Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F98341230
element_class_tmpl.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jan 12, 06:46
Size
19 KB
Mime Type
text/x-c++
Expires
Tue, Jan 14, 06:46 (1 d, 11 h)
Engine
blob
Format
Raw Data
Handle
23564843
Attached To
rAKA akantu
element_class_tmpl.hh
View Options
/**
* @file element_class_tmpl.hh
*
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
* @author Thomas Menouillard <tmenouillard@stucky.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Thu Feb 21 2013
* @date last modification: Thu Oct 22 2015
*
* @brief Implementation of the inline templated function of the element class
* descriptions
*
* @section LICENSE
*
* Copyright (©) 2014, 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_CORE_CXX11
#include <type_traits>
#endif
/* -------------------------------------------------------------------------- */
#include "gauss_integration_tmpl.hh"
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
/* GeometricalElement */
/* -------------------------------------------------------------------------- */
template
<
GeometricalType
geometrical_type
,
GeometricalShapeType
shape
>
inline
const
MatrixProxy
<
UInt
>
GeometricalElement
<
geometrical_type
,
shape
>::
getFacetLocalConnectivityPerElement
(
UInt
t
)
{
return
MatrixProxy
<
UInt
>
(
facet_connectivity
[
t
],
nb_facets
[
t
],
nb_nodes_per_facet
[
t
]);
}
/* -------------------------------------------------------------------------- */
template
<
GeometricalType
geometrical_type
,
GeometricalShapeType
shape
>
inline
UInt
GeometricalElement
<
geometrical_type
,
shape
>::
getNbFacetsPerElement
()
{
UInt
total_nb_facets
=
0
;
for
(
UInt
n
=
0
;
n
<
nb_facet_types
;
++
n
)
{
total_nb_facets
+=
nb_facets
[
n
];
}
return
total_nb_facets
;
}
/* -------------------------------------------------------------------------- */
template
<
GeometricalType
geometrical_type
,
GeometricalShapeType
shape
>
inline
UInt
GeometricalElement
<
geometrical_type
,
shape
>::
getNbFacetsPerElement
(
UInt
t
)
{
return
nb_facets
[
t
];
}
/* -------------------------------------------------------------------------- */
template
<
GeometricalType
geometrical_type
,
GeometricalShapeType
shape
>
template
<
class
vector_type
>
inline
bool
GeometricalElement
<
geometrical_type
,
shape
>::
contains
(
const
vector_type
&
coords
)
{
return
GeometricalShapeContains
<
shape
>::
contains
(
coords
);
}
/* -------------------------------------------------------------------------- */
template
<>
template
<
class
vector_type
>
inline
bool
GeometricalShapeContains
<
_gst_point
>::
contains
(
const
vector_type
&
coords
)
{
return
(
coords
(
0
)
<
std
::
numeric_limits
<
Real
>::
epsilon
());
}
/* -------------------------------------------------------------------------- */
template
<>
template
<
class
vector_type
>
inline
bool
GeometricalShapeContains
<
_gst_square
>::
contains
(
const
vector_type
&
coords
)
{
bool
in
=
true
;
for
(
UInt
i
=
0
;
i
<
coords
.
size
()
&&
in
;
++
i
)
in
&=
((
coords
(
i
)
>=
-
(
1.
+
std
::
numeric_limits
<
Real
>::
epsilon
()))
&&
(
coords
(
i
)
<=
(
1.
+
std
::
numeric_limits
<
Real
>::
epsilon
())));
return
in
;
}
/* -------------------------------------------------------------------------- */
template
<>
template
<
class
vector_type
>
inline
bool
GeometricalShapeContains
<
_gst_triangle
>::
contains
(
const
vector_type
&
coords
)
{
bool
in
=
true
;
Real
sum
=
0
;
for
(
UInt
i
=
0
;
(
i
<
coords
.
size
())
&&
in
;
++
i
)
{
in
&=
((
coords
(
i
)
>=
-
(
Math
::
getTolerance
()))
&&
(
coords
(
i
)
<=
(
1.
+
Math
::
getTolerance
())));
sum
+=
coords
(
i
);
}
if
(
in
)
return
(
in
&&
(
sum
<=
(
1.
+
Math
::
getTolerance
())));
return
in
;
}
/* -------------------------------------------------------------------------- */
template
<>
template
<
class
vector_type
>
inline
bool
GeometricalShapeContains
<
_gst_prism
>::
contains
(
const
vector_type
&
coords
)
{
bool
in
=
((
coords
(
0
)
>=
-
1.
