a bit more explicit, the deformation gradient is defined as follows:

x⃗ = F · X⃗ (1)

hence

F =
∂φ

∂X⃗
=

(
∇⃗0 x⃗

)T
= I +

(
∇⃗0 u⃗

)T (2)

1.2 Momentum balance
The momentum balance reads

∇⃗ · σ(x⃗) = 0⃗ x⃗ ∈ Ω (3)

where σ is the Cauchy stress which depends on the new position x⃗ and thus on the displacement u⃗. It has been
assumed that all actions are instantaneous (no inertia) and, for simplicity, that there are no body forces. Loosely
speaking the interpretation of this equation is that the sum of all forces vanishes everywhere in the domain Ω.

The crux of the Finite Element Method is that this non-linear differential equation is solved in a weak sense.
I.e. ∫

Ω

ϕ⃗(x⃗) ·
[
∇⃗ · σ(x⃗)

]
dΩ = 0 ∀ ϕ⃗(x⃗) ∈ Rd (4)

where ϕ⃗ are test functions. For reasons that become obvious below, integration by parts is applied, which results
in ∫

Ω

[
∇⃗ϕ⃗(x⃗)

]
: σ(x⃗) dΩ =

∫
Ω

∇⃗ ·
[
ϕ⃗(x⃗) · σ(x⃗)

]
dΩ ∀ ϕ⃗(x⃗) ∈ Rd (5)

In going from Eq. (4) to Eq. (5), use has been made of the following chain rule

∇⃗ ·
[
ϕ⃗ · σT

]
=

[
∇⃗ϕ⃗

]
: σT + ϕ⃗ ·

[
∇⃗ · σ

]
(6)

together with the symmetry of the Cauchy stress

σ = σT (7)

The right-hand side of this equation can be reduced to an area integral by employing Gauss’s divergence theo-
rem: ∫

Ω

∇⃗ · a⃗(x⃗) dΩ =

∫
Γ

n⃗(x⃗) · a⃗(x⃗) dΓ (8)

where n⃗ is the normal along the surface Γ. The result reads∫
Ω

[
∇⃗ϕ⃗(x⃗)

]
: σ(x⃗) dΩ =

∫
Γ

ϕ⃗(x⃗) · n⃗(x⃗) · σ(x⃗)︸ ︷︷ ︸
t⃗(x⃗)

dΓ ∀ ϕ⃗(x⃗) ∈ Rd (9)
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1.3 Discretization
The problem is now discretized using n nodes that are connected through elements, which define the discretized
domain Ωh

0 . Shape functions Ni(x⃗) are used to extrapolate the nodal quantities throughout the domain Ωh
0 (and

Ωh). For example the displacement field u⃗(x⃗)

u⃗(x⃗, t) ≈ u⃗h(x⃗, t) =

nnodes∑
m=1

Nm(x⃗) u⃗m(t) (10)

whereby we will not further consider the time dependence (denoted with t) for now. Following standard Galerkin
the test functions are interpolated in the same way, i.e.

ϕ⃗(x⃗) ≈ ϕ⃗h(x⃗) =

nnodes∑
m=1

Nm(x⃗) ϕ⃗m (11)

Applied to the problem sketch from Fig. 1, a discretization might look like Fig. 2. The nodes are clearly marked as
circles. The lines connecting the nodes clearly mark the elements which are in this case three-node linear triangles.

Figure 2. Example of a discretization of the problem in Fig. 1 using Finite Elements (linear triangles in this case).

Applied to the balance equation the following is obtained

ϕ⃗m ·
∫
Ωh

[
∇⃗Nm(x⃗)

]
· σ(x⃗) dΩ = ϕ⃗m ·

∫
Γh

Nm(x⃗) · t⃗(x⃗) dΓ ∀ ϕ⃗m ∈ Rd
n (12)

from which the dependency on ϕ⃗m can be dropped:∫
Ωh

[
∇⃗Nm(x⃗)

]
· σ(x⃗) dΩ =

∫
Γh

Nm(x⃗) · t⃗(x⃗) dΓ (13)

This corresponds to a (non-linear) set of nodal balance equations:

f⃗ int
m (x⃗) = f⃗ ext

m (x⃗) (14)

with:

