Page MenuHomec4science

No OneTemporary

File Metadata

Created
Sun, Jan 12, 06:44
diff --git a/python/tamaas/dumpers/__init__.py b/python/tamaas/dumpers/__init__.py
index 186d0f9..59f5bad 100644
--- a/python/tamaas/dumpers/__init__.py
+++ b/python/tamaas/dumpers/__init__.py
@@ -1,360 +1,364 @@
# -*- mode:python; coding: utf-8 -*-
# @file
# LICENSE
#
# Copyright (©) 2016-2021 EPFL (École Polytechnique Fédérale de Lausanne),
# Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Dumpers for the class tamaas.Model
"""
from __future__ import print_function
from sys import stderr
from os import makedirs
import os.path
import numpy as np
from .. import ModelDumper, model_type, mpi, type_traits, ModelFactory
from ._helper import step_dump, directory_dump, local_slice, _is_surface_field
_reverse_trait_map = {
'model_type.' + t.__name__: mtype for mtype, t in type_traits.items()
}
def _get_attributes(model):
"Get model attributes"
return {
'model_type': str(model.type),
'system_size': model.system_size,
'discretization': model.global_shape,
}
class FieldDumper(ModelDumper):
"""Abstract dumper for python classes using fields"""
postfix = ''
extension = ''
name_format = "{basename}{postfix}.{extension}"
def __init__(self, basename, *fields, **kwargs):
"""Construct with desired fields"""
super(FieldDumper, self).__init__()
self.basename = basename
self.fields = list(fields)
self.all_fields = kwargs.get('all_fields', False)
def add_field(self, field):
"""Add another field to the dump"""
if field not in self.fields:
self.fields.append(field)
def dump_to_file(self, file_descriptor, model):
"""Dump to a file (name or handle)"""
def get_fields(self, model):
"""Get the desired fields"""
if not self.all_fields:
requested_fields = self.fields
else:
requested_fields = list(model)
return {field: model[field] for field in requested_fields}
def dump(self, model):
"Dump model"
self.dump_to_file(self.file_path, model)
+ def read(self, file_descriptor):
+ raise RuntimeError('read() method not implemented in {}'
+ .format(type(self).__name__))
+
@property
def file_path(self):
"""Get the default filename"""
return self.name_format.format(basename=self.basename,
postfix=self.postfix,
extension=self.extension)
@directory_dump('numpys')
@step_dump
class NumpyDumper(FieldDumper):
"""Dumper to compressed numpy files"""
extension = 'npz'
def dump_to_file(self, file_descriptor, model):
"""Saving to compressed multi-field Numpy format"""
if mpi.size() > 1:
raise RuntimeError("NumpyDumper does not function "
"at all in parallel")
np.savez_compressed(file_descriptor, attrs=_get_attributes(model),
**self.get_fields(model))
def read(self, file_descriptor):
data = np.load(file_descriptor, mmap_mode='r')
attrs = data['attrs'].item()
mtype = _reverse_trait_map[attrs['model_type']]
model = ModelFactory.createModel(mtype,
attrs['system_size'],
attrs['discretization'])
for k, v in filter(lambda k: k[0] != 'attrs', data.items()):
model[k] = v
return model
try:
import h5py
@directory_dump('hdf5')
@step_dump
class H5Dumper(FieldDumper):
"""Dumper to HDF5 file format"""
extension = 'h5'
def dump_to_file(self, file_descriptor, model):
"""Saving to HDF5 with metadata about the model"""
# Setup for MPI
if not h5py.get_config().mpi and mpi.size() > 1:
raise RuntimeError("HDF5 does not have MPI support")
if mpi.size() > 1:
from mpi4py import MPI # noqa
mpi_args = dict(driver='mpio', comm=MPI.COMM_WORLD)
comp_args = {} # compression does not work in parallel
else:
mpi_args = {}
comp_args = dict(compression='gzip', compression_opts=7)
with h5py.File(file_descriptor, 'w', **mpi_args) as handle:
# Writing data
for name, field in self.get_fields(model).items():
shape = list(field.shape)
if mpi.size() > 1:
xdim = 0 if _is_surface_field(field, model) else 1
shape[xdim] = MPI.COMM_WORLD.allreduce(shape[xdim])
dset = handle.create_dataset(name, shape, field.dtype,
**comp_args)
dset[local_slice(field, model)] = field
# Writing metadata
for name, attr in _get_attributes(model).items():
handle.attrs[name] = attr
except ImportError:
pass
try:
import uvw # noqa
