diff --git a/src/model/phase_field/phase_field_model.cc b/src/model/phase_field/phase_field_model.cc index 5a1988997..9b5745b57 100644 --- a/src/model/phase_field/phase_field_model.cc +++ b/src/model/phase_field/phase_field_model.cc @@ -1,776 +1,776 @@ /** * @file phase_field_model.cc * * @author Mohit Pundir * * @date creation: Wed Aug 01 2018 * @date last modification: Wed Aug 01 2018 * * @brief Implementation of PhaseFieldModel class * * @section LICENSE * * Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "phase_field_model.hh" #include "dumpable_inline_impl.hh" #include "element_synchronizer.hh" #include "fe_engine_template.hh" #include "generalized_trapezoidal.hh" #include "group_manager_inline_impl.hh" #include "integrator_gauss.hh" #include "mesh.hh" #include "parser.hh" #include "shape_lagrange.hh" #ifdef AKANTU_USE_IOHELPER #include "dumper_element_partition.hh" #include "dumper_elemental_field.hh" #include "dumper_internal_material_field.hh" #include "dumper_iohelper_paraview.hh" #endif /* -------------------------------------------------------------------------- */ namespace akantu { /* -------------------------------------------------------------------------- */ PhaseFieldModel::PhaseFieldModel(Mesh & mesh, UInt dim, const ID & id, const MemoryID & memory_id, const ModelType model_type) : Model(mesh, model_type, dim, id, memory_id), phasefield_index("phasefield index", id, memory_id), phasefield_local_numbering("phasefield local numbering", id, memory_id) { AKANTU_DEBUG_IN(); this->registerFEEngineObject("PhaseFieldFEEngine", mesh, Model::spatial_dimension); #ifdef AKANTU_USE_IOHELPER this->mesh.registerDumper("phase_field", id, true); this->mesh.addDumpMesh(mesh, Model::spatial_dimension, _not_ghost, _ek_regular); #endif // AKANTU_USE_IOHELPER phasefield_selector = std::make_shared(phasefield_index); this->initDOFManager(); this->registerDataAccessor(*this); if (this->mesh.isDistributed()) { auto & synchronizer = this->mesh.getElementSynchronizer(); this->registerSynchronizer(synchronizer, SynchronizationTag::_pfm_damage); this->registerSynchronizer(synchronizer, SynchronizationTag::_pfm_driving); this->registerSynchronizer(synchronizer, SynchronizationTag::_pfm_history); this->registerSynchronizer(synchronizer, SynchronizationTag::_pfm_energy); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ PhaseFieldModel::~PhaseFieldModel() = default; /* -------------------------------------------------------------------------- */ MatrixType PhaseFieldModel::getMatrixType(const ID & matrix_id) { if (matrix_id == "K" or matrix_id == "M") { return _symmetric; } return _mt_not_defined; } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::initModel() { auto & fem = this->getFEEngine(); fem.initShapeFunctions(_not_ghost); fem.initShapeFunctions(_ghost); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::initFullImpl(const ModelOptions & options) { phasefield_index.initialize(mesh, _element_kind = _ek_not_defined, _default_value = UInt(-1), _with_nb_element = true); phasefield_local_numbering.initialize(mesh, _element_kind = _ek_not_defined, _with_nb_element = true); Model::initFullImpl(options); // initialize the phasefields if (this->parser.getLastParsedFile() != "") { this->instantiatePhaseFields(); this->initPhaseFields(); } this->initBC(*this, *damage, *external_force); } /* -------------------------------------------------------------------------- */ PhaseField & PhaseFieldModel::registerNewPhaseField(const ParserSection & section) { std::string phase_name; std::string phase_type = section.getName(); std::string opt_param = section.getOption(); try { std::string tmp = section.getParameter("name"); phase_name = tmp; /** this can seam weird, but there is an ambiguous operator * overload that i couldn't solve. @todo remove the * weirdness of this code */ } catch (debug::Exception &) { AKANTU_ERROR("A phasefield of type \'" << phase_type << "\' in the input file has been defined without a name!"); } PhaseField & phase = this->registerNewPhaseField(phase_name, phase_type, opt_param); phase.parseSection(section); return phase; } /* -------------------------------------------------------------------------- */ PhaseField & PhaseFieldModel::registerNewPhaseField(const ID & phase_name, const ID & phase_type, const ID & opt_param) { AKANTU_DEBUG_ASSERT(phasefields_names_to_id.find(phase_name) == phasefields_names_to_id.end(), "A phasefield with this name '" << phase_name << "' has already been registered. " << "Please use unique names for phasefields"); UInt phase_count = phasefields.size(); phasefields_names_to_id[phase_name] = phase_count; std::stringstream sstr_phase; sstr_phase << this->id << ":" << phase_count << ":" << phase_type; ID mat_id = sstr_phase.str(); std::unique_ptr phase = PhaseFieldFactory::getInstance().allocate( phase_type, spatial_dimension, opt_param, *this, mat_id); phasefields.push_back(std::move(phase)); return *(phasefields.back()); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::instantiatePhaseFields() { ParserSection model_section; bool is_empty; std::tie(model_section, is_empty) = this->getParserSection(); if (not is_empty) { auto model_phasefields = model_section.getSubSections(ParserType::_phasefield); for (const auto & section : model_phasefields) { this->registerNewPhaseField(section); } } auto sub_sections = this->parser.getSubSections(ParserType::_phasefield); for (const auto & section : sub_sections) { this->registerNewPhaseField(section); } if (phasefields.empty()) AKANTU_EXCEPTION("No phasefields where instantiated for the model" << getID()); are_phasefields_instantiated = true; } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::initPhaseFields() { AKANTU_DEBUG_ASSERT(phasefields.size() != 0, "No phasefield to initialize !"); if (!are_phasefields_instantiated) instantiatePhaseFields(); this->assignPhaseFieldToElements(); for (auto & phasefield : phasefields) { /// init internals properties phasefield->initPhaseField(); } this->synchronize(SynchronizationTag::_smm_init_mat); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::assignPhaseFieldToElements( const ElementTypeMapArray * filter) { for_each_element( mesh, [&](auto && element) { UInt phase_index = (*phasefield_selector)(element); AKANTU_DEBUG_ASSERT( phase_index < phasefields.size(), "The phasefield selector returned an index that does not exists"); phasefield_index(element) = phase_index; }, _element_filter = filter, _ghost_type = _not_ghost); for_each_element(mesh, [&](auto && element) { auto phase_index = phasefield_index(element); auto index = phasefields[phase_index]->addElement(element); phasefield_local_numbering(element) = index; }, _element_filter = filter, _ghost_type = _not_ghost); // synchronize the element phasefield arrays this->synchronize(SynchronizationTag::_material_id); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::assembleMatrix(const ID & matrix_id) { if (matrix_id == "K") { this->assembleStiffnessMatrix(); } else { AKANTU_ERROR("Unknown Matrix ID for PhaseFieldModel : " << matrix_id); } } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::predictor() { // AKANTU_TO_IMPLEMENT(); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::corrector() { // AKANTU_TO_IMPLEMENT(); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::initSolver(TimeStepSolverType time_step_solver_type, NonLinearSolverType) { DOFManager & dof_manager = this->getDOFManager(); this->allocNodalField(this->damage, 1, "damage"); this->allocNodalField(this->external_force, 1, "external_force"); this->allocNodalField(this->internal_force, 1, "internal_force"); this->allocNodalField(this->blocked_dofs, 1, "blocked_dofs"); this->allocNodalField(this->previous_damage, 1, "previous_damage"); this->allocNodalField(this->damage_increment, 1, "damage_increment"); if (!dof_manager.hasDOFs("damage")) { dof_manager.registerDOFs("damage", *this->damage, _dst_nodal); dof_manager.registerBlockedDOFs("damage", *this->blocked_dofs); dof_manager.registerDOFsIncrement("damage", *this->damage_increment); dof_manager.registerDOFsPrevious("damage", *this->previous_damage); } if (time_step_solver_type == TimeStepSolverType::_dynamic) { AKANTU_TO_IMPLEMENT(); } } /* -------------------------------------------------------------------------- */ FEEngine & PhaseFieldModel::getFEEngineBoundary(const ID & name) { return dynamic_cast(getFEEngineClassBoundary(name)); } /* -------------------------------------------------------------------------- */ std::tuple PhaseFieldModel::getDefaultSolverID(const AnalysisMethod & method) { switch (method) { case _explicit_lumped_mass: { return std::make_tuple("explicit_lumped", TimeStepSolverType::_dynamic_lumped); } case _explicit_consistent_mass: { return std::make_tuple("explicit", TimeStepSolverType::_dynamic); } case _static: { return std::make_tuple("static", TimeStepSolverType::_static); } case _implicit_dynamic: { return std::make_tuple("implicit", TimeStepSolverType::_dynamic); } default: return std::make_tuple("unknown", TimeStepSolverType::_not_defined); } } /* -------------------------------------------------------------------------- */ ModelSolverOptions PhaseFieldModel::getDefaultSolverOptions( const TimeStepSolverType & type) const { ModelSolverOptions options; switch (type) { case TimeStepSolverType::_dynamic_lumped: { options.non_linear_solver_type = NonLinearSolverType::_lumped; options.integration_scheme_type["damage"] = IntegrationSchemeType::_central_difference; options.solution_type["damage"] = IntegrationScheme::_acceleration; break; } case TimeStepSolverType::_static: { options.non_linear_solver_type = NonLinearSolverType::_linear; options.integration_scheme_type["damage"] = IntegrationSchemeType::_pseudo_time; options.solution_type["damage"] = IntegrationScheme::_not_defined; break; } case TimeStepSolverType::_dynamic: { options.non_linear_solver_type = NonLinearSolverType::_newton_raphson; options.integration_scheme_type["damage"] = IntegrationSchemeType::_backward_euler; options.solution_type["damage"] = IntegrationScheme::_damage; break; } default: AKANTU_EXCEPTION(type << " is not a valid time step solver type"); } return options; } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::beforeSolveStep() { for (auto & phasefield : phasefields) { phasefield->beforeSolveStep(); } // compute the history of local elements //AKANTU_DEBUG_INFO("Compute phi history"); //this->computePhiHistoryOnQuadPoints(_not_ghost); // communicate the history //AKANTU_DEBUG_INFO("Send data for