• Internal forces

f⃗ int
m (x⃗) =

∫
Ωh

[
∇⃗Nm(x⃗)

]
· σ(x⃗) dΩ (15)

• External forces

f⃗ ext
m (x⃗) =

∫
Γh

Nm(x⃗) · t⃗(x⃗) dΓ (16)

Note that this term is zero in the interior of the domain, i.e. in Ωh
∩

Γh, while it can be zero or non-zero in
Γh depending on the problem details. Most often it following completely from the boundary conditions of
the boundary value problem that we set out to solve.
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1.4 Iterative solution – small strain
Acommonly used strategy to solve the non-linear system is the iterativeNewton-Raphson scheme (seeAppendixD).
The idea is thereby to formulate an initial guess for the solution, determine possible residual forces, and use these
forces to come to a better guess for the solution. This is continued until the solution has been found, i.e. when the
residual vanishes.

This solution technique is discussed here in the context of small deformations. Assuming the deformations (and
therefore rotations) to be small leads to the assumption that Ω = Ω0, and thus that ∇ = ∇0. In this context one
typically uses the linear strain tensor

ε = 1
2

[
∇0u⃗+

[
∇0u⃗

]T ]
= Is :

[
∇0u⃗

]
(17)

and some (non-linear) relationship between it and the stress as follows

σ = σ
(
ε
)

(18)

To further simplify the discussion, the boundary tractions are assumed to be some displacement independent quan-
tity, which is a-priori known for all relevant boundary nodes.

The nodal equilibrium equations now reads

r⃗m(X⃗, u⃗) = f⃗ ext
m (X⃗)− f⃗ int

m (X⃗, u⃗) = 0⃗ (19)

with

f⃗ int
m (X⃗, u⃗) =

∫
Ωh

0

[
∇⃗0Nm(X⃗)

]
· σ(X⃗, u⃗) dΩ0 (20)

The displacement field u⃗ is now iteratively updated starting from some initial guess, i.e.

u⃗(i+1) = u⃗(i) + δu⃗ (21)

The update, δu⃗, follows from the linearization of Eq. (19). The results of which is∫
Ωh

0

[
∇⃗0Nm(X⃗)

]
·K

(
X⃗, u⃗(i)

)
·
[
∇⃗0Nn(X⃗)

]
dΩ0 · δu⃗n = f⃗ ext

m (X⃗)−
∫
Ωh

0

[
∇⃗0Nm(X⃗)

]
·σ

(
X⃗, u⃗(i)

)
dΩ0 (22)

where, at each position X⃗ ,

K
(
u⃗(i)

)
=

∂σ

∂ε

∣∣∣∣
u⃗(i)

: Is (23)

is the constitutive tangent operator.
In a shorter notation, the iterative update reads:

Kmn,(i) · δu⃗m = f⃗ ext
m − f⃗ int

m,(i) (24)

with

Kmn,(i) =

∫
Ωh

0

[
∇⃗0Nm(X⃗)

]
·K

(
X⃗, u⃗(i)

)
·
[
∇⃗0Nm(X⃗)

]
dΩ0 (25)

and

f⃗ int
m,(i) =

∫
Ωh

0

[
∇⃗0Nm(X⃗)

]
· σ

(
X⃗, u⃗(i)

)
dΩ0 (26)
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2 Dynamics

2.1 Momentum balance
The next step is to add inertia to the balance of momentum in Eq. (3):

ρ a⃗ = ∇⃗ · σ(x⃗) x⃗ ∈ Ω (27)

where ρ is the mass density, and second time derivative of the position x⃗ is the acceleration a⃗ = ¨⃗u = ¨⃗x. Note that
this function is the continuum equivalent of f⃗ = ma⃗.

