<tr id="row_0_1_0_" class="odd"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span id="arr_0_1_0_" class="arrow" onclick="dynsection.toggleFolder('0_1_0_')">▼</span><span class="icona"><span class="icon">N</span></span><a class="el" href="namespaceGooseFEM_1_1Element_1_1Hex8.html" target="_self">Hex8</a></td><td class="desc">8-noded hexahedral element in 3d (<a class="el" href="namespaceGooseFEM_1_1Mesh.html#a918a5ff8cbf95019827c82877b714e33af386881f58c90062b2624e9377036e02" title="Hexahedron: 8-noded element in 3-d.">GooseFEM::Mesh::ElementType::Hex8</a>) </td></tr>
<tr id="row_0_1_0_0_" class="even"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">N</span></span><a class="el" href="namespaceGooseFEM_1_1Element_1_1Hex8_1_1Gauss.html" target="_self">Gauss</a></td><td class="desc"><a class="el" href="namespaceGooseFEM_1_1Element_1_1Hex8_1_1Gauss.html" title="gauss quadrature: quadrature points such that integration is exact for these bi-linear elements::">Gauss</a> quadrature: quadrature points such that integration is exact for these bi-linear elements:: </td></tr>
<tr id="row_0_1_0_1_" class="odd"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">N</span></span><a class="el" href="namespaceGooseFEM_1_1Element_1_1Hex8_1_1Nodal.html" target="_self">Nodal</a></td><td class="desc"><a class="el" href="namespaceGooseFEM_1_1Element_1_1Hex8_1_1Nodal.html" title="nodal quadrature: quadrature points coincide with the nodes.">Nodal</a> quadrature: quadrature points coincide with the nodes </td></tr>
<tr id="row_0_1_1_" class="odd"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span id="arr_0_1_1_" class="arrow" onclick="dynsection.toggleFolder('0_1_1_')">▼</span><span class="icona"><span class="icon">N</span></span><a class="el" href="namespaceGooseFEM_1_1Element_1_1Quad4.html" target="_self">Quad4</a></td><td class="desc">4-noded quadrilateral element in 2d (<a class="el" href="namespaceGooseFEM_1_1Mesh.html#a918a5ff8cbf95019827c82877b714e33a7e543de6ba602d09b9bd5cb5e1eee77c" title="Quadrilateral: 4-noded element in 2-d.">GooseFEM::Mesh::ElementType::Quad4</a>) </td></tr>
<tr id="row_0_1_1_0_" class="even"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">N</span></span><a class="el" href="namespaceGooseFEM_1_1Element_1_1Quad4_1_1Gauss.html" target="_self">Gauss</a></td><td class="desc"><a class="el" href="namespaceGooseFEM_1_1Element_1_1Quad4_1_1Gauss.html" title="Gauss quadrature: quadrature points such that integration is exact for this bi-linear element:">Gauss</a> quadrature: quadrature points such that integration is exact for this bi-linear element: </td></tr>
<tr id="row_0_1_1_1_" class="odd"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">N</span></span><a class="el" href="namespaceGooseFEM_1_1Element_1_1Quad4_1_1MidPoint.html" target="_self">MidPoint</a></td><td class="desc">Midpoint quadrature: quadrature points in the middle of the element:: </td></tr>
<tr id="row_0_1_1_2_" class="even"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">N</span></span><a class="el" href="namespaceGooseFEM_1_1Element_1_1Quad4_1_1Nodal.html" target="_self">Nodal</a></td><td class="desc"><a class="el" href="namespaceGooseFEM_1_1Element_1_1Quad4_1_1Nodal.html" title="nodal quadrature: quadrature points coincide with the nodes.">Nodal</a> quadrature: quadrature points coincide with the nodes </td></tr>
<tr id="row_0_1_2_" class="even"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBase.html" target="_self">QuadratureBase</a></td><td class="desc">CRTP base class for quadrature </td></tr>
<tr id="row_0_1_3_" class="odd"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Element_1_1QuadratureBaseCartesian.html" target="_self">QuadratureBaseCartesian</a></td><td class="desc">CRTP base class for interpolation and quadrature for a generic element in Cartesian coordinates </td></tr>
<tr id="row_0_2_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span id="arr_0_2_" class="arrow" onclick="dynsection.toggleFolder('0_2_')">▼</span><span class="icona"><span class="icon">N</span></span><a class="el" href="namespaceGooseFEM_1_1Iterate.html" target="_self">Iterate</a></td><td class="desc">Support function for iterations in end-user programs </td></tr>
<tr id="row_0_2_0_" class="odd"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Iterate_1_1StopList.html" target="_self">StopList</a></td><td class="desc">Class to perform a residual check based on the last "n" iterations </td></tr>
