Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120444086
main.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Jul 4, 10:41
Size
11 KB
Mime Type
text/x-c++
Expires
Sun, Jul 6, 10:41 (2 d)
Engine
blob
Format
Raw Data
Handle
27190088
Attached To
rGOOSEFEM GooseFEM
main.cpp
View Options
#include <Eigen/Eigen>
#include <HDF5pp.h>
#include <cppmat/cppmat.h>
#include <GooseFEM/GooseFEM.h>
#include <GooseMaterial/AmorphousSolid/LinearStrain/ElastoPlastic/Cartesian2d.h>
using MatD = GooseFEM::MatD;
using ColD = GooseFEM::ColD;
namespace GM = GooseMaterial::AmorphousSolid::LinearStrain::ElastoPlastic::Cartesian2d;
using vec = cppmat::cartesian2d::vector <double>;
using T2 = cppmat::cartesian2d::tensor2 <double>;
using T2s = cppmat::cartesian2d::tensor2s<double>;
using T2d = cppmat::cartesian2d::tensor2d<double>;
// =================================================================================================
class Element
{
public:
// arrays / matrices
cppmat::tiny::matrix2<double,4,2> xe, ue, ve, xi, xi_n, dNdxi, dNdx;
cppmat::tiny::vector <double,4> N, w, w_n;
cppmat::tiny::matrix2<double,8,8> M;
cppmat::tiny::vector <double,8> fu, fv;
// tensors
cppmat::cartesian2d::tensor2 <double> J, Jinv, gradu, gradv;
cppmat::cartesian2d::tensor2s<double> eps, epsdot, sig;
cppmat::cartesian2d::vector <double> v;
// scalars
double Jdet, V;
// sizes (nodes per element, dimensions, quadrature points)
size_t nne=4, ndim=2, nk=4;
// problem definition
// - density
double rho;
// - constitutive model / Rayleigh damping
GM::Material hard, soft, rayleigh;
// - number of elements
size_t nelem;
// output quantities
double Epotbar; // potential energy
double Ekinbar; // kinetic energy
double Vbar; // volume
Element(double eta, size_t nelem);
void computeMassMatrix (size_t elem);
void computeInternalForce(size_t elem);
void computeDampingForce (size_t elem);
void postProcess (size_t elem);
};
// -------------------------------------------------------------------------------------------------
Element::Element(double eta, size_t _nelem)
{
// constitutive definition
hard = GM::Material(100.,10.);
soft = GM::Material(100., 1.);
rayleigh = GM::Material(eta ,eta);
rho = 1.;
nelem = _nelem;
// integration point coordinates/weights: normal Gauss integration for Quad4
xi(0,0) = -1./std::sqrt(3.); xi(0,1) = -1./std::sqrt(3.); w(0) = 1.;
xi(1,0) = +1./std::sqrt(3.); xi(1,1) = -1./std::sqrt(3.); w(1) = 1.;
xi(2,0) = +1./std::sqrt(3.); xi(2,1) = +1./std::sqrt(3.); w(2) = 1.;
xi(3,0) = -1./std::sqrt(3.); xi(3,1) = +1./std::sqrt(3.); w(3) = 1.;
// integration point coordinates/weights: integration at the nodes for Quad4
xi_n(0,0) = -1.; xi_n(0,1) = -1.; w_n(0) = 1.;
xi_n(1,0) = +1.; xi_n(1,1) = -1.; w_n(1) = 1.;
xi_n(2,0) = +1.; xi_n(2,1) = +1.; w_n(2) = 1.;
xi_n(3,0) = -1.; xi_n(3,1) = +1.; w_n(3) = 1.;
}
// -------------------------------------------------------------------------------------------------
void Element::computeMassMatrix(size_t elem)
{
// zero-initialize element mass matrix
M.zeros();
// loop over integration points (coincide with the nodes to get a diagonal mass matrix)
for ( size_t k = 0 ; k < nne ; ++k )
{
// - shape function gradients (local coordinates)
dNdxi(0,0) = -.25*(1.-xi_n(k,1)); dNdxi(0,1) = -.25*(1.-xi_n(k,0));
dNdxi(1,0) = +.25*(1.-xi_n(k,1)); dNdxi(1,1) = -.25*(1.+xi_n(k,0));
dNdxi(2,0) = +.25*(1.+xi_n(k,1)); dNdxi(2,1) = +.25*(1.+xi_n(k,0));
dNdxi(3,0) = -.25*(1.+xi_n(k,1)); dNdxi(3,1) = +.25*(1.-xi_n(k,0));
// - Jacobian
J.zeros();
for ( size_t m = 0 ; m < nne ; ++m )
for ( size_t i = 0 ; i < ndim ; ++i )
for ( size_t j = 0 ; j < ndim ; ++j )
J(i,j) += dNdxi(m,i) * xe(m,j);
// - determinant and inverse of the Jacobian
Jdet = J.det();
Jinv = J.inv();
