Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F98341271
ATC_TransferPartitionOfUnity.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jan 12, 06:46
Size
18 KB
Mime Type
text/x-c
Expires
Tue, Jan 14, 06:46 (1 d, 11 h)
Engine
blob
Format
Raw Data
Handle
23320639
Attached To
rLAMMPS lammps
ATC_TransferPartitionOfUnity.cpp
View Options
// ATC headers
#include "ATC_TransferPartitionOfUnity.h"
#include "ATC_Error.h"
#include "FE_Engine.h"
#include "LammpsInterface.h"
#include "Quadrature.h"
#include "PerPairQuantity.h"
#ifdef HAS_DXA
#include "DislocationExtractor.h"
#endif
// Other Headers
#include <vector>
#include <map>
#include <set>
#include <utility>
#include <fstream>
#include <exception>
using namespace std;
static const int line_ngauss = 10;
static double line_xg[line_ngauss], line_wg[line_ngauss];
namespace ATC {
ATC_TransferPartitionOfUnity::ATC_TransferPartitionOfUnity(
string groupName,
double ** & perAtomArray,
LAMMPS_NS::Fix * thisFix,
string matParamFile)
: ATC_Transfer(groupName,perAtomArray,thisFix,matParamFile)
{
ATC::Quadrature::instance()->set_line_quadrature(line_ngauss,line_xg,line_wg);
// transform gauss points from [-1,1] to [0,1]
double lam1 = 0.0, lam2 = 1.0;
double del_lambda = 0.5*(lam2 - lam1);
double avg_lambda = 0.5*(lam2 + lam1);
for (int i = 0; i < line_ngauss; i++) {
double lambda = del_lambda*line_xg[i] +avg_lambda;
line_xg[i] = lambda;
line_wg[i] *= 0.5;
}
}
//-------------------------------------------------------------------
ATC_TransferPartitionOfUnity::~ATC_TransferPartitionOfUnity()
{
// clear out all managed memory to avoid conflicts with dependencies on class member data
interscaleManager_.clear();
}
//-------------------------------------------------------------------
void ATC_TransferPartitionOfUnity::compute_projection(
const DENS_MAT & atomData, DENS_MAT & nodeData)
{
throw ATC_Error("unimplemented function");
}
//-------------------------------------------------------------------
void ATC_TransferPartitionOfUnity::compute_bond_matrix()
{
atomicBondMatrix_ = bondMatrix_->quantity();
}
//-------------------------------------------------------------------
// kinetic energy portion of stress
/**
* @class KineticTensor
* @brief Class for computing the quantity - m v' (x) v'
*/
void ATC_TransferPartitionOfUnity::compute_kinetic_stress(
DENS_MAT& stress)
{
compute_variation_velocity();
int * type = lammpsInterface_->atom_type();
double * mass = lammpsInterface_->atom_mass();
double * rmass = lammpsInterface_->atom_rmass();
double mvv2e = lammpsInterface_->mvv2e(); // [MV^2]-->[Energy]
DENS_MAT & v = variationVelocity_;
atomicTensor_.reset(nLocal_,6);
for (int i = 0; i < nLocal_; i++) {
int atomIdx = internalToAtom_(i);
double ma = mass ? mass[type[atomIdx]]: rmass[atomIdx];
ma *= mvv2e; // convert mass to appropriate units
atomicTensor_(i,0) -= ma*v(i,0)*v(i,0);
atomicTensor_(i,1) -= ma*v(i,1)*v(i,1);
atomicTensor_(i,2) -= ma*v(i,2)*v(i,2);
atomicTensor_(i,3) -= ma*v(i,0)*v(i,1);
atomicTensor_(i,4) -= ma*v(i,0)*v(i,2);
atomicTensor_(i,5) -= ma*v(i,1)*v(i,2);
}
project_volume_normalized(atomicTensor_, stress);
}
//-------------------------------------------------------------------
// on-the-fly calculation of stress
void ATC_TransferPartitionOfUnity::compute_potential_stress(DENS_MAT& stress)
{
int nCols;
if (atomToElementMapType_ == LAGRANGIAN)
nCols = 9;
