Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F98341462
test_cohesive_parallel_intrinsic.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jan 12, 06:49
Size
4 KB
Mime Type
text/x-c
Expires
Tue, Jan 14, 06:49 (1 d, 17 h)
Engine
blob
Format
Raw Data
Handle
23533629
Attached To
rAKA akantu
test_cohesive_parallel_intrinsic.cc
View Options
/**
* @file test_cohesive_parallel_intrinsic.cc
*
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
*
* @brief parallel test for intrinsic cohesive elements
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
*/
/* -------------------------------------------------------------------------- */
#include "solid_mechanics_model_cohesive.hh"
/* -------------------------------------------------------------------------- */
using namespace akantu;
int main(int argc, char *argv[]) {
initialize("material.dat", argc, argv);
const UInt max_steps = 350;
UInt spatial_dimension = 2;
Mesh mesh(spatial_dimension);
const auto & comm = Communicator::getStaticCommunicator();
Int psize = comm.getNbProc();
Int prank = comm.whoAmI();
akantu::MeshPartition * partition = NULL;
if(prank == 0) {
// Read the mesh
mesh.read("mesh.msh");
// /// insert cohesive elements
// CohesiveElementInserter inserter(mesh);
// inserter.setLimit('x', -0.26, -0.24);
// inserter.insertIntrinsicElements();
/// partition the mesh
partition = new MeshPartitionScotch(mesh, spatial_dimension);
// debug::setDebugLevel(dblDump);
partition->partitionate(psize);
// debug::setDebugLevel(dblWarning);
}
SolidMechanicsModelCohesive model(mesh);
model.initParallel(partition);
model.initFull();
model.limitInsertion(_x, -0.26, -0.24);
model.insertIntrinsicElements();
debug::setDebugLevel(dblDump);
std::cout << mesh << std::endl;
debug::setDebugLevel(dblWarning);
Real time_step = model.getStableTimeStep()*0.8;
model.setTimeStep(time_step);
// std::cout << "Time step: " << time_step << std::endl;
model.assembleMassLumped();
Array<Real> & position = mesh.getNodes();
Array<Real> & velocity = model.getVelocity();
Array<bool> & boundary = model.getBlockedDOFs();
// Array<Real> & displacement = model.getDisplacement();
// const Array<Real> & residual = model.getResidual();
UInt nb_nodes = mesh.getNbNodes();
Real epsilon = std::numeric_limits<Real>::epsilon();
for (UInt n = 0; n < nb_nodes; ++n) {
if (std::abs(position(n, 0) - 1.) < epsilon)
boundary(n, 0) = true;
}
model.synchronizeBoundaries();
model.updateResidual();
model.setBaseName("intrinsic_parallel");
model.addDumpFieldVector("displacement");
model.addDumpField("velocity" );
model.addDumpField("acceleration");
model.addDumpField("residual" );
model.addDumpField("stress");
model.addDumpField("strain");
model.addDumpField("partitions");
model.addDumpField("force");
model.dump();
model.setBaseNameToDumper("cohesive elements",
"cohesive_elements_parallel_intrinsic");
model.addDumpFieldVectorToDumper("cohesive elements", "displacement");
model.dump("cohesive elements");
/// initial conditions
Real loading_rate = .2;
for (UInt n = 0; n < nb_nodes; ++n) {
velocity(n, 0) = loading_rate * position(n, 0);
}
/// Main loop
for (UInt s = 1; s <= max_steps; ++s) {
model.solveStep();
if(s % 20 == 0) {
model.dump();
model.dump("cohesive elements");
if(prank == 0) std::cout << "passing step " << s << "/" << max_steps << std::endl;
}
// // update displacement
// for (UInt n = 0; n < nb_nodes; ++n) {
// if (position(n, 1) + displacement(n, 1) > 0) {
// displacement(n, 0) -= 0.01;
// }
// }
// Real Ed = dynamic_cast<MaterialCohesive&> (model.getMaterial(1)).getDissipatedEnergy();
// Real Er = dynamic_cast<MaterialCohesive&> (model.getMaterial(1)).getReversibleEnergy();
// edis << s << " "
// << Ed << std::endl;
// erev << s << " "
// << Er << std::endl;
}
// edis.close();
// erev.close();
Real Ed = model.getEnergy("dissipated");
Real Edt = 2 * sqrt(2);
if(prank == 0) {
std::cout << Ed << " " << Edt << std::endl;
if (std::abs((Ed - Edt) / Edt) > 0.01 || std::isnan(Ed)) {
std::cout << "The dissipated energy is incorrect" << std::endl;
return EXIT_FAILURE;
}
}
finalize();
if(prank == 0) std::cout << "OK: Test passed!" << std::endl;
return EXIT_SUCCESS;
}
Event Timeline
Log In to Comment