diff --git a/src/model/solid_mechanics/materials/material_elastic_linear_anisotropic.cc b/src/model/solid_mechanics/materials/material_elastic_linear_anisotropic.cc index f7cc05dd0..f3a93e4ae 100644 --- a/src/model/solid_mechanics/materials/material_elastic_linear_anisotropic.cc +++ b/src/model/solid_mechanics/materials/material_elastic_linear_anisotropic.cc @@ -1,265 +1,263 @@ /** * @file material_elastic_linear_anisotropic.cc * * @author Aurelia Isabel Cuba Ramos * @author Till Junge * @author Enrico Milanese * @author Nicolas Richart * * @date creation: Wed Sep 25 2013 * @date last modification: Tue Feb 20 2018 * * @brief Anisotropic elastic material * * @section LICENSE * * Copyright (©) 2014-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */ #include "material_elastic_linear_anisotropic.hh" #include "solid_mechanics_model.hh" #include #include namespace akantu { /* -------------------------------------------------------------------------- */ template MaterialElasticLinearAnisotropic::MaterialElasticLinearAnisotropic( SolidMechanicsModel & model, const ID & id, bool symmetric) : Material(model, id), rot_mat(dim, dim), Cprime(dim * dim, dim * dim), C(voigt_h::size, voigt_h::size), eigC(voigt_h::size), symmetric(symmetric), alpha(0), was_stiffness_assembled(false) { AKANTU_DEBUG_IN(); this->dir_vecs.push_back(std::make_unique>(dim)); (*this->dir_vecs.back())[0] = 1.; this->registerParam("n1", *(this->dir_vecs.back()), _pat_parsmod, "Direction of main material axis"); if (dim > 1) { this->dir_vecs.push_back(std::make_unique>(dim)); (*this->dir_vecs.back())[1] = 1.; this->registerParam("n2", *(this->dir_vecs.back()), _pat_parsmod, "Direction of secondary material axis"); } if (dim > 2) { this->dir_vecs.push_back(std::make_unique>(dim)); (*this->dir_vecs.back())[2] = 1.; this->registerParam("n3", *(this->dir_vecs.back()), _pat_parsmod, "Direction of tertiary material axis"); } for (UInt i = 0; i < voigt_h::size; ++i) { UInt start = 0; if (this->symmetric) { start = i; } for (UInt j = start; j < voigt_h::size; ++j) { std::stringstream param("C"); param << "C" << i + 1 << j + 1; this->registerParam(param.str(), this->Cprime(i, j), Real(0.), _pat_parsmod, "Coefficient " + param.str()); } } this->registerParam("alpha", this->alpha, _pat_parsmod, "Proportion of viscous stress"); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ template void MaterialElasticLinearAnisotropic::initMaterial() { AKANTU_DEBUG_IN(); Material::initMaterial(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ template void MaterialElasticLinearAnisotropic::updateInternalParameters() { - this->C.clear(); - this->Cprime.clear(); Material::updateInternalParameters(); if (this->symmetric) { for (UInt i = 0; i < voigt_h::size; ++i) { for (UInt j = i + 1; j < voigt_h::size; ++j) { this->Cprime(j, i) = this->Cprime(i, j); } } } this->rotateCprime(); this->C.eig(this->eigC); this->was_stiffness_assembled = false; } /* -------------------------------------------------------------------------- */ template void MaterialElasticLinearAnisotropic::rotateCprime() { // start by filling the empty parts fo Cprime UInt diff = Dim * Dim - voigt_h::size; for (UInt i = voigt_h::size; i < Dim * Dim; ++i) { for (UInt j = 0; j < Dim * Dim; ++j) { this->Cprime(i, j) = this->Cprime(i - diff, j); } } for (UInt i = 0; i < Dim * Dim; ++i) { for (UInt j = voigt_h::size; j < Dim * Dim; ++j) { this->Cprime(i, j) = this->Cprime(i, j - diff); } } // construction of rotator