diff --git a/src/model/solid_mechanics/material.hh b/src/model/solid_mechanics/material.hh index 3fd0b247b..e8985a5a9 100644 --- a/src/model/solid_mechanics/material.hh +++ b/src/model/solid_mechanics/material.hh @@ -1,718 +1,718 @@ /** * @file material.hh * * @author Daniel Pino Muñoz * @author Nicolas Richart * @author Marco Vocialta * * @date creation: Fri Jun 18 2010 * @date last modification: Wed Feb 21 2018 * * @brief Mother class for all materials * * * Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "aka_factory.hh" #include "aka_voigthelper.hh" #include "data_accessor.hh" #include "integration_point.hh" #include "parsable.hh" #include "parser.hh" /* -------------------------------------------------------------------------- */ #include "internal_field.hh" #include "random_internal_field.hh" /* -------------------------------------------------------------------------- */ #include "mesh_events.hh" #include "solid_mechanics_model_event_handler.hh" /* -------------------------------------------------------------------------- */ #ifndef AKANTU_MATERIAL_HH_ #define AKANTU_MATERIAL_HH_ /* -------------------------------------------------------------------------- */ namespace akantu { class Model; class SolidMechanicsModel; class Material; } // namespace akantu namespace akantu { using MaterialFactory = Factory; /** * Interface of all materials * Prerequisites for a new material * - inherit from this class * - implement the following methods: * \code * virtual Real getStableTimeStep(Real h, const Element & element = * ElementNull); * * virtual void computeStress(ElementType el_type, * GhostType ghost_type = _not_ghost); * * virtual void computeTangentStiffness(ElementType el_type, * Array & tangent_matrix, * GhostType ghost_type = _not_ghost); * \endcode * */ class Material : public DataAccessor, public Parsable, public MeshEventHandler, protected SolidMechanicsModelEventHandler { /* ------------------------------------------------------------------------ */ /* Constructors/Destructors */ /* ------------------------------------------------------------------------ */ public: Material(const Material & mat) = delete; Material & operator=(const Material & mat) = delete; /// Initialize material with defaults Material(SolidMechanicsModel & model, const ID & id = ""); /// Initialize material with custom mesh & fe_engine Material(SolidMechanicsModel & model, UInt dim, const Mesh & mesh, FEEngine & fe_engine, const ID & id = ""); /// Destructor ~Material() override; protected: void initialize(); /* ------------------------------------------------------------------------ */ /* Function that materials can/should reimplement */ /* ------------------------------------------------------------------------ */ protected: /// constitutive law virtual void computeStress(ElementType /* el_type */, GhostType /* ghost_type */ = _not_ghost) { AKANTU_TO_IMPLEMENT(); } /// compute the tangent stiffness matrix virtual void computeTangentModuli(ElementType /*el_type*/, Array & /*tangent_matrix*/, GhostType /*ghost_type*/ = _not_ghost) { AKANTU_TO_IMPLEMENT(); } /// compute the potential energy virtual void computePotentialEnergy(ElementType el_type); /// compute the potential energy for an element virtual void computePotentialEnergyByElement(ElementType /*type*/, UInt /*index*/, Vector & /*epot_on_quad_points*/) { AKANTU_TO_IMPLEMENT(); } virtual void updateEnergies(ElementType /*el_type*/) {} virtual void updateEnergiesAfterDamage(ElementType /*el_type*/) {} /// set the material to steady state (to be implemented for materials that /// need it) virtual void setToSteadyState(ElementType /*el_type*/, GhostType /*ghost_type*/ = _not_ghost) {} /// function called to update the internal parameters when the modifiable /// parameters are modified virtual void updateInternalParameters() {} public: /// extrapolate internal values virtual void extrapolateInternal(const ID & id, const Element & element, const Matrix & points, Matrix & extrapolated); /// compute the p-wave speed in the material virtual Real getPushWaveSpeed(const Element & /*element*/) const { AKANTU_TO_IMPLEMENT(); } /// compute the s-wave speed in the material virtual Real getShearWaveSpeed(const Element & /*element*/) const { AKANTU_TO_IMPLEMENT(); } /// get a material celerity to compute the stable time step (default: is the /// push wave speed) virtual Real getCelerity(const Element & element) const { return getPushWaveSpeed(element); } /* ------------------------------------------------------------------------ */ /* Methods */ /* ------------------------------------------------------------------------ */ public: template void registerInternal(InternalField & /*vect*/) { AKANTU_TO_IMPLEMENT(); } template void unregisterInternal(InternalField & /*vect*/) { AKANTU_TO_IMPLEMENT(); } /// initialize the material computed parameter virtual void initMaterial(); /// compute the residual for this material // virtual void updateResidual(GhostType ghost_type = _not_ghost); /// assemble the residual for this material virtual void assembleInternalForces(GhostType ghost_type); /// save the stress in the previous_stress if needed virtual void savePreviousState(); /// restore the stress from previous_stress if needed virtual void restorePreviousState(); /// compute the stresses for this material virtual void computeAllStresses(GhostType ghost_type = _not_ghost); // virtual void // computeAllStressesFromTangentModuli(GhostType ghost_type = _not_ghost); virtual void computeAllCauchyStresses(GhostType ghost_type = _not_ghost); /// set material to steady state void setToSteadyState(GhostType ghost_type = _not_ghost); /// compute the stiffness matrix virtual void assembleStiffnessMatrix(GhostType ghost_type); /// add an element to the local mesh filter inline UInt addElement(ElementType type, UInt element, GhostType ghost_type); inline UInt addElement(const Element & element); /// add many elements at once void addElements(const Array & elements_to_add); /// remove many element at once void removeElements(const Array & elements_to_remove); /// function to print the contain of the class void printself(std::ostream & stream, int indent = 0) const override; /** * interpolate stress on given positions for each element by means * of a geometrical interpolation on quadrature points */ void interpolateStress(ElementTypeMapArray & result, GhostType ghost_type = _not_ghost); /** * interpolate stress on given positions for each element by means * of a geometrical interpolation on quadrature points and store the * results per facet */ void interpolateStressOnFacets(ElementTypeMapArray & result, ElementTypeMapArray & by_elem_result, GhostType ghost_type = _not_ghost); /** * function to initialize the elemental field interpolation * function by inverting the quadrature points' coordinates */ void initElementalFieldInterpolation( const ElementTypeMapArray & interpolation_points_coordinates); /* ------------------------------------------------------------------------ */ /* Common part */ /* ------------------------------------------------------------------------ */ protected: /* ------------------------------------------------------------------------ */ static inline UInt getTangentStiffnessVoigtSize(UInt dim); /// compute the potential energy