diff --git a/src/model/solid_mechanics/material.cc b/src/model/solid_mechanics/material.cc index 6f9ea82a5..000762ce9 100644 --- a/src/model/solid_mechanics/material.cc +++ b/src/model/solid_mechanics/material.cc @@ -1,1553 +1,1553 @@ /** * @file material.cc * * @author Aurelia Isabel Cuba Ramos * @author Daniel Pino Muñoz * @author Nicolas Richart * @author Marco Vocialta * * @date creation: Tue Jul 27 2010 * @date last modification: Tue Nov 24 2015 * * @brief Implementation of the common part of the material class * * @section LICENSE * * Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de * Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des * Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "material.hh" #include "solid_mechanics_model.hh" /* -------------------------------------------------------------------------- */ namespace akantu { /* -------------------------------------------------------------------------- */ Material::Material(SolidMechanicsModel & model, const ID & id) : Memory(id, model.getMemoryID()), Parsable(ParserType::_material, id), is_init(false), fem(model.getFEEngine()), finite_deformation(false), name(""), model(model), spatial_dimension(this->model.getSpatialDimension()), element_filter("element_filter", id, this->memory_id), stress("stress", *this), eigengradu("eigen_grad_u", *this), gradu("grad_u", *this), green_strain("green_strain", *this), piola_kirchhoff_2("piola_kirchhoff_2", *this), potential_energy("potential_energy", *this), is_non_local(false), use_previous_stress(false), use_previous_gradu(false), interpolation_inverse_coordinates("interpolation inverse coordinates", *this), interpolation_points_matrices("interpolation points matrices", *this) { AKANTU_DEBUG_IN(); /// for each connectivity types allocate the element filer array of the /// material element_filter.initialize(model.getMesh(), _spatial_dimension = spatial_dimension); // model.getMesh().initElementTypeMapArray(element_filter, 1, // spatial_dimension, // false, _ek_regular); this->initialize(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ Material::Material(SolidMechanicsModel & model, UInt dim, const Mesh & mesh, FEEngine & fe_engine, const ID & id) : Memory(id, model.getMemoryID()), Parsable(ParserType::_material, id), is_init(false), fem(model.getFEEngine()), finite_deformation(false), name(""), model(model), spatial_dimension(dim), element_filter("element_filter", id, this->memory_id), stress("stress", *this, dim, fe_engine, this->element_filter), eigengradu("eigen_grad_u", *this, dim, fe_engine, this->element_filter), gradu("gradu", *this, dim, fe_engine, this->element_filter), green_strain("green_strain", *this, dim, fe_engine, this->element_filter), piola_kirchhoff_2("poila_kirchhoff_2", *this, dim, fe_engine, this->element_filter), potential_energy("potential_energy", *this, dim, fe_engine, this->element_filter), is_non_local(false), use_previous_stress(false), use_previous_gradu(false), interpolation_inverse_coordinates("interpolation inverse_coordinates", *this, dim, fe_engine, this->element_filter), interpolation_points_matrices("interpolation points matrices", *this, dim, fe_engine, this->element_filter) { AKANTU_DEBUG_IN(); element_filter.initialize(mesh, _spatial_dimension = spatial_dimension); // mesh.initElementTypeMapArray(element_filter, 1, spatial_dimension, false, // _ek_regular); this->initialize(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ Material::~Material() = default; /* -------------------------------------------------------------------------- */ void Material::initialize() { registerParam("rho", rho, Real(0.), _pat_parsable | _pat_modifiable, "Density"); registerParam("name", name, std::string(), _pat_parsable | _pat_readable); registerParam("finite_deformation", finite_deformation, false, _pat_parsable | _pat_readable, "Is finite deformation"); registerParam("inelastic_deformation", inelastic_deformation, false, _pat_internal, "Is inelastic deformation"); /// allocate gradu stress for local elements eigengradu.initialize(spatial_dimension * spatial_dimension); gradu.initialize(spatial_dimension * spatial_dimension); stress.initialize(spatial_dimension * spatial_dimension); potential_energy.initialize(1); this->model.registerEventHandler(*this); } /* -------------------------------------------------------------------------- */ void Material::initMaterial() { AKANTU_DEBUG_IN(); if (finite_deformation) { this->piola_kirchhoff_2.initialize(spatial_dimension * spatial_dimension); if (use_previous_stress) this->piola_kirchhoff_2.initializeHistory(); this->green_strain.initialize(spatial_dimension * spatial_dimension); } if (use_previous_stress) this->stress.initializeHistory(); if (use_previous_gradu) this->gradu.initializeHistory(); for (auto it = internal_vectors_real.begin(); it != internal_vectors_real.end(); ++it) it->second->resize(); for (auto it = internal_vectors_uint.begin(); it != internal_vectors_uint.end(); ++it) it->second->resize(); for (auto it = internal_vectors_bool.begin(); it != internal_vectors_bool.end(); ++it) it->second->resize(); is_init = true; AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void Material::savePreviousState() { AKANTU_DEBUG_IN(); for (auto it = internal_vectors_real.begin(); it != internal_vectors_real.end(); ++it) { if (it->second->hasHistory()) it->second->saveCurrentValues(); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ /** * Compute the residual by assembling @f$\int_{e} \sigma_e \frac{\partial * \varphi}{\partial X} dX @f$ * * @param[in] displacements nodes displacements * @param[in] ghost_type compute the residual for _ghost or _not_ghost element */ // void Material::updateResidual(GhostType ghost_type) { // AKANTU_DEBUG_IN(); // computeAllStresses(ghost_type); // assembleResidual(ghost_type); // AKANTU_DEBUG_OUT(); // } /* -------------------------------------------------------------------------- */ void Material::assembleInternalForces(GhostType ghost_type) { AKANTU_DEBUG_IN(); UInt spatial_dimension = model.getSpatialDimension(); if (!finite_deformation) { auto & internal_force = const_cast &>(model.getInternalForce()); // Mesh & mesh = fem.getMesh(); for (auto && type : element_filter.elementTypes(spatial_dimension, ghost_type)) { Array & elem_filter = element_filter(type, ghost_type); UInt nb_element = elem_filter.size(); if (nb_element == 0) continue; const Array & shapes_derivatives = fem.getShapesDerivatives(type, ghost_type); UInt size_of_shapes_derivatives = shapes_derivatives.getNbComponent(); UInt nb_quadrature_points = fem.getNbIntegrationPoints(type, ghost_type); UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type); /// compute @f$\sigma \frac{\partial \varphi}{\partial X}@f$ by /// @f$\mathbf{B}^t \mathbf{\sigma}_q@f$ Array * sigma_dphi_dx = new Array(nb_element * nb_quadrature_points, size_of_shapes_derivatives, "sigma_x_dphi_/_dX"); fem.computeBtD(stress(type, ghost_type), *sigma_dphi_dx, type, ghost_type, elem_filter); // Array * shapesd_filtered = // new Array(0, size_of_shapes_derivatives, "filtered shapesd"); // FEEngine::filterElementalData(mesh, shapes_derivatives, // *shapesd_filtered, // *it, ghost_type, elem_filter); // Array & stress_vect = this->stress(*it, ghost_type); // Array::matrix_iterator sigma = // stress_vect.begin(spatial_dimension, spatial_dimension); // Array::matrix_iterator B = // shapesd_filtered->begin(spatial_dimension, nb_nodes_per_element); // Array::matrix_iterator Bt_sigma_it = // sigma_dphi_dx->begin(spatial_dimension, nb_nodes_per_element); // for (UInt q = 0; q < nb_element * nb_quadrature_points; // ++q, ++sigma, ++B, ++Bt_sigma_it) // Bt_sigma_it->mul(*sigma, *B); // delete shapesd_filtered; /** * compute @f$\int \sigma * \frac{\partial \varphi}{\partial X}dX@f$ by * @f$ \sum_q \mathbf{B}^t * \mathbf{\sigma}_q \overline w_q J_q@f$ */ Array * int_sigma_dphi_dx = new Array(nb_element, nb_nodes_per_element * spatial_dimension, "int_sigma_x_dphi_/_dX"); fem.integrate(*sigma_dphi_dx, *int_sigma_dphi_dx, size_of_shapes_derivatives, type, ghost_type, elem_filter); delete sigma_dphi_dx; /// assemble model.getDOFManager().assembleElementalArrayLocalArray( *int_sigma_dphi_dx, internal_force, type, ghost_type, -1, elem_filter); delete int_sigma_dphi_dx; } } else { switch (spatial_dimension) { case 1: this->assembleInternalForces<1>(ghost_type); break; case 2: this->assembleInternalForces<2>(ghost_type); break; case 3: this->assembleInternalForces<3>(ghost_type); break; } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ /** * Compute the stress from the gradu * * @param[in] current_position nodes postition + displacements * @param[in] ghost_type compute the residual for _ghost or _not_ghost element */ void Material::computeAllStresses(GhostType ghost_type) { AKANTU_DEBUG_IN(); UInt spatial_dimension = model.getSpatialDimension(); for (const auto & type : element_filter.elementTypes(spatial_dimension, ghost_type)) { Array & elem_filter = element_filter(type, ghost_type); if (elem_filter.size() == 0) continue; Array & gradu_vect = gradu(type, ghost_type); /// compute @f$\nabla u@f$ fem.gradientOnIntegrationPoints(model.getDisplacement(), gradu_vect, spatial_dimension, type, ghost_type, elem_filter); gradu_vect -= eigengradu(type, ghost_type); /// compute @f$\mathbf{\sigma}_q@f$ from @f$\nabla u@f$ computeStress(type, ghost_type); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void Material::computeAllCauchyStresses(GhostType ghost_type) { AKANTU_DEBUG_IN(); AKANTU_DEBUG_ASSERT(finite_deformation, "The Cauchy stress can only be " "computed if you are working in " "finite deformation."); for (auto type : element_filter.elementTypes(spatial_dimension, ghost_type)) { switch (spatial_dimension) { case 1: this->computeCauchyStress<1>(type, ghost_type); break; case 2: this->computeCauchyStress<2>(type, ghost_type); break; case 3: this->computeCauchyStress<3>(type, ghost_type); break; } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ template void Material::computeCauchyStress(ElementType el_type, GhostType ghost_type) { AKANTU_DEBUG_IN(); Array::matrix_iterator gradu_it = this->gradu(el_type, ghost_type).begin(dim, dim); Array::matrix_iterator gradu_end = this->gradu(el_type, ghost_type).end(dim, dim); Array::matrix_iterator piola_it = this->piola_kirchhoff_2(el_type, ghost_type).begin(dim, dim); Array::matrix_iterator stress_it = this->stress(el_type, ghost_type).begin(dim, dim); Matrix F_tensor(dim, dim); for (; gradu_it != gradu_end; ++gradu_it, ++piola_it, ++stress_it) { Matrix & grad_u = *gradu_it; Matrix & piola = *piola_it; Matrix & sigma = *stress_it; gradUToF(grad_u, F_tensor); this->computeCauchyStressOnQuad(F_tensor, piola, sigma); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void Material::setToSteadyState(GhostType ghost_type) { AKANTU_DEBUG_IN(); const Array & displacement = model.getDisplacement(); // resizeInternalArray(gradu); UInt spatial_dimension = model.getSpatialDimension(); for (auto type : element_filter.elementTypes(spatial_dimension, ghost_type)) { Array & elem_filter = element_filter(type, ghost_type); Array & gradu_vect = gradu(type, ghost_type); /// compute @f$\nabla u@f$ fem.gradientOnIntegrationPoints(displacement, gradu_vect, spatial_dimension, type, ghost_type, elem_filter); setToSteadyState(type, ghost_type); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ /** * Compute the stiffness matrix by assembling @f$\int_{\omega} B^t \times D * \times B d\omega @f$ * * @param[in] current_position nodes postition + displacements * @param[in] ghost_type compute the residual for _ghost or _not_ghost element */ void Material::assembleStiffnessMatrix(GhostType ghost_type) { AKANTU_DEBUG_IN(); UInt spatial_dimension = model.getSpatialDimension(); for (auto type : element_filter.elementTypes(spatial_dimension, ghost_type)) { if (finite_deformation) { switch (spatial_dimension) { case 1: { assembleStiffnessMatrixNL<1>(type, ghost_type); assembleStiffnessMatrixL2<1>(type, ghost_type); break; } case 2: { assembleStiffnessMatrixNL<2>(type, ghost_type); assembleStiffnessMatrixL2<2>(type, ghost_type); break; } case 3: { assembleStiffnessMatrixNL<3>(type, ghost_type); assembleStiffnessMatrixL2<3>(type, ghost_type); break; } } } else { switch (spatial_dimension) { case 1: { assembleStiffnessMatrix<1>(type, ghost_type); break; } case 2: { assembleStiffnessMatrix<2>(type, ghost_type); break; } case 3: { assembleStiffnessMatrix<3>(type, ghost_type); break; } } } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ template void Material::assembleStiffnessMatrix(const ElementType & type, GhostType ghost_type) { AKANTU_DEBUG_IN(); Array & elem_filter = element_filter(type, ghost_type); if (elem_filter.size() == 0) { AKANTU_DEBUG_OUT(); return; } // const Array & shapes_derivatives = // fem.getShapesDerivatives(type, ghost_type); Array & gradu_vect = gradu(type, ghost_type); UInt nb_element = elem_filter.size(); UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type); UInt nb_quadrature_points = fem.getNbIntegrationPoints(type, ghost_type); gradu_vect.resize(nb_quadrature_points * nb_element); fem.gradientOnIntegrationPoints(model.getDisplacement(), gradu_vect, dim, type, ghost_type, elem_filter); UInt tangent_size = getTangentStiffnessVoigtSize(dim); Array * tangent_stiffness_matrix = new Array(nb_element * nb_quadrature_points, tangent_size * tangent_size, "tangent_stiffness_matrix"); tangent_stiffness_matrix->clear(); computeTangentModuli(type, *tangent_stiffness_matrix, ghost_type); // Array * shapesd_filtered = new Array( // nb_element, dim * nb_nodes_per_element, "filtered shapesd"); // fem.filterElementalData(fem.getMesh(), shapes_derivatives, // *shapesd_filtered, type, ghost_type, // elem_filter); /// compute @f$\mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$ UInt bt_d_b_size = dim * nb_nodes_per_element; Array * bt_d_b = new Array(nb_element * nb_quadrature_points, bt_d_b_size * bt_d_b_size, "B^t*D*B"); fem.computeBtDB(*tangent_stiffness_matrix, *bt_d_b, 4, type, ghost_type); // Matrix B(tangent_size, dim * nb_nodes_per_element); // Matrix Bt_D(dim * nb_nodes_per_element, tangent_size); // Array::matrix_iterator shapes_derivatives_filtered_it = // shapesd_filtered->begin(dim, nb_nodes_per_element); // Array::matrix_iterator Bt_D_B_it = // bt_d_b->begin(dim * nb_nodes_per_element, dim * nb_nodes_per_element); // Array::matrix_iterator D_it = // tangent_stiffness_matrix->begin(tangent_size, tangent_size); // Array::matrix_iterator D_end = // tangent_stiffness_matrix->end(tangent_size, tangent_size); // for (; D_it != D_end; ++D_it, ++Bt_D_B_it, // ++shapes_derivatives_filtered_it) { // Matrix & D = *D_it; // Matrix & Bt_D_B = *Bt_D_B_it; // VoigtHelper::transferBMatrixToSymVoigtBMatrix( // *shapes_derivatives_filtered_it, B, nb_nodes_per_element); // Bt_D.mul(B, D); // Bt_D_B.mul(Bt_D, B); // } delete tangent_stiffness_matrix; // delete shapesd_filtered; /// compute @f$ k_e = \int_e \mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$ Array * K_e = new Array(nb_element, bt_d_b_size * bt_d_b_size, "K_e"); fem.integrate(*bt_d_b, *K_e, bt_d_b_size * bt_d_b_size, type, ghost_type, elem_filter); delete bt_d_b; model.getDOFManager().assembleElementalMatricesToMatrix( "K", "displacement", *K_e, type, ghost_type, _symmetric, elem_filter); delete K_e; AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ template void Material::assembleStiffnessMatrixNL(const ElementType & type, GhostType ghost_type) { AKANTU_DEBUG_IN(); const Array & shapes_derivatives = fem.getShapesDerivatives(type, ghost_type); Array & elem_filter = element_filter(type, ghost_type); // Array & gradu_vect = delta_gradu(type, ghost_type); UInt nb_element = elem_filter.size(); UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type); UInt nb_quadrature_points = fem.getNbIntegrationPoints(type, ghost_type); Array * shapes_derivatives_filtered = new Array( nb_element * nb_quadrature_points, dim * nb_nodes_per_element, "shapes derivatives filtered"); fem.filterElementalData(fem.getMesh(), shapes_derivatives, *shapes_derivatives_filtered, type, ghost_type, elem_filter); /// compute @f$\mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$ UInt bt_s_b_size = dim * nb_nodes_per_element; Array * bt_s_b = new Array(nb_element * nb_quadrature_points, bt_s_b_size * bt_s_b_size, "B^t*D*B"); UInt piola_matrix_size = getCauchyStressMatrixSize(dim); Matrix B(piola_matrix_size, bt_s_b_size); Matrix Bt_S(bt_s_b_size, piola_matrix_size); Matrix S(piola_matrix_size, piola_matrix_size); auto shapes_derivatives_filtered_it = shapes_derivatives_filtered->begin( spatial_dimension, nb_nodes_per_element); auto Bt_S_B_it = bt_s_b->begin(bt_s_b_size, bt_s_b_size); auto Bt_S_B_end = bt_s_b->end(bt_s_b_size, bt_s_b_size); auto piola_it = piola_kirchhoff_2(type, ghost_type).begin(dim, dim); for (; Bt_S_B_it != Bt_S_B_end; ++Bt_S_B_it, ++shapes_derivatives_filtered_it, ++piola_it) { auto & Bt_S_B = *Bt_S_B_it; const auto & Piola_kirchhoff_matrix = *piola_it; setCauchyStressMatrix(Piola_kirchhoff_matrix, S); VoigtHelper::transferBMatrixToBNL(*shapes_derivatives_filtered_it, B, nb_nodes_per_element); - Bt_S.mul(B, S); - Bt_S_B.mul(Bt_S, B); + Bt_S.template mul(B, S); + Bt_S_B.template mul(Bt_S, B); } delete shapes_derivatives_filtered; /// compute @f$ k_e = \int_e \mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$ Array * K_e = new Array(nb_element, bt_s_b_size * bt_s_b_size, "K_e"); fem.integrate(*bt_s_b, *K_e, bt_s_b_size * bt_s_b_size, type, ghost_type, elem_filter); delete