diff --git a/src/model/common/non_local_toolbox/non_local_manager.cc b/src/model/common/non_local_toolbox/non_local_manager.cc index c6cc622bd..6494dbe05 100644 --- a/src/model/common/non_local_toolbox/non_local_manager.cc +++ b/src/model/common/non_local_toolbox/non_local_manager.cc @@ -1,636 +1,636 @@ /** * @file non_local_manager.cc * @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch> * @author Nicolas Richart <nicolas.richart@epfl.ch> * @date Mon Sep 21 15:32:10 2015 * * @brief Implementation of non-local manager * * @section LICENSE * * Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see <http://www.gnu.org/licenses/>. * */ /* -------------------------------------------------------------------------- */ #include "non_local_manager.hh" #include "non_local_neighborhood.hh" #include "material_non_local.hh" #include "base_weight_function.hh" /* -------------------------------------------------------------------------- */ __BEGIN_AKANTU__ /* -------------------------------------------------------------------------- */ NonLocalManager::NonLocalManager(SolidMechanicsModel & model, const ID & id, const MemoryID & memory_id) : Memory(id, memory_id), Parsable(_st_neighborhoods, id), model(model), quad_positions("quad_positions", id), volumes("volumes", id), spatial_dimension(this->model.getSpatialDimension()), compute_stress_calls(0), dummy_registry(NULL), dummy_grid(NULL) { Mesh & mesh = this->model.getMesh(); mesh.registerEventHandler(*this); /// initialize the element type map array /// it will be resized to nb_quad * nb_element during the computation of coords mesh.initElementTypeMapArray(quad_positions, spatial_dimension, spatial_dimension, false, _ek_regular, true); this->initElementTypeMap(1, volumes, this->model.getFEEngine()); /// parse the neighborhood information from the input file const Parser & parser = getStaticParser(); /// iterate over all the non-local sections and store them in a map std::pair<Parser::const_section_iterator, Parser::const_section_iterator> weight_sect = parser.getSubSections(_st_non_local); Parser::const_section_iterator it = weight_sect.first; for (; it != weight_sect.second; ++it) { const ParserSection & section = *it; ID name = section.getName(); this->weight_function_types[name] = section; } this->dummy_registry = new SynchronizerRegistry(this->dummy_accessor); } /* -------------------------------------------------------------------------- */ NonLocalManager::~NonLocalManager() { /// delete neighborhoods NeighborhoodMap::iterator it; for (it = neighborhoods.begin(); it != neighborhoods.end(); ++it) { if(it->second) delete it->second; } /// delete non-local variables std::map<ID, NonLocalVariable *>::iterator it_variables; for (it_variables = non_local_variables.begin(); it_variables != non_local_variables.end(); ++it_variables) { if(it_variables->second) delete it_variables->second; } std::map<ID, ElementTypeMapReal *>::iterator it_internals; for (it_internals = weight_function_internals.begin(); it_internals != weight_function_internals.end(); ++it_internals) { if(it_internals->second) delete it_internals->second; } std::map<ID, GridSynchronizer * >::iterator grid_synch_it; for (grid_synch_it = dummy_synchronizers.begin(); grid_synch_it != dummy_synchronizers.end(); ++grid_synch_it) { if(grid_synch_it->second) delete grid_synch_it->second; } /// delete all objects related to the dummy synchronizers delete dummy_registry; delete dummy_grid; } /* -------------------------------------------------------------------------- */ void NonLocalManager::setJacobians(const FEEngine & fe_engine, const ElementKind & kind) { Mesh & mesh = this->model.getMesh(); for(UInt g = _not_ghost; g <= _ghost; ++g) { GhostType gt = (GhostType) g; Mesh::type_iterator it = mesh.firstType(spatial_dimension, gt, kind); Mesh::type_iterator last_type = mesh.lastType(spatial_dimension, gt, kind); for(; it != last_type; ++it) { jacobians(*it, gt) = &fe_engine.getIntegratorInterface().getJacobians(*it, gt); } } } /* -------------------------------------------------------------------------- */ void NonLocalManager::createNeighborhood(const ID & weight_func, const ID & neighborhood_id) { AKANTU_DEBUG_IN(); const ParserSection & section = this->weight_function_types[weight_func]; const ID weight_func_type = section.getOption(); /// create new neighborhood for given ID std::stringstream sstr; sstr << id << ":neighborhood:" << neighborhood_id; if (weight_func_type == "base_wf") neighborhoods[neighborhood_id] = new NonLocalNeighborhood<BaseWeightFunction>(*this, this->quad_positions, sstr.str()); else if (weight_func_type == "remove_wf") neighborhoods[neighborhood_id] = new NonLocalNeighborhood<RemoveDamagedWeightFunction>(*this, this->quad_positions, sstr.str()); else if (weight_func_type == "stress_wf") neighborhoods[neighborhood_id] = new NonLocalNeighborhood<StressBasedWeightFunction>(*this, this->quad_positions, sstr.str()); else if (weight_func_type == "damage_wf") neighborhoods[neighborhood_id] = new NonLocalNeighborhood<DamagedWeightFunction>(*this, this->quad_positions, sstr.str()); else AKANTU_EXCEPTION("error in weight function type provided in material file"); neighborhoods[neighborhood_id]->parseSection(section); neighborhoods[neighborhood_id]->initNeighborhood(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void