// - integration point volume (== volume associated with the node, in this element)
V = w_n(k) * Jdet;
// - assemble to element mass matrix (use the delta properties of the shape functions)
for ( size_t i = 0 ; i < ndim ; ++i )
M(i,i) += rho * V;
}
}
// -------------------------------------------------------------------------------------------------
void Element::computeInternalForce(size_t elem)
{
// zero-initialize element force
fu.zeros();
// loop over integration points
for ( size_t k = 0 ; k < nk ; ++k )
{
// - shape function gradients (local coordinates)
dNdxi(0,0) = -.25*(1.-xi(k,1)); dNdxi(0,1) = -.25*(1.-xi(k,0));
dNdxi(1,0) = +.25*(1.-xi(k,1)); dNdxi(1,1) = -.25*(1.+xi(k,0));
dNdxi(2,0) = +.25*(1.+xi(k,1)); dNdxi(2,1) = +.25*(1.+xi(k,0));
dNdxi(3,0) = -.25*(1.+xi(k,1)); dNdxi(3,1) = +.25*(1.-xi(k,0));
// - Jacobian
J.zeros();
for ( size_t m = 0 ; m < nne ; ++m )
for ( size_t i = 0 ; i < ndim ; ++i )
for ( size_t j = 0 ; j < ndim ; ++j )
J(i,j) += dNdxi(m,i) * xe(m,j);
// - determinant and inverse of the Jacobian
Jdet = J.det();
Jinv = J.inv();
// - integration point volume
V = w(k) * Jdet;
// - shape function gradients (global coordinates)
dNdx.zeros();
for ( size_t m = 0 ; m < nne ; ++m )
for ( size_t i = 0 ; i < ndim ; ++i )
for ( size_t j = 0 ; j < ndim ; ++j )
dNdx(m,i) += Jinv(i,j) * dNdxi(m,j);
// - displacement gradient
gradu.zeros();
for ( size_t m = 0 ; m < nne ; ++m )
for ( size_t i = 0 ; i < ndim ; ++i )
for ( size_t j = 0 ; j < ndim ; ++j )
gradu(i,j) += dNdx(m,i) * ue(m,j);
// - strain tensor (symmetric part of "gradu")
eps = gradu.astensor2s();
// - constitutive response
if ( elem < (nelem/4)*nelem ) sig = hard.stress(eps);
else sig = soft.stress(eps);
// - assemble to element force
for ( size_t m = 0 ; m < nne ; ++m )
for ( size_t i = 0 ; i < ndim ; ++i )
for ( size_t j = 0 ; j < ndim ; ++j )
fu(m*ndim+j) += dNdx(m,i) * sig(i,j) * V;
}
}
// -------------------------------------------------------------------------------------------------
void Element::computeDampingForce(size_t elem)
{
// zero-initialize element force
fv.zeros();
// loop over integration points
for ( size_t k = 0 ; k < nk ; ++k )
{
// - shape function gradients (local coordinates)
dNdxi(0,0) = -.25*(1.-xi(k,1)); dNdxi(0,1) = -.25*(1.-xi(k,0));
dNdxi(1,0) = +.25*(1.-xi(k,1)); dNdxi(1,1) = -.25*(1.+xi(k,0));
dNdxi(2,0) = +.25*(1.+xi(k,1)); dNdxi(2,1) = +.25*(1.+xi(k,0));
dNdxi(3,0) = -.25*(1.+xi(k,1)); dNdxi(3,1) = +.25*(1.-xi(k,0));
// - Jacobian
J.zeros();
for ( size_t m = 0 ; m < nne ; ++m )
for ( size_t i = 0 ; i < ndim ; ++i )
for ( size_t j = 0 ; j < ndim ; ++j )
J(i,j) += dNdxi(m,i) * xe(m,j);
// - determinant and inverse of the Jacobian
Jdet = J.det();
Jinv = J.inv();
// - integration point volume
V = w(k) * Jdet;
// - shape function gradients (global coordinates)
dNdx.zeros();
for ( size_t m = 0 ; m < nne ; ++m )
for ( size_t i = 0 ; i < ndim ; ++i )
for ( size_t j = 0 ; j < ndim ; ++j )
dNdx(m,i) += Jinv(i,j) * dNdxi(m,j);
// - velocity gradient
gradv.zeros();
for ( size_t m = 0 ; m < nne ; ++m )
for ( size_t i = 0 ; i < ndim ; ++i )
for ( size_t j = 0 ; j < ndim ; ++j )
gradv(i,j) += dNdx(m,i) * ve(m,j);
// - strain rate tensor (symmetric part of "gradv")
epsdot = gradv.astensor2s();
// - constitutive response
sig = rayleigh.stress(epsdot);
// - assemble to element force
for ( size_t m = 0 ; m < nne ; ++m )
for ( size_t i = 0 ; i < ndim ; ++i )
for ( size_t j = 0 ; j < ndim ; ++j )
fv(m*ndim+j) += dNdx(m,i) * sig(i,j) * V;
}
}
// -------------------------------------------------------------------------------------------------
void Element::postProcess(size_t elem)
{
// loop over integration points
for ( size_t k = 0 ; k < nk ; ++k )
{
// - shape functions
