Phriction Projects Wikis Bioimaging And Optics Platform Computers & Servers at the BIOP Software TensorFlow GPU & CARE History Version 1 vs 2
Version 1 vs 2
Version 1 vs 2
Edits
Edits
- Edit by oburri, Version 2
- Apr 16 2019 11:08
- Move Here by oburri, Version 1
- Apr 16 2019 09:39
- ·moved to logical place
Original Change | Next Change » |
Edit Older Version 1... | Edit Older Version 2... |
Content Changes
Content Changes
Super protocol
Install miniconda
https://conda.io/miniconda.html
Install Latest nvidia driver
current driver: 417.35
Install CUDA Toolkit v9.0
Get the Patch if any
During installation,
# Select Advanced
# Select CUDA
# Deselect Visual Studio Integration
Install cuDNN for tghe 9.0 version of CUDA
Download Zip file (You need to register)
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows
Unzip it into `C:\tools\`
You just need to **copy **the //contents// of the `cuda` folder into the CUDA installation which should be
`C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0`
Add Environment variables
# C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin
# C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\extras\CUPTI\libx64
# C:\tools\cuda\bin
That last one might not be necessary
Open Anaconda Prompt
conda update conda
conda update python
conda update --all
Make a directory for all the tensorflow projects somewhere
mkdir tensorflow-projects
cd tensorflow-projects
Create the environement
conda create --name tf-gpu python=3.6
conda activate tf-gpu
pip install tensorflow-gpu
Installing TensorFlow with GPU Support for Windows in order to use CARE
# Get latest [[https://www.geforce.com/drivers|NVIDIA drivers]]
# Install Anaconda from `\\svfas6.epfl.ch\biop\public\0 - BIOP Data\0-Install\CARE`
# Download `CARE-TensorFlow-GPU.yml` locally
# Open Anaconda Prompt
# Navigate to where you copied `CARE-TensorFlow-GPU.yml`
# Update Anaconda with `conda update -n base -c defaults conda`
# Create the CARE environement with `conda env create -n care -f CARE-TensorFlow-GPU.yml`
# Activate the environement with `conda activate care`
# Clone the CARE repository with `git clone https://github.com/CSBDeep/CSBDeep.git`
# Run `jupyter notebook` and see if the examples work
Super protocol
Install miniconda
https://conda.io/miniconda.html
Install Latest nvidia driver
current driver: 417.35
Install CUDA Toolkit v9.0
Get the Patch if any
During installation,
# Select Advanced
# Select CUDA
# Deselect Visual Studio Integration
Install cuDNN for tghe 9.0 version of CUDA
Download Zip file (You need to register)
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows
Unzip it into `C:\tools\`
You just need to **copy **the //contents// of the `cuda` folder into the CUDA installation which should be
`C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0`Installing TensorFlow with GPU Support for Windows in order to use CARE
Add Environment variables
# C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin
# C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\extras\CUPTI\libx64# Get latest [[https://www.geforce.com/drivers|NVIDIA drivers]]
# C:\tools\cuda\bin# Install Anaconda from `\\svfas6.epfl.ch\biop\public\0 - BIOP Data\0-Install\CARE`
That last one might not be necessary
Open Anaconda Prompt# Download `CARE-TensorFlow-GPU.yml` locally
conda update conda# Open Anaconda Prompt
conda update python# Navigate to where you copied `CARE-TensorFlow-GPU.yml`
conda u# Update --all
Make a directory for all the tensorflow projects somewhereAnaconda with `conda update -n base -c defaults conda`
mkdir t# Create the CARE environement with `conda env create -n care -f CARE-TensorfFlow-projectsGPU.yml`
cd tensorflow-projects
Create the environement# Activate the environement with `conda activate care`
conda create --name tf-gpu python=3.6# Clone the CARE repository with `git clone https://github.com/CSBDeep/CSBDeep.git`
conda activate tf-gpu
pip install tensorflow-gpu
# Run `jupyter notebook` and see if the examples work
c4science · Help