synchronization"); //this->asynchronousSynchronize(SynchronizationTag::_pfm_history); // finalize communications //AKANTU_DEBUG_INFO("Wait distant history"); //this->waitEndSynchronize(SynchronizationTag::_pfm_history); //this->computeDamageEnergyDensityOnQuadPoints(_not_ghost); // communicate the energy density //AKANTU_DEBUG_INFO("Send data for synchronization"); //this->asynchronousSynchronize(SynchronizationTag::_pfm_energy); // finalize communications //AKANTU_DEBUG_INFO("Wait distant energy density"); //this->waitEndSynchronize(SynchronizationTag::_pfm_energy); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::afterSolveStep(bool converged) { if (not converged) return ; for (auto && values : zip(*damage, *previous_damage)) { auto & dam = std::get<0>(values); auto & prev_dam = std::get<1>(values); dam -= prev_dam; //dam = std::min(1., 2 * dam - dam * dam); prev_dam = dam; } } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::assembleStiffnessMatrix() { AKANTU_DEBUG_IN(); AKANTU_DEBUG_INFO("Assemble the new stiffness matrix"); if (!this->getDOFManager().hasMatrix("K")) { this->getDOFManager().getNewMatrix("K", getMatrixType("K")); } this->getDOFManager().zeroMatrix("K"); for (auto & phasefield : phasefields) { phasefield->assembleStiffnessMatrix(_not_ghost); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::assembleResidual() { AKANTU_DEBUG_IN(); this->assembleInternalForces(); this->getDOFManager().assembleToResidual("damage", *this->external_force, 1); this->getDOFManager().assembleToResidual("damage", *this->internal_force, 1); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::assembleInternalForces() { AKANTU_DEBUG_IN(); AKANTU_DEBUG_INFO("Assemble the internal forces"); this->internal_force->zero(); // compute the driving forces of local elements - AKANTU_DEBUG_INFO("Compute local driving forces"); - for (auto & phasefield : phasefields) { - phasefield->computeAllDrivingForces(_not_ghost); - } + //AKANTU_DEBUG_INFO("Compute local driving forces"); + // for (auto & phasefield : phasefields) { + // phasefield->computeAllDrivingForces(_not_ghost); + //} // communicate the driving forces AKANTU_DEBUG_INFO("Send data for residual assembly"); this->asynchronousSynchronize(SynchronizationTag::_pfm_driving); // assemble the forces due to local driving forces AKANTU_DEBUG_INFO("Assemble residual for local elements"); for (auto & phasefield : phasefields) { phasefield->assembleInternalForces(_not_ghost); } // finalize communications AKANTU_DEBUG_INFO("Wait distant driving forces"); this->waitEndSynchronize(SynchronizationTag::_pfm_driving); // assemble the residual due to ghost elements AKANTU_DEBUG_INFO("Assemble residual for ghost elements"); //for (auto & phasefield : phasefields) { // phasefield->assembleInternalForces(_ghost); //} AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::assembleLumpedMatrix(const ID & /*matrix_id*/) {} /* -------------------------------------------------------------------------- */ void PhaseFieldModel::setTimeStep(Real time_step, const ID & solver_id) { Model::setTimeStep(time_step, solver_id); #if defined(AKANTU_USE_IOHELPER) this->mesh.getDumper("phase_field").setTimeStep(time_step); #endif } /* -------------------------------------------------------------------------- */ UInt PhaseFieldModel::getNbData(const Array & elements, const SynchronizationTag & tag) const { AKANTU_DEBUG_IN(); UInt size = 0; UInt nb_nodes_per_element = 0; for (const Element & el : elements) { nb_nodes_per_element += Mesh::getNbNodesPerElement(el.type); } switch (tag) { case SynchronizationTag::_pfm_damage: { size += nb_nodes_per_element * sizeof(Real); // damage break; } case SynchronizationTag::_pfm_driving: { size += getNbIntegrationPoints(elements) * sizeof(Real); break; } case SynchronizationTag::_pfm_history: { size += getNbIntegrationPoints(elements) * sizeof(Real); break; } case SynchronizationTag::_pfm_energy: { size += getNbIntegrationPoints(elements) * sizeof(Real); break; } default: { AKANTU_ERROR("Unknown ghost synchronization tag : " << tag); } } AKANTU_DEBUG_OUT(); return size; } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::packData(__attribute__((unused)) CommunicationBuffer & buffer, __attribute__((unused)) const Array & elements, __attribute__((unused)) const SynchronizationTag & tag) const { /*switch (tag) { case SynchronizationTag::_pfm_damage: { packNodalDataHelper(*damage, buffer, elements, mesh); break; } case SynchronizationTag::_pfm_driving: { packElementalDataHelper(driving_force_on_qpoints, buffer, elements, true, getFEEngine()); break; } case SynchronizationTag::_pfm_history: { packElementalDataHelper(phi_history_on_qpoints, buffer, elements, true, getFEEngine()); break; } case SynchronizationTag::_pfm_energy: { packElementalDataHelper(damage_energy_density_on_qpoints, buffer, elements, true, getFEEngine()); break; } default: { AKANTU_ERROR("Unknown ghost synchronization tag : " << tag); } }*/ } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::unpackData(__attribute__((unused)) CommunicationBuffer & buffer, __attribute__((unused)) const Array & elements, __attribute__((unused)) const SynchronizationTag & tag) { /*switch (tag) { case SynchronizationTag::_pfm_damage: { unpackNodalDataHelper(*damage, buffer, elements, mesh); break; } case