N(0) = .25*(1.-xi(k,0))*(1.-xi(k,1));
N(1) = .25*(1.+xi(k,0))*(1.-xi(k,1));
N(2) = .25*(1.+xi(k,0))*(1.+xi(k,1));
N(3) = .25*(1.-xi(k,0))*(1.+xi(k,1));
// - shape function gradients (local coordinates)
dNdxi(0,0) = -.25*(1.-xi(k,1)); dNdxi(0,1) = -.25*(1.-xi(k,0));
dNdxi(1,0) = +.25*(1.-xi(k,1)); dNdxi(1,1) = -.25*(1.+xi(k,0));
dNdxi(2,0) = +.25*(1.+xi(k,1)); dNdxi(2,1) = +.25*(1.+xi(k,0));
dNdxi(3,0) = -.25*(1.+xi(k,1)); dNdxi(3,1) = +.25*(1.-xi(k,0));
// - Jacobian
J.zeros();
for ( size_t m = 0 ; m < nne ; ++m )
for ( size_t i = 0 ; i < ndim ; ++i )
for ( size_t j = 0 ; j < ndim ; ++j )
J(i,j) += dNdxi(m,i) * xe(m,j);
// - determinant and inverse of the Jacobian
Jdet = J.det();
Jinv = J.inv();
// - integration point volume
V = w(k) * Jdet;
// - add to total volume
Vbar += V;
// - shape function gradients (global coordinates)
dNdx.zeros();
for ( size_t m = 0 ; m < nne ; ++m )
for ( size_t i = 0 ; i < ndim ; ++i )
for ( size_t j = 0 ; j < ndim ; ++j )
dNdx(m,i) += Jinv(i,j) * dNdxi(m,j);
// - displacement gradient
gradu.zeros();
for ( size_t m = 0 ; m < nne ; ++m )
for ( size_t i = 0 ; i < ndim ; ++i )
for ( size_t j = 0 ; j < ndim ; ++j )
gradu(i,j) += dNdx(m,i) * ue(m,j);
// - strain tensor (symmetric part of "gradu")
eps = gradu.astensor2s();
// - add to total strain energy
if ( elem < (nelem/4)*nelem ) Epotbar += hard.energy(eps) * V;
else Epotbar += soft.energy(eps) * V;
// - velocity
v.zeros();
for ( size_t m = 0 ; m < nne ; ++m )
for ( size_t i = 0 ; i < ndim ; ++i )
v(i) += N(m) * ve(m,i);
// - add to total kinetic energy
Ekinbar += .5 * rho * v.dot(v) * V;
}
}
// =================================================================================================
int main(int argc, const char** argv)
{
// get "eta" and "name" of the output file from the input
std::string num1 = argv[1]; size_t N = std::stod(num1);
std::string num2 = argv[2]; double eta = std::stod(num2);
std::string num3 = argv[3]; double alpha = std::stod(num3);
std::string num4 = argv[4]; double dt = std::stod(num4);
std::string name = argv[5];
// define a mesh
GooseFEM::Mesh::Quad4::Regular mesh(N,N,static_cast<double>(N),static_cast<double>(N));
// extract a reference node (whose position will stay constant)
size_t nodeRef = mesh.nodesRef();
// define the problem specific "Element" routines (see above)
auto elem = std::make_shared<Element>(eta,N);
// define the entire problem
GooseFEM::Dynamics::Periodic::DiagonalMass<Element> sim(
elem,
mesh.coor(),
mesh.conn(),
mesh.dofsPeriodic(),
dt,
alpha
);
// define update in macroscopic deformation gradient
T2 dFbar(0.);
dFbar(0,1) = .01;
// update the displacement according to the macroscopic deformation gradient update
for ( size_t i = 0 ; i < sim.nnode ; ++i )
for ( size_t j = 0 ; j < sim.ndim ; ++j )
for ( size_t k = 0 ; k < sim.ndim ; ++k )
sim.u(i,j) += dFbar(j,k) * ( sim.x0(i,k) - sim.x0(nodeRef,k) );
// output : total energy and potential energy
ColD Epotbar(static_cast<int>(15./dt));
ColD Ekinbar(static_cast<int>(15./dt));
ColD t (static_cast<int>(15./dt));
// loop over increments
for ( size_t i = 0 ; i < static_cast<size_t>(Epotbar.size()) ; ++i )
{
// - compute increment
sim.Verlet();
// - post-process
// -- zero-initialize averages
elem->Vbar = 0.;
elem->Epotbar = 0.;
elem->Ekinbar = 0.;
// -- compute sums
sim.postProcess();
// -- normalize and store averages
Epotbar(i) = elem->Epotbar;
Ekinbar(i) = elem->Ekinbar;
t (i) = sim.t;
}
// write to output file
H5p::File f = H5p::File(name);
f.write("/global/Epot",Epotbar );
f.write("/global/Ekin",Ekinbar );
f.write("/global/t" ,t );
f.write("/mesh/coor" ,mesh.coor());
f.write("/mesh/conn" ,mesh.conn());
f.write("/mesh/disp" ,sim.u );
return 0;
}
Event Timeline
Log In to Comment