<tr id="row_0_3_0_" class="odd"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span id="arr_0_3_0_" class="arrow" onclick="dynsection.toggleFolder('0_3_0_')">▼</span><span class="icona"><span class="icon">N</span></span><a class="el" href="namespaceGooseFEM_1_1Mesh_1_1Hex8.html" target="_self">Hex8</a></td><td class="desc">Simple meshes of 8-noded hexahedral elements in 3d (<a class="el" href="namespaceGooseFEM_1_1Mesh.html#a918a5ff8cbf95019827c82877b714e33af386881f58c90062b2624e9377036e02" title="Hexahedron: 8-noded element in 3-d.">ElementType::Hex8</a>) </td></tr>
<tr id="row_0_3_0_0_" class="even"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Mesh_1_1Hex8_1_1FineLayer.html" target="_self">FineLayer</a></td><td class="desc"><a class="el" href="namespaceGooseFEM_1_1Mesh.html" title="Generic mesh operations, and simple mesh definitions.">Mesh</a> with fine middle layer, and coarser elements towards the top and bottom </td></tr>
<tr id="row_0_3_1_0_0_" class="even"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Mesh_1_1Quad4_1_1Map_1_1FineLayer2Regular.html" target="_self">FineLayer2Regular</a></td><td class="desc"><a class="el" href="namespaceGooseFEM_1_1Mesh_1_1Quad4_1_1Map.html" title="Mesh mappings.">Map</a> a <a class="el" href="classGooseFEM_1_1Mesh_1_1Quad4_1_1FineLayer.html" title="Mesh with fine middle layer, and coarser elements towards the top and bottom.">FineLayer</a> mesh to a <a class="el" href="classGooseFEM_1_1Mesh_1_1Quad4_1_1Regular.html" title="Regular mesh: equi-sized elements.">Regular</a> mesh </td></tr>
<tr id="row_0_3_1_0_1_" class="odd"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Mesh_1_1Quad4_1_1Map_1_1RefineRegular.html" target="_self">RefineRegular</a></td><td class="desc">Refine a <a class="el" href="classGooseFEM_1_1Mesh_1_1Quad4_1_1Regular.html" title="Regular mesh: equi-sized elements.">Regular</a> mesh: subdivide elements in several smaller elements </td></tr>
<tr id="row_0_3_1_1_" class="even"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Mesh_1_1Quad4_1_1FineLayer.html" target="_self">FineLayer</a></td><td class="desc"><a class="el" href="namespaceGooseFEM_1_1Mesh.html" title="Generic mesh operations, and simple mesh definitions.">Mesh</a> with fine middle layer, and coarser elements towards the top and bottom </td></tr>
<tr id="row_0_3_2_" class="even"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span id="arr_0_3_2_" class="arrow" onclick="dynsection.toggleFolder('0_3_2_')">▼</span><span class="icona"><span class="icon">N</span></span><a class="el" href="namespaceGooseFEM_1_1Mesh_1_1Tri3.html" target="_self">Tri3</a></td><td class="desc">Simple meshes of and mesh operations for triangular elements of type <a class="el" href="namespaceGooseFEM_1_1Mesh.html#a918a5ff8cbf95019827c82877b714e33a9623fe6fd6981ce17add24f854d83dd9" title="Triangle: 3-noded element in 2-d.">ElementType::Tri3</a> </td></tr>
<tr id="row_0_3_2_0_" class="odd"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Mesh_1_1Tri3_1_1Regular.html" target="_self">Regular</a></td><td class="desc"><a class="el" href="classGooseFEM_1_1Mesh_1_1Tri3_1_1Regular.html" title="Regular grid of squares, with each square cut into two triangular elements.">Regular</a> grid of squares, with each square cut into two triangular elements </td></tr>
<tr id="row_0_3_3_" class="even"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Mesh_1_1ManualStitch.html" target="_self">ManualStitch</a></td><td class="desc"><a class="el" href="classGooseFEM_1_1Mesh_1_1Stitch.html" title="Stitch mesh objects, automatically searching for overlapping nodes.">Stitch</a> two mesh objects, specifying overlapping nodes by hand </td></tr>
<tr id="row_0_3_4_" class="odd"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Mesh_1_1RegularBase.html" target="_self">RegularBase</a></td><td class="desc">CRTP base class for regular meshes </td></tr>
<tr id="row_0_3_5_" class="even"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Mesh_1_1RegularBase2d.html" target="_self">RegularBase2d</a></td><td class="desc">CRTP base class for regular meshes in 2d </td></tr>
<tr id="row_0_3_6_" class="odd"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Mesh_1_1RegularBase3d.html" target="_self">RegularBase3d</a></td><td class="desc">CRTP base class for regular meshes in 3d </td></tr>
<tr id="row_0_3_7_" class="even"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Mesh_1_1Renumber.html" target="_self">Renumber</a></td><td class="desc"><a class="el" href="classGooseFEM_1_1Mesh_1_1Renumber.html" title="Renumber indices to lowest possible index.">Renumber</a> indices to lowest possible index </td></tr>
