diff --git a/src/model/model.cc b/src/model/model.cc index f041420bb..bc948054c 100644 --- a/src/model/model.cc +++ b/src/model/model.cc @@ -1,342 +1,347 @@ /** * @file model.cc * * @author Guillaume Anciaux * @author David Simon Kammer * @author Nicolas Richart * * @date creation: Mon Oct 03 2011 * @date last modification: Tue Feb 20 2018 * * @brief implementation of model common parts * * * Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "model.hh" #include "communicator.hh" #include "data_accessor.hh" #include "element_group.hh" #include "element_synchronizer.hh" #include "synchronizer_registry.hh" /* -------------------------------------------------------------------------- */ namespace akantu { /* -------------------------------------------------------------------------- */ Model::Model(Mesh & mesh, const ModelType & type, std::shared_ptr dof_manager, UInt dim, const ID & id, const MemoryID & memory_id) : Memory(id, memory_id), ModelSolver(mesh, type, id, memory_id, dof_manager), mesh(mesh), spatial_dimension(dim == _all_dimensions ? mesh.getSpatialDimension() : dim), parser(getStaticParser()) { AKANTU_DEBUG_IN(); this->mesh.registerEventHandler(*this, _ehp_model); AKANTU_DEBUG_OUT(); } +/* -------------------------------------------------------------------------- */ +Model::Model(Mesh & mesh, const ModelType & type, UInt dim, const ID & id, + const MemoryID & memory_id) + : Model(mesh, type, nullptr, dim, id, memory_id) {} + /* -------------------------------------------------------------------------- */ Model::~Model() = default; /* -------------------------------------------------------------------------- */ void Model::initFullImpl(const ModelOptions & options) { AKANTU_DEBUG_IN(); method = options.analysis_method; if (!this->hasDefaultSolver()) { this->initNewSolver(this->method); } initModel(); initFEEngineBoundary(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void Model::initNewSolver(const AnalysisMethod & method) { ID solver_name; TimeStepSolverType tss_type; std::tie(solver_name, tss_type) = this->getDefaultSolverID(method); if (not this->hasSolver(solver_name)) { ModelSolverOptions options = this->getDefaultSolverOptions(tss_type); this->getNewSolver(solver_name, tss_type, options.non_linear_solver_type); for (auto && is_type : options.integration_scheme_type) { if (!this->hasIntegrationScheme(solver_name, is_type.first)) { this->setIntegrationScheme(solver_name, is_type.first, is_type.second, options.solution_type[is_type.first]); } } } this->method = method; this->setDefaultSolver(solver_name); } /* -------------------------------------------------------------------------- */ void Model::initFEEngineBoundary() { FEEngine & fem_boundary = getFEEngineBoundary(); fem_boundary.initShapeFunctions(_not_ghost); fem_boundary.initShapeFunctions(_ghost); fem_boundary.computeNormalsOnIntegrationPoints(_not_ghost); fem_boundary.computeNormalsOnIntegrationPoints(_ghost); } /* -------------------------------------------------------------------------- */ void Model::dumpGroup(const std::string & group_name) { ElementGroup & group = mesh.getElementGroup(group_name); group.dump(); } /* -------------------------------------------------------------------------- */ void Model::dumpGroup(const std::string & group_name, const std::string & dumper_name) { ElementGroup & group = mesh.getElementGroup(group_name); group.dump(dumper_name); } /* -------------------------------------------------------------------------- */ void Model::dumpGroup() { for (auto & group : mesh.iterateElementGroups()) { group.dump(); } } /* -------------------------------------------------------------------------- */ void Model::setGroupDirectory(const std::string & directory) { for (auto & group : mesh.iterateElementGroups()) { group.setDirectory(directory); } } /* -------------------------------------------------------------------------- */ void Model::setGroupDirectory(const std::string & directory, const std::string & group_name) { ElementGroup & group = mesh.getElementGroup(group_name); group.setDirectory(directory); } /* -------------------------------------------------------------------------- */ void Model::setGroupBaseName(const std::string & basename, const std::string & group_name) { ElementGroup & group = mesh.getElementGroup(group_name); group.setBaseName(basename); } /* -------------------------------------------------------------------------- */ DumperIOHelper & Model::getGroupDumper(const std::string & group_name) { ElementGroup & group = mesh.getElementGroup(group_name); return group.getDumper(); } /* -------------------------------------------------------------------------- */ // DUMPER stuff /* -------------------------------------------------------------------------- */ void Model::addDumpGroupFieldToDumper(const std::string & field_id, std::shared_ptr field, DumperIOHelper & dumper) { #ifdef AKANTU_USE_IOHELPER dumper.registerField(field_id, std::move(field)); #endif } /* -------------------------------------------------------------------------- */ void Model::addDumpField(const std::string & field_id) { this->addDumpFieldToDumper(mesh.getDefaultDumperName(), field_id); } /* -------------------------------------------------------------------------- */ void Model::addDumpFieldVector(const std::string & field_id) { this->addDumpFieldVectorToDumper(mesh.getDefaultDumperName(), field_id); } /* -------------------------------------------------------------------------- */ void Model::addDumpFieldTensor(const std::string & field_id) { this->addDumpFieldTensorToDumper(mesh.getDefaultDumperName(), field_id); } /* -------------------------------------------------------------------------- */ void Model::setBaseName(const std::string & field_id) { mesh.setBaseName(field_id); } /* -------------------------------------------------------------------------- */ void Model::setBaseNameToDumper(const std::string & dumper_name, const std::string & basename) { mesh.setBaseNameToDumper(dumper_name, basename); } /* -------------------------------------------------------------------------- */ void Model::addDumpFieldToDumper(const std::string & dumper_name, const std::string & field_id) { this->addDumpGroupFieldToDumper(dumper_name, field_id, "all", _ek_regular, false); } /* -------------------------------------------------------------------------- */ void Model::addDumpGroupField(const std::string & field_id, const std::string & group_name) { ElementGroup & group = mesh.getElementGroup(group_name); this->addDumpGroupFieldToDumper(group.getDefaultDumperName(), field_id, group_name, _ek_regular, false); } /* -------------------------------------------------------------------------- */ void Model::removeDumpGroupField(const std::string & field_id, const std::string & group_name) { ElementGroup & group = mesh.getElementGroup(group_name); this->removeDumpGroupFieldFromDumper(group.getDefaultDumperName(), field_id, group_name); } /* -------------------------------------------------------------------------- */ void Model::removeDumpGroupFieldFromDumper(const std::string & dumper_name, const std::string & field_id, const std::string & group_name) { ElementGroup & group = mesh.getElementGroup(group_name); group.removeDumpFieldFromDumper(dumper_name, field_id); } /* -------------------------------------------------------------------------- */ void Model::addDumpFieldVectorToDumper(const std::string & dumper_name, const std::string & field_id) { this->addDumpGroupFieldToDumper(dumper_name, field_id, "all", _ek_regular, true); } /* -------------------------------------------------------------------------- */ void Model::addDumpGroupFieldVector(const std::string & field_id, const std::string & group_name) { ElementGroup & group = mesh.getElementGroup(group_name); this->addDumpGroupFieldVectorToDumper(group.getDefaultDumperName(), field_id, group_name); } /* -------------------------------------------------------------------------- */ void Model::addDumpGroupFieldVectorToDumper(const std::string & dumper_name, const std::string & field_id, const std::string & group_name) { this->addDumpGroupFieldToDumper(dumper_name, field_id, group_name, _ek_regular, true); } /* -------------------------------------------------------------------------- */ void Model::addDumpFieldTensorToDumper(const std::string & dumper_name, const std::string & field_id) { this->addDumpGroupFieldToDumper(dumper_name, field_id, "all", _ek_regular, true); } /* -------------------------------------------------------------------------- */ void Model::addDumpGroupFieldToDumper(const std::string & dumper_name, const std::string & field_id, const std::string & group_name, ElementKind element_kind, bool padding_flag) { this->addDumpGroupFieldToDumper(dumper_name, field_id, group_name, this->spatial_dimension, element_kind, padding_flag); } /* -------------------------------------------------------------------------- */ void Model::addDumpGroupFieldToDumper(const std::string & dumper_name, const std::string & field_id, const std::string & group_name, UInt spatial_dimension, ElementKind element_kind, bool padding_flag) { #ifdef AKANTU_USE_IOHELPER std::shared_ptr field; if (!field) { field = this->createNodalFieldReal(field_id, group_name, padding_flag); } if (!field) { field = this->createNodalFieldUInt(field_id, group_name, padding_flag); } if (!field) { field = this->createNodalFieldBool(field_id, group_name, padding_flag); } if (!field) { field = this->createElementalField(field_id, group_name, padding_flag, spatial_dimension, element_kind); } if (!field) { field = this->mesh.createFieldFromAttachedData(field_id, group_name, element_kind); } if (!field) { field = this->mesh.createFieldFromAttachedData(field_id, group_name, element_kind); } #ifndef AKANTU_NDEBUG if (!field) { AKANTU_DEBUG_WARNING("No field could be found based on name: " << field_id); } #endif if (field) { DumperIOHelper & dumper = mesh.getGroupDumper(dumper_name, group_name); this->addDumpGroupFieldToDumper(field_id, field, dumper); } #endif } /* -------------------------------------------------------------------------- */ void Model::dump() { mesh.dump(); } /* -------------------------------------------------------------------------- */ void Model::setDirectory(const std::string & directory) { mesh.setDirectory(directory); } /* -------------------------------------------------------------------------- */ void Model::setDirectoryToDumper(const std::string & dumper_name, const std::string & directory) { mesh.setDirectoryToDumper(dumper_name, directory); } /* -------------------------------------------------------------------------- */ void Model::setTextModeToDumper() { mesh.setTextModeToDumper(); } /* -------------------------------------------------------------------------- */ } // namespace akantu diff --git a/src/model/model.hh b/src/model/model.hh index f3716a63d..cdb0513e3 100644 --- a/src/model/model.hh +++ b/src/model/model.hh @@ -1,364 +1,370 @@ /** * @file model.hh * * @author Guillaume Anciaux * @author David Simon Kammer * @author Nicolas Richart * * @date creation: Fri Jun 18 2010 * @date last modification: Tue Feb 20 2018 * * @brief Interface of a model * * * Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "aka_common.hh" #include "aka_memory.hh" #include "aka_named_argument.hh" #include "fe_engine.hh" #include "mesh.hh" #include "model_options.hh" #include "model_solver.hh" /* -------------------------------------------------------------------------- */ #include /* -------------------------------------------------------------------------- */ #ifndef AKANTU_MODEL_HH_ #define AKANTU_MODEL_HH_ namespace akantu { class SynchronizerRegistry; class Parser; class DumperIOHelper; class DOFManager; } // namespace akantu /* -------------------------------------------------------------------------- */ namespace akantu { class Model : public Memory, public ModelSolver, public MeshEventHandler { /* ------------------------------------------------------------------------ */ /* Constructors/Destructors */ /* ------------------------------------------------------------------------ */ public: + /// Normal constructor where the DOFManager is created internally + Model(Mesh & mesh, const ModelType & type, UInt dim = _all_dimensions, + const ID & id = "model", const MemoryID & memory_id = 0); + + /// Model constructor the the dof manager is created externally, for example + /// in a ModelCoupler Model(Mesh & mesh, const ModelType & type, std::shared_ptr dof_manager, UInt dim = _all_dimensions, const ID & id = "model", const MemoryID & memory_id = 0); ~Model() override; using FEEngineMap = std::map>; /* ------------------------------------------------------------------------ */ /* Methods */ /* ------------------------------------------------------------------------ */ protected: virtual void initFullImpl(const ModelOptions & options); public: template std::enable_if_t::value> initFull(pack &&... _pack) { switch (this->model_type) { #ifdef AKANTU_SOLID_MECHANICS case ModelType::_solid_mechanics_model: this->initFullImpl(SolidMechanicsModelOptions{ use_named_args, std::forward(_pack)...}); break; #endif #ifdef AKANTU_COHESIVE_ELEMENT case ModelType::_solid_mechanics_model_cohesive: this->initFullImpl(SolidMechanicsModelCohesiveOptions{ use_named_args, std::forward(_pack)...