Like before, this equation is solved in a weak sense∫
Ω

ρ(x⃗) ϕ⃗(x⃗) · a⃗ dΩ =

∫
Ω

ϕ⃗(x⃗) ·
[
∇⃗ · σ(x⃗)

]
dΩ ∀ ϕ⃗(x⃗) ∈ Rd (28)

Integration by parts results in∫
Ω

ρ(x⃗) ϕ⃗(x⃗) · a⃗ dΩ =

∫
Γ

ϕ⃗(x⃗) · t⃗(x⃗) dΓ−
∫
Ω

[
∇⃗ϕ⃗(x⃗)

]
: σ(x⃗) dΩ ∀ ϕ⃗(x⃗) ∈ Rd (29)

which is discretized as before:

ϕ⃗m ·
∫
Ω

ρ(x⃗) Nm(x⃗) Nn(x⃗) dΩ a⃗n = ϕ⃗m ·
∫
Γ

Nm(x⃗) t⃗(x⃗) dΓ−ϕ⃗m ·
∫
Ω

[
∇⃗Nm(x⃗)

]
: σ(x⃗) dΩ ∀ ϕ⃗m ∈ Rd

n

(30)

This is independent of the test functions, hence:∫
Ω

ρ(x⃗) Nm(x⃗) Nn(x⃗) dΩ

︸ ︷︷ ︸
Mmn(x⃗)

a⃗n =

∫
Γ

Nm(x⃗) t⃗(x⃗) dΓ

︸ ︷︷ ︸
f⃗ ext
m (x⃗)

−
∫
Ω

[
∇⃗Nm(x⃗)

]
: σ(x⃗) dΩ

︸ ︷︷ ︸
f⃗ int
m (x⃗)

(31)

This is denoted as follows

Mmn(x⃗) a⃗n = f⃗ ext
m (x⃗)− f⃗ int

m (x⃗) (32)

WhereMmn(x⃗) is the mass matrix, f⃗ ext
m (x⃗) are the external forces, and f⃗ int

m (x⃗) are the internal forces.

2.2 Time discretization
To solve the second order differential equation in time, one typically also discretizes timewith some finite difference
based scheme. For this we also need to distinguish the velocity field v⃗ = ˙⃗u = ˙⃗x.

2.2.1 Verlet

In the case that the forces are velocity independent one can use the Velocity Verlet scheme, in which energy is
conserved, i.e. it is reversible in time. The scheme reads are follows:

1. Compute the velocity on a dummy time grid:

v⃗n+1/2 = v⃗n−1/2 +∆t a⃗n (33)

Note that this involves solving Eq. (31) for a⃗n. From this it is directly obvious why the forces need to be
velocity independent.

2. Update the positions

u⃗n+1 = u⃗n +∆t a⃗v⃗n+1/2 (34)
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2.2.2 Velocity Verlet

In the case that the forces are dependent on the velocity (i.e. when there is damping) the previous scheme cannot
be used anymore. An additional approximation has to be made in this case. Note that this is not very problematic
as energy is in no case conserved. The resulting scheme reads:

1. Compute the position at tn+1 = tn +∆t:

u⃗n+1 = u⃗n +∆tv⃗n + 1
2∆

2
t a⃗n (35)

2. Estimate the velocity at tn+1 = tn +∆t (involves solving Eq. (31)):

ˆ⃗vn+1 = v⃗n + 1
2∆t

[
a⃗n + a⃗(u⃗n+1, v⃗n +∆ta⃗n, tn+1)

]
(36)

3. Correct ˆ⃗vn+1 (involves solving Eq. (31)):

v⃗n+1 = v⃗n + 1
2∆t

[
a⃗n + a⃗(u⃗n+1, ˆ⃗vn+1, tn+1)

]
(37)

2.3 Approximations
For problems where the local volume is conversed (either weakly through slightly compressible elasticity, or
strongly by adding an incompressibility constraint) it makes sense to assume the mass matrix constant, as any
change of volume results in an equivalent change of the density. In that case∫

Ω

ρ(x⃗) dΩ =

∫
Ω0

ρ(X⃗) dΩ0 (38)

Which results in:

Mmn(x⃗) =

∫
Ω0

ρ(X⃗) Nm(X⃗) Nn(X⃗) dΩ0 = constant (39)

To enhance computational efficiency, it may be a good option concentrate the mass to point masses on the
nodes. This has to strong advantage that the mass matrix becomes diagonal, known as the lumped mass matrix.
Consequently, instead of solving a linear system one just has to solve fully independent equations.