by element void computePotentialEnergyByElements(); /// resize the intenals arrays virtual void resizeInternals(); /* ------------------------------------------------------------------------ */ /* Finite deformation functions */ /* This functions area implementing what is described in the paper of Bathe */ /* et al, in IJNME, Finite Element Formulations For Large Deformation */ /* Dynamic Analysis, Vol 9, 353-386, 1975 */ /* ------------------------------------------------------------------------ */ protected: /// assemble the residual template void assembleInternalForces(GhostType ghost_type); template void computeAllStressesFromTangentModuli(ElementType type, GhostType ghost_type); template void assembleStiffnessMatrix(ElementType type, GhostType ghost_type); /// assembling in finite deformation template void assembleStiffnessMatrixNL(ElementType type, GhostType ghost_type); template void assembleStiffnessMatrixL2(ElementType type, GhostType ghost_type); /* ------------------------------------------------------------------------ */ /* Conversion functions */ /* ------------------------------------------------------------------------ */ public: /// Size of the Stress matrix for the case of finite deformation see: Bathe et /// al, IJNME, Vol 9, 353-386, 1975 static inline UInt getCauchyStressMatrixSize(UInt dim); /// Sets the stress matrix according to Bathe et al, IJNME, Vol 9, 353-386, /// 1975 template static inline void setCauchyStressMatrix(const Matrix & S_t, Matrix & sigma); /// write the stress tensor in the Voigt notation. template static inline decltype(auto) stressToVoigt(const Matrix & stress) { return VoigtHelper::matrixToVoigt(stress); } /// write the strain tensor in the Voigt notation. template static inline decltype(auto) strainToVoigt(const Matrix & strain) { return VoigtHelper::matrixToVoigtWithFactors(strain); } /// write a voigt vector to stress template static inline void voigtToStress(const Vector & voigt, Matrix & stress) { VoigtHelper::voigtToMatrix(voigt, stress); } /// Computation of Cauchy stress tensor in the case of finite deformation from /// the 2nd Piola-Kirchhoff for a given element type template void StoCauchy(ElementType el_type, GhostType ghost_type = _not_ghost); /// Computation the Cauchy stress the 2nd Piola-Kirchhoff and the deformation /// gradient template inline void StoCauchy(const Matrix & F, const Matrix & S, Matrix & sigma, const Real & C33 = 1.0) const; template static inline void gradUToF(const Matrix & grad_u, Matrix & F); template static inline decltype(auto) gradUToF(const Matrix & grad_u); static inline void rightCauchy(const Matrix & F, Matrix & C); static inline void leftCauchy(const Matrix & F, Matrix & B); template static inline void gradUToEpsilon(const Matrix & grad_u, Matrix & epsilon); template static inline decltype(auto) gradUToEpsilon(const Matrix & grad_u); template static inline void gradUToE(const Matrix & grad_u, Matrix & epsilon); template static inline decltype(auto) gradUToE(const Matrix & grad_u); static inline Real stressToVonMises(const Matrix & stress); protected: /// converts global element to local element inline Element convertToLocalElement(const Element & global_element) const; /// converts local element to global element inline Element convertToGlobalElement(const Element & local_element) const; /// converts global quadrature point to local quadrature point inline IntegrationPoint convertToLocalPoint(const IntegrationPoint & global_point) const; /// converts local quadrature point to global quadrature point inline IntegrationPoint convertToGlobalPoint(const IntegrationPoint & local_point) const; /* ------------------------------------------------------------------------ */ /* DataAccessor inherited members */ /* ------------------------------------------------------------------------ */ public: inline UInt getNbData(const Array & elements, const SynchronizationTag & tag) const override; inline void packData(CommunicationBuffer & buffer, const Array & elements, const SynchronizationTag & tag) const override; inline void unpackData(CommunicationBuffer & buffer, const Array & elements, const SynchronizationTag & tag) override; template inline void packElementDataHelper(const ElementTypeMapArray & data_to_pack, CommunicationBuffer & buffer, const Array & elements, const ID & fem_id = ID()) const; template inline void unpackElementDataHelper(ElementTypeMapArray & data_to_unpack, CommunicationBuffer & buffer, const Array & elements, const ID & fem_id = ID()); /* ------------------------------------------------------------------------ */ /* MeshEventHandler inherited members */ /* ------------------------------------------------------------------------ */ public: /* ------------------------------------------------------------------------ */ void onNodesAdded(const Array & /*unused*/, const NewNodesEvent & /*unused*/) override{}; void onNodesRemoved(const Array & /*unused*/, const Array & /*unused*/, const RemovedNodesEvent & /*unused*/) override{}; void onElementsAdded(const Array & element_list, const NewElementsEvent & event) override; void onElementsRemoved(const Array & element_list, const ElementTypeMapArray & new_numbering, const RemovedElementsEvent & event) override; void onElementsChanged(const Array & /*unused*/, const Array & /*unused*/, const ElementTypeMapArray & /*unused*/, const ChangedElementsEvent & /*unused*/) override{}; /* ------------------------------------------------------------------------ */ /* SolidMechanicsModelEventHandler inherited members */ /* ------------------------------------------------------------------------ */ public: virtual void beforeSolveStep(); virtual void afterSolveStep(bool converged = true); void onDamageIteration() override; void onDamageUpdate() override; void onDump() override; /* ------------------------------------------------------------------------ */ /* Accessors */ /* ------------------------------------------------------------------------ */ public: AKANTU_GET_MACRO(Name, name, const std::string &); AKANTU_GET_MACRO(Model, model, const SolidMechanicsModel &) AKANTU_GET_MACRO(ID, id, const ID &); AKANTU_GET_MACRO(Rho, rho, Real); AKANTU_SET_MACRO(Rho, rho, Real); AKANTU_GET_MACRO(SpatialDimension, spatial_dimension, UInt); /// tells if the material can compute energy energy_id inline bool hasEnergy(const ID & energy_id); - /// get the lists of possible energies - inline decltype(auto) getEnergyLists() { return (list_of_energies); } + /// get the list of possible energies + inline decltype(auto) getEnergiesList() { return (list_of_energies); } /// return the potential energy for the subset of elements contained by the /// material Real getPotentialEnergy(); /// return the potential energy for the provided element Real getPotentialEnergy(ElementType & type, UInt index); /// return the energy (identified by id) for the subset of elements contained /// by the material virtual Real getEnergy(const ID & energy_id); /// return the energy (identified by id) for the provided element virtual Real getEnergy(const ID & energy_id, ElementType type, UInt index); AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(ElementFilter, element_filter, UInt); AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(GradU, gradu, Real); AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(Stress, stress, Real); AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(PotentialEnergy, potential_energy, Real); AKANTU_GET_MACRO(GradU, gradu, const ElementTypeMapArray &); AKANTU_GET_MACRO(Stress, stress, const ElementTypeMapArray &); AKANTU_GET_MACRO(ElementFilter, element_filter, const ElementTypeMapArray &); AKANTU_GET_MACRO(FEEngine, fem, FEEngine &); bool isNonLocal() const { return is_non_local; } template const Array & getArray(const ID & id, ElementType type, GhostType ghost_type = _not_ghost) const; template Array & getArray(const ID & id, ElementType type, GhostType ghost_type = _not_ghost); template const InternalField & getInternal(const ID & id) const; template InternalField & getInternal(const ID & id); template inline bool isInternal(const ID & id, ElementKind element_kind) const; template ElementTypeMap getInternalDataPerElem(const ID & id, ElementKind element_kind) const; bool isFiniteDeformation() const { return finite_deformation; } bool isInelasticDeformation() const { return inelastic_deformation; } template inline void setParam(const ID & param, T value); inline const Parameter & getParam(const ID & param) const; template void flattenInternal(const std::string & field_id, ElementTypeMapArray & internal_flat, GhostType ghost_type = _not_ghost, ElementKind element_kind = _ek_not_defined) const; /// apply a constant eigengrad_u everywhere in the material virtual void applyEigenGradU(const Matrix & prescribed_eigen_grad_u, GhostType /*ghost_type*/ = _not_ghost); bool hasMatrixChanged(const ID & id) { if (id == "K") { return hasStiffnessMatrixChanged() or finite_deformation; } return true; } MatrixType getMatrixType(const ID & id) { if (id == "K") { return getTangentType(); } if (id == "M") { return _symmetric; } return _mt_not_defined; } /// specify if the matrix need to be recomputed for this material virtual bool hasStiffnessMatrixChanged() { return true; } /// specify the type of matrix, if not overloaded the material is not valid /// for static or implicit computations virtual MatrixType getTangentType() { return _mt_not_defined; } /// static method to reteive the material factory static MaterialFactory & getFactory(); protected: bool isInit() const { return is_init; } /// register the fact that material can compute a given energy void registerEnergy(const ID & energy_id); /* ------------------------------------------------------------------------ */ /* Class Members */ /* ------------------------------------------------------------------------ */ protected: /// boolean to know if the material has been initialized bool is_init{false}; std::map *> internal_vectors_real; std::map *> internal_vectors_uint; std::map *> internal_vectors_bool; protected: ID id; /// Link to the fem object in the model FEEngine & fem; /// Finite deformation bool finite_deformation{false}; /// Finite deformation bool inelastic_deformation{false}; /// material name std::string name; /// The model to witch the material belong SolidMechanicsModel & model; /// density : rho Real rho{0.}; /// spatial dimension UInt spatial_dimension; /// list of element handled by the material ElementTypeMapArray element_filter; /// stresses arrays ordered by element types InternalField stress; /// eigengrad_u arrays ordered by element types InternalField eigengradu; /// grad_u arrays ordered by element types InternalField gradu; /// Green Lagrange strain (Finite deformation) InternalField green_strain; /// Second Piola-Kirchhoff stress tensor arrays ordered by element types /// (Finite deformation) InternalField piola_kirchhoff_2; /// potential energy by element InternalField potential_energy; /// tell if using in non local mode or not bool is_non_local{false}; /// tell if the material need the previous stress state bool use_previous_stress{false}; /// tell if the material need the previous strain state bool use_previous_gradu{false}; /// elemental field interpolation coordinates InternalField interpolation_inverse_coordinates; /// elemental field interpolation points InternalField interpolation_points_matrices; /// vector that contains the names of all the internals that need to /// be transferred when material interfaces move std::vector internals_to_transfer; private: /// eigen_grad_u for the parser Matrix eigen_grad_u; /// list of usable energy std::set list_of_energies; }; /// standard output stream operator inline std::ostream & operator<<(std::ostream & stream, const Material & _this) { _this.printself(stream); return stream; } } // namespace akantu #include "material_inline_impl.hh" #include "internal_field_tmpl.hh" #include "random_internal_field_tmpl.hh" /* -------------------------------------------------------------------------- */ /* Auto loop */ /* -------------------------------------------------------------------------- */ /// This can be used to automatically write the loop on quadrature points in /// functions such as computeStress. This macro in addition to write the loop /// provides two tensors (matrices) sigma and grad_u #define MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN(el_type, ghost_type) \ auto && grad_u_view = \ make_view(this->gradu(el_type, ghost_type), this->spatial_dimension, \ this->spatial_dimension); \ \ auto stress_view = \ make_view(this->stress(el_type, ghost_type), this->spatial_dimension, \ this->spatial_dimension); \ \ if (this->isFiniteDeformation()) { \ stress_view = make_view(this->piola_kirchhoff_2(el_type, ghost_type), \ this->spatial_dimension, this->spatial_dimension); \ } \ \ for (auto && data : zip(grad_u_view, stress_view)) { \ [[gnu::unused]] Matrix & grad_u = std::get<0>(data); \ [[gnu::unused]] Matrix & sigma = std::get<1>(data) #define MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END } /// This can be used to automatically write the loop on quadrature points in /// functions such as computeTangentModuli. This macro in addition to write the /// loop provides two tensors (matrices) sigma_tensor, grad_u, and a matrix /// where the elemental tangent moduli should be stored in Voigt Notation #define MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_BEGIN(tangent_mat) \ auto && grad_u_view = \ make_view(this->gradu(el_type, ghost_type), this->spatial_dimension, \ this->spatial_dimension); \ \ auto && stress_view = \ make_view(this->stress(el_type, ghost_type), this->spatial_dimension, \ this->spatial_dimension); \ \ auto tangent_size = \ this->getTangentStiffnessVoigtSize(this->spatial_dimension); \ \ auto && tangent_view = make_view(tangent_mat, tangent_size, tangent_size); \ \ for (auto && data : zip(grad_u_view, stress_view, tangent_view)) { \ [[gnu::unused]] Matrix & grad_u = std::get<0>(data); \ [[gnu::unused]] Matrix & sigma = std::get<1>(data); \ Matrix & tangent = std::get<2>(data); #define MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_END } /* -------------------------------------------------------------------------- */ #define INSTANTIATE_MATERIAL_ONLY(mat_name) \ template class mat_name<1>; /* NOLINT */ \ template class mat_name<2>; /* NOLINT */ \ template class mat_name<3> /* NOLINT */ #define MATERIAL_DEFAULT_PER_DIM_ALLOCATOR(id, mat_name) \ [](UInt dim, const ID &, SolidMechanicsModel & model, \ const ID & id) /* NOLINT */ \ -> std::unique_ptr< \ Material> { /* NOLINT */ \ switch (dim) { \ case 1: \ return std::make_unique>(/* NOLINT */ \ model, id); \ case 2: \ return std::make_unique>(/* NOLINT */ \ model, id); \ case 3: \ return std::make_unique>(/* NOLINT */ \ model, id); \ default: \ AKANTU_EXCEPTION( \ "The dimension " \ << dim \ << "is not a valid dimension for the material " \ << #id); \ } \ } #define INSTANTIATE_MATERIAL(id, mat_name) \ INSTANTIATE_MATERIAL_ONLY(mat_name); \ static bool material_is_alocated_##id [[gnu::unused]] = \ MaterialFactory::getInstance().registerAllocator( \ #id, MATERIAL_DEFAULT_PER_DIM_ALLOCATOR(id, mat_name)) #endif /* AKANTU_MATERIAL_HH_ */ diff --git a/src/model/solid_mechanics/solid_mechanics_model.cc b/src/model/solid_mechanics/solid_mechanics_model.cc index b04015d0b..133d392e3 100644 --- a/src/model/solid_mechanics/solid_mechanics_model.cc +++ b/src/model/solid_mechanics/solid_mechanics_model.cc @@ -1,1264 +1,1277 @@ /** * @file solid_mechanics_model.cc * * @author Ramin Aghababaei * @author Guillaume Anciaux * @author Aurelia Isabel Cuba Ramos * @author David Simon Kammer * @author Daniel Pino Muñoz * @author Nicolas Richart * @author Clement Roux * @author Marco Vocialta * * @date creation: Tue Jul 27 2010 * @date last modification: Wed Feb 21 2018 * * @brief Implementation of the SolidMechanicsModel class * * * Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "solid_mechanics_model.hh" #include "integrator_gauss.hh" #include "shape_lagrange.hh" #include "solid_mechanics_model_tmpl.hh" #include "communicator.hh" #include "element_synchronizer.hh" #include "sparse_matrix.hh" #include "synchronizer_registry.hh" #include "dumpable_inline_impl.hh" #ifdef AKANTU_USE_IOHELPER #include "dumper_iohelper_paraview.hh" #endif #include "material_non_local.hh" /* -------------------------------------------------------------------------- */ namespace akantu { /* -------------------------------------------------------------------------- */ /** * A solid mechanics model need a mesh and a dimension to be created. the model * by it self can not do a lot, the good init functions should be called in * order to configure the model depending on what we want to do. * * @param mesh mesh representing the model we want to simulate * @param dim spatial dimension of the problem, if dim = 0 (default value) the * dimension of the problem is assumed to be the on of the mesh * @param id an id to identify the model * @param model_type this is an internal parameter for inheritance purposes */ SolidMechanicsModel::SolidMechanicsModel( Mesh & mesh, UInt dim, const ID & id, std::shared_ptr dof_manager, const ModelType model_type) : Model(mesh, model_type, std::move(dof_manager), dim, id), material_index("material index", id), material_local_numbering("material local numbering", id) { AKANTU_DEBUG_IN(); this->registerFEEngineObject("SolidMechanicsFEEngine", mesh, Model::spatial_dimension); #if defined(AKANTU_USE_IOHELPER) this->mesh.registerDumper("solid_mechanics_model", id, true); this->mesh.addDumpMesh(mesh, Model::spatial_dimension, _not_ghost, _ek_regular); #endif material_selector = std::make_shared(material_index); this->registerDataAccessor(*this); if (this->mesh.isDistributed()) { auto & synchronizer = this->mesh.getElementSynchronizer(); this->registerSynchronizer(synchronizer, SynchronizationTag::_material_id); this->registerSynchronizer(synchronizer, SynchronizationTag::_smm_mass); this->registerSynchronizer(synchronizer, SynchronizationTag::_smm_stress); this->registerSynchronizer(synchronizer, SynchronizationTag::_for_dump); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ SolidMechanicsModel::~SolidMechanicsModel() = default; /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::setTimeStep(Real time_step, const ID & solver_id) { Model::setTimeStep(time_step, solver_id); #if defined(AKANTU_USE_IOHELPER) this->mesh.getDumper().setTimeStep(time_step); #endif } /* -------------------------------------------------------------------------- */ /* Initialization */ /* -------------------------------------------------------------------------- */ /** * This function groups many of the initialization in on function. For most of * basics case the function should be enough. The functions initialize the * model, the internal vectors, set them to 0, and depending on the parameters * it also initialize the explicit or implicit solver. * * @param options * \parblock * contains the different options to initialize the model * \li \c analysis_method specify the type of solver to use * \endparblock */ void SolidMechanicsModel::initFullImpl(const ModelOptions & options) { material_index.initialize(mesh, _element_kind = _ek_not_defined, _default_value = UInt(-1), _with_nb_element = true); material_local_numbering.initialize(mesh, _element_kind = _ek_not_defined, _with_nb_element = true); Model::initFullImpl(options); // initialize the materials if (not this->parser.getLastParsedFile().empty()) { this->instantiateMaterials(); this->initMaterials(); } this->initBC(*this, *displacement, *displacement_increment, *external_force); } /* -------------------------------------------------------------------------- */ TimeStepSolverType SolidMechanicsModel::getDefaultSolverType() const { return TimeStepSolverType::_dynamic_lumped; } /* -------------------------------------------------------------------------- */ ModelSolverOptions SolidMechanicsModel::getDefaultSolverOptions( const TimeStepSolverType & type) const { ModelSolverOptions options; switch (type) { case TimeStepSolverType::_dynamic_lumped: { options.non_linear_solver_type = NonLinearSolverType::_lumped; options.integration_scheme_type["displacement"] = IntegrationSchemeType::_central_difference; options.solution_type["displacement"] = IntegrationScheme::_acceleration; break; } case TimeStepSolverType::_static: { options.non_linear_solver_type = NonLinearSolverType::_newton_raphson; options.integration_scheme_type["displacement"] = IntegrationSchemeType::_pseudo_time; options.solution_type["displacement"] = IntegrationScheme::_not_defined; break; } case TimeStepSolverType::_dynamic: { if (this->method == _explicit_consistent_mass) { options.non_linear_solver_type = NonLinearSolverType::_newton_raphson; options.integration_scheme_type["displacement"] = IntegrationSchemeType::_central_difference; options.solution_type["displacement"] = IntegrationScheme::_acceleration; } else { options.non_linear_solver_type = NonLinearSolverType::_newton_raphson; options.integration_scheme_type["displacement"] = IntegrationSchemeType::_trapezoidal_rule_2; options.solution_type["displacement"] = IntegrationScheme::_displacement; } break; } default: AKANTU_EXCEPTION(type << " is not a valid time step solver type"); } return options; } /* -------------------------------------------------------------------------- */ std::tuple SolidMechanicsModel::getDefaultSolverID(const AnalysisMethod & method) { switch (method) { case _explicit_lumped_mass: { return std::make_tuple("explicit_lumped", TimeStepSolverType::_dynamic_lumped); } case _explicit_consistent_mass: { return std::make_tuple("explicit", TimeStepSolverType::_dynamic); } case _static: { return std::make_tuple("static", TimeStepSolverType::_static); } case _implicit_dynamic: { return std::make_tuple("implicit", TimeStepSolverType::_dynamic); } default: return std::make_tuple("unknown", TimeStepSolverType::_not_defined); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::initSolver(TimeStepSolverType time_step_solver_type, NonLinearSolverType /*unused*/) { auto & dof_manager = this->getDOFManager(); /* ------------------------------------------------------------------------ */ // for alloc type of solvers this->allocNodalField(this->displacement, spatial_dimension, "displacement"); this->allocNodalField(this->previous_displacement, spatial_dimension, "previous_displacement"); this->allocNodalField(this->displacement_increment, spatial_dimension, "displacement_increment"); this->allocNodalField(this->internal_force, spatial_dimension, "internal_force"); this->allocNodalField(this->external_force, spatial_dimension, "external_force"); this->allocNodalField(this->blocked_dofs, spatial_dimension, "blocked_dofs"); this->allocNodalField(this->current_position, spatial_dimension, "current_position"); // initialize the current positions this->current_position->copy(this->mesh.getNodes()); /* ------------------------------------------------------------------------ */ if (!dof_manager.hasDOFs("displacement")) { dof_manager.registerDOFs("displacement", *this->displacement, _dst_nodal); dof_manager.registerBlockedDOFs("displacement", *this->blocked_dofs); dof_manager.registerDOFsIncrement("displacement", *this->displacement_increment); dof_manager.registerDOFsPrevious("displacement", *this->previous_displacement); } /* ------------------------------------------------------------------------ */ // for dynamic if (time_step_solver_type == TimeStepSolverType::_dynamic || time_step_solver_type == TimeStepSolverType::_dynamic_lumped) { this->allocNodalField(this->velocity, spatial_dimension, "velocity"); this->allocNodalField(this->acceleration, spatial_dimension, "acceleration"); if (!dof_manager.hasDOFsDerivatives("displacement", 1)) { dof_manager.registerDOFsDerivative("displacement", 1, *this->velocity); dof_manager.registerDOFsDerivative("displacement", 2, *this->acceleration); } } } /* -------------------------------------------------------------------------- */ /** * Initialize the model,basically it pre-compute the shapes, shapes derivatives * and jacobian */ void SolidMechanicsModel::initModel() { /// \todo add the current position as a parameter to initShapeFunctions for /// large deformation getFEEngine().initShapeFunctions(_not_ghost); getFEEngine().initShapeFunctions(_ghost); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::assembleResidual() { AKANTU_DEBUG_IN(); /* ------------------------------------------------------------------------ */ // computes the internal forces this->assembleInternalForces(); /* ------------------------------------------------------------------------ */ this->getDOFManager().assembleToResidual("displacement", *this->external_force, 1); this->getDOFManager().assembleToResidual("displacement", *this->internal_force, 1); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::assembleResidual(const ID & residual_part) { AKANTU_DEBUG_IN(); if ("external" == residual_part) { this->getDOFManager().assembleToResidual("displacement", *this->external_force, 1); AKANTU_DEBUG_OUT(); return; } if ("internal" == residual_part) { this->assembleInternalForces(); this->getDOFManager().assembleToResidual("displacement", *this->internal_force, 1); AKANTU_DEBUG_OUT(); return; } AKANTU_CUSTOM_EXCEPTION( debug::SolverCallbackResidualPartUnknown(residual_part)); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ MatrixType SolidMechanicsModel::getMatrixType(const ID & matrix_id) { // \TODO check the materials to know what is the correct answer if (matrix_id == "C") { return _mt_not_defined; } if (matrix_id == "K") { auto matrix_type = _unsymmetric; for (auto & material : materials) { matrix_type = std::max(matrix_type, material->getMatrixType(matrix_id)); } } return _symmetric; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::assembleMatrix(const ID & matrix_id) { if (matrix_id == "K") { this->assembleStiffnessMatrix(); } else if (matrix_id == "M") { this->assembleMass(); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::assembleLumpedMatrix(const ID & matrix_id) { if (matrix_id == "M") { this->assembleMassLumped(); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::beforeSolveStep() { for (auto & material : materials) { material->beforeSolveStep(); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::afterSolveStep(bool converged) { for (auto & material : materials) { material->afterSolveStep(converged); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::predictor() { ++displacement_release; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::corrector() { ++displacement_release; } /* -------------------------------------------------------------------------- */ /** * This function computes the internal forces as \f$F_{int} = \int_{\Omega} N * \sigma d\Omega@\f$ */ void SolidMechanicsModel::assembleInternalForces() { AKANTU_DEBUG_IN(); AKANTU_DEBUG_INFO("Assemble the internal forces"); this->internal_force->zero(); // compute the stresses of local elements AKANTU_DEBUG_INFO("Compute local stresses"); for (auto & material : materials) { material->computeAllStresses(_not_ghost); } /* ------------------------------------------------------------------------ */ /* Computation of the non local part */ if (this->non_local_manager) { this->non_local_manager->computeAllNonLocalStresses(); } // communicate the stresses AKANTU_DEBUG_INFO("Send data for residual assembly"); this->asynchronousSynchronize(SynchronizationTag::_smm_stress); // assemble the forces due to local stresses AKANTU_DEBUG_INFO("Assemble residual for local elements"); for (auto & material : materials) { material->assembleInternalForces(_not_ghost); } // finalize communications AKANTU_DEBUG_INFO("Wait distant stresses"); this->waitEndSynchronize(SynchronizationTag::_smm_stress); // assemble the stresses due to ghost elements AKANTU_DEBUG_INFO("Assemble residual for ghost elements"); for (auto & material : materials) { material->assembleInternalForces(_ghost); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::assembleStiffnessMatrix(bool need_to_reassemble) { AKANTU_DEBUG_IN(); AKANTU_DEBUG_INFO("Assemble the new stiffness matrix."); // Check if materials need to recompute the matrix for (auto & material : materials) { need_to_reassemble |= material->hasMatrixChanged("K"); } if (need_to_reassemble) { this->getDOFManager().getMatrix("K").zero(); // call compute stiffness matrix on each local elements for (auto & material : materials) { material->assembleStiffnessMatrix(_not_ghost); } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updateCurrentPosition() { if (this->current_position_release == this->displacement_release) { return; } this->current_position->copy(this->mesh.getNodes()); auto cpos_it = this->current_position->begin(Model::spatial_dimension); auto cpos_end = this->current_position->end(Model::spatial_dimension); auto disp_it = this->displacement->begin(Model::spatial_dimension); for (; cpos_it != cpos_end; ++cpos_it, ++disp_it) { *cpos_it += *disp_it; } this->current_position_release = this->displacement_release; } /* -------------------------------------------------------------------------- */ const Array & SolidMechanicsModel::getCurrentPosition() { this->updateCurrentPosition(); return *this->current_position; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updateDataForNonLocalCriterion( ElementTypeMapReal & criterion) { const ID field_name = criterion.getName(); for (auto & material : materials) { if (!material->isInternal(field_name, _ek_regular)) { continue; } for (auto ghost_type : ghost_types) { material->flattenInternal(field_name, criterion, ghost_type, _ek_regular); } } } /* -------------------------------------------------------------------------- */ /* Information */ /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getStableTimeStep() { AKANTU_DEBUG_IN(); Real min_dt = getStableTimeStep(_not_ghost); /// reduction min over all processors mesh.getCommunicator().allReduce(min_dt, SynchronizerOperation::_min); AKANTU_DEBUG_OUT(); return min_dt; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getStableTimeStep(GhostType ghost_type) { AKANTU_DEBUG_IN(); Real min_dt = std::numeric_limits::max(); this->updateCurrentPosition(); Element elem; elem.ghost_type = ghost_type; for (auto type : mesh.elementTypes(Model::spatial_dimension, ghost_type, _ek_regular)) { elem.type = type; UInt nb_nodes_per_element = mesh.getNbNodesPerElement(type); UInt nb_element = mesh.getNbElement(type); auto mat_indexes = material_index(type, ghost_type).begin(); auto mat_loc_num = material_local_numbering(type, ghost_type).begin(); Array X(0, nb_nodes_per_element * Model::spatial_dimension); FEEngine::extractNodalToElementField(mesh, *current_position, X, type, _not_ghost); auto X_el = X.begin(Model::spatial_dimension, nb_nodes_per_element); for (UInt el = 0; el < nb_element; ++el, ++X_el, ++mat_indexes, ++mat_loc_num) { elem.element = *mat_loc_num; Real el_h = getFEEngine().getElementInradius(*X_el, type); Real el_c = this->materials[*mat_indexes]->getCelerity(elem); Real el_dt = el_h / el_c; min_dt = std::min(min_dt, el_dt); } } AKANTU_DEBUG_OUT(); return min_dt; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getKineticEnergy() { AKANTU_DEBUG_IN(); Real ekin = 0.; UInt nb_nodes = mesh.getNbNodes(); if (this->getDOFManager().hasLumpedMatrix("M")) { auto m_it = this->mass->begin(Model::spatial_dimension); auto m_end = this->mass->end(Model::spatial_dimension); auto v_it = this->velocity->begin(Model::spatial_dimension); for (UInt n = 0; m_it != m_end; ++n, ++m_it, ++v_it) { const auto & v = *v_it; const auto & m = *m_it; Real mv2 = 0.; auto is_local_node = mesh.isLocalOrMasterNode(n); // bool is_not_pbc_slave_node = !isPBCSlaveNode(n); auto count_node = is_local_node; // && is_not_pbc_slave_node; if (count_node) { for (UInt i = 0; i < Model::spatial_dimension; ++i) { if (m(i) > std::numeric_limits::epsilon()) { mv2 += v(i) * v(i) * m(i); } } } ekin += mv2; } } else if (this->getDOFManager().hasMatrix("M")) { Array Mv(nb_nodes, Model::spatial_dimension); this->getDOFManager().assembleMatMulVectToArray("displacement", "M", *this->velocity, Mv); for (auto && data : zip(arange(nb_nodes), make_view(Mv, spatial_dimension), make_view(*this->velocity, spatial_dimension))) { ekin += std::get<2>(data).dot(std::get<1>(data)) * static_cast(mesh.isLocalOrMasterNode(std::get<0>(data))); } } else { AKANTU_ERROR("No function called to assemble the mass matrix."); } mesh.getCommunicator().allReduce(ekin, SynchronizerOperation::_sum); AKANTU_DEBUG_OUT(); return ekin * .5; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getKineticEnergy(ElementType type, UInt index) { AKANTU_DEBUG_IN(); UInt nb_quadrature_points = getFEEngine().getNbIntegrationPoints(type); Array vel_on_quad(nb_quadrature_points, Model::spatial_dimension); Array filter_element(1, 1, index); getFEEngine().interpolateOnIntegrationPoints(*velocity, vel_on_quad, Model::spatial_dimension, type, _not_ghost, filter_element); auto vit = vel_on_quad.begin(Model::spatial_dimension); auto vend = vel_on_quad.end(Model::spatial_dimension); Vector rho_v2(nb_quadrature_points); Real rho = materials[material_index(type)(index)]->getRho(); for (UInt q = 0; vit != vend; ++vit, ++q) { rho_v2(q) = rho * vit->dot(*vit); } AKANTU_DEBUG_OUT(); return .5 * getFEEngine().integrate(rho_v2, type, index); } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getExternalWork() { AKANTU_DEBUG_IN(); auto ext_force_it = external_force->begin(Model::spatial_dimension); auto int_force_it = internal_force->begin(Model::spatial_dimension); auto boun_it = blocked_dofs->begin(Model::spatial_dimension); decltype(ext_force_it) incr_or_velo_it; if (this->method == _static) { incr_or_velo_it = this->displacement_increment->begin(Model::spatial_dimension); } else { incr_or_velo_it = this->velocity->begin(Model::spatial_dimension); } Real work = 0.; UInt nb_nodes = this->mesh.getNbNodes(); for (UInt n = 0; n < nb_nodes; ++n, ++ext_force_it, ++int_force_it, ++boun_it, ++incr_or_velo_it) { const auto & int_force = *int_force_it; const auto & ext_force = *ext_force_it; const auto & boun = *boun_it; const auto & incr_or_velo = *incr_or_velo_it; bool is_local_node = this->mesh.isLocalOrMasterNode(n); // bool is_not_pbc_slave_node = !this->isPBCSlaveNode(n); bool count_node = is_local_node; // && is_not_pbc_slave_node; if (count_node) { for (UInt i = 0; i < Model::spatial_dimension; ++i) { if (boun(i)) { work -= int_force(i) * incr_or_velo(i); } else { work += ext_force(i) * incr_or_velo(i); } } } } mesh.getCommunicator().allReduce(work, SynchronizerOperation::_sum); if (this->method != _static) { work *= this->getTimeStep(); } AKANTU_DEBUG_OUT(); return work; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getEnergy(const ID & energy_id) { AKANTU_DEBUG_IN(); if (energy_id == "kinetic") { return getKineticEnergy(); } if (energy_id == "external work") { return getExternalWork(); } std::set list_of_energies; for (auto && material : materials) { - for(auto && energy : material->getEnergyLists()) { + for (auto && energy : material->getEnergiesList()) { list_of_energies.insert(energy); } } - if(list_of_energies.find(energy_id) != list_of_energies.end()) { + if (list_of_energies.find(energy_id) != list_of_energies.end()) { + list_of_energies.insert("kinetic"); + list_of_energies.insert("external work"); + std::string str_list; + for (auto it = list_of_energies.begin(); it != list_of_energies.end(); + ++it) { + if (it != list_of_energies.begin()) { + str_list += ", " + } + str_list += "\"" + *it + "\""; + } + + AKANTU_EXCEPTION("The energy \"" + << energy_id << "\" does not exists, valid energies are [" + << str_list << "]"); } Real energy = 0.; for (auto & material : materials) { energy += material->getEnergy(energy_id); } /// reduction sum over all processors mesh.getCommunicator().allReduce(energy, SynchronizerOperation::_sum); AKANTU_DEBUG_OUT(); return energy; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getEnergy(const std::string & energy_id, ElementType type, UInt index) { AKANTU_DEBUG_IN(); if (energy_id == "kinetic") { return getKineticEnergy(type, index); } UInt mat_index = this->material_index(type, _not_ghost)(index); UInt mat_loc_num = this->material_local_numbering(type, _not_ghost)(index); Real energy = this->materials[mat_index]->getEnergy(energy_id, type, mat_loc_num); AKANTU_DEBUG_OUT(); return energy; } /* -------------------------------------------------------------------------- */ -Real SolidMechanicsModel::getEnergy(const ID & energy_id, - const ID & group_id) { +Real SolidMechanicsModel::getEnergy(const ID & energy_id, const ID & group_id) { auto && group = mesh.getElementGroup(group_id); auto energy = 0.; - for(auto && type : group.elementTypes()) { - for(auto el : group.getElementsIterable(type)) { + for (auto && type : group.elementTypes()) { + for (auto el : group.getElementsIterable(type)) { energy += getEnergy(energy_id, el); } } /// reduction sum over all processors mesh.getCommunicator().allReduce(energy, SynchronizerOperation::_sum); return energy; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::onElementsAdded(const Array & element_list, const NewElementsEvent & event) { AKANTU_DEBUG_IN(); this->material_index.initialize(mesh, _element_kind = _ek_not_defined, _with_nb_element = true, _default_value = UInt(-1)); this->material_local_numbering.initialize( mesh, _element_kind = _ek_not_defined, _with_nb_element = true, _default_value = UInt(-1)); ElementTypeMapArray filter("new_element_filter", this->getID()); for (const auto & elem : element_list) { if (mesh.getSpatialDimension(elem.type) != spatial_dimension) { continue; } if (!filter.exists(elem.type, elem.ghost_type)) { filter.alloc(0, 1, elem.type, elem.ghost_type); } filter(elem.type, elem.ghost_type).push_back(elem.element); } // this fails in parallel if the event is sent on facet between constructor // and initFull \todo: to debug... this->assignMaterialToElements(&filter); for (auto & material : materials) { material->onElementsAdded(element_list, event); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::onElementsRemoved( const Array & element_list, const ElementTypeMapArray & new_numbering, const RemovedElementsEvent & event) { for (auto & material : materials) { material->onElementsRemoved(element_list, new_numbering, event); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::onNodesAdded(const Array & nodes_list, const NewNodesEvent & event) { AKANTU_DEBUG_IN(); UInt nb_nodes = mesh.getNbNodes(); if (displacement) { displacement->resize(nb_nodes, 0.); ++displacement_release; } if (mass) { mass->resize(nb_nodes, 0.); } if (velocity) { velocity->resize(nb_nodes, 0.); } if (acceleration) { acceleration->resize(nb_nodes, 0.); } if (external_force) { external_force->resize(nb_nodes, 0.); } if (internal_force) { internal_force->resize(nb_nodes, 0.); } if (blocked_dofs) { blocked_dofs->resize(nb_nodes, false); } if (current_position) { current_position->resize(nb_nodes, 0.); } if (previous_displacement) { previous_displacement->resize(nb_nodes, 0.); } if (displacement_increment) { displacement_increment->resize(nb_nodes, 0.); } for (auto & material : materials) { material->onNodesAdded(nodes_list, event); } need_to_reassemble_lumped_mass = true; need_to_reassemble_mass = true; AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::onNodesRemoved(const Array & /*element_list*/, const Array & new_numbering, const RemovedNodesEvent & /*event*/) { if (displacement) { mesh.removeNodesFromArray(*displacement, new_numbering); ++displacement_release; } if (mass) { mesh.removeNodesFromArray(*mass, new_numbering); } if (velocity) { mesh.removeNodesFromArray(*velocity, new_numbering); } if (acceleration) { mesh.removeNodesFromArray(*acceleration, new_numbering); } if (internal_force) { mesh.removeNodesFromArray(*internal_force, new_numbering); } if (external_force) { mesh.removeNodesFromArray(*external_force, new_numbering); } if (blocked_dofs) { mesh.removeNodesFromArray(*blocked_dofs, new_numbering); } // if (increment_acceleration) // mesh.removeNodesFromArray(*increment_acceleration, new_numbering); if (displacement_increment) { mesh.removeNodesFromArray(*displacement_increment, new_numbering); } if (previous_displacement) { mesh.removeNodesFromArray(*previous_displacement, new_numbering); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::printself(std::ostream & stream, int indent) const { std::string space(indent, AKANTU_INDENT); stream << space << "Solid Mechanics Model [" << std::endl; stream << space << " + id : " << id << std::endl; stream << space << " + spatial dimension : " << Model::spatial_dimension << std::endl; stream << space << " + fem [" << std::endl; getFEEngine().printself(stream, indent + 2); stream << space << " ]" << std::endl; stream << space << " + nodals information [" << std::endl; displacement->printself(stream, indent + 2); if (velocity) { velocity->printself(stream, indent + 2); } if (acceleration) { acceleration->printself(stream, indent + 2); } if (mass) { mass->printself(stream, indent + 2); } external_force->printself(stream, indent + 2); internal_force->printself(stream, indent + 2); blocked_dofs->printself(stream, indent + 2); stream << space << " ]" << std::endl; stream << space << " + material information [" << std::endl; material_index.printself(stream, indent + 2); stream << space << " ]" << std::endl; stream << space << " + materials [" << std::endl; for (const auto & material : materials) { material->printself(stream, indent + 2); } stream << space << " ]" << std::endl; stream << space << "]" << std::endl; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::initializeNonLocal() { this->non_local_manager->synchronize(*this, SynchronizationTag::_material_id); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::insertIntegrationPointsInNeighborhoods( GhostType ghost_type) { for (auto & mat : materials) { MaterialNonLocalInterface * mat_non_local; if ((mat_non_local = dynamic_cast(mat.get())) == nullptr) { continue; } ElementTypeMapArray quadrature_points_coordinates( "quadrature_points_coordinates_tmp_nl", this->id); quadrature_points_coordinates.initialize(this->getFEEngine(), _nb_component = spatial_dimension, _ghost_type = ghost_type); for (const auto & type : quadrature_points_coordinates.elementTypes( Model::spatial_dimension, ghost_type)) { this->getFEEngine().computeIntegrationPointsCoordinates( quadrature_points_coordinates(type, ghost_type), type, ghost_type); } mat_non_local->initMaterialNonLocal(); mat_non_local->insertIntegrationPointsInNeighborhoods( ghost_type, quadrature_points_coordinates); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::computeNonLocalStresses(GhostType ghost_type) { for (auto & mat : materials) { if (not aka::is_of_type(*mat)) { continue; } auto & mat_non_local = dynamic_cast(*mat); mat_non_local.computeNonLocalStresses(ghost_type); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updateLocalInternal( ElementTypeMapReal & internal_flat, GhostType ghost_type, ElementKind kind) { const ID field_name = internal_flat.getName(); for (auto & material : materials) { if (material->isInternal(field_name, kind)) { material->flattenInternal(field_name, internal_flat, ghost_type, kind); } } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updateNonLocalInternal( ElementTypeMapReal & internal_flat, GhostType ghost_type, ElementKind kind) { const ID field_name = internal_flat.getName(); for (auto & mat : materials) { if (not aka::is_of_type(*mat)) { continue; } auto & mat_non_local = dynamic_cast(*mat); mat_non_local.updateNonLocalInternals(internal_flat, field_name, ghost_type, kind); } } /* -------------------------------------------------------------------------- */ FEEngine & SolidMechanicsModel::getFEEngineBoundary(const ID & name) { return getFEEngineClassBoundary(name); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::splitElementByMaterial( const Array & elements, std::vector> & elements_per_mat) const { for (const auto & el : elements) { Element mat_el = el; mat_el.element = this->material_local_numbering(el); elements_per_mat[this->material_index(el)].push_back(mat_el); } } /* -------------------------------------------------------------------------- */ UInt SolidMechanicsModel::getNbData(const Array & elements, const SynchronizationTag & tag) const { AKANTU_DEBUG_IN(); UInt size = 0; UInt nb_nodes_per_element = 0; for (const Element & el : elements) { nb_nodes_per_element += Mesh::getNbNodesPerElement(el.type); } switch (tag) { case SynchronizationTag::_material_id: { size += elements.size() * sizeof(UInt); break; } case SynchronizationTag::_smm_mass: { size += nb_nodes_per_element * sizeof(Real) * Model::spatial_dimension; // mass vector break; } case SynchronizationTag::_smm_for_gradu: { size += nb_nodes_per_element * Model::spatial_dimension * sizeof(Real); // displacement break; } case SynchronizationTag::_smm_boundary: { // force, displacement, boundary size += nb_nodes_per_element * Model::spatial_dimension * (2 * sizeof(Real) + sizeof(bool)); break; } case SynchronizationTag::_for_dump: { // displacement, velocity, acceleration, residual, force size += nb_nodes_per_element * Model::spatial_dimension * sizeof(Real) * 5; break; } default: { } } if (tag != SynchronizationTag::_material_id) { splitByMaterial(elements, [&](auto && mat, auto && elements) { size += mat.getNbData(elements, tag); }); } AKANTU_DEBUG_OUT(); return size; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::packData(CommunicationBuffer & buffer, const Array & elements, const SynchronizationTag & tag) const { AKANTU_DEBUG_IN(); switch (tag) { case SynchronizationTag::_material_id: { - packElementalDataHelper( - material_index, buffer, elements, false, getFEEngine()); + packElementalDataHelper(material_index, buffer, elements, false, + getFEEngine()); break; } case SynchronizationTag::_smm_mass: { packNodalDataHelper(*mass, buffer, elements, mesh); break; } case SynchronizationTag::_smm_for_gradu: { packNodalDataHelper(*displacement, buffer, elements, mesh); break; } case SynchronizationTag::_for_dump: { packNodalDataHelper(*displacement, buffer, elements, mesh); packNodalDataHelper(*velocity, buffer, elements, mesh); packNodalDataHelper(*acceleration, buffer, elements, mesh); packNodalDataHelper(*internal_force, buffer, elements, mesh); packNodalDataHelper(*external_force, buffer, elements, mesh); break; } case SynchronizationTag::_smm_boundary: { packNodalDataHelper(*external_force, buffer, elements, mesh); packNodalDataHelper(*velocity, buffer, elements, mesh); packNodalDataHelper(*blocked_dofs, buffer, elements, mesh); break; } default: { } } if (tag != SynchronizationTag::_material_id) { splitByMaterial(elements, [&](auto && mat, auto && elements) { mat.packData(buffer, elements, tag); }); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::unpackData(CommunicationBuffer & buffer, const Array & elements, const SynchronizationTag & tag) { AKANTU_DEBUG_IN(); switch (tag) { case SynchronizationTag::_material_id: { for (auto && element : elements) { UInt recv_mat_index; buffer >> recv_mat_index; UInt & mat_index = material_index(element); if (mat_index != UInt(-1)) { continue; } // add ghosts element to the correct material mat_index = recv_mat_index; UInt index = materials[mat_index]->addElement(element); material_local_numbering(element) = index; } break; } case SynchronizationTag::_smm_mass: { unpackNodalDataHelper(*mass, buffer, elements, mesh); break; } case SynchronizationTag::_smm_for_gradu: { unpackNodalDataHelper(*displacement, buffer, elements, mesh); break; } case SynchronizationTag::_for_dump: { unpackNodalDataHelper(*displacement, buffer, elements, mesh); unpackNodalDataHelper(*velocity, buffer, elements, mesh); unpackNodalDataHelper(*acceleration, buffer, elements, mesh); unpackNodalDataHelper(*internal_force, buffer, elements, mesh); unpackNodalDataHelper(*external_force, buffer, elements, mesh); break; } case SynchronizationTag::_smm_boundary: { unpackNodalDataHelper(*external_force, buffer, elements, mesh); unpackNodalDataHelper(*velocity, buffer, elements, mesh); unpackNodalDataHelper(*blocked_dofs, buffer, elements, mesh); break; } default: { } } if (tag != SynchronizationTag::_material_id) { splitByMaterial(elements, [&](auto && mat, auto && elements) { mat.unpackData(buffer, elements, tag); }); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ UInt SolidMechanicsModel::getNbData(const Array & dofs, const SynchronizationTag & tag) const { AKANTU_DEBUG_IN(); UInt size = 0; // UInt nb_nodes = mesh.getNbNodes(); switch (tag) { case SynchronizationTag::_smm_uv: { size += sizeof(Real) * Model::spatial_dimension * 2; break; } case SynchronizationTag::_smm_res: /* FALLTHRU */ case SynchronizationTag::_smm_mass: { size += sizeof(Real) * Model::spatial_dimension; break; } case SynchronizationTag::_for_dump: { size += sizeof(Real) * Model::spatial_dimension * 5; break; } default: { AKANTU_ERROR("Unknown ghost synchronization tag : " << tag); } } AKANTU_DEBUG_OUT(); return size * dofs.size(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::packData(CommunicationBuffer & buffer, const Array & dofs, const SynchronizationTag & tag) const { AKANTU_DEBUG_IN(); switch (tag) { case SynchronizationTag::_smm_uv: { packDOFDataHelper(*displacement, buffer, dofs); packDOFDataHelper(*velocity, buffer, dofs); break; } case SynchronizationTag::_smm_res: { packDOFDataHelper(*internal_force, buffer, dofs); break; } case SynchronizationTag::_smm_mass: { packDOFDataHelper(*mass, buffer, dofs); break; } case SynchronizationTag::_for_dump: { packDOFDataHelper(*displacement, buffer, dofs); packDOFDataHelper(*velocity, buffer, dofs); packDOFDataHelper(*acceleration, buffer, dofs); packDOFDataHelper(*internal_force, buffer, dofs); packDOFDataHelper(*external_force, buffer, dofs); break; } default: { AKANTU_ERROR("Unknown ghost synchronization tag : " << tag); } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::unpackData(CommunicationBuffer & buffer, const Array & dofs, const SynchronizationTag & tag) { AKANTU_DEBUG_IN(); switch (tag) { case SynchronizationTag::_smm_uv: { unpackDOFDataHelper(*displacement, buffer, dofs); unpackDOFDataHelper(*velocity, buffer, dofs); break; } case SynchronizationTag::_smm_res: { unpackDOFDataHelper(*internal_force, buffer, dofs); break; } case SynchronizationTag::_smm_mass: { unpackDOFDataHelper(*mass, buffer, dofs); break; } case SynchronizationTag::_for_dump: { unpackDOFDataHelper(*displacement, buffer, dofs); unpackDOFDataHelper(*velocity, buffer, dofs); unpackDOFDataHelper(*acceleration, buffer, dofs); unpackDOFDataHelper(*internal_force, buffer, dofs); unpackDOFDataHelper(*external_force, buffer, dofs); break; } default: { AKANTU_ERROR("Unknown ghost synchronization tag : " << tag); } } AKANTU_DEBUG_OUT(); } } // namespace akantu