bt_s_b; model.getDOFManager().assembleElementalMatricesToMatrix( "K", "displacement", *K_e, type, ghost_type, _symmetric, elem_filter); delete K_e; AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ template void Material::assembleStiffnessMatrixL2(const ElementType & type, GhostType ghost_type) { AKANTU_DEBUG_IN(); const Array & shapes_derivatives = fem.getShapesDerivatives(type, ghost_type); Array & elem_filter = element_filter(type, ghost_type); Array & gradu_vect = gradu(type, ghost_type); UInt nb_element = elem_filter.size(); UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type); UInt nb_quadrature_points = fem.getNbIntegrationPoints(type, ghost_type); gradu_vect.resize(nb_quadrature_points * nb_element); fem.gradientOnIntegrationPoints(model.getDisplacement(), gradu_vect, dim, type, ghost_type, elem_filter); UInt tangent_size = getTangentStiffnessVoigtSize(dim); Array * tangent_stiffness_matrix = new Array(nb_element * nb_quadrature_points, tangent_size * tangent_size, "tangent_stiffness_matrix"); tangent_stiffness_matrix->clear(); computeTangentModuli(type, *tangent_stiffness_matrix, ghost_type); Array * shapes_derivatives_filtered = new Array( nb_element * nb_quadrature_points, dim * nb_nodes_per_element, "shapes derivatives filtered"); fem.filterElementalData(fem.getMesh(), shapes_derivatives, *shapes_derivatives_filtered, type, ghost_type, elem_filter); /// compute @f$\mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$ UInt bt_d_b_size = dim * nb_nodes_per_element; Array * bt_d_b = new Array(nb_element * nb_quadrature_points, bt_d_b_size * bt_d_b_size, "B^t*D*B"); Matrix B(tangent_size, dim * nb_nodes_per_element); Matrix B2(tangent_size, dim * nb_nodes_per_element); Matrix Bt_D(dim * nb_nodes_per_element, tangent_size); auto shapes_derivatives_filtered_it = shapes_derivatives_filtered->begin( spatial_dimension, nb_nodes_per_element); auto Bt_D_B_it = bt_d_b->begin(bt_d_b_size, bt_d_b_size); auto grad_u_it = gradu_vect.begin(dim, dim); auto D_it = tangent_stiffness_matrix->begin(tangent_size, tangent_size); auto D_end = tangent_stiffness_matrix->end(tangent_size, tangent_size); for (; D_it != D_end; ++D_it, ++Bt_D_B_it, ++shapes_derivatives_filtered_it, ++grad_u_it) { const auto & grad_u = *grad_u_it; const auto & D = *D_it; auto & Bt_D_B = *Bt_D_B_it; // transferBMatrixToBL1 (*shapes_derivatives_filtered_it, B, // nb_nodes_per_element); VoigtHelper::transferBMatrixToSymVoigtBMatrix( *shapes_derivatives_filtered_it, B, nb_nodes_per_element); VoigtHelper::transferBMatrixToBL2(*shapes_derivatives_filtered_it, grad_u, B2, nb_nodes_per_element); B += B2; - Bt_D.mul(B, D); - Bt_D_B.mul(Bt_D, B); + Bt_D.template mul(B, D); + Bt_D_B.template mul(Bt_D, B); } delete tangent_stiffness_matrix; delete shapes_derivatives_filtered; /// compute @f$ k_e = \int_e \mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$ Array * K_e = new Array(nb_element, bt_d_b_size * bt_d_b_size, "K_e"); fem.integrate(*bt_d_b, *K_e, bt_d_b_size * bt_d_b_size, type, ghost_type, elem_filter); delete bt_d_b; model.getDOFManager().assembleElementalMatricesToMatrix( "K", "displacement", *K_e, type, ghost_type, _symmetric, elem_filter); delete K_e; AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ template void Material::assembleInternalForces(GhostType ghost_type) { AKANTU_DEBUG_IN(); Array & internal_force = model.getInternalForce(); Mesh & mesh = fem.getMesh(); for (auto type : element_filter.elementTypes(spatial_dimension, ghost_type)) { const Array & shapes_derivatives = fem.getShapesDerivatives(type, ghost_type); Array & elem_filter = element_filter(type, ghost_type); if (elem_filter.size() == 0) continue; UInt size_of_shapes_derivatives = shapes_derivatives.getNbComponent(); UInt nb_element = elem_filter.size(); UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type); UInt nb_quadrature_points = fem.getNbIntegrationPoints(type, ghost_type); Array * shapesd_filtered = new Array( nb_element, size_of_shapes_derivatives, "filtered shapesd"); fem.filterElementalData(mesh, shapes_derivatives, *shapesd_filtered, type, ghost_type, elem_filter); Array::matrix_iterator shapes_derivatives_filtered_it = shapesd_filtered->begin(dim, nb_nodes_per_element); // Set stress vectors UInt stress_size = getTangentStiffnessVoigtSize(dim); // Set matrices B and BNL* UInt bt_s_size = dim * nb_nodes_per_element; auto * bt_s = new Array(nb_element * nb_quadrature_points, bt_s_size, "B^t*S"); auto grad_u_it = this->gradu(type, ghost_type).begin(dim, dim); auto grad_u_end = this->gradu(type, ghost_type).end(dim, dim); auto stress_it = this->piola_kirchhoff_2(type, ghost_type).begin(dim, dim); shapes_derivatives_filtered_it = shapesd_filtered->begin(dim, nb_nodes_per_element); Array::matrix_iterator bt_s_it = bt_s->begin(bt_s_size, 1); Matrix S_vect(stress_size, 1); Matrix B_tensor(stress_size, bt_s_size); Matrix B2_tensor(stress_size, bt_s_size); for (; grad_u_it != grad_u_end; ++grad_u_it, ++stress_it, ++shapes_derivatives_filtered_it, ++bt_s_it) { auto & grad_u = *grad_u_it; auto & r_it = *bt_s_it; auto & S_it = *stress_it; setCauchyStressArray(S_it, S_vect); VoigtHelper::transferBMatrixToSymVoigtBMatrix( *shapes_derivatives_filtered_it, B_tensor, nb_nodes_per_element); VoigtHelper::transferBMatrixToBL2(*shapes_derivatives_filtered_it, grad_u, B2_tensor, nb_nodes_per_element); B_tensor += B2_tensor; - r_it.mul(B_tensor, S_vect); + r_it.template mul(B_tensor, S_vect); } delete shapesd_filtered; /// compute @f$ k_e = \int_e \mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$ Array * r_e = new Array(nb_element, bt_s_size, "r_e"); fem.integrate(*bt_s, *r_e, bt_s_size, type, ghost_type, elem_filter); delete bt_s; model.getDOFManager().assembleElementalArrayLocalArray( *r_e, internal_force, type, ghost_type, -1., elem_filter); delete r_e; } AKANTU_DEBUG_OUT(); } // /* -------------------------------------------------------------------------- */ // void Material::computeAllStressesFromTangentModuli(GhostType ghost_type) { // AKANTU_DEBUG_IN(); // UInt spatial_dimension = model.getSpatialDimension(); // for (auto type : element_filter.elementTypes(spatial_dimension, ghost_type)) { // switch (spatial_dimension) { // case 1: { // computeAllStressesFromTangentModuli<1>(type, ghost_type); // break; // } // case 2: { // computeAllStressesFromTangentModuli<2>(type, ghost_type); // break; // } // case 3: { // computeAllStressesFromTangentModuli<3>(type, ghost_type); // break; // } // } // } // AKANTU_DEBUG_OUT(); // } // /* -------------------------------------------------------------------------- */ // template // void Material::computeAllStressesFromTangentModuli(const ElementType & type, // GhostType ghost_type) { // AKANTU_DEBUG_IN(); // const Array & shapes_derivatives = // fem.getShapesDerivatives(type, ghost_type); // Array & elem_filter = element_filter(type, ghost_type); // Array & gradu_vect = gradu(type, ghost_type); // UInt nb_element = elem_filter.size(); // if (nb_element) { // UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type); // UInt nb_quadrature_points = fem.getNbIntegrationPoints(type, ghost_type); // gradu_vect.resize(nb_quadrature_points * nb_element); // Array & disp = model.getDisplacement(); // fem.gradientOnIntegrationPoints(disp, gradu_vect, dim, type, ghost_type, // elem_filter); // UInt tangent_moduli_size = getTangentStiffnessVoigtSize(dim); // Array * tangent_moduli_tensors = new Array( // nb_element * nb_quadrature_points, // tangent_moduli_size * tangent_moduli_size, "tangent_moduli_tensors"); // tangent_moduli_tensors->clear(); // computeTangentModuli(type, *tangent_moduli_tensors, ghost_type); // Array * shapesd_filtered = new Array( // nb_element, dim * nb_nodes_per_element, "filtered shapesd"); // FEEngine::filterElementalData(fem.getMesh(), shapes_derivatives, // *shapesd_filtered, type, ghost_type, // elem_filter); // Array filtered_u(nb_element, // nb_nodes_per_element * spatial_dimension); // fem.extractNodalToElementField(fem.getMesh(), disp, filtered_u, type, // ghost_type, elem_filter); // /// compute @f$\mathbf{D} \mathbf{B} \mathbf{u}@f$ // auto shapes_derivatives_filtered_it = // shapesd_filtered->begin(dim, nb_nodes_per_element); // auto D_it = // tangent_moduli_tensors->begin(tangent_moduli_size, tangent_moduli_size); // auto sigma_it = // stress(type, ghost_type).begin(spatial_dimension, spatial_dimension); // auto u_it = filtered_u.begin(spatial_dimension * nb_nodes_per_element); // Matrix B(tangent_moduli_size, // spatial_dimension * nb_nodes_per_element); // Vector Bu(tangent_moduli_size); // Vector DBu(tangent_moduli_size); // for (UInt e = 0; e < nb_element; ++e, ++u_it) { // for (UInt q = 0; q < nb_quadrature_points; // ++q, ++D_it, ++shapes_derivatives_filtered_it, ++sigma_it) { // const auto & u = *u_it; // const auto & D = *D_it; // auto & sigma = *sigma_it; // VoigtHelper::transferBMatrixToSymVoigtBMatrix( // *shapes_derivatives_filtered_it, B, nb_nodes_per_element); // Bu.mul(B, u); // DBu.mul(D, Bu); // // Voigt notation to full symmetric tensor // for (UInt i = 0; i < dim; ++i) // sigma(i, i) = DBu(i); // if (dim == 2) { // sigma(0, 1) = sigma(1, 0) = DBu(2); // } else if (dim == 3) { // sigma(1, 2) = sigma(2, 1) = DBu(3); // sigma(0, 2) = sigma(2, 0) = DBu(4); // sigma(0, 1) = sigma(1, 0) = DBu(5); // } // } // } // } // AKANTU_DEBUG_OUT(); // } /* -------------------------------------------------------------------------- */ void Material::computePotentialEnergyByElements() { AKANTU_DEBUG_IN(); for (auto type : element_filter.elementTypes(spatial_dimension, _not_ghost)) { computePotentialEnergy(type); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void Material::computePotentialEnergy(ElementType, GhostType) { AKANTU_DEBUG_IN(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ Real Material::getPotentialEnergy() { AKANTU_DEBUG_IN(); Real epot = 0.; computePotentialEnergyByElements(); /// integrate the potential energy for each type of elements for (auto type : element_filter.elementTypes(spatial_dimension, _not_ghost)) { epot += fem.integrate(potential_energy(type, _not_ghost), type, _not_ghost, element_filter(type, _not_ghost)); } AKANTU_DEBUG_OUT(); return epot; } /* -------------------------------------------------------------------------- */ Real Material::getPotentialEnergy(ElementType & type, UInt index) { AKANTU_DEBUG_IN(); Real epot = 0.; Vector epot_on_quad_points(fem.getNbIntegrationPoints(type)); computePotentialEnergyByElement(type, index, epot_on_quad_points); epot = fem.integrate(epot_on_quad_points, type, element_filter(type)(index)); AKANTU_DEBUG_OUT(); return epot; } /* -------------------------------------------------------------------------- */ Real Material::getEnergy(const std::string & type) { AKANTU_DEBUG_IN(); if (type == "potential") return getPotentialEnergy(); AKANTU_DEBUG_OUT(); return 0.; } /* -------------------------------------------------------------------------- */ Real Material::getEnergy(const std::string & energy_id, ElementType type, UInt index) { AKANTU_DEBUG_IN(); if (energy_id == "potential") return getPotentialEnergy(type, index); AKANTU_DEBUG_OUT(); return 0.; } /* -------------------------------------------------------------------------- */ void Material::initElementalFieldInterpolation( const ElementTypeMapArray & interpolation_points_coordinates) { AKANTU_DEBUG_IN(); this->fem.initElementalFieldInterpolationFromIntegrationPoints( interpolation_points_coordinates, this->interpolation_points_matrices, this->interpolation_inverse_coordinates, &(this->element_filter)); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void Material::interpolateStress(ElementTypeMapArray & result, const GhostType