}); break; #endif #ifdef AKANTU_HEAT_TRANSFER case ModelType::_heat_transfer_model: this->initFullImpl(HeatTransferModelOptions{ use_named_args, std::forward(_pack)...}); break; #endif #ifdef AKANTU_EMBEDDED case ModelType::_embedded_model: this->initFullImpl(EmbeddedInterfaceModelOptions{ use_named_args, std::forward(_pack)...}); break; #endif #ifdef AKANTU_CONTACT_MECHANICS case ModelType::_contact_mechanics_model: this->initFullImpl(ContactMechanicsModelOptions{ use_named_args, std::forward(_pack)...}); break; #endif #ifdef AKANTU_MODEL_COUPLERS case ModelType::_coupler_solid_contact: this->initFullImpl(CouplerSolidContactOptions{ use_named_args, std::forward(_pack)...}); break; case ModelType::_coupler_solid_cohesive_contact: this->initFullImpl(CouplerSolidCohesiveContactOptions{ use_named_args, std::forward(_pack)...}); break; #endif default: this->initFullImpl(ModelOptions{use_named_args, std::forward(_pack)...}); } } template std::enable_if_t::value> initFull(pack &&... _pack) { this->initFullImpl(std::forward(_pack)...); } /// initialize a new solver if needed void initNewSolver(const AnalysisMethod & method); protected: /// get some default values for derived classes virtual std::tuple getDefaultSolverID(const AnalysisMethod & method) = 0; virtual void initModel() = 0; virtual void initFEEngineBoundary(); /// function to print the containt of the class void printself(std::ostream & /*stream*/, int /*indent*/ = 0) const override{}; public: /* ------------------------------------------------------------------------ */ /* Access to the dumpable interface of the boundaries */ /* ------------------------------------------------------------------------ */ /// Dump the data for a given group void dumpGroup(const std::string & group_name); void dumpGroup(const std::string & group_name, const std::string & dumper_name); /// Dump the data for all boundaries void dumpGroup(); /// Set the directory for a given group void setGroupDirectory(const std::string & directory, const std::string & group_name); /// Set the directory for all boundaries void setGroupDirectory(const std::string & directory); /// Set the base name for a given group void setGroupBaseName(const std::string & basename, const std::string & group_name); /// Get the internal dumper of a given group DumperIOHelper & getGroupDumper(const std::string & group_name); /* ------------------------------------------------------------------------ */ /* Function for non local capabilities */ /* ------------------------------------------------------------------------ */ virtual void updateDataForNonLocalCriterion(__attribute__((unused)) ElementTypeMapReal & criterion) { AKANTU_TO_IMPLEMENT(); } protected: template void allocNodalField(Array *& array, UInt nb_component, const ID & name, T t_default = T()); template void allocNodalField(std::unique_ptr> & array, UInt nb_component, const ID & name) const; /* ------------------------------------------------------------------------ */ /* Accessors */ /* ------------------------------------------------------------------------ */ public: /// get id of model AKANTU_GET_MACRO(ID, id, const ID &) /// get the number of surfaces AKANTU_GET_MACRO(Mesh, mesh, Mesh &) /// synchronize the boundary in case of parallel run virtual void synchronizeBoundaries(){}; /// return the fem object associated with a provided name inline FEEngine & getFEEngine(const ID & name = "") const; /// return the fem boundary object associated with a provided name virtual FEEngine & getFEEngineBoundary(const ID & name = ""); /// register a fem object associated with name template inline void registerFEEngineObject(const std::string & name, Mesh & mesh, UInt spatial_dimension); /// unregister a fem object associated with name inline void unRegisterFEEngineObject(const std::string & name); /// return the synchronizer registry SynchronizerRegistry & getSynchronizerRegistry(); /// return the fem object associated with a provided name template inline FEEngineClass & getFEEngineClass(std::string name = "") const; /// return the fem boundary object associated with a provided name template inline FEEngineClass & getFEEngineClassBoundary(std::string name = ""); /// Get the type of analysis method used AKANTU_GET_MACRO(AnalysisMethod, method, AnalysisMethod); /* ------------------------------------------------------------------------ */ /* Pack and unpack helper functions */ /* ------------------------------------------------------------------------ */ public: inline UInt getNbIntegrationPoints(const Array & elements, const ID & fem_id = ID()) const; /* ------------------------------------------------------------------------ */ /* Dumpable interface (kept for convenience) and dumper relative functions */ /* ------------------------------------------------------------------------ */ void setTextModeToDumper(); virtual void addDumpGroupFieldToDumper(const std::string & field_id, std::shared_ptr field, DumperIOHelper & dumper); virtual void addDumpField(const std::string & field_id); virtual void addDumpFieldVector(const std::string & field_id); virtual void addDumpFieldToDumper(const std::string & dumper_name, const std::string & field_id); virtual void addDumpFieldVectorToDumper(const std::string & dumper_name, const std::string & field_id); virtual void addDumpFieldTensorToDumper(const std::string & dumper_name, const std::string & field_id); virtual void addDumpFieldTensor(const std::string & field_id); virtual void setBaseName(const std::string & field_id); virtual void setBaseNameToDumper(const std::string & dumper_name, const std::string & basename); virtual void addDumpGroupField(const std::string & field_id, const std::string & group_name); virtual void addDumpGroupFieldToDumper(const std::string & dumper_name, const std::string & field_id, const std::string & group_name, ElementKind element_kind, bool padding_flag); virtual void addDumpGroupFieldToDumper(const std::string & dumper_name, const std::string & field_id, const std::string & group_name, UInt spatial_dimension, ElementKind element_kind, bool padding_flag); virtual void removeDumpGroupField(const std::string & field_id, const std::string & group_name); virtual void removeDumpGroupFieldFromDumper(const std::string & dumper_name, const std::string & field_id, const std::string & group_name); virtual void addDumpGroupFieldVector(const std::string & field_id, const std::string & group_name); virtual void addDumpGroupFieldVectorToDumper(const std::string & dumper_name, const std::string & field_id, const std::string & group_name); virtual std::shared_ptr createNodalFieldReal(const std::string & /*field_name*/, const std::string & /*group_name*/, bool /*padding_flag*/) { return nullptr; } virtual std::shared_ptr createNodalFieldUInt(const std::string & /*field_name*/, const std::string & /*group_name*/, bool /*padding_flag*/) { return nullptr; } virtual std::shared_ptr createNodalFieldBool(const std::string & /*field_name*/, const std::string & /*group_name*/, bool /*padding_flag*/) { return nullptr; } virtual std::shared_ptr createElementalField( const std::string & /*field_name*/, const std::string & /*group_name*/, bool /*padding_flag*/, UInt /*spatial_dimension*/, ElementKind /*kind*/) { return nullptr; } void setDirectory(const std::string & directory); void setDirectoryToDumper(const std::string & dumper_name, const std::string & directory); virtual void dump(); /* ------------------------------------------------------------------------ */ /* Class Members */ /* ------------------------------------------------------------------------ */ protected: friend std::ostream & operator<<(std::ostream & /*stream*/, const Model & /*_this*/); /// analysis method check the list in akantu::AnalysisMethod AnalysisMethod method; /// Mesh Mesh & mesh; /// Spatial dimension of the problem UInt spatial_dimension; /// the main fem object present in all models FEEngineMap fems; /// the fem object present in all models for boundaries FEEngineMap fems_boundary; /// default fem object std::string default_fem; /// parser to the pointer to use Parser & parser; }; /// standard output stream operator inline std::ostream & operator<<(std::ostream & stream, const Model & _this) { _this.printself(stream); return stream; } } // namespace akantu #include "model_inline_impl.hh" #endif /* AKANTU_MODEL_HH_ */ diff --git a/src/model/structural_mechanics/structural_mechanics_model.cc b/src/model/structural_mechanics/structural_mechanics_model.cc index 6683cad08..40732fef3 100644 --- a/src/model/structural_mechanics/structural_mechanics_model.cc +++ b/src/model/structural_mechanics/structural_mechanics_model.cc @@ -1,465 +1,465 @@ /** * @file structural_mechanics_model.cc * * @author Fabian Barras * @author Lucas Frerot * @author Sébastien Hartmann * @author Nicolas Richart * @author Damien Spielmann * * @date creation: Fri Jul 15 2011 * @date last modification: Wed Feb 21 2018 * * @brief Model implementation for Structural Mechanics elements * * * Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "structural_mechanics_model.hh" #include "dof_manager.hh" #include "integrator_gauss.hh" #include "mesh.hh" #include "shape_structural.hh" #include "sparse_matrix.hh" #include "time_step_solver.hh" /* -------------------------------------------------------------------------- */ #ifdef AKANTU_USE_IOHELPER #include "dumpable_inline_impl.hh" #include "dumper_elemental_field.hh" #include "dumper_iohelper_paraview.hh" #include "group_manager_inline_impl.hh" #endif /* -------------------------------------------------------------------------- */ #include "structural_mechanics_model_inline_impl.hh" /* -------------------------------------------------------------------------- */ namespace akantu { /* -------------------------------------------------------------------------- */ StructuralMechanicsModel::StructuralMechanicsModel(Mesh & mesh, UInt dim, const ID & id, const MemoryID & memory_id) - : Model(mesh, ModelType::_structural_mechanics_model, nullptr, dim, id, + : Model(mesh, ModelType::_structural_mechanics_model, dim, id, memory_id), time_step(NAN), f_m2a(1.0), stress("stress", id, memory_id), element_material("element_material", id, memory_id), set_ID("beam sets", id, memory_id), rotation_matrix("rotation_matices", id, memory_id) { AKANTU_DEBUG_IN(); registerFEEngineObject("StructuralMechanicsFEEngine", mesh, spatial_dimension); if (spatial_dimension == 2) { nb_degree_of_freedom = 3; } else if (spatial_dimension == 3) { nb_degree_of_freedom = 6; } else { AKANTU_TO_IMPLEMENT(); } #ifdef AKANTU_USE_IOHELPER this->mesh.registerDumper("structural_mechanics_model", id, true); #endif this->mesh.addDumpMesh(mesh, spatial_dimension, _not_ghost, _ek_structural); this->initDOFManager(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ StructuralMechanicsModel::~StructuralMechanicsModel() = default; /* -------------------------------------------------------------------------- */ void StructuralMechanicsModel::initFullImpl(const ModelOptions & options) { // <<<< This is the SolidMechanicsModel implementation for future ref >>>> // material_index.initialize(mesh, _element_kind = _ek_not_defined, // _default_value = UInt(-1), _with_nb_element = // true); // material_local_numbering.initialize(mesh, _element_kind = _ek_not_defined, // _with_nb_element = true); // Model::initFullImpl(options); // // initialize pbc // if (this->pbc_pair.size() != 0) // this->initPBC(); // // initialize the materials // if (this->parser.getLastParsedFile() != "") { // this->instantiateMaterials(); // } // this->initMaterials(); // this->initBC(*this, *displacement, *displacement_increment, // *external_force); // <<<< END >>>> Model::initFullImpl(options); // Initializing stresses ElementTypeMap stress_components; /// TODO this is ugly af, maybe add a function to FEEngine for (auto && type : mesh.elementTypes(_spatial_dimension = _all_dimensions, _element_kind = _ek_structural)) { UInt nb_components = 0; // Getting number of components for each element type #define GET_(type) nb_components = ElementClass::getNbStressComponents() AKANTU_BOOST_STRUCTURAL_ELEMENT_SWITCH(GET_); #undef GET_ stress_components(nb_components, type); } stress.initialize( getFEEngine(), _spatial_dimension = _all_dimensions, _element_kind = _ek_structural, _nb_component = [&stress_components](ElementType type, GhostType /*unused*/) -> UInt { return stress_components(type); }); } /* -------------------------------------------------------------------------- */ void StructuralMechanicsModel::initFEEngineBoundary() { /// TODO: this function should not be reimplemented /// we're just avoiding a call to Model::initFEEngineBoundary() } /* -------------------------------------------------------------------------- */ // void StructuralMechanicsModel::setTimeStep(Real time_step) { // this->time_step = time_step; // #if defined(AKANTU_USE_IOHELPER) // this->mesh.getDumper().setTimeStep(time_step); // #endif // } /* -------------------------------------------------------------------------- */ /* Initialisation */ /* -------------------------------------------------------------------------- */ void StructuralMechanicsModel::initSolver( TimeStepSolverType time_step_solver_type, NonLinearSolverType /*unused*/) { AKANTU_DEBUG_IN(); this->allocNodalField(displacement_rotation, nb_degree_of_freedom, "displacement"); this->allocNodalField(external_force, nb_degree_of_freedom, "external_force"); this->allocNodalField(internal_force, nb_degree_of_freedom, "internal_force"); this->allocNodalField(blocked_dofs, nb_degree_of_freedom, "blocked_dofs"); auto & dof_manager = this->getDOFManager(); if (!dof_manager.hasDOFs("displacement")) { dof_manager.registerDOFs("displacement", *displacement_rotation, _dst_nodal); dof_manager.registerBlockedDOFs("displacement", *this->blocked_dofs); } if (time_step_solver_type == TimeStepSolverType::_dynamic || time_step_solver_type == TimeStepSolverType::_dynamic_lumped) { this->allocNodalField(velocity, spatial_dimension, "velocity"); this->allocNodalField(acceleration, spatial_dimension, "acceleration"); if (!dof_manager.hasDOFsDerivatives("displacement", 1)) { dof_manager.registerDOFsDerivative("displacement", 1, *this->velocity); dof_manager.registerDOFsDerivative("displacement", 2, *this->acceleration); } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void StructuralMechanicsModel::initModel() { for (auto && type : mesh.elementTypes(_element_kind = _ek_structural)) { // computeRotationMatrix(type); element_material.alloc(mesh.getNbElement(type), 1, type); } getFEEngine().initShapeFunctions(_not_ghost); getFEEngine().initShapeFunctions(_ghost); } /* -------------------------------------------------------------------------- */ void StructuralMechanicsModel::assembleStiffnessMatrix() { AKANTU_DEBUG_IN(); getDOFManager().getMatrix("K").zero(); for (const auto & type : mesh.elementTypes(spatial_dimension, _not_ghost, _ek_structural)) { #define ASSEMBLE_STIFFNESS_MATRIX(type) assembleStiffnessMatrix(); AKANTU_BOOST_STRUCTURAL_ELEMENT_SWITCH(ASSEMBLE_STIFFNESS_MATRIX); #undef ASSEMBLE_STIFFNESS_MATRIX } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void StructuralMechanicsModel::computeStresses() { AKANTU_DEBUG_IN(); for (const auto & type : mesh.elementTypes(spatial_dimension, _not_ghost, _ek_structural)) { #define COMPUTE_STRESS_ON_QUAD(type) computeStressOnQuad(); AKANTU_BOOST_STRUCTURAL_ELEMENT_SWITCH(COMPUTE_STRESS_ON_QUAD); #undef COMPUTE_STRESS_ON_QUAD } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void StructuralMechanicsModel::computeRotationMatrix(ElementType type) { Mesh & mesh = getFEEngine().getMesh(); UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type); UInt nb_element = mesh.getNbElement(type); if (!rotation_matrix.exists(type)) { rotation_matrix.alloc(nb_element, nb_degree_of_freedom * nb_nodes_per_element * nb_degree_of_freedom * nb_nodes_per_element, type); } else { rotation_matrix(type).resize(nb_element); } rotation_matrix(type).zero(); Array rotations(nb_element, nb_degree_of_freedom * nb_degree_of_freedom); rotations.zero(); #define COMPUTE_ROTATION_MATRIX(type) computeRotationMatrix(rotations); AKANTU_BOOST_STRUCTURAL_ELEMENT_SWITCH(COMPUTE_ROTATION_MATRIX); #undef COMPUTE_ROTATION_MATRIX auto R_it = rotations.begin(nb_degree_of_freedom, nb_degree_of_freedom); auto T_it = rotation_matrix(type).begin(nb_degree_of_freedom * nb_nodes_per_element, nb_degree_of_freedom * nb_nodes_per_element); for (UInt el = 0; el < nb_element; ++el, ++R_it, ++T_it) { auto & T = *T_it; auto & R = *R_it; for (UInt k = 0; k < nb_nodes_per_element; ++k) { for (UInt i = 0; i < nb_degree_of_freedom; ++i) { for (UInt j = 0; j < nb_degree_of_freedom; ++j) { T(k * nb_degree_of_freedom + i, k * nb_degree_of_freedom + j) = R(i, j); } } } } } /* -------------------------------------------------------------------------- */ std::shared_ptr StructuralMechanicsModel::createNodalFieldBool( const std::string & field_name, const std::string & group_name, __attribute__((unused)) bool padding_flag) { std::map *> uint_nodal_fields; uint_nodal_fields["blocked_dofs"] = blocked_dofs; return mesh.createNodalField(uint_nodal_fields[field_name], group_name); } /* -------------------------------------------------------------------------- */ std::shared_ptr StructuralMechanicsModel::createNodalFieldReal(const std::string & field_name, const std::string & group_name, bool padding_flag) { UInt n; if (spatial_dimension == 2) { n = 2; } else { n = 3; } UInt padding_size = 0; if (padding_flag) { padding_size = 3; } if (field_name == "displacement") { return mesh.createStridedNodalField(displacement_rotation, group_name, n, 0, padding_size); } if (field_name == "rotation") { return mesh.createStridedNodalField(displacement_rotation, group_name, nb_degree_of_freedom - n, n, padding_size); } if (field_name == "force") { return mesh.createStridedNodalField(external_force, group_name, n, 0, padding_size); } if (field_name == "momentum") { return mesh.createStridedNodalField( external_force, group_name, nb_degree_of_freedom - n, n, padding_size); } if (field_name == "internal_force") { return mesh.createStridedNodalField(internal_force, group_name, n, 0, padding_size); } if (field_name == "internal_momentum") { return mesh.createStridedNodalField( internal_force, group_name, nb_degree_of_freedom - n, n, padding_size); } return nullptr; } /* -------------------------------------------------------------------------- */ std::shared_ptr StructuralMechanicsModel::createElementalField( const std::string & field_name, const std::string & group_name, bool /*unused*/, UInt spatial_dimension, ElementKind kind) { std::shared_ptr field; if (field_name == "element_index_by_material") { field = mesh.createElementalField( field_name, group_name, spatial_dimension, kind); } return field; } /* -------------------------------------------------------------------------- */ /* Virtual methods from SolverCallback */ /* -------------------------------------------------------------------------- */ /// get the type of matrix needed MatrixType StructuralMechanicsModel::getMatrixType(const ID & /*id*/) { return _symmetric; } /// callback to assemble a Matrix void StructuralMechanicsModel::assembleMatrix(const ID & id) { if (id == "K") { assembleStiffnessMatrix(); } } /// callback to assemble a lumped Matrix void StructuralMechanicsModel::assembleLumpedMatrix(const ID & /*id*/) {} /// callback to assemble the residual StructuralMechanicsModel::(rhs) void StructuralMechanicsModel::assembleResidual() { AKANTU_DEBUG_IN(); auto & dof_manager = getDOFManager(); internal_force->zero(); computeStresses(); assembleInternalForce(); dof_manager.assembleToResidual("displacement", *internal_force, -1); dof_manager.assembleToResidual("displacement", *external_force, 1); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ /* Virtual methods from Model */ /* -------------------------------------------------------------------------- */ /// get some default values for derived classes std::tuple StructuralMechanicsModel::getDefaultSolverID(const AnalysisMethod & method) { switch (method) { case _static: { return std::make_tuple("static", TimeStepSolverType::_static); } case _implicit_dynamic: { return std::make_tuple("implicit", TimeStepSolverType::_dynamic); } default: return std::make_tuple("unknown", TimeStepSolverType::_not_defined); } } /* ------------------------------------------------------------------------ */ ModelSolverOptions StructuralMechanicsModel::getDefaultSolverOptions( const TimeStepSolverType & type) const { ModelSolverOptions options; switch (type) { case TimeStepSolverType::_static: { options.non_linear_solver_type = NonLinearSolverType::_linear; options.integration_scheme_type["displacement"] = IntegrationSchemeType::_pseudo_time; options.solution_type["displacement"] = IntegrationScheme::_not_defined; break; } default: AKANTU_EXCEPTION(type << " is not a valid time step solver type"); } return options; } /* -------------------------------------------------------------------------- */ void StructuralMechanicsModel::assembleInternalForce() { for (auto type : mesh.elementTypes(_spatial_dimension = _all_dimensions, _element_kind = _ek_structural)) { assembleInternalForce(type, _not_ghost); // assembleInternalForce(type, _ghost); } } /* -------------------------------------------------------------------------- */ void StructuralMechanicsModel::assembleInternalForce(ElementType type, GhostType gt) { auto & fem = getFEEngine(); auto & sigma = stress(type, gt); auto ndof = getNbDegreeOfFreedom(type); auto nb_nodes = mesh.getNbNodesPerElement(type); auto ndof_per_elem = ndof * nb_nodes; Array BtSigma(fem.getNbIntegrationPoints(type) * mesh.getNbElement(type), ndof_per_elem, "BtSigma"); fem.computeBtD(sigma, BtSigma, type, gt); Array intBtSigma(0, ndof_per_elem, "intBtSigma"); fem.integrate(BtSigma, intBtSigma, ndof_per_elem, type, gt); BtSigma.resize(0); getDOFManager().assembleElementalArrayLocalArray(intBtSigma, *internal_force, type, gt, 1); } /* -------------------------------------------------------------------------- */ } // namespace akantu