SynchronizationTag::_pfm_driving: { unpackElementalDataHelper(driving_force_on_qpoints, buffer, elements, true, getFEEngine()); break; } case SynchronizationTag::_pfm_history: { unpackElementalDataHelper(phi_history_on_qpoints, buffer, elements, true, getFEEngine()); break; } case SynchronizationTag::_pfm_energy: { unpackElementalDataHelper(damage_energy_density_on_qpoints, buffer, elements, true, getFEEngine()); break; } default: { AKANTU_ERROR("Unknown ghost synchronization tag : " << tag); } }*/ } /* -------------------------------------------------------------------------- */ UInt PhaseFieldModel::getNbData(const Array & indexes, const SynchronizationTag & tag) const { AKANTU_DEBUG_IN(); UInt size = 0; UInt nb_nodes = indexes.size(); switch (tag) { case SynchronizationTag::_pfm_damage: { size += nb_nodes * sizeof(Real); break; } default: { AKANTU_ERROR("Unknown ghost synchronization tag : " << tag); } } AKANTU_DEBUG_OUT(); return size; } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::packData(CommunicationBuffer & buffer, const Array & indexes, const SynchronizationTag & tag) const { AKANTU_DEBUG_IN(); for (auto index : indexes) { switch (tag) { case SynchronizationTag::_pfm_damage: { buffer << (*damage)(index); break; } default: { AKANTU_ERROR("Unknown ghost synchronization tag : " << tag); } } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::unpackData(CommunicationBuffer & buffer, const Array & indexes, const SynchronizationTag & tag) { AKANTU_DEBUG_IN(); for (auto index : indexes) { switch (tag) { case SynchronizationTag::_pfm_damage: { buffer >> (*damage)(index); break; } default: { AKANTU_ERROR("Unknown ghost synchronization tag : " << tag); } } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ #ifdef AKANTU_USE_IOHELPER std::shared_ptr PhaseFieldModel::createNodalFieldBool(const std::string & field_name, const std::string & group_name, bool) { std::map *> uint_nodal_fields; uint_nodal_fields["blocked_dofs"] = blocked_dofs; return mesh.createNodalField(uint_nodal_fields[field_name], group_name); std::shared_ptr field; return field; } /* -------------------------------------------------------------------------- */ std::shared_ptr PhaseFieldModel::createNodalFieldReal(const std::string & field_name, const std::string & group_name, bool) { if (field_name == "capacity_lumped") { AKANTU_EXCEPTION( "Capacity lumped is a nodal field now stored in the DOF manager." "Therefore it cannot be used by a dumper anymore"); } std::map *> real_nodal_fields; real_nodal_fields["damage"] = damage; real_nodal_fields["external_force"] = external_force; real_nodal_fields["internal_force"] = internal_force; return mesh.createNodalField(real_nodal_fields[field_name], group_name); std::shared_ptr field; return field; } /* -------------------------------------------------------------------------- */ std::shared_ptr PhaseFieldModel::createElementalField(const std::string & field_name, const std::string & group_name, bool, UInt, ElementKind element_kind) { if (field_name == "partitions") { return mesh.createElementalField( mesh.getConnectivities(), group_name, this->spatial_dimension, element_kind); } /*else if (field_name == "damage_gradient") { ElementTypeMap nb_data_per_elem = this->mesh.getNbDataPerElem(damage_gradient); return mesh.createElementalField( damage_gradient, group_name, this->spatial_dimension, element_kind, nb_data_per_elem); } else if (field_name == "damage_energy") { ElementTypeMap nb_data_per_elem = this->mesh.getNbDataPerElem(damage_energy_on_qpoints); return mesh.createElementalField( damage_energy_on_qpoints, group_name, this->spatial_dimension, element_kind, nb_data_per_elem); }*/ std::shared_ptr field; return field; } /* -------------------------------------------------------------------------- */ #else /* -------------------------------------------------------------------------- */ std::shared_ptr PhaseFieldModel::createElementalField(const std::string &, const std::string &, bool, const UInt &, ElementKind) { return nullptr; } /* -------------------------------------------------------------------------- */ std::shared_ptr PhaseFieldModel::createNodalFieldReal(const std::string &, const std::string &, bool) { return nullptr; } /* -------------------------------------------------------------------------- */ std::shared_ptr PhaseFieldModel::createNodalFieldBool(const std::string &, const std::string &, bool) { return nullptr; } #endif /* -------------------------------------------------------------------------- */ void PhaseFieldModel::dump(const std::string & dumper_name) { mesh.dump(dumper_name); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::dump(const std::string & dumper_name, UInt step) { mesh.dump(dumper_name, step); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::dump(const std::string & dumper_name, Real time, UInt step) { mesh.dump(dumper_name, time, step); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::dump() { mesh.dump(); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::dump(UInt step) { mesh.dump(step); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::dump(Real time, UInt step) { mesh.dump(time, step); } /* -------------------------------------------------------------------------- */ void PhaseFieldModel::printself(std::ostream & stream, int indent) const { std::string space; for (Int i = 0; i < indent; i++, space += AKANTU_INDENT) ; stream << space << "Phase Field Model [" << std::endl; stream << space << " + id : " << id << std::endl; stream << space << " + spatial dimension : " << Model::spatial_dimension << std::endl; stream << space << " + fem [" << std::endl; getFEEngine().printself(stream, indent + 2); stream << space << AKANTU_INDENT << "]" << std::endl; stream << space << " + nodals information [" << std::endl; damage->printself(stream, indent + 2); external_force->printself(stream, indent + 2); internal_force->printself(stream, indent + 2); blocked_dofs->printself(stream, indent + 2); stream << space << AKANTU_INDENT << "]" << std::endl; stream << space << " + phasefield information [" << std::endl; stream << space << AKANTU_INDENT << "]" << std::endl; stream << space << "]" << std::endl; } } // namespace akantu diff --git a/src/model/phase_field/phasefield.cc b/src/model/phase_field/phasefield.cc index 538541cf2..63e7e2902 100644 --- a/src/model/phase_field/phasefield.cc +++ b/src/model/phase_field/phasefield.cc @@ -1,302 +1,303 @@ /** * @file pahsefield.cc * * @author Mohit Pundir * * @date creation: Mon Mar 2 2020 * @date last modification: Mon Mar 2 2020 * * @brief Implementation of the common part of the phasefield class * * @section LICENSE * * Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "phasefield.hh" #include "phase_field_model.hh" /* -------------------------------------------------------------------------- */ namespace akantu { /* -------------------------------------------------------------------------- */ PhaseField::PhaseField(PhaseFieldModel & model, const ID & id) : Memory(id, model.getMemoryID()), Parsable(ParserType::_phasefield, id), fem(model.getFEEngine()), name(""), model(model), spatial_dimension(this->model.getSpatialDimension()), element_filter("element_filter", id, this->memory_id), damage("damage", *this), phi("phi", *this), strain("strain", *this), driving_force("driving_force", *this), damage_energy("damage_energy", *this), damage_energy_density("damage_energy_density", *this) { AKANTU_DEBUG_IN(); /// for each connectivity types allocate the element filer array of the /// material element_filter.initialize(model.getMesh(), _spatial_dimension = spatial_dimension, _element_kind = _ek_regular); this->initialize(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ PhaseField::PhaseField(PhaseFieldModel & model, UInt dim, const Mesh & mesh, FEEngine & fe_engine, const ID & id) : Memory(id, model.getMemoryID()), Parsable(ParserType::_phasefield, id), fem(fe_engine), name(""), model(model), spatial_dimension(this->model.getSpatialDimension()), element_filter("element_filter", id, this->memory_id), damage("damage", *this, dim, fe_engine, this->element_filter), phi("phi", *this, dim, fe_engine, this->element_filter), strain("strain", *this, dim, fe_engine, this->element_filter), driving_force("driving_force", *this, dim, fe_engine, this->element_filter), damage_energy("damage_energy", *this, dim, fe_engine, this->element_filter), damage_energy_density("damage_energy_density", *this, dim, fe_engine, this->element_filter){ AKANTU_DEBUG_IN(); /// for each connectivity types allocate the element filer array of the /// material element_filter.initialize(mesh, _spatial_dimension = spatial_dimension, _element_kind = _ek_regular); this->initialize(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ PhaseField::~PhaseField() = default; /* -------------------------------------------------------------------------- */ void PhaseField::initialize() { registerParam("name", name, std::string(), _pat_parsable | _pat_readable); registerParam("l0", l0, Real(0.), _pat_parsable | _pat_readable, "length scale parameter"); registerParam("gc", g_c, _pat_parsable | _pat_readable, "critical local fracture energy density"); registerParam("E", E, _pat_parsable | _pat_readable, "Young's modulus"); registerParam("nu", nu, _pat_parsable | _pat_readable, "Poisson ratio"); damage.initialize(1); phi.initialize(1); driving_force.initialize(1); strain.initialize(spatial_dimension * spatial_dimension); damage_energy_density.initialize(1); damage_energy.initialize(spatial_dimension * spatial_dimension); } /* -------------------------------------------------------------------------- */ void PhaseField::initPhaseField() { AKANTU_DEBUG_IN(); this->phi.initializeHistory(); this->resizeInternals(); updateInternalParameters(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void PhaseField::resizeInternals() { AKANTU_DEBUG_IN(); for (auto it = internal_vectors_real.begin(); it != internal_vectors_real.end(); ++it) it->second->resize(); for (auto it = internal_vectors_uint.begin(); it != internal_vectors_uint.end(); ++it) it->second->resize(); for (auto it = internal_vectors_bool.begin(); it != internal_vectors_bool.end(); ++it) it->second->resize(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void PhaseField::updateInternalParameters() { this->lambda = this->nu * this->E / ((1 + this->nu) * (1 - 2 * this->nu)); this->mu = this->E / (2 * (1 + this->nu)); } /* -------------------------------------------------------------------------- */ void PhaseField::computeAllDrivingForces(GhostType