Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92563067
shape_lagrange_inline_impl.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 21, 12:26
Size
20 KB
Mime Type
text/x-c++
Expires
Sat, Nov 23, 12:26 (19 h, 23 m)
Engine
blob
Format
Raw Data
Handle
22408652
Attached To
rAKA akantu
shape_lagrange_inline_impl.hh
View Options
/**
* @file shape_lagrange_inline_impl.hh
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Wed Oct 27 2010
* @date last modification: Tue Feb 20 2018
*
* @brief ShapeLagrange inline implementation
*
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_iterators.hh"
#include "aka_voigthelper.hh"
#include "fe_engine.hh"
#include "shape_lagrange.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_SHAPE_LAGRANGE_INLINE_IMPL_HH_
#define AKANTU_SHAPE_LAGRANGE_INLINE_IMPL_HH_
namespace
akantu
{
/* -------------------------------------------------------------------------- */
#define INIT_SHAPE_FUNCTIONS(type) \
setIntegrationPointsByType<type>(integration_points, ghost_type); \
precomputeShapesOnIntegrationPoints<type>(nodes, ghost_type); \
if (ElementClass<type>::getNaturalSpaceDimension() == \
mesh.getSpatialDimension() || \
kind != _ek_regular) \
precomputeShapeDerivativesOnIntegrationPoints<type>(nodes, ghost_type);
template
<
ElementKind
kind
>
inline
void
ShapeLagrange
<
kind
>::
initShapeFunctions
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
integration_points
,
ElementType
type
,
GhostType
ghost_type
)
{
AKANTU_BOOST_REGULAR_ELEMENT_SWITCH
(
INIT_SHAPE_FUNCTIONS
);
}
#undef INIT_SHAPE_FUNCTIONS
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
inline
void
ShapeLagrange
<
kind
>::
computeShapeDerivativesOnCPointsByElement
(
const
Matrix
<
Real
>
&
node_coords
,
const
Matrix
<
Real
>
&
natural_coords
,
Tensor3
<
Real
>
&
shapesd
)
const
{
AKANTU_DEBUG_IN
();
// compute dnds
Tensor3
<
Real
>
dnds
(
node_coords
.
rows
(),
node_coords
.
cols
(),
natural_coords
.
cols
());
ElementClass
<
type
>::
computeDNDS
(
natural_coords
,
dnds
);
// compute jacobian
Tensor3
<
Real
>
J
(
node_coords
.
rows
(),
natural_coords
.
rows
(),
natural_coords
.
cols
());
ElementClass
<
type
>::
computeJMat
(
dnds
,
node_coords
,
J
);
// compute dndx
ElementClass
<
type
>::
computeShapeDerivatives
(
J
,
dnds
,
shapesd
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
inverseMap
(
const
Vector
<
Real
>
&
real_coords
,
UInt
elem
,
Vector
<
Real
>
&
natural_coords
,
GhostType
ghost_type
)
const
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
mesh
.
getSpatialDimension
();
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
UInt
*
elem_val
=
mesh
.
getConnectivity
(
type
,
ghost_type
).
storage
();
Matrix
<
Real
>
nodes_coord
(
spatial_dimension
,
nb_nodes_per_element
);
mesh
.
extractNodalValuesFromElement
(
mesh
.
getNodes
(),
nodes_coord
.
storage
(),
elem_val
+
elem
*
nb_nodes_per_element
,
nb_nodes_per_element
,
spatial_dimension
);
ElementClass
<
type
>::
inverseMap
(
real_coords
,
nodes_coord
,
natural_coords
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
bool
ShapeLagrange
<
kind
>::
contains
(
const
Vector
<
Real
>
&
real_coords
,
UInt
elem
,
GhostType
ghost_type
)
const
{
UInt
spatial_dimension
=
mesh
.
