diff --git a/packages/solid_mechanics.cmake b/packages/solid_mechanics.cmake index 90957c3b5..c64a05a82 100644 --- a/packages/solid_mechanics.cmake +++ b/packages/solid_mechanics.cmake @@ -1,127 +1,128 @@ #=============================================================================== # @file solid_mechanics.cmake # # @author Guillaume Anciaux # @author Nicolas Richart # # @date creation: Mon Nov 21 2011 # @date last modification: Mon Jan 18 2016 # # @brief package description for core # # @section LICENSE # # Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de # Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des # Solides) # # Akantu is free software: you can redistribute it and/or modify it under the # terms of the GNU Lesser General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) any # later version. # # Akantu is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with Akantu. If not, see . # #=============================================================================== package_declare(solid_mechanics DEFAULT ON DESCRIPTION "Solid mechanics model" + DEPENDS core ) package_declare_sources(solid_mechanics model/solid_mechanics/material.cc model/solid_mechanics/material.hh model/solid_mechanics/material_inline_impl.cc model/solid_mechanics/material_selector.hh model/solid_mechanics/material_selector_tmpl.hh model/solid_mechanics/materials/internal_field.hh model/solid_mechanics/materials/internal_field_tmpl.hh model/solid_mechanics/materials/random_internal_field.hh model/solid_mechanics/materials/random_internal_field_tmpl.hh model/solid_mechanics/solid_mechanics_model.cc model/solid_mechanics/solid_mechanics_model.hh model/solid_mechanics/solid_mechanics_model_inline_impl.cc model/solid_mechanics/solid_mechanics_model_io.cc model/solid_mechanics/solid_mechanics_model_mass.cc model/solid_mechanics/solid_mechanics_model_material.cc model/solid_mechanics/solid_mechanics_model_tmpl.hh model/solid_mechanics/solid_mechanics_model_event_handler.hh model/solid_mechanics/materials/plane_stress_toolbox.hh model/solid_mechanics/materials/plane_stress_toolbox_tmpl.hh model/solid_mechanics/materials/material_core_includes.hh model/solid_mechanics/materials/material_elastic.cc model/solid_mechanics/materials/material_elastic.hh model/solid_mechanics/materials/material_elastic_inline_impl.cc model/solid_mechanics/materials/material_thermal.cc model/solid_mechanics/materials/material_thermal.hh model/solid_mechanics/materials/material_elastic_linear_anisotropic.cc model/solid_mechanics/materials/material_elastic_linear_anisotropic.hh model/solid_mechanics/materials/material_elastic_orthotropic.cc model/solid_mechanics/materials/material_elastic_orthotropic.hh model/solid_mechanics/materials/material_damage/material_damage.hh model/solid_mechanics/materials/material_damage/material_damage_tmpl.hh model/solid_mechanics/materials/material_damage/material_marigo.cc model/solid_mechanics/materials/material_damage/material_marigo.hh model/solid_mechanics/materials/material_damage/material_marigo_inline_impl.cc model/solid_mechanics/materials/material_damage/material_mazars.cc model/solid_mechanics/materials/material_damage/material_mazars.hh model/solid_mechanics/materials/material_damage/material_mazars_inline_impl.cc model/solid_mechanics/materials/material_finite_deformation/material_neohookean.cc model/solid_mechanics/materials/material_finite_deformation/material_neohookean.hh model/solid_mechanics/materials/material_finite_deformation/material_neohookean_inline_impl.cc model/solid_mechanics/materials/material_plastic/material_plastic.cc model/solid_mechanics/materials/material_plastic/material_plastic.hh model/solid_mechanics/materials/material_plastic/material_plastic_inline_impl.cc model/solid_mechanics/materials/material_plastic/material_linear_isotropic_hardening.cc model/solid_mechanics/materials/material_plastic/material_linear_isotropic_hardening.hh model/solid_mechanics/materials/material_plastic/material_linear_isotropic_hardening_inline_impl.cc model/solid_mechanics/materials/material_viscoelastic/material_standard_linear_solid_deviatoric.cc model/solid_mechanics/materials/material_viscoelastic/material_standard_linear_solid_deviatoric.hh model/solid_mechanics/materials/material_non_local.hh model/solid_mechanics/materials/material_non_local_tmpl.hh model/solid_mechanics/materials/material_non_local_includes.hh ) package_declare_material_infos(solid_mechanics LIST AKANTU_CORE_MATERIAL_LIST INCLUDE material_core_includes.hh ) package_declare_documentation_files(solid_mechanics manual-solidmechanicsmodel.tex manual-constitutive-laws.tex manual-lumping.tex manual-appendix-materials.tex figures/dynamic_analysis.png figures/explicit_dynamic.pdf figures/explicit_dynamic.svg figures/static.pdf figures/static.svg figures/hooke_law.pdf figures/implicit_dynamic.pdf figures/implicit_dynamic.svg figures/problemDomain.pdf_tex figures/problemDomain.pdf figures/static_analysis.png figures/stress_strain_el.pdf figures/tangent.pdf figures/tangent.svg figures/stress_strain_neo.pdf figures/visco_elastic_law.pdf figures/isotropic_hardening_plasticity.pdf figures/stress_strain_visco.pdf ) package_declare_extra_files_to_package(solid_mechanics SOURCES model/solid_mechanics/material_list.hh.in ) diff --git a/src/mesh/mesh_iterators.hh b/src/mesh/mesh_iterators.hh index f63ff1775..d6f75733a 100644 --- a/src/mesh/mesh_iterators.hh +++ b/src/mesh/mesh_iterators.hh @@ -1,298 +1,295 @@ /** * @file mesh_iterators.hh * * @author Nicolas Richart * * @date creation Wed Aug 09 2017 * * @brief Set of helper classes to have fun with range based for * * @section LICENSE * * Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "aka_named_argument.hh" #include "aka_static_if.hh" #include "mesh.hh" /* -------------------------------------------------------------------------- */ #ifndef __AKANTU_MESH_ITERATORS_HH__ #define __AKANTU_MESH_ITERATORS_HH__ namespace akantu { class MeshElementsByTypes { using elements_iterator = Array::scalar_iterator; public: explicit MeshElementsByTypes(const Array & elements) { this->elements.copy(elements); std::sort(this->elements.begin(), this->elements.end()); } /* ------------------------------------------------------------------------ */ class MeshElementsRange { public: MeshElementsRange() = default; MeshElementsRange(const elements_iterator & begin, const elements_iterator & end) : type((*begin).type), ghost_type((*begin).ghost_type), begin(begin), end(end) {} AKANTU_GET_MACRO(Type, type, const ElementType &); AKANTU_GET_MACRO(GhostType, ghost_type, const GhostType &); const Array & getElements() { elements.resize(end - begin); auto el_it = elements.begin(); for (auto it = begin; it != end; ++it, ++el_it) { *el_it = it->element; } return elements; } private: ElementType type{_not_defined}; GhostType ghost_type{_casper}; elements_iterator begin; elements_iterator end; Array elements; }; /* ------------------------------------------------------------------------ */ class iterator { struct element_comparator { bool operator()(const Element & lhs, const Element & rhs) const { return ((rhs == ElementNull) || std::tie(lhs.ghost_type, lhs.type) < std::tie(rhs.ghost_type, rhs.type)); } }; public: iterator(const iterator &) = default; iterator(const elements_iterator & first, const elements_iterator & last) : range(std::equal_range(first, last, *first, element_comparator())), first(first), last(last) {} decltype(auto) operator*() const { return MeshElementsRange(range.first, range.second); } iterator operator++() { first = range.second; range = std::equal_range(first, last, *first, element_comparator()); return *this; } bool operator==(const iterator & other) const { return (first == other.first and last == other.last); } bool operator!=(const iterator & other) const { return (not operator==(other)); } private: std::pair range; elements_iterator first; elements_iterator last; }; iterator begin() { return iterator(elements.begin(), elements.end()); } iterator end() { return iterator(elements.end(), elements.end()); } private: Array elements; }; /* -------------------------------------------------------------------------- */ namespace mesh_iterators { namespace details { template class delegated_iterator { public: using value_type = std::remove_pointer_t< typename internal_iterator::value_type::second_type>; using pointer = value_type *; using reference = value_type &; using iterator_category = std::input_iterator_tag; explicit delegated_iterator(internal_iterator it) : it(std::move(it)) {} decltype(auto) operator*() { return std::forwardsecond))>(*(it->second)); } delegated_iterator operator++() { ++it; return *this; } bool operator==(const delegated_iterator & other) const { return other.it == it; } bool operator!=(const delegated_iterator & other) const { return other.it != it; } private: internal_iterator it; }; template class ElementGroupsIterable { public: explicit ElementGroupsIterable(GroupManager && group_manager) : group_manager(std::forward(group_manager)) {} size_t size() { return group_manager.getNbElementGroups(); } decltype(auto) begin() { return delegated_iterator( group_manager.element_group_begin()); } decltype(auto) begin() const { return delegated_iterator( group_manager.element_group_begin()); } decltype(auto) end() { return delegated_iterator( group_manager.element_group_end()); } decltype(auto) end() const { return delegated_iterator( group_manager.element_group_end()); } private: GroupManager && group_manager; }; template class NodeGroupsIterable { public: explicit NodeGroupsIterable(GroupManager && group_manager) : group_manager(std::forward(group_manager)) {} size_t size() { return group_manager.getNbNodeGroups(); } decltype(auto) begin() { return delegated_iterator( group_manager.node_group_begin()); } decltype(auto) begin() const { return delegated_iterator( group_manager.node_group_begin()); } decltype(auto) end() { return delegated_iterator( group_manager.node_group_end()); } decltype(auto) end() const { return delegated_iterator( group_manager.node_group_end()); } private: GroupManager && group_manager; }; } // namespace details } // namespace mesh_iterators template decltype(auto) ElementGroupsIterable(GroupManager && group_manager) { return mesh_iterators::details::ElementGroupsIterable( group_manager); } template decltype(auto) NodeGroupsIterable(GroupManager && group_manager) { return mesh_iterators::details::NodeGroupsIterable( group_manager); } /* -------------------------------------------------------------------------- */ template void for_each_elements(UInt nb_elements, const Array & filter_elements, Func && function) { if (filter_elements != empty_filter) { std::for_each(filter_elements.begin(), filter_elements.end(), std::forward(function)); } else { auto && range = arange(nb_elements); std::for_each(range.begin(), range.end(), std::forward(function)); } } namespace { DECLARE_NAMED_ARGUMENT(element_filter); } /* -------------------------------------------------------------------------- */ template void for_each_elements(const Mesh & mesh, Func && function, pack &&... _pack) { auto && requested_ghost_type = OPTIONAL_NAMED_ARG(ghost_type, _casper); auto && filter = OPTIONAL_NAMED_ARG(element_filter, nullptr); bool all_ghost_types = requested_ghost_type == _casper; auto && spatial_dimension = OPTIONAL_NAMED_ARG(spatial_dimension, mesh.getSpatialDimension()); auto && element_kind = OPTIONAL_NAMED_ARG(element_kind, _ek_not_defined); for (auto ghost_type : ghost_types) { if ((not(ghost_type == requested_ghost_type)) and (not all_ghost_types)) continue; auto element_types = mesh.elementTypes(spatial_dimension, ghost_type, element_kind); - static_if(not std::is_same::value) - .then([&](auto && element_types) { - element_types = + if(filter != nullptr) + element_types = filter->elementTypes(spatial_dimension, ghost_type, element_kind); - })(std::forward(element_types)); for (auto type : element_types) { const Array * filter_array; - - static_if(not std::is_same::value) - .then([&](auto && array) { array = &((*filter)(type, ghost_type)); }) - .else_([&](auto && array) { array = &empty_filter; })( - std::forward *>(filter_array)); + if(filter != nullptr) + filter_array = &((*filter)(type, ghost_type)); + else + filter_array = &empty_filter; auto nb_elements = mesh.getNbElement(type, ghost_type); for_each_elements(nb_elements, *filter_array, [&](auto && el) { auto element = Element{type, el, ghost_type}; std::forward(function)(element); }); } } } } // namespace akantu #endif /* __AKANTU_MESH_ITERATORS_HH__ */ diff --git a/src/model/solid_mechanics/material_selector.hh b/src/model/solid_mechanics/material_selector.hh index 9271e92b9..fdffb5858 100644 --- a/src/model/solid_mechanics/material_selector.hh +++ b/src/model/solid_mechanics/material_selector.hh @@ -1,142 +1,157 @@ /** * @file material_selector.hh * * @author Lucas Frerot * @author Nicolas Richart * * @date creation: Wed Nov 13 2013 * @date last modification: Thu Dec 17 2015 * * @brief class describing how to choose a material for a given element * * @section LICENSE * * Copyright (©) 2014, 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "aka_common.hh" #include "mesh.hh" - /* -------------------------------------------------------------------------- */ #ifndef __AKANTU_MATERIAL_SELECTOR_HH__ #define __AKANTU_MATERIAL_SELECTOR_HH__ /* -------------------------------------------------------------------------- */ namespace akantu { class SolidMechanicsModel; /** * main class to assign same or different materials for different * elements */ class MaterialSelector { public: MaterialSelector() = default; virtual ~MaterialSelector() = default; - virtual UInt