
Compiling code and using MPI

scitas.epfl.ch

March 5, 2020

scitas.epfl.ch

Welcome

What you will learn

How to compile and launch MPI codes on the SCITAS clusters
along with a bit of the "why"

What you will not learn

How to write parallel code and optimise it - there are other courses
for that!

1 / 39

Compilation

From code to binary

Compilation is the process by which code (C, C++, Fortran etc) is
transformed into a binary that can be run on a CPU.

CPUs are not all the same

CPUs have di�erent features and instruction sets

The same code will need to be recompiled for di�erent
architectures

2 / 39

ccNUMA

Cache Coherent Non Uniform Memory Architecture

This is what compute nodes with more than one processor look like.
Terminology: core, cpu, processor, socket, cache, memory

P
L1
L2

P
L1
L2

P
L1
L2

P
L1
L2

P
L1
L2

L3

Memory Interface

Memory

P
L1
L2

P
L1
L2

P
L1
L2

P
L1
L2

P
L1
L2

L3

Memory Interface

Memory

3 / 39

What is MPI?

What is MPI?

Message Passing Interface

Open standard - now at version 3.1
→ Check this website: http://mpi-forum.org

De facto standard for distributed memory parallelisation

Multiple implementations - MVAPICH2, MPICH, IntelMPI ...

Scales to very large systems

Shared vs Distributed Memory

Shared - all tasks see all the memory (e.g. OpenMP)

Distributed - tasks only see a small part of the overall memory

Clusters are distributed memory systems so MPI is well suited.

4 / 39

http://mpi-forum.org

MPI Terminology

Words that you are going to hear

Rank - how MPI tasks are organised

Rank 0 to N - the "worker" tasks

Hybrid - a code that combines shared memory parallelisation
with MPI

Pure MPI codes generally run one rank per core.

5 / 39

Compilers - Intel vs GCC

GNU Compiler Collection

The industry standard and available everywhere

Quick to support new C++ language features

Open Source

Intel Composer

Claims to produce faster code on Intel CPUs

Proprietary

6 / 39

MPI - Intel vs MVAPICH2 vs OpenMPI

Why are there di�erent �avours?

There are multiple MPI �avours that comply with the speci�cation
and each claims to have some advantage over the other. Some are
vendor speci�c and others are open source

The main contenders

Intel MPI - commercial MPI with support

MVAPICH2 - developed by Ohio uni for In�niband

OpenMPI - Open source and widely used

In SCITAS we support IntelMPI, MVAPICH2 and OpenMPI

We recommend IntelMPI or MVAPICH2!

7 / 39

Compiler and MPI choice

First choose your compiler

GCC or Intel

This might be a technical or philosophical choice

The associated MPI is then

GCC with MVAPICH2

GCC with OpenMPI if you have a very good reason

Intel with IntelMPI

This is a SCITAS restriction to prevent chaos - nothing technically
stops one from mixing!

Both work well and have good performance.

8 / 39

Linking

Let someone else do the hard work

For nearly everything that you want to do there's already a library
function.

How to use libraries

Linking is the mechanism by which you can use libraries with your
code.

static - put everything in your executable

dymanic - keep the libraries outside and load them as needed

Dynamic by default

There are very few reasons to statically link code.

9 / 39

What is linked?

ldd is your friend
ldd mycode.x

libmpifort.so.12 => /ssoft/intelmpi/5.1.1/RH6/all/x86_E5v2/impi/5.1.1.109/lib64/libmpifort.so.12
libmpi.so.12 => /ssoft/intelmpi/5.1.1/RH6/all/x86_E5v2/impi/5.1.1.109/lib64/libmpi.so.12
libdl.so.2 => /lib64/libdl.so.2
librt.so.1 => /lib64/librt.so.1
libpthread.so.0 => /lib64/libpthread.so.0
libm.so.6 => /lib64/libm.so.6
libgcc_s.so.1 => /lib64/libgcc_s.so.1
libc.so.6 => /lib64/libc.so.6

10 / 39

The dark art of mangling

Mangling and decoration

Mechanism to allow multiple functions with the same name but as
there is no standard ABI things can get tricky

C++

GCC - _ZN5NOMAD10Eval_PointD2Ev

Intel - _ZN5NOMAD10Eval_PointD2Ev

Result: C++ libraries are compatible between GCC and Intel

Fortran

GCC - __h5f_MOD_h5fget_access_plist_f

Intel - h5f_mp_h5fget_access_plist_f_

Result: Fortran libraries might be incompatible between GCC and
Intel!

11 / 39

Get the codes

Using GIT
$ git clone https://c4science.ch/diffusion/SCUSINGMPI/using-mpi.git

From scratch (�dis)
$ cp -r /scratch/examples/using-mpi .