getSpatialDimension
();
Vector
<
Real
>
natural_coords
(
spatial_dimension
);
inverseMap
<
type
>
(
real_coords
,
elem
,
natural_coords
,
ghost_type
);
return
ElementClass
<
type
>::
contains
(
natural_coords
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
interpolate
(
const
Vector
<
Real
>
&
real_coords
,
UInt
elem
,
const
Matrix
<
Real
>
&
nodal_values
,
Vector
<
Real
>
&
interpolated
,
GhostType
ghost_type
)
const
{
UInt
nb_shapes
=
ElementClass
<
type
>::
getShapeSize
();
Vector
<
Real
>
shapes
(
nb_shapes
);
computeShapes
<
type
>
(
real_coords
,
elem
,
shapes
,
ghost_type
);
ElementClass
<
type
>::
interpolate
(
nodal_values
,
shapes
,
interpolated
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
computeShapes
(
const
Vector
<
Real
>
&
real_coords
,
UInt
elem
,
Vector
<
Real
>
&
shapes
,
GhostType
ghost_type
)
const
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
mesh
.
getSpatialDimension
();
Vector
<
Real
>
natural_coords
(
spatial_dimension
);
inverseMap
<
type
>
(
real_coords
,
elem
,
natural_coords
,
ghost_type
);
ElementClass
<
type
>::
computeShapes
(
natural_coords
,
shapes
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
computeShapeDerivatives
(
const
Matrix
<
Real
>
&
real_coords
,
UInt
elem
,
Tensor3
<
Real
>
&
shapesd
,
GhostType
ghost_type
)
const
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
mesh
.
getSpatialDimension
();
UInt
nb_points
=
real_coords
.
cols
();
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
AKANTU_DEBUG_ASSERT
(
mesh
.
getSpatialDimension
()
==
shapesd
.
size
(
0
)
&&
nb_nodes_per_element
==
shapesd
.
size
(
1
),
"Shape size doesn't match"
);
AKANTU_DEBUG_ASSERT
(
nb_points
==
shapesd
.
size
(
2
),
"Number of points doesn't match shapes size"
);
Matrix
<
Real
>
natural_coords
(
spatial_dimension
,
nb_points
);
// Creates the matrix of natural coordinates
for
(
UInt
i
=
0
;
i
<
nb_points
;
i
++
)
{
Vector
<
Real
>
real_point
=
real_coords
(
i
);
Vector
<
Real
>
natural_point
=
natural_coords
(
i
);
inverseMap
<
type
>
(
real_point
,
elem
,
natural_point
,
ghost_type
);
}
UInt
*
elem_val
=
mesh
.
getConnectivity
(
type
,
ghost_type
).
storage
();
Matrix
<
Real
>
nodes_coord
(
spatial_dimension
,
nb_nodes_per_element
);
mesh
.
extractNodalValuesFromElement
(
mesh
.
getNodes
(),
nodes_coord
.
storage
(),
elem_val
+
elem
*
nb_nodes_per_element
,
nb_nodes_per_element
,
spatial_dimension
);
computeShapeDerivativesOnCPointsByElement
<
type
>
(
nodes_coord
,
natural_coords
,
shapesd
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
ShapeLagrange
<
kind
>::
ShapeLagrange
(
const
Mesh
&
mesh
,
UInt
spatial_dimension
,
const
ID
&
id
,
const
MemoryID
&
memory_id
)
:
ShapeLagrangeBase
(
mesh
,
spatial_dimension
,
kind
,
id
,
memory_id
)
{}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
computeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
integration_points
,
Array
<
Real
>
&
shape_derivatives
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
mesh
.
getSpatialDimension
();
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
UInt
nb_points
=
integration_points
.
cols
();
UInt
nb_element
=
mesh
.
getConnectivity
(
type
,
ghost_type
).
size
();
UInt
size_of_shapesd
=
ElementClass
<
type
>::
getShapeDerivativesSize
();
AKANTU_DEBUG_ASSERT
(
shape_derivatives
.
getNbComponent
()
==
size_of_shapesd
,
"The shapes_derivatives array does not have the correct "
<<
"number of component"
);
shape_derivatives
.