A Nomenclature

• Vector

u⃗ =
∑
i

uie⃗i (40)

for example for Cartesian coordinates

u⃗ = uxe⃗x + uy e⃗y + uz e⃗z (41)

• Second-order tensor

A =
∑
i

∑
j

Aij e⃗ie⃗j (42)

• Fourth-order tensor

A =
∑
i

∑
j

∑
k

∑
l

Aijkle⃗ie⃗j e⃗ke⃗l (43)

• Divergence

∇⃗ · σ =
∂σij

∂xi
(44)

• Double tensor contraction

C = A : B = AijBji (45)
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B Shape functions

In the Finite Element Method a geometry is discretized using nodes. The nodes are grouped in elements which
define the domain Ωh. The crux of the method is that nodal quantities, for example u⃗i, are interpolated throughout
the discretized domain Ωh using shape functions Ni(x⃗). The shape functions are polynomials that spanned by the
nodes, such that they constitute a partition of unity and satisfyNi(x⃗j) = δij , i.e. it is one in the node i, and zero in
all other nodes. This implies that, while each shape function is globally supported,Ni(x⃗) ̸= 0 only in the elements
containing node i. For all other elements it is zero (even in between the nodes). This again implies that ∂Ni/∂x⃗ is
discontinuous across element boundaries.

For a one-dimensional problem comprising four linear elements and five nodes the shape functions are sketched
in Fig. 3(a). To emphasize the global support of each shape function the shape function of node 2 is isolated in
Fig. 3(b). As can be seen, node 2 is only non-zero in elements 1 and 2, while it is zero everywhere else. To evaluate
for example f2, the internal force one node 2, the integration can be limited to these two elements:

f2 =

∫
Ω(1)

dN
(1)
2

dx
σ(x) dΩ(1) +

∫
Ω(2)

dN
(2)
2

dx
σ(x) dΩ(2) (46)

0 1 2 3 40 1 2 3

(a) All shape functions Ni(x), each with a different color.

0 1 2 3 40 1 2 3

(b) Isolated shape function N2(x).

Figure 3. (a) Shape functions for a one-dimensional domain discretized using four two node, linear, element. (b) Isolated shape
functions for node 2. The node numbers are displayed using a unique color, while the element numbers are shown in black in a
different font, in between the nodes.

By now it should be clear that the above allows us assemble f element-by-element. For the example in Fig. 3
this is graphically shown in Fig. 4.

where the indices show that the shape functions are evaluated compared to some generic element definition.

C Iso-parametric transformation and quadrature

A very important concept in the Finite Element Method is the iso-parametric transformation. It allows an arbi-
trarily shaped element with volume Ωe to be mapped onto a generic iso-parametric element of constant volume
Q, see Fig. 5. Using this mapping it is easy to perform interpolation and numerical quadrature using a generic
implementation.

The mapping between the generic domain Q and the physical domain Ωe is as follows

x⃗(ξ⃗) = Ne
m xe

m (47)

where the column xe contains the position vectors of the element nodes in the actual coordinates (i.e. spanningΩe).
In order to perform the quadrature on Q we must also map the gradient operator:

∇⃗ξ = e⃗i
∂

∂ξi
= e⃗i

∂xj(ξ⃗)

∂ξi

∂

∂xj
= e⃗i

∂xj(ξ⃗)

∂ξi
e⃗j · e⃗k

∂

∂xk
=

[
∇⃗ξ x⃗(ξ⃗)

]
· ∇⃗ = J(ξ⃗) · ∇⃗ (48)
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0 1 2 3 40 1 2 3

+

0 1 2 3 40 1 2 3

+

0 1 2 3 40 1 2 3

+

0 1 2 3 40 1 2 3

Figure 4. Element-by-element assembly of the problem in Fig. 3.

Figure 5. Iso-parameteric transformation for a four node, bi-linear, quadrilateral element.
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i.e.