12 / 39

Example 1 - Build sequential 'Hello World'

Compile the source �les
gcc -c output.c

gcc -c hello.c

Link
gcc -o hello output.o hello.o

Run

./hello

Hello World!

13 / 39

Compilation - the general case

To compile and link we need

The libraries to link against -l

Where to �nd these libraries -L

Where to �nd their header �les -I

Your source code

A nice name for the executable -o

in one command
gcc -L path_to_libraries -l libraries -I

path_to_header_filer -o name_of_executable mycode.c

14 / 39

Sequential 'Hello World' with shared libraries

In case you were wondering...

$ gcc -fPIC -c output.c

$ gcc -shared -o liboutput.so output.o

$ pwd

/home/scitas/using-mpi/ex1

$ gcc hello.c -L `pwd` -loutput -I `pwd` -o hi

$ export LD_LIBRARY_PATH=`pwd`:$LD_LIBRARY_PATH

$./hi

Hello World!

Now try running ldd for the executable

15 / 39

Making code run faster

Compiling is hard work..

By default a compiler might not optimize your code!

float matest(float a, float b, float c) {

a = a*b + c;

return a;

}

For the details see:

https://scitas-data.epfl.ch/confluence/display/DOC/

Compiling+codes+on+different+systems

16 / 39

https://scitas-data.epfl.ch/confluence/display/DOC/Compiling+codes+on+different+systems
https://scitas-data.epfl.ch/confluence/display/DOC/Compiling+codes+on+different+systems

No optimisation

icc mycode.c

matest(float, float, float):

push rbp

mov rbp,rsp

movss DWORD PTR [rbp-0x4],xmm0

movss DWORD PTR [rbp-0x8],xmm1

movss DWORD PTR [rbp-0xc],xmm2

movss xmm0,DWORD PTR [rbp-0x4]

mulss xmm0,DWORD PTR [rbp-0x8]

addss xmm0,DWORD PTR [rbp-0xc]

movss DWORD PTR [rbp-0x4],xmm0

mov eax,DWORD PTR [rbp-0x4]

mov DWORD PTR [rbp-0x10],eax

movss xmm0,DWORD PTR [rbp-0x10]

pop rbp

ret

17 / 39

With optimisation

icc -O3 -xAXV2 mycode.c

matest(float, float, float):

vfmadd132ss xmm0,xmm2,xmm1

ret

18 / 39

Optimisation levels

O1

Enables optimizations for speed and disables some optimizations
that increase code size and a�ect speed

O2

Enables optimizations for speed. This is the generally recommended
optimization level. Vectorization is enabled at O2 and higher levels.

O3

Performs O2 optimizations and enables more aggressive loop
transformations such as Fusion, Block-Unroll-and-Jam, and
collapsing IF statements.

19 / 39

Modules

Load modules to see more modules

module avail

module load <compiler>
Ex: module load intel

module avail

module load <MPI>
Ex: module load intel-mpi

module avail

Note that there is an associated BLAS library (intel-mkl or
openblas)

20 / 39

More Modules

Commands

module purge

module load gcc

module load mvapich2

module load hdf5
→ Or simply: module load gcc mvapich2 hdf5

module list

module help hdf5

module show hdf5

21 / 39

LMod features

One compiler at a time

module purge

module load gcc

module load hdf5

module list

module load intel

Only one module �avour can be loaded at the same time

22 / 39

slmodules

How we manage software

One "release" per year

slmodules -r deprecated

slmodules

slmodules -s foo

By default you see the architecture ($SYS_TYPE) of the system you
are connected to.

Future becomes stable and stable becomes deprecated in July.

23 / 39

MPICC and friends

mpi �compilers�

These are wrappers to the underlying compiler that add the correct
options to link with the MPI libraries

mpicc - C wrapper (mpiicc)

mpicxx - CXX wrapper (mpiicpc)

mpif90 - Fortran90 Compiler (mpiifort)

Check the MPI �avour documentation for more details

mpicc mycode.c

To use the wrappers simply type:

module load mympi�avour/version

mpicc hello.c -o hi

24 / 39

Example 2 - Build // MPI-based 'Hello World'

Load modules
module load intel intel-mpi

Compile-link

mpiicc -g -o hello_mpi hello_mpi.c

Run two tasks on two di�erent nodes

srun -N2 -n2 �partition=debug ./hello_mpi

Hello world: I am task rank 1, running on node 'b292'

Hello world: I am task rank 2, running on node 'b293'

25 / 39

Con�gure and Make

The traditional way to build packages

./configure �help

./configure �prefix=X �option=Y

make

make install

26 / 39

cmake

cmake is a better way to do things!

cmake -DCMAKE_INSTALL_PREFIX:PATH=X

-DOption=Y <sources>

make

make install

If you're starting a project from scratch then we recommend using
cmake rather than con�gure. There's also a graphic interface called
ccmake.