<tr id="row_0_3_8_" class="odd"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Mesh_1_1Reorder.html" target="_self">Reorder</a></td><td class="desc"><a class="el" href="classGooseFEM_1_1Mesh_1_1Reorder.html" title="Reorder to lowest possible index, in specific order.">Reorder</a> to lowest possible index, in specific order </td></tr>
<tr id="row_0_4_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span id="arr_0_4_" class="arrow" onclick="dynsection.toggleFolder('0_4_')">▼</span><span class="icona"><span class="icon">N</span></span><a class="el" href="namespaceGooseFEM_1_1Tyings.html" target="_self">Tyings</a></td><td class="desc">Tools to store and apply nodal/DOF tyings </td></tr>
<tr id="row_0_4_0_" class="odd"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Tyings_1_1Control.html" target="_self">Control</a></td><td class="desc">Add control nodes to an existing system </td></tr>
<tr id="row_0_6_" class="even"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1MatrixBase.html" target="_self">MatrixBase</a></td><td class="desc">CRTP base class for a matrix </td></tr>
<tr id="row_0_8_" class="even"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1MatrixDiagonalBase.html" target="_self">MatrixDiagonalBase</a></td><td class="desc">CRTP base class for a partitioned matrix with tying </td></tr>
<tr id="row_0_10_" class="even"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1MatrixPartitioned.html" target="_self">MatrixPartitioned</a></td><td class="desc">Sparse matrix partitioned in an unknown and a prescribed part </td></tr>
<tr id="row_0_11_" class="odd"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1MatrixPartitionedBase.html" target="_self">MatrixPartitionedBase</a></td><td class="desc">CRTP base class for a partitioned matrix </td></tr>
<tr id="row_0_12_" class="even"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1MatrixPartitionedSolver.html" target="_self">MatrixPartitionedSolver</a></td><td class="desc">Solve \( x_u = A_{uu}^{-1} (b_u - A_{up} * x_p) \) for <code>A</code> of the MatrixPartitioned() class </td></tr>
<tr id="row_0_13_" class="odd"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1MatrixPartitionedTyings.html" target="_self">MatrixPartitionedTyings</a></td><td class="desc">Sparse matrix from with dependent DOFs are eliminated, and the remaining (small) independent system is partitioned in an unknown and a prescribed part </td></tr>
<tr id="row_0_14_" class="even"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1MatrixPartitionedTyingsBase.html" target="_self">MatrixPartitionedTyingsBase</a></td><td class="desc">CRTP base class for a partitioned matrix with tying </td></tr>
<tr id="row_0_16_" class="even"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1MatrixSolver.html" target="_self">MatrixSolver</a></td><td class="desc">Solve \( x = A^{-1} b \), for <code>A</code> of the <a class="el" href="classGooseFEM_1_1Matrix.html" title="Sparse matrix.">GooseFEM::Matrix()</a> class </td></tr>
<tr id="row_0_17_" class="odd"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1MatrixSolverBase.html" target="_self">MatrixSolverBase</a></td><td class="desc">CRTP base class for a solver class </td></tr>
<tr id="row_0_18_" class="even"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1MatrixSolverPartitionedBase.html" target="_self">MatrixSolverPartitionedBase</a></td><td class="desc">CRTP base class for a extra functions for a partitioned solver class </td></tr>
<tr id="row_0_19_" class="odd"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1MatrixSolverSingleBase.html" target="_self">MatrixSolverSingleBase</a></td><td class="desc">CRTP base class for a solver class </td></tr>
<tr id="row_0_20_" class="even"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1Vector.html" target="_self">Vector</a></td><td class="desc">Class to switch between storage types </td></tr>
<tr id="row_0_21_" class="odd"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1VectorPartitioned.html" target="_self">VectorPartitioned</a></td><td class="desc">Class to switch between storage types, based on a mesh and DOFs that are partitioned in: </td></tr>
<tr id="row_0_22_" class="even"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classGooseFEM_1_1VectorPartitionedTyings.html" target="_self">VectorPartitionedTyings</a></td><td class="desc">Class to switch between storage types </td></tr>
</table>
</div><!-- directory -->
</div><!-- contents -->
</div><!-- doc-content -->
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->