Jij =
∂xi

∂ξj
(49)

from which the inverse relationship trivially follows

∇⃗ = J−1(ξ⃗) · ∇⃗ξ (50)

where J is the Jacobian which can be obtained from the gradient of the shape functions with respect to the iso-
parametric coordinates and the nodal coordinates in the actual coordinates through Eq. (47):

J(ξ⃗) = ∇⃗ξ x⃗(ξ⃗) = ∇⃗ξ

[
Ne

m x⃗e
m

]
=

[
∇⃗ξ N

e
m

]
x⃗e
m (51)

The gradient of the shape functions with respect to the actual coordinates can now be computed though

∇⃗Ne
m = J−1(ξ⃗) ·

[
∇⃗ξ N

e
m

]
(52)

The change of variables should also be accounted for in the integration:∫
Ω

(. . .) dΩ =

∫∫∫
(. . .) dxdy dz =

∫∫∫
(. . .)

∣∣∣∣∂ (x, y, z)

∂ (ξ, η, µ)

∣∣∣∣dξ dη dµ (53)

where the determinant of the Jacobian

∂ (x, y, z)

∂ (ξ, η, µ)
=

∣∣∣∣∣∣∣∣∣∣∣

∂x

∂ξ

∂x

∂η

∂x

∂µ
∂y

∂ξ

∂y

∂η

∂y

∂µ
∂z

∂ξ

∂z

∂η

∂z

∂µ

∣∣∣∣∣∣∣∣∣∣∣
(54)

We can now make use of the Jacobian that we already obtained∫
Ω

(. . .) dΩ =

∫∫∫
(. . .) det

(
J(ξ⃗)

)
dξ dη dµ =

∫
Q

(. . .) det
(
J(ξ⃗)

)
dQ (55)

Note that another way to obtain this result is using

dΩ = dx⃗0 × dx⃗1 · dx⃗2 =
[
dx⃗0 · J(ξ⃗)

]
×
[
dx⃗1 · J(ξ⃗)

]
·
[
dx⃗2 · J(ξ⃗)

]
= det

(
J(ξ⃗)

)
dξ⃗0 × dξ⃗1 · dξ⃗2 (56)

= det
(
J(ξ⃗)

)
dQ (57)

Numerical quadrature can be formulated (exactly) on the master element. It corresponds to taking the weighted
sum of the integrand evaluated at specific quadrature points (or integration points).

The practical implications, for example for the internal force, are as follows:

f⃗e
m =

∫
Ωe

[
∇⃗Nm

]
· σ(x⃗) dΩ =

∫
Q

[
∇⃗Nm

]
· σ(x⃗) det

(
J(ξ⃗)

)
dQ (58)

=

nk∑
k

wk

[
∇⃗Nm

]
ξ⃗=ξ⃗k

· σ
(
x⃗(ξ⃗k)

)
det

(
J(ξ⃗k)

)
(59)

Total Lagrange
To obtain

x⃗(ξ⃗), ∇⃗0, and
∫
Ω0

. dΩ (60)

simply replace x⃗e
m with X⃗e

m in Eq. (47). For this reason the same element implementation can be used in small
strain and finite strain (total Lagrange and updated Lagrange), by providing either X⃗e

m or X⃗e
m + u⃗e

m as input.
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D Newton-Raphson in one dimension

The objective is to find x such that

r(x) = 0 (61)

An initial guess is made for x which is (hopefully) iteratively improved. This iterative value is denoted using x(i).
It is updated by making use of the following Taylor expansion

r
(
x(i+1)

)
= r

(
x(i)

)
+

dr

dx

∣∣∣∣
x=x(i)

δx+O
(
δx2) ≈ 0 (62)

where

δx = x(i+1) − x(i) (63)

The value of δx can be obtained by neglecting higher order terms:

r
(
x(i)

)
+

dr

dx

∣∣∣∣
x=x(i)

δx = 0 (64)

From which it follows that

δx = −

[
dr

dx

∣∣∣∣
x=x(i)

]−1

r
(
x(i)

)
(65)

Thereafter, the improved ‘guess’ of the solution is

x(i+1) = x(i) + δx (66)

These steps are then repeated, until the solution has been reached within a certain accuracy ϵ:∣∣r(x(i+1)
)∣∣ < ϵ (67)

The iterative scheme is well understood from the illustration in Fig. 6.

Figure 6. Schematic of the Newton-Raphson iterations in a one-dimensional problem.