else // EULERIAN
nCols = 6;
stress.reset(nNodes_,nCols);
// neighbor lists
int *numneigh = lammpsInterface_->neighbor_list_numneigh();
int **firstneigh = lammpsInterface_->neighbor_list_firstneigh();
double ** xatom = lammpsInterface_->xatom();
Array<bool> latticePeriodicity(3);
latticePeriodicity(0) = (bool) periodicity[0];
latticePeriodicity(1) = (bool) periodicity[1];
latticePeriodicity(2) = (bool) periodicity[2];
// process differently for mesh vs translation-invariant kernels
ATC::LammpsInterface::instance()->stream_msg_once("computing potential stress: ",true,false);
int heartbeatFreq = (nLocal_ <= 10 ? 1 : (int) nLocal_ / 10);
// mesh-based kernel functions
int nodesPerElement = feEngine_->fe_mesh()->num_nodes_per_element();
Array<int> node_list(nodesPerElement);
DENS_VEC shp(nodesPerElement);
DENS_VEC xa(nsd_),xb(nsd_),xab(nsd_),xlambda(nsd_);
DENS_VEC virial(nCols);
for (int j = 0; j < nLocal_; j++) {
if (j % heartbeatFreq == 0 ) {
ATC::LammpsInterface::instance()->stream_msg_once(".",false,false);
}
// first atom location
int lammps_j = internalToAtom_(j);
xa.copy(xPointer_[lammps_j],3);
for (int k = 0; k < numneigh[lammps_j]; ++k) {
int lammps_k = firstneigh[lammps_j][k];
//if (lammps_k < lammps_j) continue; // full neighbor list
// second (neighbor) atom location
xb.copy(xPointer_[lammps_k],3);
double delx = xatom[lammps_j][0] - xatom[lammps_k][0];
double dely = xatom[lammps_j][1] - xatom[lammps_k][1];
double delz = xatom[lammps_j][2] - xatom[lammps_k][2];
double rsq = delx*delx + dely*dely + delz*delz;
double fforce = 0;
lammpsInterface_->pair_force(lammps_j,lammps_k,rsq,fforce);
fforce *= 0.5; // 1/2 sum_ab = sum_(ab)
if (atomToElementMapType_ == LAGRANGIAN) {
double delX = xref_[lammps_j][0] - xref_[lammps_k][0];
double delY = xref_[lammps_j][1] - xref_[lammps_k][1];
double delZ = xref_[lammps_j][2] - xref_[lammps_k][2];
virial[0] =-delx*fforce*delX;
virial[1] =-delx*fforce*delY;
virial[2] =-delx*fforce*delZ;
virial[3] =-dely*fforce*delX;
virial[4] =-dely*fforce*delY;
virial[5] =-dely*fforce*delZ;
virial[6] =-delz*fforce*delX;
virial[7] =-delz*fforce*delY;
virial[8] =-delz*fforce*delZ;
}
else {// EULERIAN
virial[0] =-delx*delx*fforce;
virial[1] =-dely*dely*fforce;
virial[2] =-delz*delz*fforce;
virial[3] =-delx*dely*fforce;
virial[4] =-delx*delz*fforce;
virial[5] =-dely*delz*fforce;
}
xab = xa - xb;
for (int i = 0; i < line_ngauss; i++) {
double lambda = line_xg[i];
xlambda = lambda*xab + xb;
lammpsInterface_->periodicity_correction(xlambda.ptr());
feEngine_->shape_functions(xlambda,shp,node_list);
// accumulate to nodes whose support overlaps the integration point
for (int I = 0; I < nodesPerElement; I++) {
int inode = node_list(I);
double inv_vol = (accumulantInverseVolumes_->quantity())(inode,inode);
double bond_value = inv_vol*shp(I)*line_wg[i];
for (int j = 0; j < nCols; j++)
stress(inode,j) += virial[j]*bond_value;
}
}
}
}
if (lammpsInterface_->comm_rank() == 0) {
ATC::LammpsInterface::instance()->stream_msg_once("done",false,true);
}
}
//-------------------------------------------------------------------
// compute kinetic part of heat flux
void ATC_TransferPartitionOfUnity::compute_kinetic_heatflux(
DENS_MAT& flux)
{
compute_variation_velocity();
int * type = lammpsInterface_->atom_type();
double * mass = lammpsInterface_->atom_mass();
double * rmass = lammpsInterface_->atom_rmass();