27 / 39

MPI and the Batch System

Telling SLURM what we need

We would like 112 processes over 4 nodes

#SBATCH - -nodes 4
#SBATCH �ntasks-per-node 28

#SBATCH �cpus-per-task 1

#SBATCH �mem 32000

Remember that the memory is per node!

28 / 39

Alternative formulations

We would like 112 processes

#SBATCH �ntasks 112

#SBATCH �cpus-per-task 1

#SBATCH �mem 32000

SLURM will �nd the space for 112 tasks on as few nodes as possible

We would like 28 processes each one needing 4 cores

#SBATCH �ntasks 28

#SBATCH �cpus-per-task 4

#SBATCH �mem 32000

SLURM will allocate 112 cores in total

Note: SLURM does not set OMP_NUM_THREADS for OpenMP!

29 / 39

srun and mpirun

Launching a MPI job

Now that we have a MPI code we need some way of correctly
launching it across multiple nodes

srun - SLURM's built in job launcher

mpirun - "traditional" job launcher

To use this we type

srun mycode.x

With the directives on the previous slide this will launch 112
processes on 4 nodes

30 / 39

Multiple srun instances on one node

For code that doesn't scale...
#SBATCH �nodes 1

#SBATCH �ntasks 28

#SBATCH �cpus-per-task 1

#SBATCH �mem 32000

srun �mem=16000 -n 14 mytask1 &

srun �mem=16000 -n 14 mytask2 &

wait

Note: the �multi-prog option for srun can provide a more elegant

solution!

For more details, check our documentation on this page:
https://scitasadm.epfl.ch/confluence/display/DOC/Running+multiple+tasks+on+one+node

31 / 39

https://scitasadm.epfl.ch/confluence/display/DOC/Running+multiple+tasks+on+one+node

Intel mpirun

Using IntelMPI and mpirun

On our clusters IntelMPI is con�gured to work with srun by default.
If you want to use mpirun then do as follows:

unset I_MPI_PMI_LIBRARY

export SLURM_CPU_BIND=none

mpirun ./mycode.x

We don't advise doing this and strongly recommend using srun!
Please note that, behind the scenes, mpirun still uses SLURM.

32 / 39

Common errors

Compiled on a di�erent machine

Please verify that both the operating system and the

processor support Intel MOVBE, FMA, BMI, LZCNT and

AVX2 instructions.

LD_LIBRARY_PATH not correctly set

./run.x: error while loading shared libraries:

libmkl_intel_lp64.so: cannot open shared object file:

No such file or directory

33 / 39

Don't forget the srun

./mympicode.x instead of srun mympicode.x

Fatal error in MPI_Init: Other MPI error, error

stack:

.MPIR_Init_thread(514):

.MPID_Init(320).......: channel initialization failed

.MPID_Init(716).......: PMI_Get_id returned 14

34 / 39

If things don't work

Try interactively

Errors are much more visible this way

salloc -N 2 -n 32 -t 01:00:00 �partition debug

srun mycode.x < inp.in

Check what's going on with htop and ps

ssh b123

htop

ps auxf

35 / 39

If things still don't work

Crashes or won't start

Reference input �les

GDB

TotalView Debugger

Crashes after a while

Memory Leak?

Valgrind

MemoryScape (TotalView)

36 / 39

Some useful tricks

MKL link line advisor

https://software.intel.com/en-us/articles/

intel-mkl-link-line-advisor

SCITAS documentation

http://scitas.epfl.ch/documentation/

compiling-code-different-systems

37 / 39

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://scitas.epfl.ch/documentation/compiling-code-different-systems
http://scitas.epfl.ch/documentation/compiling-code-different-systems

Going further

SCITAS o�ers courses in

Parallel programming paradigms : MPI, OpenMP, CUDA

Introduction to pro�ling and software optimisation

Master and Doctoral School courses (MA-454 and PHYS-743)

38 / 39

Exercise - Build Octopus

Download package

http://octopus-code.org

Hints
- load modules:

intel intel-mpi intel-mkl fftw gsl

- build first libxc

- some configure options to use for // octopus:

�enable-openmp �enable-mpi

�disable-zdotc-test

�with-blas="-L${MKLROOT}/lib/intel64 -lmkl_intel_lp64 -lmkl_core -lmkl_intel_thread \

-lpthread -lm"

�with-fftw-prefix="${FFTW_ROOT}"

39 / 39

http://octopus-code.org