resize
(
nb_element
*
nb_points
);
Array
<
Real
>
x_el
(
0
,
spatial_dimension
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
nodes
,
x_el
,
type
,
ghost_type
,
filter_elements
);
Real
*
shapesd_val
=
shape_derivatives
.
storage
();
Array
<
Real
>::
matrix_iterator
x_it
=
x_el
.
begin
(
spatial_dimension
,
nb_nodes_per_element
);
if
(
filter_elements
!=
empty_filter
)
{
nb_element
=
filter_elements
.
size
();
}
for
(
UInt
elem
=
0
;
elem
<
nb_element
;
++
elem
,
++
x_it
)
{
if
(
filter_elements
!=
empty_filter
)
{
shapesd_val
=
shape_derivatives
.
storage
()
+
filter_elements
(
elem
)
*
size_of_shapesd
*
nb_points
;
}
Matrix
<
Real
>
&
X
=
*
x_it
;
Tensor3
<
Real
>
B
(
shapesd_val
,
spatial_dimension
,
nb_nodes_per_element
,
nb_points
);
computeShapeDerivativesOnCPointsByElement
<
type
>
(
X
,
integration_points
,
B
);
if
(
filter_elements
==
empty_filter
)
{
shapesd_val
+=
size_of_shapesd
*
nb_points
;
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
void
ShapeLagrange
<
kind
>::
computeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
integration_points
,
Array
<
Real
>
&
shape_derivatives
,
ElementType
type
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
#define AKANTU_COMPUTE_SHAPES(type) \
computeShapeDerivativesOnIntegrationPoints<type>( \
nodes, integration_points, shape_derivatives, ghost_type, \
filter_elements);
AKANTU_BOOST_REGULAR_ELEMENT_SWITCH
(
AKANTU_COMPUTE_SHAPES
);
#undef AKANTU_COMPUTE_SHAPES
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
precomputeShapesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
Matrix
<
Real
>
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
UInt
size_of_shapes
=
ElementClass
<
type
>::
getShapeSize
();
Array
<
Real
>
&
shapes_tmp
=
shapes
.
alloc
(
0
,
size_of_shapes
,
itp_type
,
ghost_type
);
this
->
computeShapesOnIntegrationPoints
<
type
>
(
nodes
,
natural_coords
,
shapes_tmp
,
ghost_type
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
precomputeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
Matrix
<
Real
>
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
UInt
size_of_shapesd
=
ElementClass
<
type
>::
getShapeDerivativesSize
();
Array
<
Real
>
&
shapes_derivatives_tmp
=
shapes_derivatives
.
alloc
(
0
,
size_of_shapesd
,
itp_type
,
ghost_type
);
this
->
computeShapeDerivativesOnIntegrationPoints
<
type
>
(
nodes
,
natural_coords
,
shapes_derivatives_tmp
,
ghost_type
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
interpolateOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_uq
,
UInt
nb_degree_of_freedom
,
const
Array
<
Real
>
&
shapes
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
Array
<
Real
>
u_el
(
0
,
nb_degree_of_freedom
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
in_u
,
u_el
,
type
,
ghost_type
,
filter_elements
);
this
->
interpolateElementalFieldOnIntegrationPoints
<
type
>
(
u_el
,
out_uq
,
ghost_type
,
shapes
,
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
interpolateOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_uq
,
UInt
nb_degree_of_freedom
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
AKANTU_DEBUG_ASSERT
(
shapes
.
exists
(
itp_type
,
ghost_type
),
"No shapes for the type "
<<
shapes
.
printType
(
itp_type
,
ghost_type
));
this
->
interpolateOnIntegrationPoints
<
type
>
(
in_u
,
out_uq
,
nb_degree_of_freedom
,
shapes
(
itp_type
,
ghost_type
),
ghost_type
,
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
gradientOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_nablauq
,
UInt
nb_degree_of_freedom
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
AKANTU_DEBUG_ASSERT
(
shapes_derivatives
.
exists
(
itp_type
,
ghost_type
),
"No shapes derivatives for the type "
<<
shapes_derivatives
.