operator()(__attribute__((unused)) const Element & element) { + virtual inline UInt operator()(const Element & element) { + if (fallback_selector) + return (*fallback_selector)(element); + return fallback_value; } - void setFallback(UInt f) { fallback_value = f; } + inline void setFallback(UInt f) { fallback_value = f; } + inline void + setFallback(const std::shared_ptr & fallback_selector) { + this->fallback_selector = fallback_selector; + } + inline std::shared_ptr & getFallbackSelector() { + return this->fallback_selector; + } + + inline UInt getFallbackValue() { + return this->fallback_value; + } protected: UInt fallback_value{0}; + std::shared_ptr fallback_selector; }; /* -------------------------------------------------------------------------- */ /** * class that assigns the first material to regular elements by default */ class DefaultMaterialSelector : public MaterialSelector { public: - explicit DefaultMaterialSelector(const ElementTypeMapArray & material_index) + explicit DefaultMaterialSelector( + const ElementTypeMapArray & material_index) : material_index(material_index) {} UInt operator()(const Element & element) override { if (not material_index.exists(element.type, element.ghost_type)) - return fallback_value; + return MaterialSelector::operator()(element); const auto & mat_indexes = material_index(element.type, element.ghost_type); if (element.element < mat_indexes.size()) { auto && tmp_mat = mat_indexes(element.element); if (tmp_mat != UInt(-1)) return tmp_mat; } - return fallback_value; + return MaterialSelector::operator()(element); } private: const ElementTypeMapArray & material_index; }; /* -------------------------------------------------------------------------- */ /** * Use elemental data to assign materials */ template class ElementDataMaterialSelector : public MaterialSelector { public: ElementDataMaterialSelector(const ElementTypeMapArray & element_data, const SolidMechanicsModel & model, UInt first_index = 1) : element_data(element_data), model(model), first_index(first_index) {} inline T elementData(const Element & element) { DebugLevel dbl = debug::getDebugLevel(); debug::setDebugLevel(dblError); T data = element_data(element.type, element.ghost_type)(element.element); debug::setDebugLevel(dbl); return data; } inline UInt operator()(const Element & element) override { return MaterialSelector::operator()(element); } protected: /// list of element with the specified data (i.e. tag value) const ElementTypeMapArray & element_data; /// the model that the materials belong const SolidMechanicsModel & model; /// first material index: equal to 1 if none specified UInt first_index; }; /* -------------------------------------------------------------------------- */ /** * class to use mesh data information to assign different materials * where name is the tag value: tag_0, tag_1 */ template class MeshDataMaterialSelector : public ElementDataMaterialSelector { public: MeshDataMaterialSelector(const std::string & name, const SolidMechanicsModel & model, UInt first_index = 1); }; } // namespace akantu #endif /* __AKANTU_MATERIAL_SELECTOR_HH__ */ diff --git a/src/model/solid_mechanics/solid_mechanics_model.cc b/src/model/solid_mechanics/solid_mechanics_model.cc index 2de5fecb5..905113f08 100644 --- a/src/model/solid_mechanics/solid_mechanics_model.cc +++ b/src/model/solid_mechanics/solid_mechanics_model.cc @@ -1,1228 +1,1220 @@ /** * @file solid_mechanics_model.cc * * @author Ramin Aghababaei * @author Guillaume Anciaux * @author Aurelia Isabel Cuba Ramos * @author David Simon Kammer * @author Daniel Pino Muñoz * @author Nicolas Richart * @author Clement Roux * @author Marco Vocialta * * @date creation: Tue Jul 27 2010 * @date last modification: Tue Jan 19 2016 * * @brief Implementation of the SolidMechanicsModel class * * @section LICENSE * * Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de * Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des * Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "solid_mechanics_model.hh" #include "integrator_gauss.hh" #include "shape_lagrange.hh" #include "solid_mechanics_model_tmpl.hh" +#include "communicator.hh" #include "element_synchronizer.hh" #include "sparse_matrix.hh" -#include "communicator.hh" #include "synchronizer_registry.hh" #include "dumpable_inline_impl.hh" #ifdef AKANTU_USE_IOHELPER #include "dumper_paraview.hh" #endif #include "material_non_local.hh" /* -------------------------------------------------------------------------- */ namespace akantu { /* -------------------------------------------------------------------------- */ /** * A solid mechanics model need a mesh and a dimension to be created. the model * by it self can not do a lot, the good init functions should be called in * order to configure the model depending on what we want to do. * * @param mesh mesh representing the model we want to simulate * @param dim spatial dimension of the problem, if dim = 0 (default value) the * dimension of the problem is assumed to be the on of the mesh * @param id an id to identify the model */ SolidMechanicsModel::SolidMechanicsModel(Mesh & mesh, UInt dim, const ID & id, const MemoryID & memory_id) : Model(mesh, dim, id, memory_id), BoundaryCondition(), f_m2a(1.0), displacement(nullptr), previous_displacement(nullptr), displacement_increment(nullptr), mass(nullptr), velocity(nullptr), acceleration(nullptr), external_force(nullptr), internal_force(nullptr), blocked_dofs(nullptr), current_position(nullptr), material_index("material index", id, memory_id), material_local_numbering("material local numbering", id, memory_id), - material_selector(new DefaultMaterialSelector(material_index)), - is_default_material_selector(true), increment_flag(false), + increment_flag(false), are_materials_instantiated(false) { //, pbc_synch(nullptr) { AKANTU_DEBUG_IN(); this->registerFEEngineObject("SolidMechanicsFEEngine", mesh, Model::spatial_dimension); #if defined(AKANTU_USE_IOHELPER) this->mesh.registerDumper("paraview_all", id, true); this->mesh.addDumpMesh(mesh, Model::spatial_dimension, _not_ghost, _ek_regular); #endif + material_selector = std::make_shared(material_index), + this->initDOFManager(); this->registerDataAccessor(*this); if (this->mesh.isDistributed()) { auto & synchronizer = this->mesh.getElementSynchronizer(); this->registerSynchronizer(synchronizer, _gst_material_id); this->registerSynchronizer(synchronizer, _gst_smm_mass); this->registerSynchronizer(synchronizer, _gst_smm_stress); this->registerSynchronizer(synchronizer, _gst_smm_boundary); this->registerSynchronizer(synchronizer, _gst_for_dump); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ SolidMechanicsModel::~SolidMechanicsModel() { AKANTU_DEBUG_IN(); - if (is_default_material_selector) { - delete material_selector; - material_selector = nullptr; - } - for (auto & internal : this->registered_internals) { delete internal.second; } - // delete pbc_synch; - AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::setTimeStep(Real time_step, const ID & solver_id) { Model::setTimeStep(time_step, solver_id); #if defined(AKANTU_USE_IOHELPER) this->mesh.getDumper().setTimeStep(time_step); #endif } /* -------------------------------------------------------------------------- */ /* Initialization */ /* -------------------------------------------------------------------------- */ /** * This function groups many of the initialization in on function. For most of * basics case the function should be enough. The functions initialize the * model, the internal vectors, set them to 0, and depending on the parameters * it also initialize the explicit or implicit solver. * * @param material_file the file containing the materials to use * @param method the analysis method wanted. See the akantu::AnalysisMethod for * the different possibilities */ void SolidMechanicsModel::initFullImpl(const ModelOptions & options) { material_index.initialize(mesh, _element_kind = _ek_not_defined, - _default_value = UInt(-1), _with_nb_element = - true); + _default_value = UInt(-1), _with_nb_element = true); material_local_numbering.initialize(mesh, _element_kind = _ek_not_defined, _with_nb_element = true); Model::initFullImpl(options); // initialize pbc if (this->pbc_pair.size() != 0) this->initPBC(); // initialize the materials if (this->parser.getLastParsedFile() != "") { this->instantiateMaterials(); } this->initMaterials(); - this->initBC(*this, *displacement, *displacement_increment, - *external_force); + this->initBC(*this, *displacement, *displacement_increment, *external_force); } /* -------------------------------------------------------------------------- */ TimeStepSolverType SolidMechanicsModel::getDefaultSolverType() const { return _tsst_dynamic_lumped; } /* -------------------------------------------------------------------------- */ ModelSolverOptions SolidMechanicsModel::getDefaultSolverOptions( const TimeStepSolverType & type) const { ModelSolverOptions options; switch (type) { case _tsst_dynamic_lumped: { options.non_linear_solver_type = _nls_lumped; options.integration_scheme_type["displacement"] = _ist_central_difference; options.solution_type["displacement"] = IntegrationScheme::_acceleration; break; } case _tsst_static: { options.non_linear_solver_type = _nls_newton_raphson; options.integration_scheme_type["displacement"] = _ist_pseudo_time; options.solution_type["displacement"] = IntegrationScheme::_not_defined; break; } case _tsst_dynamic: { if (this->method == _explicit_consistent_mass) { options.non_linear_solver_type = _nls_newton_raphson; options.integration_scheme_type["displacement"] = _ist_central_difference; options.solution_type["displacement"] = IntegrationScheme::_acceleration; } else { options.non_linear_solver_type = _nls_newton_raphson; options.integration_scheme_type["displacement"] = _ist_trapezoidal_rule_2; options.solution_type["displacement"] = IntegrationScheme::_displacement; } break; } default: AKANTU_EXCEPTION(type << " is not a valid time step solver type"); } return options; } /* -------------------------------------------------------------------------- */ std::tuple SolidMechanicsModel::getDefaultSolverID(const AnalysisMethod & method) { switch (method) { case _explicit_lumped_mass: { return std::make_tuple("explicit_lumped", _tsst_dynamic_lumped); } case _explicit_consistent_mass: { return std::make_tuple("explicit", _tsst_dynamic); } case _static: { return std::make_tuple("static", _tsst_static); } case _implicit_dynamic: { return std::make_tuple("implicit", _tsst_dynamic); } default: return std::make_tuple("unknown", _tsst_not_defined); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::initSolver(TimeStepSolverType time_step_solver_type, NonLinearSolverType) { auto & dof_manager = this->getDOFManager(); /* ------------------------------------------------------------------------ */ // for alloc type of solvers this->allocNodalField(this->displacement, spatial_dimension, "displacement"); this->allocNodalField(this->previous_displacement, spatial_dimension, "previous_displacement"); this->allocNodalField(this->displacement_increment, spatial_dimension, "displacement_increment"); this->allocNodalField(this->internal_force, spatial_dimension, "internal_force"); this->allocNodalField(this->external_force, spatial_dimension, "external_force"); this->allocNodalField(this->blocked_dofs, spatial_dimension, "blocked_dofs"); this->allocNodalField(this->current_position, spatial_dimension, "current_position"); // initialize the current positions this->current_position->copy(this->mesh.getNodes()); /* ------------------------------------------------------------------------ */ if (!dof_manager.hasDOFs("displacement")) { dof_manager.registerDOFs("displacement", *this->displacement, _dst_nodal); dof_manager.registerBlockedDOFs("displacement", *this->blocked_dofs); dof_manager.registerDOFsIncrement("displacement", *this->displacement_increment); dof_manager.registerDOFsPrevious("displacement", *this->previous_displacement); } /* ------------------------------------------------------------------------ */ // for dynamic if (time_step_solver_type == _tsst_dynamic || time_step_solver_type == _tsst_dynamic_lumped) { this->allocNodalField(this->velocity, spatial_dimension, "velocity"); this->allocNodalField(this->acceleration, spatial_dimension, "acceleration"); if (!dof_manager.hasDOFsDerivatives("displacement", 1)) { dof_manager.registerDOFsDerivative("displacement", 1, *this->velocity); dof_manager.registerDOFsDerivative("displacement", 2, *this->acceleration); } } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::initFEEngineBoundary() { FEEngine & fem_boundary = getFEEngineBoundary(); fem_boundary.initShapeFunctions(_not_ghost); fem_boundary.initShapeFunctions(_ghost); fem_boundary.computeNormalsOnIntegrationPoints(_not_ghost); fem_boundary.computeNormalsOnIntegrationPoints(_ghost); } /* -------------------------------------------------------------------------- */ /** * Initialize the model,basically it pre-compute the shapes, shapes derivatives * and jacobian */ void SolidMechanicsModel::initModel() { /// \todo add the current position as a parameter to initShapeFunctions for /// large deformation getFEEngine().initShapeFunctions(_not_ghost); getFEEngine().initShapeFunctions(_ghost); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::assembleResidual() { AKANTU_DEBUG_IN(); /* ------------------------------------------------------------------------ */ // computes the internal forces this->assembleInternalForces(); /* ------------------------------------------------------------------------ */ this->getDOFManager().assembleToResidual("displacement", *this->external_force, 1); this->getDOFManager().assembleToResidual("displacement", *this->internal_force, 1); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ MatrixType SolidMechanicsModel::getMatrixType(const ID & matrix_id) { // \TODO check the materials to know what is the correct answer if (matrix_id == "C") return _mt_not_defined; return _symmetric; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::assembleMatrix(const ID & matrix_id) { if (matrix_id == "K") { this->assembleStiffnessMatrix(); } else if (matrix_id == "M") { this->assembleMass(); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::assembleLumpedMatrix(const ID & matrix_id) { if (matrix_id == "M") { this->assembleMassLumped(); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::beforeSolveStep() { for (auto & material : materials) material->beforeSolveStep(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::afterSolveStep() { for (auto & material : materials) material->afterSolveStep(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::predictor() { ++displacement_release; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::corrector() { ++displacement_release; } /* -------------------------------------------------------------------------- */ /** * This function computes the internal forces as F_{int} = \int_{\Omega} N * \sigma d\Omega@f$ */ void SolidMechanicsModel::assembleInternalForces() { AKANTU_DEBUG_IN(); AKANTU_DEBUG_INFO("Assemble the internal forces"); this->internal_force->clear(); // compute the stresses of local elements AKANTU_DEBUG_INFO("Compute local stresses"); for (auto & material : materials) { material->computeAllStresses(_not_ghost); } /* ------------------------------------------------------------------------ */ /* Computation of the non local part */ if (this->non_local_manager) this->non_local_manager->computeAllNonLocalStresses(); // communicate the stresses AKANTU_DEBUG_INFO("Send data for residual assembly"); this->asynchronousSynchronize(_gst_smm_stress); // assemble the forces due to local stresses AKANTU_DEBUG_INFO("Assemble residual for local elements"); for (auto & material : materials) { material->assembleInternalForces(_not_ghost); } // finalize communications AKANTU_DEBUG_INFO("Wait distant stresses"); this->waitEndSynchronize(_gst_smm_stress); // assemble the stresses due to ghost elements AKANTU_DEBUG_INFO("Assemble residual for ghost elements"); for (auto & material : materials) { material->assembleInternalForces(_ghost); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::assembleStiffnessMatrix() { AKANTU_DEBUG_IN(); AKANTU_DEBUG_INFO("Assemble the new stiffness matrix."); // Check if materials need to recompute the matrix bool need_to_reassemble = false; for (auto & material : materials) { need_to_reassemble |= material->hasStiffnessMatrixChanged(); } if (need_to_reassemble) { this->getDOFManager().getMatrix("K").clear(); // call compute stiffness matrix on each local elements for (auto & material : materials) { material->assembleStiffnessMatrix(_not_ghost); } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updateCurrentPosition() { if (this->current_position_release == this->displacement_release) return; this->current_position->copy(this->mesh.getNodes()); auto cpos_it = this->current_position->begin(Model::spatial_dimension); auto cpos_end = this->current_position->end(Model::spatial_dimension); auto disp_it = this->displacement->begin(Model::spatial_dimension); for (; cpos_it != cpos_end; ++cpos_it, ++disp_it) { *cpos_it += *disp_it; } this->current_position_release = this->displacement_release; } /* -------------------------------------------------------------------------- */ const Array & SolidMechanicsModel::getCurrentPosition() { this->updateCurrentPosition(); return *this->current_position; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updateDataForNonLocalCriterion( ElementTypeMapReal & criterion) { const ID field_name = criterion.getName(); for (auto & material : materials) { if (!material->isInternal(field_name, _ek_regular)) continue; for (auto ghost_type : ghost_types) { material->flattenInternal(field_name, criterion, ghost_type, _ek_regular); } } } /* -------------------------------------------------------------------------- */ /* Information */ /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getStableTimeStep() { AKANTU_DEBUG_IN(); Real min_dt = getStableTimeStep(_not_ghost); /// reduction min over all processors mesh.getCommunicator().allReduce(min_dt, SynchronizerOperation::_min); AKANTU_DEBUG_OUT(); return min_dt; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getStableTimeStep(const GhostType & ghost_type) { AKANTU_DEBUG_IN(); Real min_dt = std::numeric_limits::max(); this->updateCurrentPosition(); Element elem; elem.ghost_type = ghost_type; for (auto type : mesh.elementTypes(Model::spatial_dimension, ghost_type, _ek_regular)) { elem.type = type; UInt nb_nodes_per_element = mesh.getNbNodesPerElement(type); UInt nb_element = mesh.getNbElement(type); auto mat_indexes = material_index(type, ghost_type).begin(); auto mat_loc_num = material_local_numbering(type, ghost_type).begin(); Array X(0, nb_nodes_per_element * Model::spatial_dimension); FEEngine::extractNodalToElementField(mesh, *current_position, X, type, _not_ghost); auto X_el = X.begin(Model::spatial_dimension, nb_nodes_per_element); for (UInt el = 0; el < nb_element; ++el, ++X_el, ++mat_indexes, ++mat_loc_num) { elem.element = *mat_loc_num; Real el_h = getFEEngine().getElementInradius(*X_el, type); Real el_c = this->materials[*mat_indexes]->getCelerity(elem); Real el_dt = el_h / el_c; min_dt = std::min(min_dt, el_dt); } } AKANTU_DEBUG_OUT(); return min_dt; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getKineticEnergy() { AKANTU_DEBUG_IN(); Real ekin = 0.; UInt nb_nodes = mesh.getNbNodes(); if (this->getDOFManager().hasLumpedMatrix("M")) { auto m_it = this->mass->begin(Model::spatial_dimension); auto m_end = this->mass->end(Model::spatial_dimension); auto v_it = this->velocity->begin(Model::spatial_dimension); for (UInt n = 0; m_it != m_end; ++n, ++m_it, ++v_it) { const Vector & v = *v_it; const Vector & m = *m_it; Real mv2 = 0; bool is_local_node = mesh.isLocalOrMasterNode(n); // bool is_not_pbc_slave_node = !isPBCSlaveNode(n); bool count_node = is_local_node; // && is_not_pbc_slave_node; if (count_node) { for (UInt i = 0; i < Model::spatial_dimension; ++i) { if (m(i) > std::numeric_limits::epsilon()) mv2 += v(i) * v(i) * m(i); } } ekin += mv2; } } else if (this->getDOFManager().hasMatrix("M")) { Array Mv(nb_nodes, Model::spatial_dimension); this->getDOFManager().getMatrix("M").matVecMul(*this->velocity, Mv); auto mv_it = Mv.begin(Model::spatial_dimension); auto mv_end = Mv.end(Model::spatial_dimension); auto v_it = this->velocity->begin(Model::spatial_dimension); for (; mv_it != mv_end; ++mv_it, ++v_it) { ekin += v_it->dot(*mv_it); } } else { AKANTU_DEBUG_ERROR("No function called to assemble the mass matrix."); } mesh.getCommunicator().allReduce(ekin, SynchronizerOperation::_sum); AKANTU_DEBUG_OUT(); return ekin * .5; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getKineticEnergy(const ElementType & type, UInt index) { AKANTU_DEBUG_IN(); UInt nb_quadrature_points = getFEEngine().getNbIntegrationPoints(type); Array vel_on_quad(nb_quadrature_points, Model::spatial_dimension); Array filter_element(1, 1, index); getFEEngine().interpolateOnIntegrationPoints(*velocity, vel_on_quad, Model::spatial_dimension, type, _not_ghost, filter_element); Array::vector_iterator vit = vel_on_quad.begin(Model::spatial_dimension); Array::vector_iterator vend = vel_on_quad.end(Model::spatial_dimension); Vector rho_v2(nb_quadrature_points); Real rho = materials[material_index(type)(index)]->getRho(); for (UInt q = 0; vit != vend; ++vit, ++q) { rho_v2(q) = rho * vit->dot(*vit); } AKANTU_DEBUG_OUT(); return .5 * getFEEngine().integrate(rho_v2, type, index); } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getExternalWork() { AKANTU_DEBUG_IN(); auto ext_force_it = external_force->begin(Model::spatial_dimension); auto int_force_it = internal_force->begin(Model::spatial_dimension); auto boun_it = blocked_dofs->begin(Model::spatial_dimension); decltype(ext_force_it) incr_or_velo_it; if (this->method == _static) { incr_or_velo_it = this->displacement_increment->begin(Model::spatial_dimension); } else { incr_or_velo_it = this->velocity->begin(Model::spatial_dimension); } Real work = 0.; UInt nb_nodes = this->mesh.getNbNodes(); for (UInt n = 0; n < nb_nodes; ++n, ++ext_force_it, ++int_force_it, ++boun_it, ++incr_or_velo_it) { const auto & int_force = *int_force_it; const auto & ext_force = *ext_force_it; const auto & boun = *boun_it; const auto & incr_or_velo = *incr_or_velo_it; bool is_local_node = this->mesh.isLocalOrMasterNode(n); // bool is_not_pbc_slave_node = !this->isPBCSlaveNode(n); bool count_node = is_local_node; // && is_not_pbc_slave_node; if (count_node) { for (UInt i = 0; i < Model::spatial_dimension; ++i) { if (boun(i)) work -= int_force(i) * incr_or_velo(i); else work += ext_force(i) * incr_or_velo(i); } } } mesh.getCommunicator().allReduce(work, SynchronizerOperation::_sum); if (this->method != _static) work *= this->getTimeStep(); - + AKANTU_DEBUG_OUT(); return work; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getEnergy(const std::string & energy_id) { AKANTU_DEBUG_IN(); if (energy_id == "kinetic") { return getKineticEnergy(); } else if (energy_id == "external work") { return getExternalWork(); } Real energy = 0.; for (auto & material : materials) energy += material->getEnergy(energy_id); /// reduction sum over all processors mesh.getCommunicator().allReduce(energy, SynchronizerOperation::_sum); AKANTU_DEBUG_OUT(); return energy; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getEnergy(const std::string & energy_id, const ElementType & type, UInt index) { AKANTU_DEBUG_IN(); if (energy_id == "kinetic") { return getKineticEnergy(type, index); } UInt mat_index = this->material_index(type, _not_ghost)(index); UInt mat_loc_num = this->material_local_numbering(type, _not_ghost)(index); Real energy = this->materials[mat_index]->getEnergy(energy_id, type, mat_loc_num); AKANTU_DEBUG_OUT(); return energy; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::onElementsAdded(const Array & element_list, const NewElementsEvent & event) { AKANTU_DEBUG_IN(); for (auto && ghost_type : ghost_types) { for (auto type : mesh.elementTypes(spatial_dimension, ghost_type, _ek_not_defined)) { UInt nb_element = this->mesh.getNbElement(type, ghost_type); if (!material_index.exists(type, ghost_type)) { this->material_index.alloc(nb_element, 1, type, ghost_type); this->material_local_numbering.alloc(nb_element, 1, type, ghost_type, UInt(-1)); } else { this->material_index(type, ghost_type).resize(nb_element); this->material_local_numbering(type, ghost_type) .resize(nb_element, UInt(-1)); } } } ElementTypeMapArray filter("new_element_filter", this->getID(), this->getMemoryID()); for (auto & elem : element_list) { if (!filter.exists(elem.type, elem.ghost_type)) filter.alloc(0, 1, elem.type, elem.ghost_type); filter(elem.type, elem.ghost_type).push_back(elem.element); } this->assignMaterialToElements(&filter); for (auto & material : materials) material->onElementsAdded(element_list, event); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::onElementsRemoved( const Array & element_list, const ElementTypeMapArray & new_numbering, const RemovedElementsEvent & event) { // this->getFEEngine().initShapeFunctions(_not_ghost); // this->getFEEngine().initShapeFunctions(_ghost); for (auto & material : materials) { material->onElementsRemoved(element_list, new_numbering, event); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::onNodesAdded(const Array & nodes_list, const NewNodesEvent & event) { AKANTU_DEBUG_IN(); UInt nb_nodes = mesh.getNbNodes(); if (displacement) { displacement->resize(nb_nodes, 0.); ++displacement_release; } if (mass) mass->resize(nb_nodes, 0.); if (velocity) velocity->resize(nb_nodes, 0.); if (acceleration) acceleration->resize(nb_nodes, 0.); if (external_force) external_force->resize(nb_nodes, 0.); if (internal_force) internal_force->resize(nb_nodes, 0.); if (blocked_dofs) blocked_dofs->resize(nb_nodes, 0.); if (current_position) current_position->resize(nb_nodes, 0.); if (previous_displacement) previous_displacement->resize(nb_nodes, 0.); if (displacement_increment) displacement_increment->resize(nb_nodes, 0.); for (auto & material : materials) { material->onNodesAdded(nodes_list, event); } need_to_reassemble_lumped_mass = true; need_to_reassemble_mass = true; AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::onNodesRemoved(__attribute__((unused)) const Array & element_list, const Array & new_numbering, __attribute__((unused)) const RemovedNodesEvent & event) { if (displacement) { mesh.removeNodesFromArray(*displacement, new_numbering); ++displacement_release; } if (mass) mesh.removeNodesFromArray(*mass, new_numbering); if (velocity) mesh.removeNodesFromArray(*velocity, new_numbering); if (acceleration) mesh.removeNodesFromArray(*acceleration, new_numbering); if (internal_force) mesh.removeNodesFromArray(*internal_force, new_numbering); if (external_force) mesh.removeNodesFromArray(*external_force, new_numbering); if (blocked_dofs) mesh.removeNodesFromArray(*blocked_dofs, new_numbering); // if (increment_acceleration) // mesh.removeNodesFromArray(*increment_acceleration, new_numbering); if (displacement_increment) mesh.removeNodesFromArray(*displacement_increment, new_numbering); if (previous_displacement) mesh.removeNodesFromArray(*previous_displacement, new_numbering); // if (method != _explicit_lumped_mass) { // this->initSolver(); // } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::printself(std::ostream & stream, int indent) const { std::string space; for (Int i = 0; i < indent; i++, space += AKANTU_INDENT) ; stream << space << "Solid Mechanics Model [" << std::endl; stream << space << " + id : " << id << std::endl; stream << space << " + spatial dimension : " << Model::spatial_dimension << std::endl; stream << space << " + fem [" << std::endl; getFEEngine().printself(stream, indent + 2); stream << space << AKANTU_INDENT << "]" << std::endl; stream << space << " + nodals information [" << std::endl; displacement->printself(stream, indent + 2); mass->printself(stream, indent + 2); velocity->printself(stream, indent + 2); acceleration->printself(stream, indent + 2); external_force->printself(stream, indent + 2); internal_force->printself(stream, indent + 2); blocked_dofs->printself(stream, indent + 2); stream << space << AKANTU_INDENT << "]" << std::endl; stream << space << " + material information [" << std::endl; material_index.printself(stream, indent + 2); stream << space << AKANTU_INDENT << "]" << std::endl; stream << space << " + materials [" << std::endl; for (auto & material : materials) { material->printself(stream, indent + 1); } stream << space << AKANTU_INDENT << "]" << std::endl; stream << space << "]" << std::endl; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::initializeNonLocal() { this->non_local_manager->synchronize(*this, _gst_material_id); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::insertIntegrationPointsInNeighborhoods( const GhostType & ghost_type) { for (auto & mat : materials) { MaterialNonLocalInterface * mat_non_local; if ((mat_non_local = dynamic_cast(mat.get())) == nullptr) continue; ElementTypeMapArray quadrature_points_coordinates( "quadrature_points_coordinates_tmp_nl", this->id, this->memory_id); quadrature_points_coordinates.initialize(this->getFEEngine(), _nb_component = spatial_dimension, _ghost_type = ghost_type); for (auto & type : quadrature_points_coordinates.elementTypes( Model::spatial_dimension, ghost_type)) { this->getFEEngine().computeIntegrationPointsCoordinates( quadrature_points_coordinates(type, ghost_type), type, ghost_type); } mat_non_local->initMaterialNonLocal(); mat_non_local->insertIntegrationPointsInNeighborhoods( ghost_type, quadrature_points_coordinates); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::computeNonLocalStresses( const GhostType & ghost_type) { for (auto & mat : materials) { try { auto & mat_non_local = dynamic_cast(*mat); mat_non_local.computeNonLocalStresses(ghost_type); } catch (std::bad_cast &) { } } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updateLocalInternal( ElementTypeMapReal & internal_flat, const GhostType & ghost_type, const ElementKind & kind) { const ID field_name = internal_flat.getName(); for (auto & material : materials) { if (material->isInternal(field_name, kind)) material->flattenInternal(field_name, internal_flat, ghost_type, kind); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updateNonLocalInternal( ElementTypeMapReal & internal_flat, const GhostType & ghost_type, const ElementKind & kind) { const ID field_name = internal_flat.getName(); for (auto & mat : materials) { try { auto & mat_non_local = dynamic_cast(*mat); mat_non_local.updateNonLocalInternals(internal_flat, field_name, ghost_type, kind); } catch (std::bad_cast &) { } } } /* -------------------------------------------------------------------------- */ FEEngine & SolidMechanicsModel::getFEEngineBoundary(const ID & name) { return dynamic_cast( getFEEngineClassBoundary(name)); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::splitElementByMaterial( const Array & elements, std::vector> & elements_per_mat) const { ElementType current_element_type = _not_defined; GhostType current_ghost_type = _casper; const Array * mat_indexes = nullptr; const Array * mat_loc_num = nullptr; for (auto && el : elements) { if (el.type != current_element_type || el.ghost_type != current_ghost_type) { current_element_type = el.type; current_ghost_type = el.ghost_type; mat_indexes = &(this->material_index(el.type, el.ghost_type)); mat_loc_num = &(this->material_local_numbering(el.type, el.ghost_type)); } UInt old_id = el.element; el.element = (*mat_loc_num)(old_id); elements_per_mat[(*mat_indexes)(old_id)].push_back(el); } } /* -------------------------------------------------------------------------- */ UInt SolidMechanicsModel::getNbData(const Array & elements, const SynchronizationTag & tag) const { AKANTU_DEBUG_IN(); UInt size = 0; UInt nb_nodes_per_element = 0; for (const Element & el : elements) { nb_nodes_per_element += Mesh::getNbNodesPerElement(el.type); } switch (tag) { case _gst_material_id: { size += elements.size() * sizeof(UInt); break; } case _gst_smm_mass: { size += nb_nodes_per_element * sizeof(Real) * Model::spatial_dimension; // mass vector break; } case _gst_smm_for_gradu: { size += nb_nodes_per_element * Model::spatial_dimension * sizeof(Real); // displacement break; } case _gst_smm_boundary: { // force, displacement, boundary size += nb_nodes_per_element * Model::spatial_dimension * (2 * sizeof(Real) + sizeof(bool)); break; } case _gst_for_dump: { // displacement, velocity, acceleration, residual, force size += nb_nodes_per_element * Model::spatial_dimension * sizeof(Real) * 5; break; } default: {} } if (tag != _gst_material_id) { splitByMaterial(elements, [&](auto && mat, auto && elements) { size += mat.getNbData(elements, tag); }); } AKANTU_DEBUG_OUT(); return size; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::packData(CommunicationBuffer & buffer, const Array & elements, const SynchronizationTag & tag) const { AKANTU_DEBUG_IN(); switch (tag) { case _gst_material_id: { this->packElementalDataHelper(material_index, buffer, elements, false, getFEEngine()); break; } case _gst_smm_mass: { packNodalDataHelper(*mass, buffer, elements, mesh); break; } case _gst_smm_for_gradu: { packNodalDataHelper(*displacement, buffer, elements, mesh); break; } case _gst_for_dump: { packNodalDataHelper(*displacement, buffer, elements, mesh); packNodalDataHelper(*velocity, buffer, elements, mesh); packNodalDataHelper(*acceleration, buffer, elements, mesh); packNodalDataHelper(*internal_force, buffer, elements, mesh); packNodalDataHelper(*external_force, buffer, elements, mesh); break; } case _gst_smm_boundary: { packNodalDataHelper(*external_force, buffer, elements, mesh); packNodalDataHelper(*velocity, buffer, elements, mesh); packNodalDataHelper(*blocked_dofs, buffer, elements, mesh); break; } default: {} } if (tag != _gst_material_id) { splitByMaterial(elements, [&](auto && mat, auto && elements) { mat.packData(buffer, elements, tag); }); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::unpackData(CommunicationBuffer & buffer, const Array & elements, const SynchronizationTag & tag) { AKANTU_DEBUG_IN(); switch (tag) { case _gst_material_id: { for (auto && element : elements) { UInt recv_mat_index; buffer >> recv_mat_index; UInt & mat_index = material_index(element); if (mat_index != UInt(-1)) continue; // add ghosts element to the correct material mat_index = recv_mat_index; UInt index = materials[mat_index]->addElement(element); material_local_numbering(element) = index; } break; } case _gst_smm_mass: { unpackNodalDataHelper(*mass, buffer, elements, mesh); break; } case _gst_smm_for_gradu: { unpackNodalDataHelper(*displacement, buffer, elements, mesh); break; } case _gst_for_dump: { unpackNodalDataHelper(*displacement, buffer, elements, mesh); unpackNodalDataHelper(*velocity, buffer, elements, mesh); unpackNodalDataHelper(*acceleration, buffer, elements, mesh); unpackNodalDataHelper(*internal_force, buffer, elements, mesh); unpackNodalDataHelper(*external_force, buffer, elements, mesh); break; } case _gst_smm_boundary: { unpackNodalDataHelper(*external_force, buffer, elements, mesh); unpackNodalDataHelper(*velocity, buffer, elements, mesh); unpackNodalDataHelper(*blocked_dofs, buffer, elements, mesh); break; } default: {} } if (tag != _gst_material_id) { splitByMaterial(elements, [&](auto && mat, auto && elements) { mat.unpackData(buffer, elements, tag); }); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ UInt SolidMechanicsModel::getNbData(const Array & dofs, const SynchronizationTag & tag) const { AKANTU_DEBUG_IN(); UInt size = 0; // UInt nb_nodes = mesh.getNbNodes(); switch (tag) { case _gst_smm_uv: { size += sizeof(Real) * Model::spatial_dimension * 2; break; } case _gst_smm_res: { size += sizeof(Real) * Model::spatial_dimension; break; } case _gst_smm_mass: { size += sizeof(Real) * Model::spatial_dimension; break; } case _gst_for_dump: { size += sizeof(Real) * Model::spatial_dimension * 5; break; } default: { AKANTU_DEBUG_ERROR("Unknown ghost synchronization tag : " << tag); } } AKANTU_DEBUG_OUT(); return size * dofs.size(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::packData(CommunicationBuffer & buffer, const Array & dofs, const SynchronizationTag & tag) const { AKANTU_DEBUG_IN(); switch (tag) { case _gst_smm_uv: { packDOFDataHelper(*displacement, buffer, dofs); packDOFDataHelper(*velocity, buffer, dofs); break; } case _gst_smm_res: { packDOFDataHelper(*internal_force, buffer, dofs); break; } case _gst_smm_mass: { packDOFDataHelper(*mass, buffer, dofs); break; } case _gst_for_dump: { packDOFDataHelper(*displacement, buffer, dofs); packDOFDataHelper(*velocity, buffer, dofs); packDOFDataHelper(*acceleration, buffer, dofs); packDOFDataHelper(*internal_force, buffer, dofs); packDOFDataHelper(*external_force, buffer, dofs); break; } default: { AKANTU_DEBUG_ERROR("Unknown ghost synchronization tag : " << tag); } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::unpackData(CommunicationBuffer & buffer, const Array & dofs, const SynchronizationTag & tag) { AKANTU_DEBUG_IN(); switch (tag) { case _gst_smm_uv: { unpackDOFDataHelper(*displacement, buffer, dofs); unpackDOFDataHelper(*velocity, buffer, dofs); break; } case _gst_smm_res: { unpackDOFDataHelper(*internal_force, buffer, dofs); break; } case _gst_smm_mass: { unpackDOFDataHelper(*mass, buffer, dofs); break; } case _gst_for_dump: { unpackDOFDataHelper(*displacement, buffer, dofs); unpackDOFDataHelper(*velocity, buffer, dofs); unpackDOFDataHelper(*acceleration, buffer, dofs); unpackDOFDataHelper(*internal_force, buffer, dofs); unpackDOFDataHelper(*external_force, buffer, dofs); break; } default: { AKANTU_DEBUG_ERROR("Unknown ghost synchronization tag : " << tag); } } AKANTU_DEBUG_OUT(); } } // namespace akantu diff --git a/src/model/solid_mechanics/solid_mechanics_model.hh b/src/model/solid_mechanics/solid_mechanics_model.hh index a82d8f009..8f54e94e7 100644 --- a/src/model/solid_mechanics/solid_mechanics_model.hh +++ b/src/model/solid_mechanics/solid_mechanics_model.hh @@ -1,564 +1,562 @@ /** * @file solid_mechanics_model.hh * * @author Guillaume Anciaux * @author Daniel Pino Muñoz * @author Nicolas Richart * * @date creation: Tue Jul 27 2010 * @date last modification: Tue Jan 19 2016 * * @brief Model of Solid Mechanics * * @section LICENSE * * Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de * Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des * Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "boundary_condition.hh" #include "data_accessor.hh" #include "fe_engine.hh" #include "model.hh" #include "non_local_manager.hh" #include "solid_mechanics_model_event_handler.hh" /* -------------------------------------------------------------------------- */ #ifndef __AKANTU_SOLID_MECHANICS_MODEL_HH__ #define __AKANTU_SOLID_MECHANICS_MODEL_HH__ namespace akantu { class Material; class MaterialSelector; class DumperIOHelper; class NonLocalManager; template class IntegratorGauss; template class ShapeLagrange; } // namespace akantu /* -------------------------------------------------------------------------- */ namespace akantu { /* -------------------------------------------------------------------------- */ class SolidMechanicsModel : public Model, public DataAccessor, public DataAccessor, public BoundaryCondition, public NonLocalManagerCallback, public EventHandlerManager { /* ------------------------------------------------------------------------ */ /* Constructors/Destructors */ /* ------------------------------------------------------------------------ */ public: class NewMaterialElementsEvent : public NewElementsEvent { public: AKANTU_GET_MACRO_NOT_CONST(MaterialList, material, Array &); AKANTU_GET_MACRO(MaterialList, material, const Array &); protected: Array material; }; using MyFEEngineType = FEEngineTemplate; protected: using EventManager = EventHandlerManager; public: SolidMechanicsModel(Mesh & mesh, UInt spatial_dimension = _all_dimensions, const ID & id = "solid_mechanics_model", const MemoryID & memory_id = 0); ~SolidMechanicsModel() override; /* ------------------------------------------------------------------------ */ /* Methods */ /* ------------------------------------------------------------------------ */ public: /// initialize the fem object needed for boundary conditions void initFEEngineBoundary(); protected: /// initialize completely the model void initFullImpl( const ModelOptions & options = SolidMechanicsModelOptions()) override; /// initialize all internal arrays for materials virtual void initMaterials(); /// initialize the model void initModel() override; /// function to print the containt of the class void printself(std::ostream & stream, int indent = 0) const override; /// get some default values for derived classes std::tuple getDefaultSolverID(const AnalysisMethod & method) override; /* ------------------------------------------------------------------------ */ /* Solver interface */ /* ------------------------------------------------------------------------ */ public: /// assembles