E B-matrix

E.1 Discretization
(9)

∫
Ω

[
∇⃗ϕ⃗(x⃗)

]
: σ(x⃗) dΩ =

∫
Γ

ϕ⃗(x⃗) · t⃗(x⃗) dΓ ∀ ϕ⃗(x⃗) ∈ Rd (68)
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The discretization from Eq. (11) can be written more precisely as

ϕx(x⃗)e⃗x + ϕy(x⃗)e⃗y + ϕz(x⃗)e⃗z ≈
nnodes∑
m=1

Nm(x⃗) ϕm,xe⃗x +Nm(x⃗) ϕm,y e⃗y +Nm(x⃗) ϕm,z e⃗z (69)

∇⃗ϕ⃗(x⃗) ≈
nnodes∑
m=1

(
e⃗x

∂

∂x
+ e⃗y

∂

∂y
+ e⃗z

∂

∂z

)(
Nm(x⃗) ϕm,xe⃗x +Nm(x⃗) ϕm,y e⃗y +Nm(x⃗) ϕm,z e⃗z

)
(70)

= ϕm,x
∂Nm

∂x
e⃗xe⃗x + ϕm,y

∂Nm

∂x
e⃗xe⃗y + ϕm,z

∂Nm

∂x
e⃗xe⃗z (71)

+ ϕm,x
∂Nm

∂y
e⃗y e⃗x + ϕm,y

∂Nm

∂y
e⃗y e⃗y + ϕm,z

∂Nm

∂y
e⃗y e⃗z (72)

+ ϕm,x
∂Nm

∂z
e⃗z e⃗x + ϕm,y

∂Nm

∂z
e⃗z e⃗y + ϕm,z

∂Nm

∂z
e⃗z e⃗z (73)

Which we can denote in short as

∇⃗ϕ⃗(x⃗) ≈
nnodes∑
m=1

Bm(x⃗) · ϕ⃗m (74)

Bm,xxx =
∂Nm

∂x
Bm,yxx =

∂Nm

∂y
Bm,zxx =

∂Nm

∂z

Bm,xyy =
∂Nm

∂x
Bm,yyy =

∂Nm

∂y
Bm,zyy =

∂Nm

∂z
(75)

Bm,xzz =
∂Nm

∂x
Bm,yzz =

∂Nm

∂y
Bm,zzz =

∂Nm

∂z
(76)

Note that similarly

∇⃗u⃗(x⃗) ≈
nnodes∑
m=1

Bm(x⃗) · u⃗m (77)

∫
Ωh

(
Bm · ϕ⃗m

)
: σ(x⃗) dΩ =

∫
Γh

Nm(x⃗) ϕ⃗m · t⃗(x⃗) dΓ ∀ ϕ⃗m ∈ Rd
n (78)

ϕ⃗m ·
∫
Ωh

BT
m : σ(x⃗) dΩ = ϕ⃗m ·

∫
Γh

Nm(x⃗) t⃗(x⃗) dΓ ∀ ϕ⃗m ∈ Rd
n (79)

∫
Ωh

BT
m : σ(x⃗) dΩ =

∫
Γh

Nm(x⃗) t⃗(x⃗) dΓ (80)

E.2 Linear elasticity∫
Ωh

0

B̃T
m :

(
C : ε(x⃗)

)
dΩ =

∫
Γh

Nm(x⃗) t⃗(x⃗) dΓ (81)

∫
Ωh

0

B̃T
m :

(
C : ∇⃗u⃗(x⃗)

)
dΩ =

∫
Γh

Nm(x⃗) t⃗(x⃗) dΓ (82)

∫
Ωh

0

B̃T
m :

(
C : (B̃n · u⃗n)

)
dΩ =

∫
Γh

Nm(x⃗) t⃗(x⃗) dΓ (83)

∫
Ωh

0

B̃T
m :

(
C : B̃n

)
dΩ · u⃗n =

∫
Γh

Nm(x⃗) t⃗(x⃗) dΓ (84)
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F Cylindrical coordinates

F.1 ??