)
&&
(
coords
(
0
)
<=
1.
));
// x in segment [-1, 1]
// y and z in triangle
in
&=
((
coords
(
1
)
>=
0
)
&&
(
coords
(
1
)
<=
1.
));
in
&=
((
coords
(
2
)
>=
0
)
&&
(
coords
(
2
)
<=
1.
));
Real
sum
=
coords
(
1
)
+
coords
(
2
);
return
(
in
&&
(
sum
<=
1
));
}
/* -------------------------------------------------------------------------- */
/* InterpolationElement */
/* -------------------------------------------------------------------------- */
template
<
InterpolationType
interpolation_type
,
InterpolationKind
kind
>
inline
void
InterpolationElement
<
interpolation_type
,
kind
>::
computeShapes
(
const
Matrix
<
Real
>
&
natural_coord
,
Matrix
<
Real
>
&
N
)
{
UInt
nb_points
=
natural_coord
.
cols
();
for
(
UInt
p
=
0
;
p
<
nb_points
;
++
p
)
{
Vector
<
Real
>
Np
(
N
(
p
));
Vector
<
Real
>
ncoord_p
(
natural_coord
(
p
));
computeShapes
(
ncoord_p
,
Np
);
}
}
/* -------------------------------------------------------------------------- */
template
<
InterpolationType
interpolation_type
,
InterpolationKind
kind
>
inline
void
InterpolationElement
<
interpolation_type
,
kind
>::
computeDNDS
(
const
Matrix
<
Real
>
&
natural_coord
,
Tensor3
<
Real
>
&
dnds
)
{
UInt
nb_points
=
natural_coord
.
cols
();
for
(
UInt
p
=
0
;
p
<
nb_points
;
++
p
)
{
Matrix
<
Real
>
dnds_p
(
dnds
(
p
));
Vector
<
Real
>
ncoord_p
(
natural_coord
(
p
));
computeDNDS
(
ncoord_p
,
dnds_p
);
}
}
/* -------------------------------------------------------------------------- */
/**
* interpolate on a point a field for which values are given on the
* node of the element using the shape functions at this interpolation point
*
* @param nodal_values values of the function per node @f$ f_{ij} = f_{n_i j}
*@f$ so it should be a matrix of size nb_nodes_per_element @f$\times@f$
*nb_degree_of_freedom
* @param shapes value of shape functions at the interpolation point
* @param interpolated interpolated value of f @f$ f_j(\xi) = \sum_i f_{n_i j}
*N_i @f$
*/
template
<
InterpolationType
interpolation_type
,
InterpolationKind
kind
>
inline
void
InterpolationElement
<
interpolation_type
,
kind
>::
interpolate
(
const
Matrix
<
Real
>
&
nodal_values
,
const
Vector
<
Real
>
&
shapes
,
Vector
<
Real
>
&
interpolated
)
{
Matrix
<
Real
>
interpm
(
interpolated
.
storage
(),
nodal_values
.
rows
(),
1
);
Matrix
<
Real
>
shapesm
(
shapes
.
storage
(),
InterpolationPorperty
<
interpolation_type
>::
nb_nodes_per_element
,
1
);
interpm
.
mul
<
false
,
false
>
(
nodal_values
,
shapesm
);
}
/* -------------------------------------------------------------------------- */
/**
* interpolate on several points a field for which values are given on the
* node of the element using the shape functions at the interpolation point
*
* @param nodal_values values of the function per node @f$ f_{ij} = f_{n_i j}
*@f$ so it should be a matrix of size nb_nodes_per_element @f$\times@f$
*nb_degree_of_freedom
* @param shapes value of shape functions at the interpolation point
* @param interpolated interpolated values of f @f$ f_j(\xi) = \sum_i f_{n_i j}
*N_i @f$
*/
template
<
InterpolationType
interpolation_type
,
InterpolationKind
kind
>
inline
void
InterpolationElement
<
interpolation_type
,
kind
>::
interpolate
(
const
Matrix
<
Real
>
&
nodal_values
,
const
Matrix
<
Real
>
&
shapes
,
Matrix
<
Real
>
&
interpolated
)
{
UInt
nb_points
=
shapes
.
