
Compiling code and using MPI

scitas.epfl.ch

May 6, 2015

scitas.epfl.ch


Welcome

What you will learn

How to compile and launch MPI codes on the SCITAS clusters
along with a bit of the ”why”

What you will not learn

How to write parallel code and optimise it - there are other couses
for that!

1 / 31



Compilation

From code to binary

Compilation is the process by which code (C, C++, Fortran etc) is
transformed into a binary that can be run on a CPU.

CPUs are not all the same

CPUs have different features and instruction sets

The same code will need to be recompiled for different
architectures

2 / 31



What is MPI?

What is MPI?

Message Passing Interface

De facto standard for distributed memory parallelisation

Open standard with multiple implementations - now at version
3.0

Scales to very large systems

Shared vs Distributed Memory

Shared - all tasks see all the memory (e.g. OpenMP)

Distributed - tasks only see a small part of the overall memory

Clusters are distributed memory systems so MPI is well suited.

3 / 31



MPI Terminology

Words that you are going to hear

Rank - how MPI tasks are organised

Rank 0 to N - the ”worker” tasks

Hybrid - a code that combines shared memory parallelisation
with MPI

Pure MPI codes generally run one rank per core.

4 / 31



Compilers - Intel vs GCC

GNU Compiler Collection

The industry standard and available everywhere

Quick to support new C++ language features

Fortran support used to be poor

Intel Composer

Claims to produce faster code on Intel CPUs

Better Fortran support

Generally much stricter with bad code!

5 / 31



MPI - Intel vs MVAPICH2 vs OpenMPI

Why are there different flavours?

There are multiple MPI flavours that comply with the specification
and each claims to have some advantage over the other. Some are
vendor specific and others are open source

The main contenders

Intel MPI - commercial MPI with support

MVAPICH2 - developed by Ohio uni for Infiniband

OpenMPI - Open source and widely used

In SCITAS we support IntelMPI and MVAPICH2

6 / 31



Compiler and MPI choice

First choose your compiler

GCC or Intel

This might be a technical or philosophical choice

The associated MPI is then

GCC with MVAPICH2

Intel with IntelMPI

This is a SCITAS restriction to prevent chaos - nothing technically
stops one from mixing!

Both work well and have good performance.

7 / 31



The dark art of mangling

Mangling?

Mechanism to allow multiple functions with the same name

C/C++

GCC - ZN5NOMAD10Eval PointD2Ev

Intel - ZN5NOMAD10Eval PointD2Ev

Result: C/C++ libraries are compatible between GCC and Intel

Fortran

GCC - h5f MOD h5fget access plist f

Intel - h5f mp h5fget access plist f

Result: Fortran libraries are not compatible between GCC and Intel!

8 / 31



Linking

How to use libraries

Linking is the mechanism by which you can use libraries with your
code.

static - put everything in your executable

dymanic - keep the libraries outside and load them as needed

Dynamic by default

There are very few reasons to statically link code.

9 / 31



What is linked?

ldd is your friend

ldd hi

10 / 31



Example 1

11 / 31



Modules

How software is organised on the clusters

Modules is utility that allows multiple, often incompatible, tools
and libraries to exist on a cluster.

Naming convention

name / version / compiler

hdf5/1.8.14/gcc-4.4.7

The MPI flavour is implicit!

Note - compilers are backwards compatible so there is no need to
have hdf5/1.8.14/gcc-4.8.3!

12 / 31



More Modules

Commands

module purge

module load gcc/4.8.3

module load mvapich2/2.0.1/gcc-4.4.7

module load hdf5/1.8.14/gcc-4.4.7

module list

module show gcc/4.8.3

At present Modules will not prevent you from loading incompatible
modules!