double mvv2e = lammpsInterface_->mvv2e();
double * atomPE = lammpsInterface_->compute_pe_peratom();
double atomKE, atomEnergy;
atomicVector_.reset(nLocal_,3);
for (int i = 0; i < nLocal_; i++) {
int atomIdx = internalToAtom_(i);
double ma = mass ? mass[type[atomIdx]]: rmass[atomIdx];
ma *= mvv2e; // convert mass to appropriate units
atomKE = 0.0;
for (int j = 0; j < nsd_; j++) {
atomKE += 0.5*ma*(variationVelocity_(i,j)*variationVelocity_(i,j));
}
atomEnergy = atomKE + atomPE[atomIdx];
for (int j = 0; j < nsd_; j++) {
atomicVector_(i,j) += atomEnergy*variationVelocity_(i,j);
}
}
project_volume_normalized(atomicVector_,flux);
}
//-------------------------------------------------------------------
// on-the-fly calculation of the heat flux
void ATC_TransferPartitionOfUnity::compute_potential_heatflux(DENS_MAT& flux)
{
compute_variation_velocity();
flux.zero();
// neighbor lists
int *numneigh = lammpsInterface_->neighbor_list_numneigh();
int **firstneigh = lammpsInterface_->neighbor_list_firstneigh();
double ** xatom = lammpsInterface_->xatom();
Array<bool> latticePeriodicity(3);
latticePeriodicity(0) = (bool) periodicity[0];
latticePeriodicity(1) = (bool) periodicity[1];
latticePeriodicity(2) = (bool) periodicity[2];
// process differently for mesh vs translation-invariant kernels
// mesh-based kernel functions
int nodesPerElement = feEngine_->fe_mesh()->num_nodes_per_element();
Array<int> node_list(nodesPerElement);
DENS_VEC shp(nodesPerElement);
DENS_VEC xa(nsd_),xb(nsd_),xab(nsd_),xlambda(nsd_);
for (int j = 0; j < nLocal_; j++) {
// first atom location
int lammps_j = internalToAtom_(j);
xa.copy(xPointer_[lammps_j],3);
for (int k = 0; k < numneigh[lammps_j]; ++k) {
int lammps_k = firstneigh[lammps_j][k];
// second (neighbor) atom location
xb.copy(xPointer_[lammps_k],3);
double delx = xatom[lammps_j][0] - xatom[lammps_k][0];
double dely = xatom[lammps_j][1] - xatom[lammps_k][1];
double delz = xatom[lammps_j][2] - xatom[lammps_k][2];
double rsq = delx*delx + dely*dely + delz*delz;
double fforce = 0;
lammpsInterface_->pair_force(lammps_j,lammps_k,rsq,fforce);
fforce *= 0.5; // 1/2 sum_ab = sum_(ab)
fforce *= (delx*variationVelocity_(j,0) +
dely*variationVelocity_(j,1) +
delz*variationVelocity_(j,2));
double flux_vec[3];
if (atomToElementMapType_ == LAGRANGIAN) {
double delX = xref_[lammps_j][0] - xref_[lammps_k][0];
double delY = xref_[lammps_j][1] - xref_[lammps_k][1];
double delZ = xref_[lammps_j][2] - xref_[lammps_k][2];
flux_vec[0] =fforce*delX;
flux_vec[1] =fforce*delY;
flux_vec[2] =fforce*delZ;
}
else {// EULERIAN
flux_vec[0] =fforce*delx;
flux_vec[1] =fforce*dely;
flux_vec[2] =fforce*delz;
}
xab = xa - xb;
for (int i = 0; i < line_ngauss; i++) {
double lambda = line_xg[i];
xlambda = lambda*xab + xb;
lammpsInterface_->periodicity_correction(xlambda.ptr());
feEngine_->shape_functions(xlambda,shp,node_list);
// accumulate to nodes whose support overlaps the integration point
for (int I = 0; I < nodesPerElement; I++) {
int inode = node_list(I);
double inv_vol = (accumulantInverseVolumes_->quantity())(inode,inode);
double bond_value = inv_vol*shp(I)*line_wg[i];
flux(inode,0) += flux_vec[0]*bond_value;
flux(inode,1) += flux_vec[1]*bond_value;
flux(inode,2) += flux_vec[2]*bond_value;
}
}
}
}
}
//-------------------------------------------------------------------
void ATC_TransferPartitionOfUnity::compute_variation_velocity()