cols
();
for
(
UInt
p
=
0
;
p
<
nb_points
;
++
p
)
{
Vector
<
Real
>
Np
(
shapes
(
p
));
Vector
<
Real
>
interpolated_p
(
interpolated
(
p
));
interpolate
(
nodal_values
,
Np
,
interpolated_p
);
}
}
/* -------------------------------------------------------------------------- */
/**
* interpolate the field on a point given in natural coordinates the field which
* values are given on the node of the element
*
* @param natural_coords natural coordinates of point where to interpolate \xi
* @param nodal_values values of the function per node @f$ f_{ij} = f_{n_i j}
*@f$ so it should be a matrix of size nb_nodes_per_element @f$\times@f$
*nb_degree_of_freedom
* @param interpolated interpolated value of f @f$ f_j(\xi) = \sum_i f_{n_i j}
*N_i @f$
*/
template
<
InterpolationType
interpolation_type
,
InterpolationKind
kind
>
inline
void
InterpolationElement
<
interpolation_type
,
kind
>::
interpolateOnNaturalCoordinates
(
const
Vector
<
Real
>
&
natural_coords
,
const
Matrix
<
Real
>
&
nodal_values
,
Vector
<
Real
>
&
interpolated
)
{
Vector
<
Real
>
shapes
(
InterpolationPorperty
<
interpolation_type
>::
nb_nodes_per_element
);
computeShapes
(
natural_coords
,
shapes
);
interpolate
(
nodal_values
,
shapes
,
interpolated
);
}
/* -------------------------------------------------------------------------- */
/// @f$ gradient_{ij} = \frac{\partial f_j}{\partial s_i} = \sum_k
/// \frac{\partial N_k}{\partial s_i}f_{j n_k} @f$
template
<
InterpolationType
interpolation_type
,
InterpolationKind
kind
>
inline
void
InterpolationElement
<
interpolation_type
,
kind
>::
gradientOnNaturalCoordinates
(
const
Vector
<
Real
>
&
natural_coords
,
const
Matrix
<
Real
>
&
f
,
Matrix
<
Real
>
&
gradient
)
{
Matrix
<
Real
>
dnds
(
InterpolationPorperty
<
interpolation_type
>::
natural_space_dimension
,
InterpolationPorperty
<
interpolation_type
>::
nb_nodes_per_element
);
computeDNDS
(
natural_coords
,
dnds
);
gradient
.
mul
<
false
,
true
>
(
f
,
dnds
);
}
/* -------------------------------------------------------------------------- */
/* ElementClass */
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
inline
void
ElementClass
<
type
,
kind
>::
computeJMat
(
const
Tensor3
<
Real
>
&
dnds
,
const
Matrix
<
Real
>
&
node_coords
,
Tensor3
<
Real
>
&
J
)
{
UInt
nb_points
=
dnds
.
size
(
2
);
for
(
UInt
p
=
0
;
p
<
nb_points
;
++
p
)
{
Matrix
<
Real
>
J_p
(
J
(
p
));
Matrix
<
Real
>
dnds_p
(
dnds
(
p
));
computeJMat
(
dnds_p
,
node_coords
,
J_p
);
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
inline
void
ElementClass
<
type
,
kind
>::
computeJMat
(
const
Matrix
<
Real
>
&
dnds
,
const
Matrix
<
Real
>
&
node_coords
,
Matrix
<
Real
>
&
J
)
{
/// @f$ J = dxds = dnds * x @f$
J
.
mul
<
false
,
true
>
(
dnds
,
node_coords
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
inline
void
ElementClass
<
type
,
kind
>::
computeJacobian
(
const
Matrix
<
Real
>
&
natural_coords
,
const
Matrix
<
Real
>
&
node_coords
,
Vector
<
Real
>
&
jacobians
)
{
UInt
nb_points
=
natural_coords
.
cols
();
Matrix
<
Real
>
dnds
(
interpolation_property
::
natural_space_dimension
,
interpolation_property
::
nb_nodes_per_element
);
Matrix
<
Real
>
J
(
natural_coords
.
rows
(),
node_coords
.
rows
());
for
(
UInt
p
=
0
;
p
<
nb_points
;
++
p
)
{
Vector
<
Real
>
ncoord_p
(
natural_coords
(
p
));
interpolation_element
::
computeDNDS
(
ncoord_p
,
dnds
);
computeJMat
(
dnds
,
node_coords
,
J
);
computeJacobian
(
J
,
jacobians
(
p
));
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
inline
void
ElementClass
<
type
,
kind
>::
computeJacobian
(
const
Tensor3
<
Real
>
&
J
,
Vector
<
Real
>
&
jacobians
)
{
UInt
nb_points
=
J
.