Figure 7. Caption here

x = r cos θ y = r sin θ z = z (85)

r =
√
x2 + y2 θ = arctan (y/x) z = z (86)

e⃗r = cos θ e⃗x + sin θ e⃗y

e⃗θ = − sin θ e⃗x + cos θ e⃗y

e⃗r = e⃗z (87)

∇⃗ = e⃗r
∂

∂r
+

1
r
e⃗θ

∂

∂θ
+ e⃗z

∂

∂z
(88)

∂e⃗r
∂r

= 0
∂e⃗θ
∂r

= 0
∂e⃗z
∂r

= 0

∂e⃗r
∂θ

= e⃗θ
∂e⃗θ
∂θ

= −e⃗r
∂e⃗z
∂θ

= 0

∂e⃗r
∂z

= 0
∂e⃗θ
∂z

= 0
∂e⃗z
∂z

= 0 (89)

We begin by making Eq. (11) more specific:

ϕr(x⃗)e⃗r + ϕθ(x⃗)e⃗θ + ϕz(x⃗)e⃗z ≈
n∑

i=1

Ni(x⃗)ϕi,r e⃗r +Ni(x⃗)ϕi,θ e⃗θ +Ni(x⃗)ϕi,z e⃗z (90)

We can also evaluate the discretized gradient

∇⃗ϕ⃗(x⃗) ≈
n∑

i=1

(
e⃗r

∂

∂r
+

1
r
e⃗θ

∂

∂θ
+ e⃗z

∂

∂z

)(
Ni(x⃗)ϕi,r e⃗r +Ni(x⃗)ϕi,θ e⃗θ +Ni(x⃗)ϕi,z e⃗z

)
(91)

=

n∑
i=1

ϕi,r
∂Ni

∂r
e⃗r e⃗r + ϕi,θ

∂Ni

∂r
e⃗r e⃗θ + ϕi,z

∂Ni

∂r
e⃗r e⃗z

+ ϕi,r
1
r

∂Ni

∂θ
e⃗θ e⃗r + ϕi,r

1
r
Ni(x⃗)e⃗θ e⃗θ + ϕi,θ

1
r

∂Ni

∂θ
e⃗θ e⃗θ − ϕi,θ

1
r
Ni(x⃗)e⃗r e⃗θ + ϕi,z

1
r

∂Ni

∂θ
e⃗θ e⃗z

+ ϕi,r
∂Ni

∂z
e⃗z e⃗r + ϕi,θ

∂Ni

∂z
e⃗z e⃗θ + ϕi,z

∂Ni

∂z
e⃗z e⃗z (92)
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Which we can denote in short as

∇⃗ϕ⃗(x⃗) ≈
n∑

i=1

Bi(x⃗) · ϕ⃗i (93)

where the non-zero components of the third order Bi read

Bi,rrr =
∂Ni

∂r
Bi,θrr =

1
r

∂Ni

∂θ
Bi,zrr =

∂Ni

∂z

Bi,rθθ = −1
r
Ni(x⃗) Bi,θθr =

1
r
Ni(x⃗)

Bi,rθθ =
∂Ni

∂r
Bi,θθθ =

1
r

∂Ni

∂θ
Bi,zθθ =

∂Ni

∂z
(94)

Bi,rzz =
∂Ni

∂r
Bi,θzz =

1
r

∂Ni

∂θ
Bi,zzz =

∂Ni

∂z
(95)

∇⃗ξ = J · ∇⃗ (96)

e⃗ξ
∂

∂ξ
+ e⃗η

∂

∂η
+ e⃗µ

∂

∂µ
= J ·

(
e⃗r

∂

∂r
+

1
r
e⃗θ

∂

∂θ
+ e⃗z

∂

∂z

)
(97)

J = e⃗ξ
∂r

∂ξ
e⃗r + e⃗ξr

∂θ

∂ξ
e⃗θ + e⃗ξ

∂z

∂ξ
e⃗z

+ e⃗η
∂r

∂η
e⃗r + e⃗ηr

∂θ

∂η
e⃗θ + e⃗η

∂z

∂η
e⃗z

+ e⃗µ
∂r

∂µ
e⃗r + e⃗µr

∂θ

∂µ
e⃗θ + e⃗µ

∂z

∂µ
e⃗z (98)

F.2 Axisymmetric
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