Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102270574
MatrixPartitioned.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Feb 18, 23:21
Size
6 KB
Mime Type
text/x-c++
Expires
Thu, Feb 20, 23:21 (2 d)
Engine
blob
Format
Raw Data
Handle
24298496
Attached To
rGOOSEFEM GooseFEM
MatrixPartitioned.h
View Options
/*
(c - GPLv3) T.W.J. de Geus (Tom) | tom@geus.me | www.geus.me | github.com/tdegeus/GooseFEM
*/
#ifndef GOOSEFEM_MATRIXPARTITIONED_H
#define GOOSEFEM_MATRIXPARTITIONED_H
#include "config.h"
#include <Eigen/Eigen>
#include <Eigen/Sparse>
#include <Eigen/SparseCholesky>
namespace GooseFEM {
// forward declaration
template <class> class MatrixPartitionedSolver;
class MatrixPartitioned {
public:
// Constructors
MatrixPartitioned() = default;
MatrixPartitioned(
const xt::xtensor<size_t, 2>& conn,
const xt::xtensor<size_t, 2>& dofs,
const xt::xtensor<size_t, 1>& iip);
// Dimensions
size_t nelem() const; // number of elements
size_t nne() const; // number of nodes per element
size_t nnode() const; // number of nodes
size_t ndim() const; // number of dimensions
size_t ndof() const; // number of DOFs
size_t nnu() const; // number of unknown DOFs
size_t nnp() const; // number of prescribed DOFs
// DOF lists
xt::xtensor<size_t, 2> dofs() const; // DOFs
xt::xtensor<size_t, 1> iiu() const; // unknown DOFs
xt::xtensor<size_t, 1> iip() const; // prescribed DOFs
// Assemble from matrices stored per element [nelem, nne*ndim, nne*ndim]
void assemble(const xt::xtensor<double, 3>& elemmat);
// Overwrite with a dense (sub-) matrix
void set(
const xt::xtensor<size_t, 1>& rows,
const xt::xtensor<size_t, 1>& cols,
const xt::xtensor<double, 2>& matrix);
// Add a dense (sub-) matrix to the current matrix
void add(
const xt::xtensor<size_t, 1>& rows,
const xt::xtensor<size_t, 1>& cols,
const xt::xtensor<double, 2>& matrix);
// Return as dense matrix
void todense(xt::xtensor<double, 2>& ret) const;
// Dot-product:
// b_i = A_ij * x_j
void dot(const xt::xtensor<double, 2>& x, xt::xtensor<double, 2>& b) const;
void dot(const xt::xtensor<double, 1>& x, xt::xtensor<double, 1>& b) const;
// Get right-hand-size for corresponding to the prescribed DOFs:
// b_p = A_pu * x_u + A_pp * x_p = A_pp * x_p
void reaction(
const xt::xtensor<double, 2>& x,
xt::xtensor<double, 2>& b) const; // modified with "b_p"
void reaction(
const xt::xtensor<double, 1>& x,
xt::xtensor<double, 1>& b) const; // modified with "b_p"
void reaction_p(
const xt::xtensor<double, 1>& x_u,
const xt::xtensor<double, 1>& x_p,
xt::xtensor<double, 1>& b_p) const;
// Auto-allocation of the functions above
xt::xtensor<double, 2> Todense() const;
xt::xtensor<double, 2> Dot(const xt::xtensor<double, 2>& x) const;
xt::xtensor<double, 1> Dot(const xt::xtensor<double, 1>& x) const;
xt::xtensor<double, 2> Reaction(
const xt::xtensor<double, 2>& x, const xt::xtensor<double, 2>& b) const;
xt::xtensor<double, 1> Reaction(
const xt::xtensor<double, 1>& x, const xt::xtensor<double, 1>& b) const;
xt::xtensor<double, 1> Reaction_p(
const xt::xtensor<double, 1>& x_u, const xt::xtensor<double, 1>& x_p) const;
private:
// The matrix
Eigen::SparseMatrix<double> m_Auu;
Eigen::SparseMatrix<double> m_Aup;
Eigen::SparseMatrix<double> m_Apu;
Eigen::SparseMatrix<double> m_App;
// Matrix entries
std::vector<Eigen::Triplet<double>> m_Tuu;
std::vector<Eigen::Triplet<double>> m_Tup;
std::vector<Eigen::Triplet<double>> m_Tpu;
std::vector<Eigen::Triplet<double>> m_Tpp;
// Signal changes to data compare to the last inverse
bool m_changed = true;
// Bookkeeping
xt::xtensor<size_t, 2> m_conn; // connectivity [nelem, nne ]
xt::xtensor<size_t, 2> m_dofs; // DOF-numbers per node [nnode, ndim]
xt::xtensor<size_t, 2> m_part; // DOF-numbers per node, renumbered [nnode, ndim]
xt::xtensor<size_t, 1> m_iiu; // unknown DOFs [nnu]
xt::xtensor<size_t, 1> m_iip; // prescribed DOFs [nnp]
// Dimensions
size_t m_nelem; // number of elements
size_t m_nne; // number of nodes per element
size_t m_nnode; // number of nodes
size_t m_ndim; // number of dimensions
size_t m_ndof; // number of DOFs
size_t m_nnu; // number of unknown DOFs
size_t m_nnp; // number of prescribed DOFs
// grant access to solver class
template <class> friend class MatrixPartitionedSolver;
// Convert arrays (Eigen version of VectorPartitioned, which contains public functions)
Eigen::VectorXd AsDofs_u(const xt::xtensor<double, 1>& dofval) const;
Eigen::VectorXd AsDofs_u(const xt::xtensor<double, 2>& nodevec) const;
Eigen::VectorXd AsDofs_p(const xt::xtensor<double, 1>& dofval) const;
Eigen::VectorXd AsDofs_p(const xt::xtensor<double, 2>& nodevec) const;
};
template <class Solver = Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>>>
class MatrixPartitionedSolver {
public:
// Constructors
MatrixPartitionedSolver() = default;
// Solve:
// x_u = A_uu \ ( b_u - A_up * x_p )
void solve(
MatrixPartitioned& matrix,
const xt::xtensor<double, 2>& b,
xt::xtensor<double, 2>& x); // modified with "x_u"
void solve(
MatrixPartitioned& matrix,
const xt::xtensor<double, 1>& b,
xt::xtensor<double, 1>& x); // modified with "x_u"
void solve_u(
MatrixPartitioned& matrix,
const xt::xtensor<double, 1>& b_u,
const xt::xtensor<double, 1>& x_p,
xt::xtensor<double, 1>& x_u);
// Auto-allocation of the functions above
xt::xtensor<double, 2> Solve(
MatrixPartitioned& matrix,
const xt::xtensor<double, 2>& b,
const xt::xtensor<double, 2>& x);
xt::xtensor<double, 1> Solve(
MatrixPartitioned& matrix,
const xt::xtensor<double, 1>& b,
const xt::xtensor<double, 1>& x);
xt::xtensor<double, 1> Solve_u(
MatrixPartitioned& matrix,
const xt::xtensor<double, 1>& b_u,
const xt::xtensor<double, 1>& x_p);
private:
Solver m_solver; // solver
bool m_factor = true; // signal to force factorization
void factorize(MatrixPartitioned& matrix); // compute inverse (evaluated by "solve")
};
} // namespace GooseFEM
#include "MatrixPartitioned.hpp"
#endif
Event Timeline
Log In to Comment