printType
(
itp_type
,
ghost_type
));
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
Array
<
Real
>
u_el
(
0
,
nb_degree_of_freedom
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
in_u
,
u_el
,
type
,
ghost_type
,
filter_elements
);
this
->
gradientElementalFieldOnIntegrationPoints
<
type
>
(
u_el
,
out_nablauq
,
ghost_type
,
shapes_derivatives
(
itp_type
,
ghost_type
),
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
computeBtD
(
const
Array
<
Real
>
&
Ds
,
Array
<
Real
>
&
BtDs
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
auto
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
const
auto
&
shapes_derivatives
=
this
->
shapes_derivatives
(
itp_type
,
ghost_type
);
auto
spatial_dimension
=
mesh
.
getSpatialDimension
();
auto
nb_nodes_per_element
=
mesh
.
getNbNodesPerElement
(
type
);
Array
<
Real
>
shapes_derivatives_filtered
(
0
,
shapes_derivatives
.
getNbComponent
());
auto
&&
view
=
make_view
(
shapes_derivatives
,
spatial_dimension
,
nb_nodes_per_element
);
auto
B_it
=
view
.
begin
();
auto
B_end
=
view
.
end
();
if
(
filter_elements
!=
empty_filter
)
{
FEEngine
::
filterElementalData
(
this
->
mesh
,
shapes_derivatives
,
shapes_derivatives_filtered
,
type
,
ghost_type
,
filter_elements
);
auto
&&
view
=
make_view
(
shapes_derivatives_filtered
,
spatial_dimension
,
nb_nodes_per_element
);
B_it
=
view
.
begin
();
B_end
=
view
.
end
();
}
for
(
auto
&&
values
:
zip
(
range
(
B_it
,
B_end
),
make_view
(
Ds
,
Ds
.
getNbComponent
()
/
spatial_dimension
,
spatial_dimension
),
make_view
(
BtDs
,
BtDs
.
getNbComponent
()
/
nb_nodes_per_element
,
nb_nodes_per_element
)))
{
const
auto
&
B
=
std
::
get
<
0
>
(
values
);
const
auto
&
D
=
std
::
get
<
1
>
(
values
);
auto
&
Bt_D
=
std
::
get
<
2
>
(
values
);
// transposed due to the storage layout of B
Bt_D
.
template
mul
<
false
,
false
>
(
D
,
B
);
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
computeBtDB
(
const
Array
<
Real
>
&
Ds
,
Array
<
Real
>
&
BtDBs
,
UInt
order_d
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
auto
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
const
auto
&
shapes_derivatives
=
this
->
shapes_derivatives
(
itp_type
,
ghost_type
);
constexpr
auto
dim
=
ElementClass
<
type
>::
getSpatialDimension
();
auto
nb_nodes_per_element
=
mesh
.
getNbNodesPerElement
(
type
);
Array
<
Real
>
shapes_derivatives_filtered
(
0
,
shapes_derivatives
.
getNbComponent
());
auto
&&
view
=
make_view
(
shapes_derivatives
,
dim
,
nb_nodes_per_element
);
auto
B_it
=
view
.
begin
();
auto
B_end
=
view
.
end
();
if
(
filter_elements
!=
empty_filter
)
{
FEEngine
::
filterElementalData
(
this
->
mesh
,
shapes_derivatives
,
shapes_derivatives_filtered
,
type
,
ghost_type
,
filter_elements
);
auto
&&
view
=
make_view
(
shapes_derivatives_filtered
,
dim
,
nb_nodes_per_element
);
B_it
=
view
.
begin
();
B_end
=
view
.