size
(
2
);
for
(
UInt
p
=
0
;
p
<
nb_points
;
++
p
)
{
computeJacobian
(
J
(
p
),
jacobians
(
p
));
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
inline
void
ElementClass
<
type
,
kind
>::
computeJacobian
(
const
Matrix
<
Real
>
&
J
,
Real
&
jacobians
)
{
if
(
J
.
rows
()
==
J
.
cols
())
{
jacobians
=
Math
::
det
<
element_property
::
spatial_dimension
>
(
J
.
storage
());
}
else
{
interpolation_element
::
computeSpecialJacobian
(
J
,
jacobians
);
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
inline
void
ElementClass
<
type
,
kind
>::
computeShapeDerivatives
(
const
Tensor3
<
Real
>
&
J
,
const
Tensor3
<
Real
>
&
dnds
,
Tensor3
<
Real
>
&
shape_deriv
)
{
UInt
nb_points
=
J
.
size
(
2
);
for
(
UInt
p
=
0
;
p
<
nb_points
;
++
p
)
{
Matrix
<
Real
>
shape_deriv_p
(
shape_deriv
(
p
));
computeShapeDerivatives
(
J
(
p
),
dnds
(
p
),
shape_deriv_p
);
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
inline
void
ElementClass
<
type
,
kind
>::
computeShapeDerivatives
(
const
Matrix
<
Real
>
&
J
,
const
Matrix
<
Real
>
&
dnds
,
Matrix
<
Real
>
&
shape_deriv
)
{
Matrix
<
Real
>
inv_J
(
J
.
rows
(),
J
.
cols
());
Math
::
inv
<
element_property
::
spatial_dimension
>
(
J
.
storage
(),
inv_J
.
storage
());
shape_deriv
.
mul
<
false
,
false
>
(
inv_J
,
dnds
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
inline
void
ElementClass
<
type
,
kind
>::
computeNormalsOnNaturalCoordinates
(
const
Matrix
<
Real
>
&
coord
,
Matrix
<
Real
>
&
f
,
Matrix
<
Real
>
&
normals
)
{
UInt
dimension
=
normals
.
rows
();
UInt
nb_points
=
coord
.
cols
();
AKANTU_DEBUG_ASSERT
((
dimension
-
1
)
==
interpolation_property
::
natural_space_dimension
,
"cannot extract a normal because of dimension mismatch "
<<
dimension
-
1
<<
" "
<<
interpolation_property
::
natural_space_dimension
);
Matrix
<
Real
>
J
(
dimension
,
interpolation_property
::
natural_space_dimension
);
for
(
UInt
p
=
0
;
p
<
nb_points
;
++
p
)
{
interpolation_element
::
gradientOnNaturalCoordinates
(
coord
(
p
),
f
,
J
);
if
(
dimension
==
2
)
{
Math
::
normal2
(
J
.
storage
(),
normals
(
p
).
storage
());
}
if
(
dimension
==
3
)
{
Math
::
normal3
(
J
(
0
).
storage
(),
J
(
1
).
storage
(),
normals
(
p
).
storage
());
}
}
}
/* ------------------------------------------------------------------------- */
/**
* In the non linear cases we need to iterate to find the natural coordinates
*@f$\xi@f$
* provided real coordinates @f$x@f$.
*
* We want to solve: @f$ x- \phi(\xi) = 0@f$ with @f$\phi(\xi) = \sum_I N_I(\xi)
*x_I@f$
* the mapping function which uses the nodal coordinates @f$x_I@f$.
*
* To that end we use the Newton method and the following series:
*
* @f$ \frac{\partial \phi(x_k)}{\partial \xi} \left( \xi_{k+1} - \xi_k \right)
*= x - \phi(x_k)@f$
*
* When we consider elements embedded in a dimension higher than them (2D
*triangle in a 3D space for example)
* @f$ J = \frac{\partial \phi(\xi_k)}{\partial \xi}@f$ is of dimension
*@f$dim_{space} \times dim_{elem}@f$ which
* is not invertible in most cases. Rather we can solve the problem:
*
* @f$ J^T J \left( \xi_{k+1} - \xi_k \right) = J^T \left( x - \phi(\xi_k)
*\right) @f$
*
* So that
*
* @f$ d\xi = \xi_{k+1} - \xi_k = (J^T J)^{-1} J^T \left( x - \phi(\xi_k)
*\right) @f$
*
* So that if the series converges we have:
*
* @f$ 0 = J^T \left( \phi(\xi_\infty) - x \right) @f$
*
* And we see that this is ill-posed only if @f$ J^T x = 0@f$ which means that
*the vector provided
* is normal to any tangent which means it is outside of the element itself.