ghost_type) { this->fem.interpolateElementalFieldFromIntegrationPoints( this->stress, this->interpolation_points_matrices, this->interpolation_inverse_coordinates, result, ghost_type, &(this->element_filter)); } /* -------------------------------------------------------------------------- */ void Material::interpolateStressOnFacets( ElementTypeMapArray & result, ElementTypeMapArray & by_elem_result, const GhostType ghost_type) { interpolateStress(by_elem_result, ghost_type); UInt stress_size = this->stress.getNbComponent(); const Mesh & mesh = this->model.getMesh(); const Mesh & mesh_facets = mesh.getMeshFacets(); for (auto type : element_filter.elementTypes(spatial_dimension, ghost_type)) { Array & elem_fil = element_filter(type, ghost_type); Array & by_elem_res = by_elem_result(type, ghost_type); UInt nb_element = elem_fil.size(); UInt nb_element_full = this->model.getMesh().getNbElement(type, ghost_type); UInt nb_interpolation_points_per_elem = by_elem_res.size() / nb_element_full; const Array & facet_to_element = mesh_facets.getSubelementToElement(type, ghost_type); ElementType type_facet = Mesh::getFacetType(type); UInt nb_facet_per_elem = facet_to_element.getNbComponent(); UInt nb_quad_per_facet = nb_interpolation_points_per_elem / nb_facet_per_elem; Element element_for_comparison{type, 0, ghost_type}; const Array> * element_to_facet = nullptr; GhostType current_ghost_type = _casper; Array * result_vec = nullptr; Array::const_matrix_iterator result_it = by_elem_res.begin_reinterpret( stress_size, nb_interpolation_points_per_elem, nb_element_full); for (UInt el = 0; el < nb_element; ++el) { UInt global_el = elem_fil(el); element_for_comparison.element = global_el; for (UInt f = 0; f < nb_facet_per_elem; ++f) { Element facet_elem = facet_to_element(global_el, f); UInt global_facet = facet_elem.element; if (facet_elem.ghost_type != current_ghost_type) { current_ghost_type = facet_elem.ghost_type; element_to_facet = &mesh_facets.getElementToSubelement( type_facet, current_ghost_type); result_vec = &result(type_facet, current_ghost_type); } bool is_second_element = (*element_to_facet)(global_facet)[0] != element_for_comparison; for (UInt q = 0; q < nb_quad_per_facet; ++q) { Vector result_local(result_vec->storage() + (global_facet * nb_quad_per_facet + q) * result_vec->getNbComponent() + is_second_element * stress_size, stress_size); const Matrix & result_tmp(result_it[global_el]); result_local = result_tmp(f * nb_quad_per_facet + q); } } } } } /* -------------------------------------------------------------------------- */ template const Array & Material::getArray(__attribute__((unused)) const ID & vect_id, __attribute__((unused)) const ElementType & type, __attribute__((unused)) const GhostType & ghost_type) const { AKANTU_DEBUG_TO_IMPLEMENT(); return NULL; } /* -------------------------------------------------------------------------- */ template Array & Material::getArray(__attribute__((unused)) const ID & vect_id, __attribute__((unused)) const ElementType & type, __attribute__((unused)) const GhostType & ghost_type) { AKANTU_DEBUG_TO_IMPLEMENT(); return NULL; } /* -------------------------------------------------------------------------- */ template <> const Array & Material::getArray(const ID & vect_id, const ElementType & type, const GhostType & ghost_type) const { std::stringstream sstr; std::string ghost_id = ""; if (ghost_type == _ghost) ghost_id = ":ghost"; sstr << getID() << ":" << vect_id << ":" << type << ghost_id; ID fvect_id = sstr.str(); try { return Memory::getArray(fvect_id); } catch (debug::Exception & e) { AKANTU_SILENT_EXCEPTION("The material " << name << "(" << getID() << ") does not contain a vector " << vect_id << "(" << fvect_id << ") [" << e << "]"); } } /* -------------------------------------------------------------------------- */ template <> Array & Material::getArray(const ID & vect_id, const ElementType & type, const GhostType & ghost_type) { std::stringstream sstr; std::string ghost_id = ""; if (ghost_type == _ghost) ghost_id = ":ghost"; sstr << getID() << ":" << vect_id << ":" << type << ghost_id; ID fvect_id = sstr.str(); try { return Memory::getArray(fvect_id); } catch (debug::Exception & e) { AKANTU_SILENT_EXCEPTION("The material " << name << "(" << getID() << ") does not contain a vector " << vect_id << "(" << fvect_id << ") [" << e << "]"); } } /* -------------------------------------------------------------------------- */ template <> const Array & Material::getArray(const ID & vect_id, const ElementType & type, const GhostType & ghost_type) const { std::stringstream sstr; std::string ghost_id = ""; if (ghost_type == _ghost) ghost_id = ":ghost"; sstr << getID() << ":" << vect_id << ":" << type << ghost_id; ID fvect_id = sstr.str(); try { return Memory::getArray(fvect_id); } catch (debug::Exception & e) { AKANTU_SILENT_EXCEPTION("The material " << name << "(" << getID() << ") does not contain a vector " << vect_id << "(" << fvect_id << ") [" << e << "]"); } } /* -------------------------------------------------------------------------- */ template <> Array & Material::getArray(const ID & vect_id, const ElementType & type, const GhostType & ghost_type) { std::stringstream sstr; std::string ghost_id = ""; if (ghost_type == _ghost) ghost_id = ":ghost"; sstr << getID() << ":" << vect_id << ":" << type << ghost_id; ID fvect_id = sstr.str(); try { return Memory::getArray(fvect_id); } catch (debug::Exception & e) { AKANTU_SILENT_EXCEPTION("The material " << name << "(" << getID() << ") does not contain a vector " << vect_id << "(" << fvect_id << ") [" << e << "]"); } } /* -------------------------------------------------------------------------- */ template const InternalField & Material::getInternal(__attribute__((unused)) const ID & int_id) const { AKANTU_DEBUG_TO_IMPLEMENT(); return NULL; } /* -------------------------------------------------------------------------- */ template InternalField & Material::getInternal(__attribute__((unused)) const ID & int_id) { AKANTU_DEBUG_TO_IMPLEMENT(); return NULL; } /* -------------------------------------------------------------------------- */ template <> const InternalField & Material::getInternal(const ID & int_id) const { auto it = internal_vectors_real.find(getID() + ":" + int_id); if (it == internal_vectors_real.end()) { AKANTU_SILENT_EXCEPTION("The material " << name << "(" << getID() << ") does not contain an internal " << int_id << " (" << (getID() + ":" + int_id) << ")"); } return *it->second; } /* -------------------------------------------------------------------------- */ template <> InternalField & Material::getInternal(const ID & int_id) { auto it = internal_vectors_real.find(getID() + ":" + int_id); if (it == internal_vectors_real.end()) { AKANTU_SILENT_EXCEPTION("The material " << name << "(" << getID() << ") does not contain an internal " << int_id << " (" << (getID() + ":" + int_id) << ")"); } return *it->second; } /* -------------------------------------------------------------------------- */ template <> const InternalField & Material::getInternal(const ID & int_id) const { auto it = internal_vectors_uint.find(getID() + ":" + int_id); if (it == internal_vectors_uint.end()) { AKANTU_SILENT_EXCEPTION("The material " << name << "(" << getID() << ") does not contain an internal " << int_id << " (" << (getID() + ":" + int_id) << ")"); } return *it->second; } /* -------------------------------------------------------------------------- */ template <> InternalField & Material::getInternal(const ID & int_id) { auto it = internal_vectors_uint.find(getID() + ":" + int_id); if (it == internal_vectors_uint.end()) { AKANTU_SILENT_EXCEPTION("The material " << name << "(" << getID() << ") does not contain an internal " << int_id << " (" << (getID() + ":" + int_id) << ")"); } return *it->second; } /* -------------------------------------------------------------------------- */ void Material::addElements(const Array & elements_to_add) { AKANTU_DEBUG_IN(); UInt mat_id = model.getInternalIndexFromID(getID()); Array::const_iterator el_begin = elements_to_add.begin(); Array::const_iterator el_end = elements_to_add.end(); for (; el_begin != el_end; ++el_begin) { const Element & element = *el_begin; Array & mat_indexes = model.getMaterialByElement(element.type, element.ghost_type); Array & mat_loc_num = model.getMaterialLocalNumbering(element.type, element.ghost_type); UInt index = this->addElement(element.type, element.element, element.ghost_type); mat_indexes(element.element) = mat_id; mat_loc_num(element.element) = index; } this->resizeInternals(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void Material::removeElements(const Array & elements_to_remove) { AKANTU_DEBUG_IN(); Array::const_iterator el_begin = elements_to_remove.begin(); Array::const_iterator el_end = elements_to_remove.end(); if (el_begin == el_end) return; ElementTypeMapArray material_local_new_numbering( "remove mat filter elem", getID(), getMemoryID()); Element element; for (ghost_type_t::iterator gt = ghost_type_t::begin(); gt != ghost_type_t::end(); ++gt) { GhostType ghost_type = *gt; element.ghost_type = ghost_type; ElementTypeMapArray::type_iterator it = element_filter.firstType(_all_dimensions, ghost_type, _ek_not_defined); ElementTypeMapArray::type_iterator end = element_filter.lastType(_all_dimensions, ghost_type, _ek_not_defined); for (; it != end; ++it) { ElementType type = *it; element.type = type; Array & elem_filter = this->element_filter(type, ghost_type); Array & mat_loc_num = this->model.getMaterialLocalNumbering(type, ghost_type); if (!material_local_new_numbering.exists(type, ghost_type)) material_local_new_numbering.alloc(elem_filter.size(), 1, type, ghost_type); Array & mat_renumbering = material_local_new_numbering(type, ghost_type); UInt nb_element = elem_filter.size(); Array elem_filter_tmp; UInt new_id = 0; for (UInt el = 0; el < nb_element; ++el) { element.element = elem_filter(el); if (std::find(el_begin, el_end, element) == el_end) { elem_filter_tmp.push_back(element.element); mat_renumbering(el) = new_id; mat_loc_num(element.element) = new_id; ++new_id; } else { mat_renumbering(el) = UInt(-1); } } elem_filter.resize(elem_filter_tmp.size()); elem_filter.copy(elem_filter_tmp); } } for (auto it = internal_vectors_real.begin(); it != internal_vectors_real.end(); ++it) it->second->removeIntegrationPoints(material_local_new_numbering); for (auto it = internal_vectors_uint.begin(); it != internal_vectors_uint.end(); ++it) it->second->removeIntegrationPoints(material_local_new_numbering); for (auto it = internal_vectors_bool.begin(); it != internal_vectors_bool.end(); ++it) it->second->removeIntegrationPoints(material_local_new_numbering); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void Material::resizeInternals() { AKANTU_DEBUG_IN(); for (auto it = internal_vectors_real.begin(); it != internal_vectors_real.end(); ++it) it->second->resize(); for (auto it = internal_vectors_uint.begin(); it != internal_vectors_uint.end(); ++it) it->second->resize(); for (auto it = internal_vectors_bool.begin(); it != internal_vectors_bool.end(); ++it) it->second->resize(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void Material::onElementsAdded(const Array &, const NewElementsEvent &) { this->resizeInternals(); } /* -------------------------------------------------------------------------- */ void Material::onElementsRemoved( const Array & element_list, const ElementTypeMapArray & new_numbering, __attribute__((unused)) const RemovedElementsEvent & event) { UInt my_num = model.getInternalIndexFromID(getID()); ElementTypeMapArray material_local_new_numbering( "remove mat filter elem", getID(), getMemoryID()); Array::const_iterator el_begin = element_list.begin(); Array::const_iterator