{
// now compute v'_a = v_a - N_Ia v_I
variationVelocity_.reset(nLocal_,nsd_);
if (nLocal_>0) {
// interpolate nodal velocities to the atoms
vbar_.reset(nLocal_,nsd_);
double ** v = lammpsInterface_->vatom();
PerAtomQuantity<double> * vbar = interscaleManager_.per_atom_quantity(field_to_prolongation_name(VELOCITY));
if (!vbar) {
DENS_MAN * nodeVelocity = interscaleManager_.dense_matrix(field_to_string(VELOCITY));
if (this->kernel_on_the_fly()) {
vbar = new OnTheFlyShapeFunctionProlongation(this,
nodeVelocity,this->atom_coarsegraining_positions());
} else {
vbar = new FtaShapeFunctionProlongation(this,
nodeVelocity,this->interpolant());
}
interscaleManager_.add_per_atom_quantity(vbar,
field_to_prolongation_name(VELOCITY));
}
// use of prolong assumes atom system contained within mesh
vbar_ = vbar->quantity();
// compute and store variation velocities of atoms
for (int i = 0; i < nLocal_; i++) {
int atomIdx = internalToAtom_(i);
for (int j = 0; j < nsd_; j++) {
variationVelocity_(i,j) = v[atomIdx][j] - vbar_(i,j);
}
}
}
}
//-------------------------------------------------------------------
// calculation of the dislocation density tensor
void ATC_TransferPartitionOfUnity::compute_dislocation_density(DENS_MAT & A)
{
A.reset(nNodes_,9);
#ifdef HAS_DXA
double cnaCutoff = lammpsInterface_->near_neighbor_cutoff();
// Extract dislocation lines within the processor's domain.
DXADislocationExtractor extractor(lammpsInterface_->lammps_pointer(),dxaExactMode_);
extractor.extractDislocations(lammpsInterface_->neighbor_list(), cnaCutoff);
// Calculate scalar dislocation density and density tensor.
double dislocationDensity = 0.0;
double dislocationDensityTensor[9] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
const std::vector<DislocationSegment*>& segments = extractor.getSegments();
int localNumberLines = (int) segments.size();
int totalNumberLines;
lammpsInterface_->int_allsum(&localNumberLines,&totalNumberLines,1);
if (totalNumberLines == 0) {
ATC::LammpsInterface::instance()->print_msg_once("no dislocation lines found");
return;
}
// for output
int nPt = 0, nSeg = 0;
for(unsigned segmentIndex = 0; segmentIndex < segments.size(); segmentIndex++) {
DislocationSegment* segment = segments[segmentIndex];
const std::deque<Point3>& line = segment->line;
nPt += line.size();
nSeg += line.size()-1;
}
DENS_MAT segCoor(3,nPt);
Array2D<int> segConn(2,nSeg);
DENS_MAT segBurg(nPt,3);
DENS_MAT local_A(nNodes_,9);
local_A.zero();
Array<bool> latticePeriodicity(3);
latticePeriodicity(0) = (bool) periodicity[0];
latticePeriodicity(1) = (bool) periodicity[1];
latticePeriodicity(2) = (bool) periodicity[2];
// mesh-based kernel functions
int nodesPerElement = feEngine_->fe_mesh()->num_nodes_per_element();
Array<int> node_list(nodesPerElement);
DENS_VEC shp(nodesPerElement);
DENS_VEC xa(nsd_),xb(nsd_),xba(nsd_),xlambda(nsd_);
int iPt = 0, iSeg= 0;
for(unsigned segmentIndex = 0; segmentIndex < segments.size(); segmentIndex++) {
DislocationSegment* segment = segments[segmentIndex];
const std::deque<Point3>& line = segment->line;
Vector3 burgers = segment->burgersVectorWorld;
Point3 x1, x2;
for(std::deque<Point3>::const_iterator p1 = line.begin(), p2 = line.begin() + 1; p2 < line.end(); ++p1, ++p2) {
x1 = (*p1);
x2 = (*p2);
Vector3 delta = x2 - x1;
// totals
dislocationDensity += Length(delta);
for(int i = 0; i < 3; i++) {