ghost_type) { AKANTU_DEBUG_IN(); UInt spatial_dimension = model.getSpatialDimension(); for (const auto & type : element_filter.elementTypes(spatial_dimension, ghost_type)) { Array & elem_filter = element_filter(type, ghost_type); if (elem_filter.size() == 0) continue; computeDrivingForce(type, ghost_type); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void PhaseField::assembleInternalForces(GhostType ghost_type) { AKANTU_DEBUG_IN(); Array & internal_force = model.getInternalForce(); for (auto type : element_filter.elementTypes(_ghost_type = ghost_type)) { Array & elem_filter = element_filter(type, ghost_type); if (elem_filter.size() == 0) continue; UInt nb_element = elem_filter.size(); UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type); UInt nb_quadrature_points = fem.getNbIntegrationPoints(type, ghost_type); Array nt_driving_force(nb_quadrature_points, nb_nodes_per_element); fem.computeNtb(driving_force(type, ghost_type), nt_driving_force, type, ghost_type, elem_filter); Array int_nt_driving_force(nb_element, nb_nodes_per_element); fem.integrate(nt_driving_force, int_nt_driving_force, nb_nodes_per_element, type, ghost_type, elem_filter); model.getDOFManager().assembleElementalArrayLocalArray( int_nt_driving_force, internal_force, type, ghost_type, 1, elem_filter); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void PhaseField::assembleStiffnessMatrix(GhostType ghost_type) { AKANTU_DEBUG_IN(); AKANTU_DEBUG_INFO("Assemble the new stiffness matrix"); for (auto type : element_filter.elementTypes(spatial_dimension, ghost_type)) { Array & elem_filter = element_filter(type, ghost_type); if (elem_filter.size() == 0) { AKANTU_DEBUG_OUT(); return; } auto nb_element = elem_filter.size(); auto nb_nodes_per_element = Mesh::getNbNodesPerElement(type); auto nb_quadrature_points = fem.getNbIntegrationPoints(type, ghost_type); auto nt_b_n = std::make_unique>( nb_element * nb_quadrature_points, nb_nodes_per_element * nb_nodes_per_element, "N^t*b*N"); auto bt_d_b = std::make_unique>( nb_element * nb_quadrature_points, nb_nodes_per_element * nb_nodes_per_element, "B^t*D*B"); // damage_energy_density_on_qpoints = gc/l0 + phi = scalar auto & damage_energy_density_vect = damage_energy_density(type, ghost_type); // damage_energy_on_qpoints = gc*l0 = scalar auto & damage_energy_vect = damage_energy(type, ghost_type); fem.computeBtDB(damage_energy_vect, *bt_d_b, 2, type, ghost_type, elem_filter); fem.computeNtbN(damage_energy_density_vect, *nt_b_n, 2, type, ghost_type, elem_filter); /// compute @f$ K_{\grad d} = \int_e \mathbf{N}^t * \mathbf{w} * /// \mathbf{N}@f$ auto K_n = std::make_unique>( nb_element, nb_nodes_per_element * nb_nodes_per_element, "K_n"); fem.integrate(*nt_b_n, *K_n, nb_nodes_per_element * nb_nodes_per_element, type, ghost_type, elem_filter); model.getDOFManager().assembleElementalMatricesToMatrix( "K", "damage", *K_n, type, _not_ghost, _symmetric, elem_filter); /// compute @f$ K_{\grad d} = \int_e \mathbf{B}^t * \mathbf{W} * /// \mathbf{B}@f$ auto K_b = std::make_unique>( nb_element, nb_nodes_per_element * nb_nodes_per_element, "K_b"); fem.integrate(*bt_d_b, *K_b, nb_nodes_per_element * nb_nodes_per_element, type, ghost_type, elem_filter); model.getDOFManager().assembleElementalMatricesToMatrix( "K", "damage", *K_b, type, _not_ghost, _symmetric, elem_filter); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void PhaseField::beforeSolveStep() { this->savePreviousState(); + this->computeAllDrivingForces(_not_ghost); } /* -------------------------------------------------------------------------- */ void PhaseField::afterSolveStep() { } /* -------------------------------------------------------------------------- */ void PhaseField::savePreviousState() { AKANTU_DEBUG_IN(); for (auto pair : internal_vectors_real) if (pair.second->hasHistory()) pair.second->saveCurrentValues(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void PhaseField::printself(std::ostream & stream, int indent) const { std::string space(indent, AKANTU_INDENT); std::string type = getID().substr(getID().find_last_of(':') + 1); stream << space << "PhaseField Material " << type << " [" << std::endl; Parsable::printself(stream, indent); stream << space << "]" << std::endl; } } diff --git a/test/test_model/test_phase_field_model/test_phase_solid_coupling.cc b/test/test_model/test_phase_field_model/test_phase_solid_coupling.cc index ad53071ad..dc8b0ca65 100644 --- a/test/test_model/test_phase_field_model/test_phase_solid_coupling.cc +++ b/test/test_model/test_phase_field_model/test_phase_solid_coupling.cc @@ -1,272 +1,277 @@ /** * @file test_phase_field_coupling.cc * * @author Mohit Pundir * * @date creation: Thu Feb 25 2021 * * @brief test of the class PhaseFieldModel on the 2d square * * @section LICENSE * * Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory * (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "aka_common.hh" #include "non_linear_solver.hh" #include "solid_mechanics_model.hh" #include "phase_field_model.hh" #include "material.hh" #include "material_phasefield.hh" /* -------------------------------------------------------------------------- */ #include #include /* -------------------------------------------------------------------------- */ using namespace akantu; const