el_end = element_list.end(); for (ghost_type_t::iterator g = ghost_type_t::begin(); g != ghost_type_t::end(); ++g) { GhostType gt = *g; ElementTypeMapArray::type_iterator it = new_numbering.firstType(_all_dimensions, gt, _ek_not_defined); ElementTypeMapArray::type_iterator end = new_numbering.lastType(_all_dimensions, gt, _ek_not_defined); for (; it != end; ++it) { ElementType type = *it; if (element_filter.exists(type, gt) && element_filter(type, gt).size()) { Array & elem_filter = element_filter(type, gt); Array & mat_indexes = this->model.getMaterialByElement(*it, gt); Array & mat_loc_num = this->model.getMaterialLocalNumbering(*it, gt); UInt nb_element = this->model.getMesh().getNbElement(type, gt); // all materials will resize of the same size... mat_indexes.resize(nb_element); mat_loc_num.resize(nb_element); if (!material_local_new_numbering.exists(type, gt)) material_local_new_numbering.alloc(elem_filter.size(), 1, type, gt); Array & mat_renumbering = material_local_new_numbering(type, gt); const Array & renumbering = new_numbering(type, gt); Array elem_filter_tmp; UInt ni = 0; Element el{type, 0, gt}; for (UInt i = 0; i < elem_filter.size(); ++i) { el.element = elem_filter(i); if (std::find(el_begin, el_end, el) == el_end) { UInt new_el = renumbering(el.element); AKANTU_DEBUG_ASSERT( new_el != UInt(-1), "A not removed element as been badly renumbered"); elem_filter_tmp.push_back(new_el); mat_renumbering(i) = ni; mat_indexes(new_el) = my_num; mat_loc_num(new_el) = ni; ++ni; } else { mat_renumbering(i) = UInt(-1); } } elem_filter.resize(elem_filter_tmp.size()); elem_filter.copy(elem_filter_tmp); } } } for (auto it = internal_vectors_real.begin(); it != internal_vectors_real.end(); ++it) it->second->removeIntegrationPoints(material_local_new_numbering); for (auto it = internal_vectors_uint.begin(); it != internal_vectors_uint.end(); ++it) it->second->removeIntegrationPoints(material_local_new_numbering); for (auto it = internal_vectors_bool.begin(); it != internal_vectors_bool.end(); ++it) it->second->removeIntegrationPoints(material_local_new_numbering); } /* -------------------------------------------------------------------------- */ void Material::beforeSolveStep() { this->savePreviousState(); } /* -------------------------------------------------------------------------- */ void Material::afterSolveStep() { for (auto & type : element_filter.elementTypes(_all_dimensions, _not_ghost, _ek_not_defined)) { this->updateEnergies(type, _not_ghost); } } /* -------------------------------------------------------------------------- */ void Material::onDamageIteration() { this->savePreviousState(); } /* -------------------------------------------------------------------------- */ void Material::onDamageUpdate() { ElementTypeMapArray::type_iterator it = this->element_filter.firstType( _all_dimensions, _not_ghost, _ek_not_defined); ElementTypeMapArray::type_iterator end = element_filter.lastType(_all_dimensions, _not_ghost, _ek_not_defined); for (; it != end; ++it) { this->updateEnergiesAfterDamage(*it, _not_ghost); } } /* -------------------------------------------------------------------------- */ void Material::onDump() { if (this->isFiniteDeformation()) this->computeAllCauchyStresses(_not_ghost); } /* -------------------------------------------------------------------------- */ void Material::printself(std::ostream & stream, int indent) const { std::string space; for (Int i = 0; i < indent; i++, space += AKANTU_INDENT) ; std::string type = getID().substr(getID().find_last_of(':') + 1); stream << space << "Material " << type << " [" << std::endl; Parsable::printself(stream, indent); stream << space << "]" << std::endl; } /* -------------------------------------------------------------------------- */ /// extrapolate internal values void Material::extrapolateInternal(const ID & id, const Element & element, __attribute__((unused)) const Matrix & point, Matrix & extrapolated) { if (this->isInternal(id, element.kind())) { UInt nb_element = this->element_filter(element.type, element.ghost_type).size(); const ID name = this->getID() + ":" + id; UInt nb_quads = this->internal_vectors_real[name]->getFEEngine().getNbIntegrationPoints( element.type, element.ghost_type); const Array & internal = this->getArray(id, element.type, element.ghost_type); UInt nb_component = internal.getNbComponent(); Array::const_matrix_iterator internal_it = internal.begin_reinterpret(nb_component, nb_quads, nb_element); Element local_element = this->convertToLocalElement(element); /// instead of really extrapolating, here the value of the first GP /// is copied into the result vector. This works only for linear /// elements /// @todo extrapolate!!!! AKANTU_DEBUG_WARNING("This is a fix, values are not truly extrapolated"); const Matrix & values = internal_it[local_element.element]; UInt index = 0; Vector tmp(nb_component); for (UInt j = 0; j < values.cols(); ++j) { tmp = values(j); if (tmp.norm() > 0) { index = j; break; } } for (UInt i = 0; i < extrapolated.size(); ++i) { extrapolated(i) = values(index); } } else { Matrix default_values(extrapolated.rows(), extrapolated.cols(), 0.); extrapolated = default_values; } } /* -------------------------------------------------------------------------- */ void Material::applyEigenGradU(const Matrix & prescribed_eigen_grad_u, const GhostType ghost_type) { for (auto && type : element_filter.elementTypes(_all_dimensions, _not_ghost, _ek_not_defined)) { if (!element_filter(type, ghost_type).size()) continue; auto eigen_it = this->eigengradu(type, ghost_type) .begin(spatial_dimension, spatial_dimension); auto eigen_end = this->eigengradu(type, ghost_type) .end(spatial_dimension, spatial_dimension); for (; eigen_it != eigen_end; ++eigen_it) { auto & current_eigengradu = *eigen_it; current_eigengradu = prescribed_eigen_grad_u; } } } } // namespace akantu