tensor // normalise rotation matrix for (UInt j = 0; j < Dim; ++j) { Vector rot_vec = this->rot_mat(j); rot_vec = *this->dir_vecs[j]; rot_vec.normalize(); } // make sure the vectors form a right-handed base Vector test_axis(3); Vector v1(3), v2(3), v3(3, 0.); if (Dim == 2) { for (UInt i = 0; i < Dim; ++i) { v1[i] = this->rot_mat(0, i); v2[i] = this->rot_mat(1, i); } v3.crossProduct(v1, v2); if (v3.norm() < 8 * std::numeric_limits::epsilon()) { AKANTU_ERROR("The axis vectors parallel."); } v3.normalize(); } else if (Dim == 3) { v1 = this->rot_mat(0); v2 = this->rot_mat(1); v3 = this->rot_mat(2); } test_axis.crossProduct(v1, v2); test_axis -= v3; if (test_axis.norm() > 8 * std::numeric_limits::epsilon()) { AKANTU_ERROR("The axis vectors do not form a right-handed coordinate " << "system. I. e., ||n1 x n2 - n3|| should be zero, but " << "it is " << test_axis.norm() << "."); } // create the rotator and the reverse rotator Matrix rotator(Dim * Dim, Dim * Dim); Matrix revrotor(Dim * Dim, Dim * Dim); for (UInt i = 0; i < Dim; ++i) { for (UInt j = 0; j < Dim; ++j) { for (UInt k = 0; k < Dim; ++k) { for (UInt l = 0; l < Dim; ++l) { UInt I = voigt_h::mat[i][j]; UInt J = voigt_h::mat[k][l]; rotator(I, J) = this->rot_mat(k, i) * this->rot_mat(l, j); revrotor(I, J) = this->rot_mat(i, k) * this->rot_mat(j, l); } } } } // create the full rotated matrix Matrix Cfull(Dim * Dim, Dim * Dim); Cfull = rotator * Cprime * revrotor; for (UInt i = 0; i < voigt_h::size; ++i) { for (UInt j = 0; j < voigt_h::size; ++j) { this->C(i, j) = Cfull(i, j); } } } /* -------------------------------------------------------------------------- */ template void MaterialElasticLinearAnisotropic::computeStress( ElementType el_type, GhostType ghost_type) { // Wikipedia convention: // 2*eps_ij (i!=j) = voigt_eps_I // http://en.wikipedia.org/wiki/Voigt_notation AKANTU_DEBUG_IN(); MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN(el_type, ghost_type); this->computeStressOnQuad(grad_u, sigma); MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END; } /* -------------------------------------------------------------------------- */ template void MaterialElasticLinearAnisotropic::computeTangentModuli( const ElementType & el_type, Array & tangent_matrix, GhostType ghost_type) { AKANTU_DEBUG_IN(); MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_BEGIN(tangent_matrix); this->computeTangentModuliOnQuad(tangent); MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_END; this->was_stiffness_assembled = true; AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ template void MaterialElasticLinearAnisotropic::computePotentialEnergy( ElementType el_type) { AKANTU_DEBUG_IN(); AKANTU_DEBUG_ASSERT(!this->finite_deformation, "finite deformation not possible in material anisotropic " "(TO BE IMPLEMENTED)"); Array::scalar_iterator epot = this->potential_energy(el_type, _not_ghost).begin(); MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN(el_type, _not_ghost); computePotentialEnergyOnQuad(grad_u, sigma, *epot); ++epot; MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END; AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ template Real MaterialElasticLinearAnisotropic::getCelerity( __attribute__((unused)) const Element & element) const { return std::sqrt(this->eigC(0) / rho); } /* -------------------------------------------------------------------------- */ INSTANTIATE_MATERIAL(elastic_anisotropic, MaterialElasticLinearAnisotropic); } // namespace akantu