UInt spatial_dimension = 2; /* -------------------------------------------------------------------------- */ void applyDisplacement(SolidMechanicsModel &, Real &); void computeStrainOnQuadPoints(SolidMechanicsModel &, PhaseFieldModel &, const GhostType &); void computeDamageOnQuadPoints(SolidMechanicsModel &, PhaseFieldModel &, const GhostType &); void gradUToEpsilon(const Matrix &, Matrix &); /* -------------------------------------------------------------------------- */ int main(int argc, char *argv[]) { std::ofstream os("data.csv"); os << "#strain stress damage analytical_sigma analytical_damage" << std::endl; initialize("material_coupling.dat", argc, argv); Mesh mesh(spatial_dimension); mesh.read("test_one_element.msh"); SolidMechanicsModel model(mesh); model.initFull(_analysis_method = _static); PhaseFieldModel phase(mesh); auto && selector = std::make_shared>( "physical_names", phase); phase.setPhaseFieldSelector(selector); phase.initFull(_analysis_method = _static); model.setBaseName("phase_solid"); model.addDumpField("stress"); model.addDumpField("grad_u"); model.addDumpFieldVector("displacement"); model.addDumpField("damage"); model.dump(); UInt nbSteps = 1000; Real increment = 1e-4; auto & stress = model.getMaterial(0).getArray("stress", _quadrangle_4); auto & damage = model.getMaterial(0).getArray("damage", _quadrangle_4); Real analytical_damage{0.}; Real analytical_sigma{0.}; auto & phasefield = phase.getPhaseField(0); const Real E = phasefield.getParam("E"); const Real nu = phasefield.getParam("nu"); Real c22 = E*(1-nu)/((1+nu)*(1-2*nu)); const Real gc = phasefield.getParam("gc"); const Real l0 = phasefield.getParam("l0"); + + Real error_stress{0.}; Real error_damage{0.}; for (UInt s = 0; s < nbSteps; ++s) { Real axial_strain = increment * s; applyDisplacement(model, axial_strain); model.solveStep(); computeStrainOnQuadPoints(model, phase, _not_ghost); phase.solveStep(); computeDamageOnQuadPoints(model, phase, _not_ghost); model.assembleInternalForces(); analytical_damage = axial_strain*axial_strain*c22/(gc/l0 + axial_strain*axial_strain*c22); analytical_sigma = c22*axial_strain*(1-analytical_damage)*(1-analytical_damage); - + + error_stress = std::abs(analytical_sigma - stress(0, 3))/analytical_sigma; + error_damage = std::abs(analytical_damage - damage(0))/analytical_damage; - if (error_damage > 0.01) { + if (error_damage > 1e-8 and error_stress > 1e-8) { return EXIT_FAILURE; } os << axial_strain << " " << stress(0, 3) << " " << damage(0) << " " - << analytical_sigma << " " << analytical_damage << std::endl; + << analytical_sigma << " " << analytical_damage << " " << + error_stress << " " << error_damage << std::endl; model.dump(); } os.close(); finalize(); return EXIT_SUCCESS; } /* -------------------------------------------------------------------------- */ void applyDisplacement(SolidMechanicsModel & model, Real & increment) { auto & displacement = model.getDisplacement(); auto & positions = model.getMesh().getNodes(); auto & blocked_dofs = model.getBlockedDOFs(); for (UInt n = 0; n < model.getMesh().getNbNodes(); ++n) { if (positions(n, 1) == -0.5) { displacement(n, 0) = 0; displacement(n, 1) = 0; blocked_dofs(n, 0) = true; blocked_dofs(n ,1) = true; } else { displacement(n, 0) = 0; displacement(n, 1) = increment; blocked_dofs(n, 0) = true; blocked_dofs(n ,1) = true; } } } /* -------------------------------------------------------------------------- */ void computeStrainOnQuadPoints(SolidMechanicsModel & solid, PhaseFieldModel & phase, const GhostType & ghost_type) { auto & mesh = solid.getMesh(); auto nb_materials = solid.getNbMaterials(); auto nb_phasefields = phase.getNbPhaseFields(); AKANTU_DEBUG_ASSERT(nb_phasefields == nb_materials, "The number of phasefields and materials should be equal" ); for(auto index : arange(nb_materials)) { auto & material = solid.getMaterial(index); for(auto index2 : arange(nb_phasefields)) { auto & phasefield = phase.getPhaseField(index2); if(phasefield.getName() == material.getName()){ auto & strain_on_qpoints = phasefield.getStrain(); auto & gradu_on_qpoints = material.getGradU(); for (auto & type: mesh.elementTypes(spatial_dimension, ghost_type)) { auto & strain_on_qpoints_vect = strain_on_qpoints(type, ghost_type); auto & gradu_on_qpoints_vect = gradu_on_qpoints(type, ghost_type); for (auto && values: zip(make_view(strain_on_qpoints_vect, spatial_dimension, spatial_dimension), make_view(gradu_on_qpoints_vect, spatial_dimension, spatial_dimension))) { auto & strain = std::get<0>(values); auto & grad_u = std::get<1>(values); gradUToEpsilon(grad_u, strain); } } break; } } } } /* -------------------------------------------------------------------------- */ void computeDamageOnQuadPoints(SolidMechanicsModel & solid, PhaseFieldModel & phase, const GhostType & ghost_type) { auto & fem = phase.getFEEngine(); auto & mesh = phase.getMesh(); auto nb_materials = solid.getNbMaterials(); auto nb_phasefields = phase.getNbPhaseFields(); AKANTU_DEBUG_ASSERT(nb_phasefields == nb_materials, "The number of phasefields and materials should be equal" ); for(auto index : arange(nb_materials)) { auto & material = solid.getMaterial(index); for(auto index2 : arange(nb_phasefields)) { auto & phasefield = phase.getPhaseField(index2); if(phasefield.getName() == material.getName()){ switch (spatial_dimension) { case 1: { auto & mat = static_cast &>(material); auto & solid_damage = mat.getDamage(); for (auto & type: mesh.elementTypes(spatial_dimension, ghost_type)) { auto & damage_on_qpoints_vect = solid_damage(type, ghost_type); fem.interpolateOnIntegrationPoints(phase.getDamage(), damage_on_qpoints_vect, 1, type, ghost_type); } break; } case 2: { auto & mat = static_cast &>(material); auto & solid_damage = mat.getDamage(); for (auto & type: mesh.elementTypes(spatial_dimension, ghost_type)) { auto & damage_on_qpoints_vect = solid_damage(type, ghost_type); fem.interpolateOnIntegrationPoints(phase.getDamage(), damage_on_qpoints_vect, 1, type, ghost_type); } break; } default: break; } } } } } /* -------------------------------------------------------------------------- */ void gradUToEpsilon(const Matrix & grad_u, Matrix & epsilon) { for (UInt i=0; i < spatial_dimension; ++i) { for (UInt j = 0; j < spatial_dimension; ++j) epsilon(i, j) = 0.5 * (grad_u(i, j) + grad_u(j, i)); } } diff --git a/test/test_model/test_phase_field_model/test_phase_solid_explicit.cc b/test/test_model/test_phase_field_model/test_phase_solid_explicit.cc index b053f772c..36ca03c76 100644 --- a/test/test_model/test_phase_field_model/test_phase_solid_explicit.cc +++ b/test/test_model/test_phase_field_model/test_phase_solid_explicit.cc @@ -1,160 +1,160 @@ /** * @file test_phase_field_explicit.cc * * @author Mohit Pundir * * @date creation: Thu Feb 28 2021 * * @brief test of the class PhaseFieldModel on the 2d square * * @section LICENSE * * Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory * (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "aka_common.hh" #include "non_linear_solver.hh" #include "coupler_solid_phasefield.hh" #include "solid_mechanics_model.hh" #include "phase_field_model.hh" #include "material.hh" #include "material_phasefield.hh" /* -------------------------------------------------------------------------- */ #include #include /* -------------------------------------------------------------------------- */ using namespace akantu; const UInt spatial_dimension = 2; /* -------------------------------------------------------------------------- */ void applyDisplacement(SolidMechanicsModel &, Real &); /* -------------------------------------------------------------------------- */ int main(int argc, char *argv[]) { std::ofstream os("data-explicit.csv"); os << "#strain stress damage analytical_sigma analytical_damage error_stress error_damage" << std::endl; initialize("material_coupling.dat", argc, argv); Mesh mesh(spatial_dimension); mesh.read("test_one_element.msh"); CouplerSolidPhaseField coupler(mesh); auto & model = coupler.getSolidMechanicsModel(); auto & phase = coupler.getPhaseFieldModel(); model.initFull(_analysis_method = _explicit_lumped_mass); Real time_factor = 0.8; Real stable_time_step = model.getStableTimeStep() * time_factor; model.setTimeStep(stable_time_step); auto && selector = std::make_shared>( "physical_names", phase); phase.setPhaseFieldSelector(selector); phase.initFull(_analysis_method = _static); model.setBaseName("phase_solid"); model.addDumpField("stress"); model.addDumpField("grad_u"); model.addDumpFieldVector("displacement"); model.addDumpField("damage"); model.dump(); UInt nbSteps = 1000; Real increment = 1e-4; auto & stress = model.getMaterial(0).getArray("stress", _quadrangle_4); auto & damage = model.getMaterial(0).getArray("damage", _quadrangle_4); Real analytical_damage{0.}; Real analytical_sigma{0.}; auto & phasefield = phase.getPhaseField(0); const Real E = phasefield.getParam("E"); const Real nu = phasefield.getParam("nu"); Real c22 = E*(1-nu)/((1+nu)*(1-2*nu)); const Real gc = phasefield.getParam("gc"); const Real l0 = phasefield.getParam("l0"); Real error_stress{0.}; Real error_damage{0.}; for (UInt s = 0; s < nbSteps; ++s) { Real axial_strain = increment * s; applyDisplacement(model, axial_strain); coupler.solve("explicit_lumped", "static"); analytical_damage = axial_strain*axial_strain*c22/(gc/l0 + axial_strain*axial_strain*c22); analytical_sigma = c22*axial_strain*(1-analytical_damage)*(1-analytical_damage); error_stress = std::abs(analytical_sigma - stress(0, 3))/analytical_sigma; error_damage = std::abs(analytical_damage - damage(0))/analytical_damage; - if (error_damage > 0.01) { + if (error_damage > 1e-8 and error_stress > 1e-8) { return EXIT_FAILURE; } os << axial_strain << " " << stress(0, 3) << " " << damage(0) << " " << analytical_sigma << " " << analytical_damage << " " << error_stress << " " << error_damage << std::endl; model.dump(); } os.close(); finalize(); return EXIT_SUCCESS; } /* -------------------------------------------------------------------------- */ void applyDisplacement(SolidMechanicsModel & model, Real & increment) { auto & displacement = model.getDisplacement(); auto & positions = model.getMesh().getNodes(); auto & blocked_dofs = model.getBlockedDOFs(); for (UInt n = 0; n < model.getMesh().getNbNodes(); ++n) { if (positions(n, 1) == -0.5) { displacement(n, 0) = 0; displacement(n, 1) = 0; blocked_dofs(n, 0) = true; blocked_dofs(n ,1) = true; } else { displacement(n, 0) = 0; displacement(n, 1) = increment; blocked_dofs(n, 0) = true; blocked_dofs(n ,1) = true; } } }