*
* @param real_coords: the real coordinates the natural coordinates are sought
*for
* @param node_coords: the coordinates of the nodes forming the element
* @param natural_coords: output->the sought natural coordinates
* @param spatial_dimension: spatial dimension of the problem
*
**/
template
<
ElementType
type
,
ElementKind
kind
>
inline
void
ElementClass
<
type
,
kind
>::
inverseMap
(
const
Vector
<
Real
>
&
real_coords
,
const
Matrix
<
Real
>
&
node_coords
,
Vector
<
Real
>
&
natural_coords
,
Real
tolerance
)
{
UInt
spatial_dimension
=
real_coords
.
size
();
UInt
dimension
=
natural_coords
.
size
();
// matrix copy of the real_coords
Matrix
<
Real
>
mreal_coords
(
real_coords
.
storage
(),
spatial_dimension
,
1
);
// initial guess
// Matrix<Real> natural_guess(natural_coords.storage(), dimension, 1);
natural_coords
.
clear
();
// real space coordinates provided by initial guess
Matrix
<
Real
>
physical_guess
(
dimension
,
1
);
// objective function f = real_coords - physical_guess
Matrix
<
Real
>
f
(
dimension
,
1
);
// dnds computed on the natural_guess
// Matrix<Real> dnds(interpolation_element::nb_nodes_per_element,
// spatial_dimension);
// J Jacobian matrix computed on the natural_guess
Matrix
<
Real
>
J
(
spatial_dimension
,
dimension
);
// G = J^t * J
Matrix
<
Real
>
G
(
spatial_dimension
,
spatial_dimension
);
// Ginv = G^{-1}
Matrix
<
Real
>
Ginv
(
spatial_dimension
,
spatial_dimension
);
// J = Ginv * J^t
Matrix
<
Real
>
F
(
spatial_dimension
,
dimension
);
// dxi = \xi_{k+1} - \xi in the iterative process
Matrix
<
Real
>
dxi
(
spatial_dimension
,
1
);
/* --------------------------- */
/* init before iteration loop */
/* --------------------------- */
// do interpolation
Vector
<
Real
>
physical_guess_v
(
physical_guess
.
storage
(),
dimension
);
interpolation_element
::
interpolateOnNaturalCoordinates
(
natural_coords
,
node_coords
,
physical_guess_v
);
// compute initial objective function value f = real_coords - physical_guess
f
=
mreal_coords
;
f
-=
physical_guess
;
// compute initial error
Real
inverse_map_error
=
f
.
norm
<
L_2
>
();
/* --------------------------- */
/* iteration loop */
/* --------------------------- */
while
(
tolerance
<
inverse_map_error
)
{
// compute J^t
interpolation_element
::
gradientOnNaturalCoordinates
(
natural_coords
,
node_coords
,
J
);
// compute G
G
.
mul
<
true
,
false
>
(
J
,
J
);
// inverse G
Ginv
.
inverse
(
G
);
// compute F
F
.
mul
<
false
,
true
>
(
Ginv
,
J
);
// compute increment
dxi
.
mul
<
false
,
false
>
(
F
,
f
);
// update our guess
natural_coords
+=
Vector
<
Real
>
(
dxi
(
0
));
// interpolate
interpolation_element
::
interpolateOnNaturalCoordinates
(
natural_coords
,
node_coords
,
physical_guess_v
);
// compute error
f
=
mreal_coords
;
f
-=
physical_guess
;
inverse_map_error
=
f
.
norm
<
L_2
>
();
}
// memcpy(natural_coords.storage(), natural_guess.storage(), sizeof(Real) *
// natural_coords.size());
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
inline
void
ElementClass
<
type
,
kind
>::
inverseMap
(
const
Matrix
<
Real
>
&
real_coords
,
const
Matrix
<
Real
>
&
node_coords
,
Matrix
<
Real
>
&
natural_coords
,
Real
tolerance
)
{
UInt
nb_points
=
real_coords
.
cols
();
for
(
UInt
p
=
0
;
p
<
nb_points
;
++
p
)
{
Vector
<
Real
>
X
(
real_coords
(
p
));
Vector
<
Real
>
ncoord_p
(
natural_coords
(
p
));
inverseMap
(
X
,
node_coords
,
ncoord_p
,
tolerance
);
}
}
__END_AKANTU__
Event Timeline
Log In to Comment