end
();
}
if
(
order_d
==
4
)
{
UInt
tangent_size
=
VoigtHelper
<
dim
>::
size
;
Matrix
<
Real
>
B
(
tangent_size
,
dim
*
nb_nodes_per_element
);
Matrix
<
Real
>
Bt_D
(
dim
*
nb_nodes_per_element
,
tangent_size
);
for
(
auto
&&
values
:
zip
(
range
(
B_it
,
B_end
),
make_view
(
Ds
,
tangent_size
,
tangent_size
),
make_view
(
BtDBs
,
dim
*
nb_nodes_per_element
,
dim
*
nb_nodes_per_element
)))
{
const
auto
&
Bfull
=
std
::
get
<
0
>
(
values
);
const
auto
&
D
=
std
::
get
<
1
>
(
values
);
auto
&
Bt_D_B
=
std
::
get
<
2
>
(
values
);
VoigtHelper
<
dim
>::
transferBMatrixToSymVoigtBMatrix
(
Bfull
,
B
,
nb_nodes_per_element
);
Bt_D
.
template
mul
<
true
,
false
>
(
B
,
D
);
Bt_D_B
.
template
mul
<
false
,
false
>
(
Bt_D
,
B
);
}
}
else
if
(
order_d
==
2
)
{
Matrix
<
Real
>
Bt_D
(
nb_nodes_per_element
,
dim
);
for
(
auto
&&
values
:
zip
(
range
(
B_it
,
B_end
),
make_view
(
Ds
,
dim
,
dim
),
make_view
(
BtDBs
,
nb_nodes_per_element
,
nb_nodes_per_element
)))
{
const
auto
&
B
=
std
::
get
<
0
>
(
values
);
const
auto
&
D
=
std
::
get
<
1
>
(
values
);
auto
&
Bt_D_B
=
std
::
get
<
2
>
(
values
);
Bt_D
.
template
mul
<
true
,
false
>
(
B
,
D
);
Bt_D_B
.
template
mul
<
false
,
false
>
(
Bt_D
,
B
);
}
}
}
template
<>
template
<>
inline
void
ShapeLagrange
<
_ek_regular
>::
computeBtDB
<
_point_1
>
(
const
Array
<
Real
>
&
/*Ds*/
,
Array
<
Real
>
&
/*BtDBs*/
,
UInt
/*order_d*/
,
GhostType
/*ghost_type*/
,
const
Array
<
UInt
>
&
/*filter_elements*/
)
const
{
AKANTU_TO_IMPLEMENT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
computeNtb
(
const
Array
<
Real
>
&
bs
,
Array
<
Real
>
&
Ntbs
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
Ntbs
.
resize
(
bs
.
size
());
UInt
size_of_shapes
=
ElementClass
<
type
>::
getShapeSize
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
UInt
nb_degree_of_freedom
=
bs
.
getNbComponent
();
Array
<
Real
>
shapes_filtered
(
0
,
size_of_shapes
);
auto
&&
view
=
make_view
(
shapes
(
itp_type
,
ghost_type
),
1
,
size_of_shapes
);
auto
N_it
=
view
.
begin
();
auto
N_end
=
view
.
end
();
if
(
filter_elements
!=
empty_filter
)
{
FEEngine
::
filterElementalData
(
this
->
mesh
,
shapes
(
itp_type
,
ghost_type
),
shapes_filtered
,
type
,
ghost_type
,
filter_elements
);
auto
&&
view
=
make_view
(
shapes_filtered
,
1
,
size_of_shapes
);
N_it
=
view
.
begin
();
N_end
=
view
.
end
();
}
for
(
auto
&&
values
:
zip
(
make_view
(
bs
,
nb_degree_of_freedom
,
1
),
range
(
N_it
,
N_end
),
make_view
(
Ntbs
,
nb_degree_of_freedom
,
size_of_shapes
)))
{
const
auto
&
b
=
std
::
get
<
0
>
(
values
);
const
auto
&
N
=
std
::
get
<
1
>
(
values
);
auto
&
Ntb
=
std
::
get
<
2
>
(
values
);
Ntb
.
template
mul
<
false
,
false
>
(
b
,
N
);
}
AKANTU_DEBUG_OUT
();
}
}
// namespace akantu
#endif
/* AKANTU_SHAPE_LAGRANGE_INLINE_IMPL_HH_ */
Event Timeline
Log In to Comment