the stiffness matrix, virtual void assembleStiffnessMatrix(); /// assembles the internal forces in the array internal_forces virtual void assembleInternalForces(); protected: /// callback for the solver, this adds f_{ext} - f_{int} to the residual void assembleResidual() override; /// get the type of matrix needed MatrixType getMatrixType(const ID & matrix_id) override; /// callback for the solver, this assembles different matrices void assembleMatrix(const ID & matrix_id) override; /// callback for the solver, this assembles the stiffness matrix void assembleLumpedMatrix(const ID & matrix_id) override; /// callback for the solver, this is called at beginning of solve void predictor() override; /// callback for the solver, this is called at end of solve void corrector() override; /// callback for the solver, this is called at beginning of solve void beforeSolveStep() override; /// callback for the solver, this is called at end of solve void afterSolveStep() override; /// Callback for the model to instantiate the matricees when needed void initSolver(TimeStepSolverType time_step_solver_type, NonLinearSolverType non_linear_solver_type) override; protected: /* ------------------------------------------------------------------------ */ TimeStepSolverType getDefaultSolverType() const override; /* ------------------------------------------------------------------------ */ ModelSolverOptions getDefaultSolverOptions(const TimeStepSolverType & type) const override; public: bool isDefaultSolverExplicit() { return method == _explicit_lumped_mass || method == _explicit_consistent_mass; } protected: /// update the current position vector void updateCurrentPosition(); /* ------------------------------------------------------------------------ */ /* Materials (solid_mechanics_model_material.cc) */ /* ------------------------------------------------------------------------ */ public: /// register an empty material of a given type Material & registerNewMaterial(const ID & mat_name, const ID & mat_type, const ID & opt_param); /// reassigns materials depending on the material selector virtual void reassignMaterial(); /// apply a constant eigen_grad_u on all quadrature points of a given material virtual void applyEigenGradU(const Matrix & prescribed_eigen_grad_u, const ID & material_name, const GhostType ghost_type = _not_ghost); protected: /// register a material in the dynamic database Material & registerNewMaterial(const ParserSection & mat_section); /// read the material files to instantiate all the materials void instantiateMaterials(); /// set the element_id_by_material and add the elements to the good materials void assignMaterialToElements(const ElementTypeMapArray * filter = nullptr); /* ------------------------------------------------------------------------ */ /* Mass (solid_mechanics_model_mass.cc) */ /* ------------------------------------------------------------------------ */ public: /// assemble the lumped mass matrix void assembleMassLumped(); /// assemble the mass matrix for consistent mass resolutions void assembleMass(); protected: /// assemble the lumped mass matrix for local and ghost elements void assembleMassLumped(GhostType ghost_type); /// assemble the mass matrix for either _ghost or _not_ghost elements void assembleMass(GhostType ghost_type); /// fill a vector of rho void computeRho(Array & rho, ElementType type, GhostType ghost_type); /// compute the kinetic energy Real getKineticEnergy(); Real getKineticEnergy(const ElementType & type, UInt index); /// compute the external work (for impose displacement, the velocity should be /// given too) Real getExternalWork(); /* ------------------------------------------------------------------------ */ /* NonLocalManager inherited members */ /* ------------------------------------------------------------------------ */ protected: void initializeNonLocal() override; void updateDataForNonLocalCriterion(ElementTypeMapReal & criterion) override; void computeNonLocalStresses(const GhostType & ghost_type) override; void insertIntegrationPointsInNeighborhoods(const GhostType & ghost_type) override; /// update the values of the non local internal void updateLocalInternal(ElementTypeMapReal & internal_flat, const GhostType & ghost_type, const ElementKind & kind) override; /// copy the results of the averaging in the materials void updateNonLocalInternal(ElementTypeMapReal & internal_flat, const GhostType & ghost_type, const ElementKind & kind) override; /* ------------------------------------------------------------------------ */ /* Data Accessor inherited members */ /* ------------------------------------------------------------------------ */ public: UInt getNbData(const Array & elements, const SynchronizationTag & tag) const override; void packData(CommunicationBuffer & buffer, const Array & elements, const SynchronizationTag & tag) const override; void unpackData(CommunicationBuffer & buffer, const Array & elements, const SynchronizationTag & tag) override; UInt getNbData(const Array & dofs, const SynchronizationTag & tag) const override; void packData(CommunicationBuffer & buffer, const Array & dofs, const SynchronizationTag & tag) const override; void unpackData(CommunicationBuffer & buffer, const Array & dofs, const SynchronizationTag & tag) override; protected: void splitElementByMaterial(const Array & elements, std::vector> & elements_per_mat) const; template void splitByMaterial(const Array & elements, Operation && op) const; /* ------------------------------------------------------------------------ */ /* Mesh Event Handler inherited members */ /* ------------------------------------------------------------------------ */ protected: void onNodesAdded(const Array & nodes_list, const NewNodesEvent & event) override; void onNodesRemoved(const Array & element_list, const Array & new_numbering, const RemovedNodesEvent & event) override; void onElementsAdded(const Array & nodes_list, const NewElementsEvent & event) override; void onElementsRemoved(const Array & element_list, const ElementTypeMapArray & new_numbering, const RemovedElementsEvent & event) override; void onElementsChanged(const Array &, const Array &, const ElementTypeMapArray &, const ChangedElementsEvent &) override{}; /* ------------------------------------------------------------------------ */ /* Dumpable interface (kept for convenience) and dumper relative functions */ /* ------------------------------------------------------------------------ */ public: virtual void onDump(); //! decide wether a field is a material internal or not bool isInternal(const std::string & field_name, const ElementKind & element_kind); #ifndef SWIG //! give the amount of data per element virtual ElementTypeMap getInternalDataPerElem(const std::string & field_name, const ElementKind & kind); //! flatten a given material internal field ElementTypeMapArray & flattenInternal(const std::string & field_name, const ElementKind & kind, const GhostType ghost_type = _not_ghost); //! flatten all the registered material internals void flattenAllRegisteredInternals(const ElementKind & kind); #endif dumper::Field * createNodalFieldReal(const std::string & field_name, const std::string & group_name, bool padding_flag) override; dumper::Field * createNodalFieldBool(const std::string & field_name, const std::string & group_name, bool padding_flag) override; dumper::Field * createElementalField(const std::string & field_name, const std::string & group_name, bool padding_flag, const UInt & spatial_dimension, const ElementKind & kind) override; virtual void dump(const std::string & dumper_name); virtual void dump(const std::string & dumper_name, UInt step); virtual void dump(const std::string & dumper_name, Real time, UInt step); void dump() override; virtual void dump(UInt step); virtual void dump(Real time, UInt step); /* ------------------------------------------------------------------------ */ /* Accessors */ /* ------------------------------------------------------------------------ */ public: /// return the dimension of the system space AKANTU_GET_MACRO(SpatialDimension, Model::spatial_dimension, UInt); /// set the value of the time step void setTimeStep(Real time_step, const ID & solver_id = "") override; /// get the value of the conversion from forces/ mass to acceleration AKANTU_GET_MACRO(F_M2A, f_m2a, Real); /// set the value of the conversion from forces/ mass to acceleration AKANTU_SET_MACRO(F_M2A, f_m2a, Real); /// get the SolidMechanicsModel::displacement vector AKANTU_GET_MACRO(Displacement, *displacement, Array &); /// get the SolidMechanicsModel::previous_displacement vector AKANTU_GET_MACRO(PreviousDisplacement, *previous_displacement, Array &); /// get the SolidMechanicsModel::current_position vector \warn only consistent /// after a call to SolidMechanicsModel::updateCurrentPosition const Array & getCurrentPosition(); /// get the SolidMechanicsModel::increment vector \warn only consistent if /// SolidMechanicsModel::setIncrementFlagOn has been called before AKANTU_GET_MACRO(Increment, *displacement_increment, Array &); /// get the lumped SolidMechanicsModel::mass vector AKANTU_GET_MACRO(Mass, *mass, Array &); /// get the SolidMechanicsModel::velocity vector AKANTU_GET_MACRO(Velocity, *velocity, Array &); /// get the SolidMechanicsModel::acceleration vector, updated by /// SolidMechanicsModel::updateAcceleration AKANTU_GET_MACRO(Acceleration, *acceleration, Array &); /// get the SolidMechanicsModel::force vector (external forces) AKANTU_GET_MACRO(Force, *external_force, Array &); /// get the SolidMechanicsModel::internal_force vector (internal forces) AKANTU_GET_MACRO(InternalForce, *internal_force, Array &); /// get the SolidMechanicsModel::blocked_dofs vector AKANTU_GET_MACRO(BlockedDOFs, *blocked_dofs, Array &); /// get the value of the SolidMechanicsModel::increment_flag AKANTU_GET_MACRO(IncrementFlag, increment_flag, bool); /// get a particular material (by material index) inline Material & getMaterial(UInt mat_index); /// get a particular material (by material index) inline const Material & getMaterial(UInt mat_index) const; /// get a particular material (by material name) inline Material & getMaterial(const std::string & name); /// get a particular material (by material name) inline const Material & getMaterial(const std::string & name) const; /// get a particular material id from is name inline UInt getMaterialIndex(const std::string & name) const; /// give the number of materials inline UInt getNbMaterials() const { return materials.size(); } - inline void setMaterialSelector(MaterialSelector & selector); - /// give the material internal index from its id Int getInternalIndexFromID(const ID & id) const; /// compute the stable time step Real getStableTimeStep(); /// get the energies Real getEnergy(const std::string & energy_id); /// compute the energy for energy Real getEnergy(const std::string & energy_id, const ElementType & type, UInt index); /// get the FEEngine object to integrate or interpolate on the boundary FEEngine & getFEEngineBoundary(const ID & name = "") override; AKANTU_GET_MACRO(MaterialByElement, material_index, const ElementTypeMapArray &); /// vectors containing local material element index for each global element /// index AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(MaterialByElement, material_index, UInt); AKANTU_GET_MACRO_BY_ELEMENT_TYPE(MaterialByElement, material_index, UInt); AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(MaterialLocalNumbering, material_local_numbering, UInt); AKANTU_GET_MACRO_BY_ELEMENT_TYPE(MaterialLocalNumbering, material_local_numbering, UInt); + AKANTU_GET_MACRO_NOT_CONST(MaterialSelector, material_selector, std::shared_ptr); + AKANTU_SET_MACRO(MaterialSelector, material_selector, std::shared_ptr); + /// Access the non_local_manager interface AKANTU_GET_MACRO(NonLocalManager, *non_local_manager, NonLocalManager &); protected: friend class Material; protected: /// compute the stable time step Real getStableTimeStep(const GhostType & ghost_type); /* ------------------------------------------------------------------------ */ /* Class Members */ /* ------------------------------------------------------------------------ */ protected: /// conversion coefficient form force/mass to acceleration Real f_m2a; /// displacements array Array * displacement; UInt displacement_release{0}; /// displacements array at the previous time step (used in finite deformation) Array * previous_displacement{nullptr}; /// increment of displacement Array * displacement_increment{nullptr}; /// lumped mass array Array * mass{nullptr}; /// Check if materials need to recompute the mass array bool need_to_reassemble_lumped_mass{true}; /// Check if materials need to recompute the mass matrix bool need_to_reassemble_mass{true}; /// velocities array Array * velocity{nullptr}; /// accelerations array Array * acceleration{nullptr}; /// accelerations array // Array * increment_acceleration; /// external forces array Array * external_force{nullptr}; /// internal forces array Array * internal_force{nullptr}; /// array specifing if a degree of freedom is blocked or not Array * blocked_dofs{nullptr}; /// array of current position used during update residual Array * current_position{nullptr}; UInt current_position_release{0}; /// Arrays containing the material index for each element ElementTypeMapArray material_index; /// Arrays containing the position in the element filter of the material /// (material's local numbering) ElementTypeMapArray material_local_numbering; #ifdef SWIGPYTHON public: #endif /// list of used materials std::vector> materials; /// mapping between material name and material internal id std::map materials_names_to_id; #ifdef