for(int j = 0; j < 3; j++) {
dislocationDensityTensor[3*j+i] += delta[i] * burgers[j];
}
}
// nodal partition
for(int k = 0; k < 3; k++) {
xa(k) = x1[k];
xb(k) = x2[k];
xba(k) = delta[k];
}
for (int i = 0; i < line_ngauss; i++) {
double lambda = line_xg[i];
xlambda = lambda*xba + xa;
lammpsInterface_->periodicity_correction(xlambda.ptr());
feEngine_->shape_functions(xlambda,shp,node_list);
// accumulate to nodes whose support overlaps the integration point
for (int I = 0; I < nodesPerElement; I++) {
int inode = node_list(I);
double inv_vol = (accumulantInverseVolumes_->quantity())(inode,inode);
double bond_value = inv_vol*shp(I)*line_wg[i];
local_A(inode,0) += xba(0)*burgers[0]*bond_value;
local_A(inode,1) += xba(0)*burgers[1]*bond_value;
local_A(inode,2) += xba(0)*burgers[2]*bond_value;
local_A(inode,3) += xba(1)*burgers[0]*bond_value;
local_A(inode,4) += xba(1)*burgers[1]*bond_value;
local_A(inode,5) += xba(1)*burgers[2]*bond_value;
local_A(inode,6) += xba(2)*burgers[0]*bond_value;
local_A(inode,7) += xba(2)*burgers[1]*bond_value;
local_A(inode,8) += xba(2)*burgers[2]*bond_value;
}
}
segCoor(0,iPt) = x1[0];
segCoor(1,iPt) = x1[1];
segCoor(2,iPt) = x1[2];
segBurg(iPt,0) = burgers[0];
segBurg(iPt,1) = burgers[1];
segBurg(iPt,2) = burgers[2];
segConn(0,iSeg) = iPt;
segConn(1,iSeg) = iPt+1;
iPt++;
iSeg++;
}
segCoor(0,iPt) = x2[0];
segCoor(1,iPt) = x2[1];
segCoor(2,iPt) = x2[2];
segBurg(iPt,0) = burgers[0];
segBurg(iPt,1) = burgers[1];
segBurg(iPt,2) = burgers[2];
iPt++;
}
int count = nNodes_*9;
lammpsInterface_->allsum(local_A.ptr(),A.ptr(),count);
double totalDislocationDensity;
lammpsInterface_->allsum(&dislocationDensity,&totalDislocationDensity,1);
double totalDislocationDensityTensor[9];
lammpsInterface_->allsum(dislocationDensityTensor,totalDislocationDensityTensor,9);
int totalNumberSegments;
lammpsInterface_->int_allsum(&nSeg,&totalNumberSegments,1);
// output
double volume = lammpsInterface_->domain_volume();
stringstream ss;
ss << "total dislocation line length = " << totalDislocationDensity;
ss << " lines = " << totalNumberLines << " segments = " << totalNumberSegments;
ss << "\n ";
ss << "total dislocation density tensor = \n";
for(int i = 0; i < 3; i++) {
ss << " ";
for(int j = 0; j < 3; j++) {
totalDislocationDensityTensor[3*j+i] /= volume;
ss << totalDislocationDensityTensor[3*j+i] << " ";
}
ss << "\n";
}
ATC::LammpsInterface::instance()->print_msg_once(ss.str());
ss.str("");
DENS_VEC A_avg(9);
for (int i = 0; i < nNodes_; i++) {
for (int j = 0; j < 9; j++) {
A_avg(j) += A(i,j);
}
}
A_avg /= nNodes_;
ss << "average nodal dislocation density tensor = \n";
ss << A_avg(0) << " " << A_avg(1) << " " << A_avg(2) << "\n";
ss << A_avg(3) << " " << A_avg(4) << " " << A_avg(5) << "\n";
ss << A_avg(6) << " " << A_avg(7) << " " << A_avg(8) << "\n";
ATC::LammpsInterface::instance()->print_msg_once(ss.str());
if (nSeg > 0) {
set<int> otypes;
otypes.insert(VTK);
otypes.insert(FULL_GNUPLOT);
string name = "dislocation_segments_step=" ;
name += to_string(output_index());
OutputManager segOutput(name,otypes);
segOutput.write_geometry(&segCoor,&segConn);
OUTPUT_LIST segOut;
segOut["burgers_vector"] = &segBurg;
segOutput.write_data(0,&segOut);
}
#else
throw ATC_Error("TransferParititionOfUnity::compute_dislocaton_density - unimplemented function");
#endif
}
} // end namespace ATC
Event Timeline
Log In to Comment