13 / 31



MPICC and friends

mpicc / mpiicc / mpicxx / mpif77 / mpif90 / mpiifort

These are wrappers to the underlying compiler that add the correct
options to link with the MPI libraries

mpicc - C wrapper

mpiicc - Intel C wrapper

mpiifort - Intel Fortran Compiler

Check the MPI flavour documentation for more details

mpicc mycode.c

To use the wrappers simply type:

module load mympiflavour/version

mpicc hello.c -o hi

14 / 31



Exercise 2

15 / 31



Configure and Make

The traditional way to build packages

./configure --help

./configure --prefix=X --option=Y

make

make install

16 / 31



MPI and the Batch System

Telling SLURM what we need

We would like 64 processes over 4 nodes

#SBATCH --nodes 4

#SBATCH --ntasks-per-node 16

#SBATCH --cpus-per-task 1

#SBATCH --mem 32000

Remember that the memory is per node!

17 / 31



Alternative formulations

We would like 64 processes

#SBATCH --ntasks 64

#SBATCH --cpus-per-task 1

#SBATCH --mem 32000

SLURM will find the space for 64 tasks on as few nodes as possible

We would like 16 processes each one needing 4 cores

#SBATCH --ntasks 16

#SBATCH --cpus-per-task 4

#SBATCH --mem 32000

SLURM will allocate 64 cores in total

18 / 31



srun and mpirun

Launching a MPI job

Now that we have a MPI code we need some way of correctly
launching it across multiple nodes

srun - SLURM’s built in job launcher

mpirun - ”traditional” job launcher

To use this we type

srun mycode.x

With the directives on the previous slide this will launch 64
processes on 4 nodes

19 / 31



Intel mpirun

Using IntelMPI and mpirun

On our clusters IntelMPI is configured to work with srun by
default. If you want to use mpirun then do as follows:

unset I MPI PMI LIBRARY

mpirun ./mycode.x

We don’t advise doing this and strongly recommend using srun!

20 / 31



CPU affinity

Kesako?

CPU affinity is the name for the mechanism by which a process is
bound to a specific CPU (core) or a set of cores.

Pourquoi?

If a mask is not set the OS might place the task on different cores
every 100ms or so. Depending on the cache structure this can be a
very bad thing to do.

We can also optimise placement of ranks with respect to the
underlying hardware.

21 / 31



CPU bitmasks

11000000

When talking about affinity we use the term ”mask” or ”bit mask”
which is a convenient way of representing which cores are part of a
CPU set.
If we have an 8 core system then the following masks mean:

10000000 - core 8

01000000 - core 7

00100000 - core 6

11110000 - cores 5 to 8

00001111 - cores 1 to 4

22 / 31



CPU bitmasks

11110000 is f0

These numbers can be conveniently written in hexadecimal so if we
query the system regarding CPU masks we will see something like:

pid 8092’s current affinity mask: 1c0
pid 8097’s current affinity mask: 1c0000

In binary this would translate to

pid 8092’s current affinity mask: 000000000000000111000000

pid 8097’s current affinity mask: 000111000000000000000000

23 / 31



Binding with srun

Examples

srun -N 1 -n 4 -c 1 --cpu bind=verbose rank ./hi 1

cpu bind=RANK - b370, task 0 : mask 0x1 set

cpu bind=RANK - b370, task 1 : mask 0x2 set

cpu bind=RANK - b370, task 2 : mask 0x4 set

cpu bind=RANK - b370, task 3 : mask 0x8 set

srun -N 1 -n 4 -c 4 --cpu bind=verbose,sockets ./hi 1

cpu bind=MASK - b370, task 1 : mask 0xff00 set

cpu bind=MASK - b370, task 2 : mask 0xff set

cpu bind=MASK - b370, task 0 : mask 0xff set

cpu bind=MASK - b370, task 3 : mask 0xff00 set

24 / 31



Process view

What it looks like on a machine
xxx

25 / 31



Common errors

Compiled on a different machine

Please verify that both the operating system and the

processor support IntelR MOVBE, FMA, BMI, LZCNT and

AVX2 instructions.

Module not loaded

./run.x

./run.x: error while loading shared libraries:

libmkl intel lp64.so: cannot open shared object file:

No such file or directory

26 / 31



If things don’t work

Try interactively

salloc -N 2 -n 32 --partition debug

srun mycode.x < inp.in

Check what’s going on with htop and ps

ssh b123

htop

ps auxf

27 / 31



It things still don’t work

28 / 31



Going further

29 / 31



Exercise 1 - Octopus

30 / 31



Exercise 2 - LAMMPS

31 / 31