SWIGPYTHON protected: #endif /// class defining of to choose a material - MaterialSelector * material_selector; - - /// define if it is the default selector or not - bool is_default_material_selector; + std::shared_ptr material_selector; /// flag defining if the increment must be computed or not bool increment_flag; /// tells if the material are instantiated bool are_materials_instantiated; using flatten_internal_map = std::map, ElementTypeMapArray *>; /// map a registered internals to be flattened for dump purposes flatten_internal_map registered_internals; /// non local manager std::unique_ptr non_local_manager; }; /* -------------------------------------------------------------------------- */ namespace BC { namespace Neumann { using FromStress = FromHigherDim; using FromTraction = FromSameDim; } // namespace Neumann } // namespace BC } // namespace akantu /* -------------------------------------------------------------------------- */ /* inline functions */ /* -------------------------------------------------------------------------- */ #include "material.hh" #include "parser.hh" #include "solid_mechanics_model_inline_impl.cc" #include "solid_mechanics_model_tmpl.hh" /* -------------------------------------------------------------------------- */ #endif /* __AKANTU_SOLID_MECHANICS_MODEL_HH__ */ diff --git a/src/model/solid_mechanics/solid_mechanics_model_cohesive/material_selector_cohesive.cc b/src/model/solid_mechanics/solid_mechanics_model_cohesive/material_selector_cohesive.cc index cae9870ab..b81fb7260 100644 --- a/src/model/solid_mechanics/solid_mechanics_model_cohesive/material_selector_cohesive.cc +++ b/src/model/solid_mechanics/solid_mechanics_model_cohesive/material_selector_cohesive.cc @@ -1,96 +1,95 @@ /** * @file material_selector_cohesive.cc * * @author Mauro Corrado * @author Nicolas Richart * @author Marco Vocialta * * @date creation: Fri Dec 11 2015 * @date last modification: Mon Dec 14 2015 * * @brief Material selector for cohesive elements * * @section LICENSE * * Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory * (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "material_selector_cohesive.hh" #include "solid_mechanics_model_cohesive.hh" namespace akantu { /* -------------------------------------------------------------------------- */ DefaultMaterialCohesiveSelector::DefaultMaterialCohesiveSelector( const SolidMechanicsModelCohesive & model) - : DefaultMaterialSelector(model.getMaterialByElement()), - facet_material(model.getFacetMaterial()), mesh(model.getMesh()) {} + : facet_material(model.getFacetMaterial()), mesh(model.getMesh()) {} /* -------------------------------------------------------------------------- */ UInt DefaultMaterialCohesiveSelector::operator()(const Element & element) { if (Mesh::getKind(element.type) == _ek_cohesive) { try { const Array & cohesive_el_to_facet = mesh.getMeshFacets().getSubelementToElement(element.type, element.ghost_type); bool third_dimension = (mesh.getSpatialDimension() == 3); const Element & facet = cohesive_el_to_facet(element.element, third_dimension); if (facet_material.exists(facet.type, facet.ghost_type)) { return facet_material(facet.type, facet.ghost_type)(facet.element); } else { - return MaterialSelector::operator()(element); + return fallback_value; } } catch (...) { - return MaterialSelector::operator()(element); + return fallback_value; } } else if (Mesh::getSpatialDimension(element.type) == mesh.getSpatialDimension() - 1) { return facet_material(element.type, element.ghost_type)(element.element); } else { - return DefaultMaterialSelector::operator()(element); + return MaterialSelector::operator()(element); } } /* -------------------------------------------------------------------------- */ MeshDataMaterialCohesiveSelector::MeshDataMaterialCohesiveSelector( const SolidMechanicsModelCohesive & model) : MeshDataMaterialSelector("physical_names", model), mesh_facets(model.getMeshFacets()), material_index(mesh_facets.getData("physical_names")) { third_dimension = (model.getSpatialDimension() == 3); } /* -------------------------------------------------------------------------- */ UInt MeshDataMaterialCohesiveSelector::operator()(const Element & element) { if (Mesh::getKind(element.type) == _ek_cohesive) { const Array & cohesive_el_to_facet = mesh_facets.getSubelementToElement(element.type, element.ghost_type); const Element & facet = cohesive_el_to_facet(element.element, third_dimension); UInt material_id = material_index(facet.type, facet.ghost_type)(facet.element); UInt fallback_id = MaterialSelector::operator()(element); return std::max(material_id, fallback_id); } else return MeshDataMaterialSelector::operator()(element); } } // namespace akantu diff --git a/src/model/solid_mechanics/solid_mechanics_model_cohesive/material_selector_cohesive.hh b/src/model/solid_mechanics/solid_mechanics_model_cohesive/material_selector_cohesive.hh index 269fdd115..1af6efc2f 100644 --- a/src/model/solid_mechanics/solid_mechanics_model_cohesive/material_selector_cohesive.hh +++ b/src/model/solid_mechanics/solid_mechanics_model_cohesive/material_selector_cohesive.hh @@ -1,76 +1,76 @@ /** * @file material_selector_cohesive.hh * * @author Mauro Corrado * @author Nicolas Richart * @author Marco Vocialta * * @date creation: Fri Dec 11 2015 * @date last modification: Mon Dec 14 2015 * * @brief Material selectors for cohesive elements * * @section LICENSE * * Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory * (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "material_selector.hh" /* -------------------------------------------------------------------------- */ namespace akantu { class SolidMechanicsModelCohesive; } namespace akantu { #ifndef __AKANTU_MATERIAL_SELECTOR_COHESIVE_HH__ #define __AKANTU_MATERIAL_SELECTOR_COHESIVE_HH__ /* -------------------------------------------------------------------------- */ /** * class that assigns the first cohesive material by default to the * cohesive elements */ -class DefaultMaterialCohesiveSelector : public DefaultMaterialSelector { +class DefaultMaterialCohesiveSelector : public MaterialSelector { public: DefaultMaterialCohesiveSelector(const SolidMechanicsModelCohesive & model); UInt operator()(const Element & element) override; private: const ElementTypeMapArray & facet_material; const Mesh & mesh; }; /* -------------------------------------------------------------------------- */ /// To be used with intrinsic elements inserted along mesh physical surfaces class MeshDataMaterialCohesiveSelector : public MeshDataMaterialSelector { public: MeshDataMaterialCohesiveSelector(const SolidMechanicsModelCohesive & model); UInt operator()(const Element & element) override; protected: const Mesh &mesh_facets; const ElementTypeMapArray & material_index; bool third_dimension; }; #endif /* __AKANTU_MATERIAL_SELECTOR_COHESIVE_HH__ */ } // akantu diff --git a/src/model/solid_mechanics/solid_mechanics_model_cohesive/solid_mechanics_model_cohesive.cc b/src/model/solid_mechanics/solid_mechanics_model_cohesive/solid_mechanics_model_cohesive.cc index 933bf65b6..ef93755ea 100644 --- a/src/model/solid_mechanics/solid_mechanics_model_cohesive/solid_mechanics_model_cohesive.cc +++ b/src/model/solid_mechanics/solid_mechanics_model_cohesive/solid_mechanics_model_cohesive.cc @@ -1,799 +1,787 @@ /** * @file solid_mechanics_model_cohesive.cc * * @author Mauro Corrado * @author Nicolas Richart * @author Marco Vocialta * * @date creation: Tue May 08 2012 * @date last modification: Wed Jan 13 2016 * * @brief Solid mechanics model for cohesive elements * * @section LICENSE * * Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de * Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des * Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "solid_mechanics_model_cohesive.hh" #include "aka_iterators.hh" #include "cohesive_element_inserter.hh" #include "dumpable_inline_impl.hh" #include "element_synchronizer.hh" #include "facet_synchronizer.hh" #include "fe_engine_template.hh" #include "integrator_gauss.hh" #include "material_cohesive.hh" #include "parser.hh" #include "shape_cohesive.hh" #include "dumpable_inline_impl.hh" #ifdef AKANTU_USE_IOHELPER #include "dumper_paraview.hh" #endif /* -------------------------------------------------------------------------- */ #include /* -------------------------------------------------------------------------- */ namespace akantu { const SolidMechanicsModelCohesiveOptions default_solid_mechanics_model_cohesive_options(_explicit_lumped_mass, false); /* -------------------------------------------------------------------------- */ SolidMechanicsModelCohesive::SolidMechanicsModelCohesive( Mesh & mesh, UInt dim, const ID & id, const MemoryID & memory_id) : SolidMechanicsModel(mesh, dim, id, memory_id), tangents("tangents", id), facet_stress("facet_stress", id), facet_material("facet_material", id) { AKANTU_DEBUG_IN(); this->options_type = ModelOptionsType::_solid_mechanics_model_cohesive; - delete material_selector; - material_selector = new DefaultMaterialCohesiveSelector(*this); + auto && tmp_material_selector = + std::make_shared(*this); + + tmp_material_selector->setFallback(this->material_selector); + material_selector = tmp_material_selector; #if defined(AKANTU_USE_IOHELPER) this->mesh.registerDumper("cohesive elements", id); this->mesh.addDumpMeshToDumper("cohesive elements", mesh, Model::spatial_dimension, _not_ghost, _ek_cohesive); #endif if (this->mesh.isDistributed()) { /// create the distributed synchronizer for cohesive elements cohesive_synchronizer = std::make_unique( mesh, "cohesive_distributed_synchronizer"); auto & synchronizer = mesh.getElementSynchronizer(); cohesive_synchronizer->split(synchronizer, [](auto && el) { return Mesh::getKind(el.type) == _ek_cohesive; }); this->registerSynchronizer(*cohesive_synchronizer, _gst_material_id); this->registerSynchronizer(*cohesive_synchronizer, _gst_smm_stress); this->registerSynchronizer(*cohesive_synchronizer, _gst_smm_boundary); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ SolidMechanicsModelCohesive::~SolidMechanicsModelCohesive() = default; /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::setTimeStep(Real time_step, const ID & solver_id) { SolidMechanicsModel::setTimeStep(time_step, solver_id); #if defined(AKANTU_USE_IOHELPER) this->mesh.getDumper("cohesive elements").setTimeStep(time_step); #endif } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::initFullImpl(const ModelOptions & options) { AKANTU_DEBUG_IN(); const auto & smmc_options = dynamic_cast(options); this->is_extrinsic = smmc_options.extrinsic; inserter = std::make_unique( mesh, is_extrinsic, id + ":cohesive_element_inserter"); if (mesh.isDistributed()) { auto & mesh_facets = inserter->getMeshFacets(); auto & synchronizer = dynamic_cast(mesh_facets.getElementSynchronizer()); this->registerSynchronizer(synchronizer, _gst_smmc_facets); this->registerSynchronizer(synchronizer, _gst_smmc_facets_conn); synchronizeGhostFacetsConnectivity(); /// create the facet synchronizer for extrinsic simulations if (is_extrinsic) { facet_stress_synchronizer = std::make_unique(mesh_facets); facet_stress_synchronizer->updateSchemes( [&](auto & scheme, auto & proc, auto & direction) { scheme.copy(const_cast(synchronizer) .getCommunications() .getScheme(proc, direction)); }); this->registerSynchronizer(*facet_stress_synchronizer, _gst_smmc_facets_stress); } } SolidMechanicsModel::initFullImpl(options); AKANTU_DEBUG_OUT(); } // namespace akantu /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::initMaterials() { AKANTU_DEBUG_IN(); // make sure the material are instantiated if (!are_materials_instantiated) instantiateMaterials(); /// find the first cohesive material UInt cohesive_index = 0; while ((dynamic_cast(materials[cohesive_index].get()) == nullptr) && cohesive_index <= materials.size()) ++cohesive_index; AKANTU_DEBUG_ASSERT(cohesive_index != materials.size(), "No cohesive materials in the material input file"); material_selector->setFallback(cohesive_index); // set the facet information in the material in case of dynamic insertion if (is_extrinsic) { const Mesh & mesh_facets = inserter->getMeshFacets(); facet_material.initialize(mesh_facets, _spatial_dimension = Model::spatial_dimension - 1); - // mesh_facets.initElementTypeMapArray(facet_material, 1, - // spatial_dimension - 1); Element element; for (auto ghost_type : ghost_types) { element.ghost_type = ghost_type; for (auto & type : mesh_facets.elementTypes(Model::spatial_dimension - 1, ghost_type)) { element.type = type; Array & f_material = facet_material(type, ghost_type); UInt nb_element = mesh_facets.getNbElement(type, ghost_type); f_material.resize(nb_element); f_material.set(cohesive_index); for (UInt el = 0; el < nb_element; ++el) { element.element = el; UInt mat_index = (*material_selector)(element); f_material(el) = mat_index; auto & mat = dynamic_cast(*materials[mat_index]); mat.addFacet(element); } } } SolidMechanicsModel::initMaterials(); #if defined(AKANTU_PARALLEL_COHESIVE_ELEMENT) if (facet_synchronizer != nullptr) inserter->initParallel(facet_synchronizer, cohesive_element_synchronizer); // inserter->initParallel(facet_synchronizer, synch_parallel); #endif initAutomaticInsertion(); } else { // TODO think of something a bit mor consistant than just coding the first // thing that comes in Fabian's head.... using const_section_iterator = ParserSection::const_section_iterator; std::pair sub_sections = this->parser.getSubSections(_st_mesh); if (sub_sections.first != sub_sections.second) { std::string cohesive_surfaces = sub_sections.first->getParameter("cohesive_surfaces"); this->initIntrinsicCohesiveMaterials(cohesive_surfaces); } else { this->initIntrinsicCohesiveMaterials(cohesive_index); } } AKANTU_DEBUG_OUT(); } // namespace akantu /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::initIntrinsicCohesiveMaterials( const std::string & cohesive_surfaces) { AKANTU_DEBUG_IN(); #if defined(AKANTU_PARALLEL_COHESIVE_ELEMENT) if (facet_synchronizer != nullptr) inserter->initParallel(facet_synchronizer, cohesive_element_synchronizer); // inserter->initParallel(facet_synchronizer, synch_parallel); #endif std::istringstream split(cohesive_surfaces); std::string physname; while (std::getline(split, physname, ',')) { AKANTU_DEBUG_INFO( "Pre-inserting cohesive elements along facets from physical surface: " << physname); insertElementsFromMeshData(physname); } synchronizeInsertionData(); SolidMechanicsModel::initMaterials(); - if (is_default_material_selector) - delete material_selector; - material_selector = new MeshDataMaterialCohesiveSelector(*this); + auto && tmp = std::make_shared(*this); + tmp->setFallback(material_selector->getFallbackValue()); + tmp->setFallback(material_selector->getFallbackSelector()); + material_selector = tmp; // UInt nb_new_elements = inserter->insertElements(); // if (nb_new_elements > 0) { // this->reinitializeSolver(); // } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::synchronizeInsertionData() { #if defined(AKANTU_PARALLEL_COHESIVE_ELEMENT) if (facet_synchronizer != nullptr) { facet_synchronizer->asynchronousSynchronize(*inserter, _gst_ce_groups); facet_synchronizer->waitEndSynchronize(*inserter, _gst_ce_groups); } #endif } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::initIntrinsicCohesiveMaterials( - UInt cohesive_index) { + UInt /*cohesive_index*/) { AKANTU_DEBUG_IN(); - for (ghost_type_t::iterator gt = ghost_type_t::begin(); - gt != ghost_type_t::end(); ++gt) { - Mesh::type_iterator first = - mesh.firstType(Model::spatial_dimension, *gt, _ek_cohesive); - Mesh::type_iterator last = - mesh.lastType(Model::spatial_dimension, *gt, _ek_cohesive); - - for (; first != last; ++first) { - Array & mat_indexes = this->material_index(*first, *gt); - Array & mat_loc_num = this->material_local_numbering(*first, *gt); - mat_indexes.set(cohesive_index); - mat_loc_num.clear(); - } - } #if defined(AKANTU_PARALLEL_COHESIVE_ELEMENT) if (facet_synchronizer != nullptr) inserter->initParallel(facet_synchronizer, cohesive_element_synchronizer); // inserter->initParallel(facet_synchronizer, synch_parallel); #endif SolidMechanicsModel::initMaterials(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ /** * Initialize the model,basically it pre-compute the shapes, shapes derivatives * and jacobian * */ void SolidMechanicsModelCohesive::initModel() { AKANTU_DEBUG_IN(); SolidMechanicsModel::initModel(); registerFEEngineObject("CohesiveFEEngine", mesh, Model::spatial_dimension); /// add cohesive type connectivity ElementType type = _not_defined; for (auto && type_ghost : ghost_types) { for (const auto & tmp_type : mesh.elementTypes(spatial_dimension, type_ghost)) { const Array & connectivity = mesh.getConnectivity(tmp_type, type_ghost); if (connectivity.size() == 0) continue; type = tmp_type; ElementType type_facet = Mesh::getFacetType(type); ElementType type_cohesive = FEEngine::getCohesiveElementType(type_facet); mesh.addConnectivityType(type_cohesive, type_ghost); } } AKANTU_DEBUG_ASSERT(type != _not_defined, "No elements in the mesh"); getFEEngine("CohesiveFEEngine").initShapeFunctions(_not_ghost); getFEEngine("CohesiveFEEngine").initShapeFunctions(_ghost); registerFEEngineObject( "FacetsFEEngine", mesh.getMeshFacets(), Model::spatial_dimension - 1); if (is_extrinsic) { getFEEngine("FacetsFEEngine").initShapeFunctions(_not_ghost); getFEEngine("FacetsFEEngine").initShapeFunctions(_ghost); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::limitInsertion(BC::Axis axis, Real first_limit, Real second_limit) { AKANTU_DEBUG_IN(); inserter->setLimit(axis, first_limit, second_limit); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::insertIntrinsicElements() { AKANTU_DEBUG_IN(); // UInt nb_new_elements = inserter->insertIntrinsicElements(); // if (nb_new_elements > 0) { // this->reinitializeSolver(); // } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::insertElementsFromMeshData( const std::string & physname) { AKANTU_DEBUG_IN(); UInt material_index = SolidMechanicsModel::getMaterialIndex(physname); inserter->insertIntrinsicElements(physname, material_index); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::initAutomaticInsertion() { AKANTU_DEBUG_IN(); #if defined(AKANTU_PARALLEL_COHESIVE_ELEMENT) if (facet_stress_synchronizer != nullptr) { DataAccessor * data_accessor = this; const ElementTypeMapArray & rank_to_element = synch_parallel->getPrankToElement(); facet_stress_synchronizer->updateFacetStressSynchronizer( *inserter, rank_to_element, *data_accessor); } #endif facet_stress.initialize(inserter->getMeshFacets(), _nb_component = 2 * Model::spatial_dimension * Model::spatial_dimension, _spatial_dimension = Model::spatial_dimension - 1); // inserter->getMeshFacets().initElementTypeMapArray( // facet_stress, 2 * spatial_dimension * spatial_dimension, // spatial_dimension - 1); resizeFacetStress(); /// compute normals on facets computeNormals(); initStressInterpolation(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::updateAutomaticInsertion() { AKANTU_DEBUG_IN(); inserter->limitCheckFacets(); #if defined(AKANTU_PARALLEL_COHESIVE_ELEMENT) if (facet_stress_synchronizer != nullptr) { DataAccessor * data_accessor = this; const ElementTypeMapArray & rank_to_element = synch_parallel->getPrankToElement(); facet_stress_synchronizer->updateFacetStressSynchronizer( *inserter, rank_to_element, *data_accessor); } #endif AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::initStressInterpolation() { Mesh & mesh_facets = inserter->getMeshFacets(); /// compute quadrature points coordinates on facets Array & position = mesh.getNodes(); ElementTypeMapArray quad_facets("quad_facets", id); quad_facets.initialize(mesh_facets, _nb_component = Model::spatial_dimension, _spatial_dimension = Model::spatial_dimension - 1); // mesh_facets.initElementTypeMapArray(quad_facets, Model::spatial_dimension, // Model::spatial_dimension - 1); getFEEngine("FacetsFEEngine") .interpolateOnIntegrationPoints(position, quad_facets); /// compute elements quadrature point positions and build /// element-facet quadrature points data structure ElementTypeMapArray elements_quad_facets("elements_quad_facets", id); elements_quad_facets.initialize( mesh, _nb_component = Model::spatial_dimension, _spatial_dimension = Model::spatial_dimension); // mesh.initElementTypeMapArray(elements_quad_facets, // Model::spatial_dimension, // Model::spatial_dimension); for (auto elem_gt : ghost_types) { for (auto & type : mesh.elementTypes(Model::spatial_dimension, elem_gt)) { UInt nb_element = mesh.getNbElement(type, elem_gt); if (nb_element == 0) continue; /// compute elements' quadrature points and list of facet /// quadrature points positions by element Array & facet_to_element = mesh_facets.getSubelementToElement(type, elem_gt); UInt nb_facet_per_elem = facet_to_element.getNbComponent(); Array & el_q_facet = elements_quad_facets(type, elem_gt); ElementType facet_type = Mesh::getFacetType(type); UInt nb_quad_per_facet = getFEEngine("FacetsFEEngine").getNbIntegrationPoints(facet_type); el_q_facet.resize(nb_element * nb_facet_per_elem * nb_quad_per_facet); for (UInt el = 0; el < nb_element; ++el) { for (UInt f = 0; f < nb_facet_per_elem; ++f) { Element global_facet_elem = facet_to_element(el, f); UInt global_facet = global_facet_elem.element; GhostType facet_gt = global_facet_elem.ghost_type; const Array & quad_f = quad_facets(facet_type, facet_gt); for (UInt q = 0; q < nb_quad_per_facet; ++q) { for (UInt s = 0; s < Model::spatial_dimension; ++s) { el_q_facet(el * nb_facet_per_elem * nb_quad_per_facet + f * nb_quad_per_facet + q, s) = quad_f(global_facet * nb_quad_per_facet + q, s); } } } } } } /// loop over non cohesive materials for (UInt m = 0; m < materials.size(); ++m) { try { auto & mat __attribute__((unused)) = dynamic_cast(*materials[m]); } catch (std::bad_cast &) { /// initialize the interpolation function materials[m]->initElementalFieldInterpolation(elements_quad_facets); } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::assembleInternalForces() { AKANTU_DEBUG_IN(); // f_int += f_int_cohe for (auto & material : this->materials) { try { auto & mat = dynamic_cast(*material); mat.computeTraction(_not_ghost); } catch (std::bad_cast & bce) { } } SolidMechanicsModel::assembleInternalForces(); if (isDefaultSolverExplicit()) { for (auto & material : materials) { try { auto & mat = dynamic_cast(*material); mat.computeEnergies(); } catch (std::bad_cast & bce) { } } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::computeNormals() { AKANTU_DEBUG_IN(); Mesh & mesh_facets = this->inserter->getMeshFacets(); this->getFEEngine("FacetsFEEngine") .computeNormalsOnIntegrationPoints(_not_ghost); /** * @todo store tangents while computing normals instead of * recomputing them as follows: */ /* ------------------------------------------------------------------------ */ UInt tangent_components = Model::spatial_dimension * (Model::spatial_dimension - 1); tangents.initialize(mesh_facets, _nb_component = tangent_components, _spatial_dimension = Model::spatial_dimension - 1); // mesh_facets.initElementTypeMapArray(tangents, tangent_components, // Model::spatial_dimension - 1); for (auto facet_type : mesh_facets.elementTypes(Model::spatial_dimension - 1)) { const Array & normals = this->getFEEngine("FacetsFEEngine") .getNormalsOnIntegrationPoints(facet_type); Array & tangents = this->tangents(facet_type); Math::compute_tangents(normals, tangents); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::interpolateStress() { ElementTypeMapArray by_elem_result("temporary_stress_by_facets", id); for (auto & material : materials) { try { auto & mat __attribute__((unused)) = dynamic_cast(*material); } catch (std::bad_cast &) { /// interpolate stress on facet quadrature points positions material->interpolateStressOnFacets(facet_stress, by_elem_result); } } #if defined(AKANTU_DEBUG_TOOLS) debug::element_manager.printData( debug::_dm_model_cohesive, "Interpolated stresses before", facet_stress); #endif this->synchronize(_gst_smmc_facets_stress); #if defined(AKANTU_DEBUG_TOOLS) debug::element_manager.printData(debug::_dm_model_cohesive, "Interpolated stresses", facet_stress); #endif } /* -------------------------------------------------------------------------- */ UInt SolidMechanicsModelCohesive::checkCohesiveStress() { interpolateStress(); for (auto & mat : materials) { try { auto & mat_cohesive = dynamic_cast(*mat); /// check which not ghost cohesive elements are to be created mat_cohesive.checkInsertion(); } catch (std::bad_cast &) { } } /// communicate data among processors this->synchronize(_gst_smmc_facets); /// insert cohesive elements UInt nb_new_elements = inserter->insertElements(); // if (nb_new_elements > 0) { // this->reinitializeSolver(); // } return nb_new_elements; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::onElementsAdded( const Array & element_list, const NewElementsEvent & event) { AKANTU_DEBUG_IN(); #if defined(AKANTU_PARALLEL_COHESIVE_ELEMENT) updateCohesiveSynchronizers(); #endif SolidMechanicsModel::onElementsAdded(element_list, event); #if defined(AKANTU_PARALLEL_COHESIVE_ELEMENT) if (cohesive_element_synchronizer != nullptr) cohesive_element_synchronizer->computeAllBufferSizes(*this); #endif if (is_extrinsic) resizeFacetStress(); /// if (method != _explicit_lumped_mass) { /// this->initSolver(); /// } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::onNodesAdded(const Array & new_nodes, const NewNodesEvent & event) { AKANTU_DEBUG_IN(); // Array nodes_list(nb_new_nodes); // for (UInt n = 0; n < nb_new_nodes; ++n) // nodes_list(n) = doubled_nodes(n, 1); SolidMechanicsModel::onNodesAdded(new_nodes, event); UInt new_node, old_node; try { const auto & cohesive_event = dynamic_cast(event); const auto & old_nodes = cohesive_event.getOldNodesList(); auto copy = [this, &new_node, &old_node](auto & arr) { for (UInt s = 0; s < spatial_dimension; ++s) { arr(new_node, s) = arr(old_node, s); } }; for (auto && pair : zip(new_nodes, old_nodes)) { std::tie(new_node, old_node) = pair; copy(*displacement); copy(*blocked_dofs); if (velocity) copy(*velocity); if (acceleration) copy(*acceleration); if (current_position) copy(*current_position); if (previous_displacement) copy(*previous_displacement); } // if (this->getDOFManager().hasMatrix("M")) { // this->assembleMass(old_nodes); // } // if (this->getDOFManager().hasLumpedMatrix("M")) { // this->assembleMassLumped(old_nodes); // } } catch (std::bad_cast &) { } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::onEndSolveStep(const AnalysisMethod &) { AKANTU_DEBUG_IN(); /* * This is required because the Cauchy stress is the stress measure that * is used to check the insertion of cohesive elements */ for (auto & mat : materials) { if (mat->isFiniteDeformation()) mat->computeAllCauchyStresses(_not_ghost); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::printself(std::ostream & stream, int indent) const { std::string space; for (Int i = 0; i < indent; i++, space += AKANTU_INDENT) ; stream << space << "SolidMechanicsModelCohesive [" << std::endl; SolidMechanicsModel::printself(stream, indent + 1); stream << space << "]" << std::endl; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::resizeFacetStress() { AKANTU_DEBUG_IN(); Mesh & mesh_facets = inserter->getMeshFacets(); for (auto && ghost_type : ghost_types) { for (const auto & type : mesh_facets.elementTypes(spatial_dimension - 1, ghost_type)) { UInt nb_facet = mesh_facets.getNbElement(type, ghost_type); UInt nb_quadrature_points = getFEEngine("FacetsFEEngine") .getNbIntegrationPoints(type, ghost_type); UInt new_size = nb_facet * nb_quadrature_points; facet_stress(type, ghost_type).resize(new_size); } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::addDumpGroupFieldToDumper( const std::string & dumper_name, const std::string & field_id, const std::string & group_name, const ElementKind & element_kind, bool padding_flag) { AKANTU_DEBUG_IN(); UInt spatial_dimension = Model::spatial_dimension; ElementKind _element_kind = element_kind; if (dumper_name == "cohesive elements") { _element_kind = _ek_cohesive; } else if (dumper_name == "facets") { spatial_dimension = Model::spatial_dimension - 1; } SolidMechanicsModel::addDumpGroupFieldToDumper(dumper_name, field_id, group_name, spatial_dimension, _element_kind, padding_flag); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModelCohesive::onDump() { this->flattenAllRegisteredInternals(_ek_cohesive); SolidMechanicsModel::onDump(); } /* -------------------------------------------------------------------------- */ } // namespace akantu diff --git a/src/model/solid_mechanics/solid_mechanics_model_inline_impl.cc b/src/model/solid_mechanics/solid_mechanics_model_inline_impl.cc index e38d5e5d5..3be79fb34 100644 --- a/src/model/solid_mechanics/solid_mechanics_model_inline_impl.cc +++ b/src/model/solid_mechanics/solid_mechanics_model_inline_impl.cc @@ -1,123 +1,114 @@ /** * @file solid_mechanics_model_inline_impl.cc * * @author Guillaume Anciaux * @author Daniel Pino Muñoz * @author Nicolas Richart * * @date creation: Wed Aug 04 2010 * @date last modification: Wed Nov 18 2015 * * @brief Implementation of the inline functions of the SolidMechanicsModel * class * * @section LICENSE * * Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de * Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des * Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "aka_named_argument.hh" #include "material_selector.hh" #include "material_selector_tmpl.hh" #include "solid_mechanics_model.hh" /* -------------------------------------------------------------------------- */ #ifndef __AKANTU_SOLID_MECHANICS_MODEL_INLINE_IMPL_CC__ #define __AKANTU_SOLID_MECHANICS_MODEL_INLINE_IMPL_CC__ namespace akantu { /* -------------------------------------------------------------------------- */ inline SolidMechanicsModelOptions::SolidMechanicsModelOptions( AnalysisMethod analysis_method) : ModelOptions(analysis_method) {} /* -------------------------------------------------------------------------- */ template SolidMechanicsModelOptions::SolidMechanicsModelOptions(use_named_args_t, pack &&... _pack) : SolidMechanicsModelOptions( OPTIONAL_NAMED_ARG(analysis_method, _explicit_lumped_mass)) {} /* -------------------------------------------------------------------------- */ inline Material & SolidMechanicsModel::getMaterial(UInt mat_index) { AKANTU_DEBUG_IN(); AKANTU_DEBUG_ASSERT(mat_index < materials.size(), "The model " << id << " has no material no " << mat_index); AKANTU_DEBUG_OUT(); return *materials[mat_index]; } /* -------------------------------------------------------------------------- */ inline const Material & SolidMechanicsModel::getMaterial(UInt mat_index) const { AKANTU_DEBUG_IN(); AKANTU_DEBUG_ASSERT(mat_index < materials.size(), "The model " << id << " has no material no " << mat_index); AKANTU_DEBUG_OUT(); return *materials[mat_index]; } /* -------------------------------------------------------------------------- */ inline Material & SolidMechanicsModel::getMaterial(const std::string & name) { AKANTU_DEBUG_IN(); std::map::const_iterator it = materials_names_to_id.find(name); AKANTU_DEBUG_ASSERT(it != materials_names_to_id.end(), "The model " << id << " has no material named " << name); AKANTU_DEBUG_OUT(); return *materials[it->second]; } /* -------------------------------------------------------------------------- */ inline UInt SolidMechanicsModel::getMaterialIndex(const std::string & name) const { AKANTU_DEBUG_IN(); auto it = materials_names_to_id.find(name); AKANTU_DEBUG_ASSERT(it != materials_names_to_id.end(), "The model " << id << " has no material named " << name); AKANTU_DEBUG_OUT(); return it->second; } /* -------------------------------------------------------------------------- */ inline const Material & SolidMechanicsModel::getMaterial(const std::string & name) const { AKANTU_DEBUG_IN(); auto it = materials_names_to_id.find(name); AKANTU_DEBUG_ASSERT(it != materials_names_to_id.end(), "The model " << id << " has no material named " << name); AKANTU_DEBUG_OUT(); return *materials[it->second]; } -/* -------------------------------------------------------------------------- */ -inline void -SolidMechanicsModel::setMaterialSelector(MaterialSelector & selector) { - if (is_default_material_selector) - delete material_selector; - material_selector = &selector; - is_default_material_selector = false; -} - /* -------------------------------------------------------------------------- */ } // namespace akantu #endif /* __AKANTU_SOLID_MECHANICS_MODEL_INLINE_IMPL_CC__ */ diff --git a/src/model/solid_mechanics/solid_mechanics_model_material.cc b/src/model/solid_mechanics/solid_mechanics_model_material.cc index f7d2d9f8a..44d87e3f5 100644 --- a/src/model/solid_mechanics/solid_mechanics_model_material.cc +++ b/src/model/solid_mechanics/solid_mechanics_model_material.cc @@ -1,245 +1,245 @@ /** * @file solid_mechanics_model_material.cc * * @author Guillaume Anciaux * @author Nicolas Richart * * @date creation: Fri Nov 26 2010 * @date last modification: Mon Nov 16 2015 * * @brief instatiation of materials * * @section LICENSE * * Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de * Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des * Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "aka_factory.hh" #include "aka_math.hh" #include "material_non_local.hh" #include "mesh_iterators.hh" #include "non_local_manager.hh" #include "solid_mechanics_model.hh" /* -------------------------------------------------------------------------- */ namespace akantu { /* -------------------------------------------------------------------------- */ Material & SolidMechanicsModel::registerNewMaterial(const ParserSection & section) { std::string mat_name; std::string mat_type = section.getName(); std::string opt_param = section.getOption(); try { std::string tmp = section.getParameter("name"); mat_name = tmp; /** this can seam weird, but there is an ambiguous operator * overload that i couldn't solve. @todo remove the * weirdness of this code */ } catch (debug::Exception &) { AKANTU_DEBUG_ERROR( "A material of type \'" << mat_type << "\' in the input file has been defined without a name!"); } Material & mat = this->registerNewMaterial(mat_name, mat_type, opt_param); mat.parseSection(section); return mat; } /* -------------------------------------------------------------------------- */ Material & SolidMechanicsModel::registerNewMaterial(const ID & mat_name, const ID & mat_type, const ID & opt_param) { AKANTU_DEBUG_ASSERT(materials_names_to_id.find(mat_name) == materials_names_to_id.end(), "A material with this name '" << mat_name << "' has already been registered. " << "Please use unique names for materials"); UInt mat_count = materials.size(); materials_names_to_id[mat_name] = mat_count; std::stringstream sstr_mat; sstr_mat << this->id << ":" << mat_count << ":" << mat_type; ID mat_id = sstr_mat.str(); std::unique_ptr material = MaterialFactory::getInstance().allocate( mat_type, spatial_dimension, opt_param, *this, mat_id); materials.push_back(std::move(material)); return *(materials.back()); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::instantiateMaterials() { std::pair sub_sect = this->parser.getSubSections(_st_material); Parser::const_section_iterator it = sub_sect.first; for (; it != sub_sect.second; ++it) { const ParserSection & section = *it; registerNewMaterial(section); } #ifdef AKANTU_DAMAGE_NON_LOCAL for (auto & material : materials) { if (dynamic_cast(material.get()) == nullptr) continue; this->non_local_manager = std::make_unique( *this, *this, id + ":non_local_manager", memory_id); break; } #endif are_materials_instantiated = true; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::assignMaterialToElements( const ElementTypeMapArray * filter) { - for_each_elements(mesh, - [&](auto && element) { - UInt mat_index = (*material_selector)(element); - AKANTU_DEBUG_ASSERT( - mat_index < materials.size(), - "The material selector returned an index that does not exists"); - material_index(element) = mat_index; - }, - _element_filter = filter, - _ghost_type = _not_ghost); + for_each_elements( + mesh, + [&](auto && element) { + UInt mat_index = (*material_selector)(element); + AKANTU_DEBUG_ASSERT( + mat_index < materials.size(), + "The material selector returned an index that does not exists"); + material_index(element) = mat_index; + }, + _element_filter = filter, _ghost_type = _not_ghost); if (non_local_manager) non_local_manager->synchronize(*this, _gst_material_id); - for_each_elements(mesh, - [&](auto && element) { - auto mat_index = material_index(element); - auto index = materials[mat_index]->addElement(element); - material_local_numbering(element) = index; - }, - _element_filter = filter, - _ghost_type = _not_ghost); + for_each_elements( + mesh, + [&](auto && element) { + auto mat_index = material_index(element); + auto index = materials[mat_index]->addElement(element); + material_local_numbering(element) = index; + }, + _element_filter = filter, _ghost_type = _not_ghost); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::initMaterials() { AKANTU_DEBUG_ASSERT(materials.size() != 0, "No material to initialize !"); if (!are_materials_instantiated) instantiateMaterials(); this->assignMaterialToElements(); // synchronize the element material arrays this->synchronize(_gst_material_id); for (auto & material : materials) { /// init internals properties material->initMaterial(); } this->synchronize(_gst_smm_init_mat); if (this->non_local_manager) { this->non_local_manager->initialize(); } } /* -------------------------------------------------------------------------- */ Int SolidMechanicsModel::getInternalIndexFromID(const ID & id) const { AKANTU_DEBUG_IN(); auto it = materials.begin(); auto end = materials.end(); for (; it != end; ++it) if ((*it)->getID() == id) { AKANTU_DEBUG_OUT(); return (it - materials.begin()); } AKANTU_DEBUG_OUT(); return -1; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::reassignMaterial() { AKANTU_DEBUG_IN(); std::vector> element_to_add(materials.size()); std::vector> element_to_remove(materials.size()); Element element; for (auto ghost_type : ghost_types) { element.ghost_type = ghost_type; for (auto type : mesh.elementTypes(spatial_dimension, ghost_type, _ek_not_defined)) { element.type = type; UInt nb_element = mesh.getNbElement(type, ghost_type); Array & mat_indexes = material_index(type, ghost_type); for (UInt el = 0; el < nb_element; ++el) { element.element = el; UInt old_material = mat_indexes(el); UInt new_material = (*material_selector)(element); if (old_material != new_material) { element_to_add[new_material].push_back(element); element_to_remove[old_material].push_back(element); } } } } UInt mat_index = 0; for (auto mat_it = materials.begin(); mat_it != materials.end(); ++mat_it, ++mat_index) { (*mat_it)->removeElements(element_to_remove[mat_index]); (*mat_it)->addElements(element_to_add[mat_index]); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::applyEigenGradU( const Matrix & prescribed_eigen_grad_u, const ID & material_name, const GhostType ghost_type) { AKANTU_DEBUG_ASSERT(prescribed_eigen_grad_u.size() == spatial_dimension * spatial_dimension, "The prescribed grad_u is not of the good size"); for (auto & material : materials) { if (material->getName() == material_name) material->applyEigenGradU(prescribed_eigen_grad_u, ghost_type); } } /* -------------------------------------------------------------------------- */ } // namespace akantu diff --git a/test/test_model/test_solid_mechanics_model/test_material_selector.cc b/test/test_model/test_solid_mechanics_model/test_material_selector.cc index 98ecd77a4..74be6f0f9 100644 --- a/test/test_model/test_solid_mechanics_model/test_material_selector.cc +++ b/test/test_model/test_solid_mechanics_model/test_material_selector.cc @@ -1,63 +1,63 @@ /** * @file test_material_selector.cc * * @author Lucas Frerot * * @date creation: Fri May 01 2015 * * @brief Test for material selector * * @section LICENSE * * Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory * (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ #include "aka_common.hh" #include "solid_mechanics_model.hh" using namespace akantu; int main(int argc, char * argv[]) { initialize("material_selector.dat", argc, argv); Math::setTolerance(1e-8); Mesh mesh(1); mesh.read("material_selector.msh"); SolidMechanicsModel model(mesh); - MeshDataMaterialSelector selector("physical_names", model); + auto && selector = std::make_shared>("physical_names", model); model.setMaterialSelector(selector); model.initFull(); Material & chocolate = model.getMaterial("chocolate"); Material & chewing_gum = model.getMaterial("chewing-gum"); Material & candy = model.getMaterial("candy"); UInt chocolate_element = chocolate.getElementFilter(_segment_2)(0, 0); UInt chewing_gum_element = chewing_gum.getElementFilter(_segment_2)(0, 0); UInt candy_element = candy.getElementFilter(_segment_2)(0, 0); if (chocolate_element != 0 || chewing_gum_element != 1 || candy_element != 2) return EXIT_FAILURE; return EXIT_SUCCESS; }