@directory_dump('paraview')
@step_dump
class UVWDumper(FieldDumper):
"""Dumper to VTK files for elasto-plastic calculations"""
extension = 'vtr'
forbidden_fields = ['traction', 'gap']
def dump_to_file(self, file_descriptor, model):
"""Dump displacements, plastic deformations and stresses"""
if mpi.size() > 1:
raise RuntimeError("UVWDumper does not function "
"properly in parallel")
bdim = len(model.boundary_shape)
# Local MPI size
lsize = model.shape
gsize = mpi.global_shape(model.boundary_shape)
gshape = gsize
if len(lsize) > bdim:
gshape = [model.shape[0]] + gshape
# Space coordinates
coordinates = [np.linspace(0, L, N, endpoint=False)
for L, N in zip(model.system_size, gshape)]
# If model has subsurfce domain, z-coordinate is always first
dimension_indices = np.arange(bdim)
if len(lsize) > bdim:
dimension_indices += 1
dimension_indices = np.concatenate((dimension_indices, [0]))
coordinates[0] = \
np.linspace(0, model.system_size[0], gshape[0])
offset = np.zeros_like(dimension_indices)
offset[0] = mpi.local_offset(gsize)
rectgrid = uvw.RectilinearGrid if mpi.size() == 1 \
else uvw.parallel.PRectilinearGrid
# Creating rectilinear grid with correct order for components
coordlist = [coordinates[i][o:o+lsize[i]]
for i, o in zip(dimension_indices, offset)]
grid = rectgrid(
file_descriptor, coordlist,
compression=True,
offsets=offset,
)
# Iterator over fields we want to dump
fields_it = filter(lambda t: t[0] not in self.forbidden_fields,
self.get_fields(model).items())
# We make fields periodic for visualization
for name, field in fields_it:
array = uvw.DataArray(field, dimension_indices, name)
grid.addPointData(array)
grid.write()
@directory_dump('paraview')
class UVWGroupDumper(FieldDumper):
"Dumper to ParaViewData files"
extension = 'pvd'
def __init__(self, basename, *fields, **kwargs):
"""Construct with desired fields"""
super(UVWGroupDumper, self).__init__(basename, *fields, **kwargs)
subdir = os.path.join('paraview', basename + '-VTR')
if not os.path.exists(subdir):
makedirs(subdir)
self.uvw_dumper = UVWDumper(
os.path.join(basename + '-VTR', basename), *fields, **kwargs
)
self.group = uvw.ParaViewData(self.file_path, compression=True)
def dump_to_file(self, file_descriptor, model):
self.group.addFile(
self.uvw_dumper.file_path.replace('paraview/', ''),
timestep=self.uvw_dumper.count
)
self.group.write()
self.uvw_dumper.dump(model)
except ImportError:
pass
try:
from netCDF4 import Dataset
@directory_dump('netcdf')
class NetCDFDumper(FieldDumper):
"""Dumper to netCDF4 files"""
extension = "nc"
boundary_fields = ['traction', 'gap']
def _file_setup(self, grp, model):
grp.createDimension('frame', None)
# Local dimensions
model_dim = len(model.shape)
voigt_dim = type_traits[model.type].voigt
self._vec = grp.createDimension('spatial', model_dim)
self._tens = grp.createDimension('Voigt', voigt_dim)
self.model_info = model.global_shape, model.type
global_boundary_shape = mpi.global_shape(model.boundary_shape)
# Create boundary dimensions
for label, size, length in zip(
"xy",
global_boundary_shape,
model.boundary_system_size
):
grp.createDimension(label, size)
coord = grp.createVariable(label, 'f8', (label,))
coord[:] = np.linspace(0, length, size, endpoint=False)
self._create_variables(
grp, model,
lambda f: _is_surface_field(f[1], model),
global_boundary_shape, "xy"
)
# Create volume dimension
if model.type in {model_type.volume_1d, model_type.volume_2d}:
size = model.shape[0]
grp.createDimension("z", size)
coord = grp.createVariable("z", 'f8', ("z",))
coord[:] = np.linspace(0, model.system_size[0], size)
self._create_variables(
grp, model,
lambda f: not _is_surface_field(f[1], model),
model.global_shape, "zxy"
)
self.has_setup = True
def dump_to_file(self, file_descriptor, model):
if mpi.size() > 1:
raise RuntimeError("NetCDFDumper does not function "
"properly in parallel")
mode = 'a' if os.path.isfile(file_descriptor) \
and getattr(self, 'has_setup', False) else 'w'
with Dataset(file_descriptor, mode,
format='NETCDF4_CLASSIC',
parallel=mpi.size() > 1) as rootgrp:
if rootgrp.dimensions == {}:
self._file_setup(rootgrp, model)
if self.model_info != (model.global_shape, model.type):
raise Exception("Unexpected model {}".format(model))
self._dump_generic(rootgrp, model)
def _create_variables(self, grp, model, predicate,
shape, dimensions):
field_dim = len(shape)
fields = list(filter(predicate, self.get_fields(model).items()))
dim_labels = list(dimensions[:field_dim])
for label, data in fields:
local_dim = []
# If we have an extra component
if data.ndim > field_dim:
if data.shape[-1] == self._tens.size:
local_dim = [self._tens.name]
elif data.shape[-1] == self._vec.size:
local_dim = [self._vec.name]
grp.createVariable(label, 'f8',
['frame'] + dim_labels + local_dim,
zlib=True)
def _dump_generic(self, grp, model):
fields = self.get_fields(model).items()
new_frame = grp.dimensions['frame'].size
for label, data in fields:
var = grp[label]
slice_in_global = (new_frame,) + local_slice(data, model)
var[slice_in_global] = np.array(data, dtype=np.double)
except ImportError:
pass
diff --git a/tests/test_dumper.py b/tests/test_dumper.py
index 7d8de15..214cd75 100644
--- a/tests/test_dumper.py
+++ b/tests/test_dumper.py
@@ -1,124 +1,130 @@
# -*- coding: utf-8 -*-
# @file
# LICENSE
#
# Copyright (©) 2016-2021 EPFL (École Polytechnique Fédérale de Lausanne),
# Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from __future__ import division
import os
import tamaas as tm
import numpy as np
import pytest
from tamaas.dumpers import NumpyDumper
class Dumper(tm.ModelDumper):
"""Simple numpy dumper"""
def __init__(self):
tm.ModelDumper.__init__(self)
def dump(self, model):
np.savetxt('tractions.txt', np.ravel(model.traction))
np.savetxt('displacement.txt', np.ravel(model.displacement))
def test_dumpers(tamaas_fixture, tmp_path):
os.chdir(tmp_path)
model = tm.ModelFactory.createModel(tm.model_type.volume_2d, [1., 1., 1.],
[16, 4, 8])
dumper = Dumper()
np_dumper = NumpyDumper('test_dump', 'traction', 'displacement')
model.addDumper(np_dumper)
model.dump()
model.dump()
dumper << model
tractions = np.loadtxt('tractions.txt')
displacements = np.loadtxt('displacement.txt')
assert np.all(tractions.reshape(model.traction.shape) == model.traction)
assert np.all(displacements.reshape(model.displacement.shape) == model.displacement)
rmodel = np_dumper.read('numpys/test_dump_0000.npz')
assert np.all(model.traction == rmodel.traction)
assert np.all(model.displacement == rmodel.displacement)
assert model.type == rmodel.type
assert os.path.isfile('numpys/test_dump_0001.npz')
# Protecting test
try:
from tamaas.dumpers import H5Dumper
import h5py
def test_h5dumper(tamaas_fixture, tmp_path):
os.chdir(tmp_path)
model = tm.ModelFactory.createModel(tm.model_type.volume_2d,
[1., 1., 1.],
[16, 4, 8])
model['displacement'][...] = 3.1415
dumper = H5Dumper('test_hdf5', 'traction', 'displacement')
dumper << model
assert os.path.isfile('hdf5/test_hdf5_0000.h5')
fh = h5py.File('hdf5/test_hdf5_0000.h5', 'r')
disp = np.array(fh['displacement'], dtype=tm.dtype)
assert np.all(np.abs(disp - 3.1415) < 1e-15)
assert list(fh.attrs['discretization']) == [16, 4, 8]
assert fh.attrs['model_type'] == str(model.type)
fh.close()
+ with pytest.raises(RuntimeError):
+ dumper.read('')
+
except ImportError:
pass
try:
from tamaas.dumpers import NetCDFDumper
from netCDF4 import Dataset
def test_netcdfdumper(tamaas_fixture, tmp_path):
os.chdir(tmp_path)
model = tm.ModelFactory.createModel(tm.model_type.volume_2d,
[1., 1., 1.],
[16, 4, 8])
model['displacement'][...] = 3.1415
dumper = NetCDFDumper('test_netcdf', 'traction', 'displacement')
# Dumping two frames
dumper << model
dumper << model
+ with pytest.raises(RuntimeError):
+ dumper.read('')
+
assert os.path.isfile('netcdf/test_netcdf.nc')
with Dataset('netcdf/test_netcdf.nc', 'r') as netcdf_file:
disp = netcdf_file['displacement'][:]
assert np.all(np.abs(disp - 3.1415) < 1e-15)
assert disp.shape[1:] == (16, 4, 8, 3)
assert disp.shape[0] == 2
with pytest.raises(Exception):
model = tm.ModelFactory.createModel(tm.model_type.volume_2d,
[1., 1., 1.],
[15, 4, 8])
dumper << model
except ImportError:
pass

Event Timeline