NonLocalManager::createNeighborhoodSynchronizers() { /// exchange all the neighborhood IDs, so that every proc knows how many neighborhoods exist globally /// First: Compute locally the maximum ID size UInt max_id_size = 0; UInt current_size = 0; NeighborhoodMap::const_iterator it; for (it = neighborhoods.begin(); it != neighborhoods.end(); ++it) { current_size = it->first.size(); if (current_size > max_id_size) max_id_size = current_size; } /// get the global maximum ID size on each proc StaticCommunicator & static_communicator = akantu::StaticCommunicator::getStaticCommunicator(); static_communicator.allReduce(&max_id_size, 1, _so_max); /// get the rank for this proc and the total nb proc UInt prank = static_communicator.whoAmI(); UInt psize = static_communicator.getNbProc(); /// exchange the number of neighborhoods on each proc Array<Int> nb_neighborhoods_per_proc(psize); nb_neighborhoods_per_proc(prank) = neighborhoods.size(); static_communicator.allGather(nb_neighborhoods_per_proc.storage(), 1); /// compute the total number of neighborhoods UInt nb_neighborhoods_global = std::accumulate(nb_neighborhoods_per_proc.begin(), nb_neighborhoods_per_proc.end(), 0); /// allocate an array of chars to store the names of all neighborhoods Array<char> buffer(nb_neighborhoods_global, max_id_size); /// starting index on this proc UInt starting_index = std::accumulate(nb_neighborhoods_per_proc.begin(), nb_neighborhoods_per_proc.begin() + prank, 0); it = neighborhoods.begin(); /// store the names of local neighborhoods in the buffer for (UInt i = 0; i < neighborhoods.size(); ++i, ++it) { UInt c = 0; for (; c < it->first.size(); ++c) buffer(i + starting_index, c) = it->first[c]; for (; c < max_id_size; ++c) buffer(i + starting_index, c) = char( 0 ); } /// store the nb of data to send in the all gather Array<Int> buffer_size(nb_neighborhoods_per_proc); buffer_size *= max_id_size; /// exchange the names of all the neighborhoods with all procs static_communicator.allGatherV(buffer.storage(), buffer_size.storage()); for (UInt i = 0; i < nb_neighborhoods_global; ++i) { std::stringstream neighborhood_id; for(UInt c = 0; c < max_id_size; ++c) { if (buffer(i,c) == char( 0 )) break; neighborhood_id << buffer(i,c); } global_neighborhoods.insert(neighborhood_id.str()); } /// this proc does not know all the neighborhoods -> create dummy /// grid so that this proc can participate in the all gather for /// detecting the overlap of neighborhoods this proc doesn't know Vector<Real> grid_center(this->spatial_dimension); for(UInt s = 0; s < this->spatial_dimension; ++s) grid_center(s) = std::numeric_limits<Real>::max(); dummy_grid = new SpatialGrid<IntegrationPoint>(spatial_dimension, 0., grid_center); std::set<SynchronizationTag> tags; tags.insert(_gst_mnl_for_average); tags.insert(_gst_mnl_weight); std::set<ID>::const_iterator global_neighborhoods_it = global_neighborhoods.begin(); for (; global_neighborhoods_it != global_neighborhoods.end(); ++global_neighborhoods_it) { it = neighborhoods.find(*global_neighborhoods_it); if (it != neighborhoods.end()) { it->second->createGridSynchronizer(); } else { ID neighborhood_name = *global_neighborhoods_it; std::stringstream sstr; sstr << getID() << ":" << neighborhood_name << ":grid_synchronizer"; dummy_synchronizers[neighborhood_name] = GridSynchronizer::createGridSynchronizer(this->model.getMesh(), *dummy_grid, sstr.str(), dummy_registry, tags, 0, false); } } } /* -------------------------------------------------------------------------- */ void NonLocalManager::flattenInternal(ElementTypeMapReal & internal_flat, const GhostType & ghost_type, const ElementKind & kind) { const ID field_name = internal_flat.getName(); for (UInt m = 0; m < this->non_local_materials.size(); ++m) { Material & material = *(this->non_local_materials[m]); if (material.isInternal<Real>(field_name, kind)) material.flattenInternal(field_name, internal_flat, ghost_type, kind); } } /* -------------------------------------------------------------------------- */ void NonLocalManager::averageInternals(const GhostType & ghost_type) { /// update the weights of the weight function if (ghost_type == _not_ghost) this->computeWeights(); /// loop over all neighborhoods and compute the non-local variables NeighborhoodMap::iterator neighborhood_it = neighborhoods.begin(); NeighborhoodMap::iterator neighborhood_end = neighborhoods.end(); for (; neighborhood_it != neighborhood_end; ++neighborhood_it) { /// loop over all the non-local variables of the given neighborhood std::map<ID, NonLocalVariable *>::iterator non_local_variable_it = non_local_variables.begin(); std::map<ID, NonLocalVariable *>::iterator non_local_variable_end = non_local_variables.end(); for(; non_local_variable_it != non_local_variable_end; ++non_local_variable_it) { NonLocalVariable * non_local_var = non_local_variable_it->second; neighborhood_it->second->weightedAverageOnNeighbours(non_local_var->local, non_local_var->non_local, non_local_var->nb_component, ghost_type); } } if (ghost_type == _ghost) { /// compute the non-local stresses in the materials for(UInt m = 0; m < this->non_local_materials.size(); ++m) { switch (spatial_dimension) { case 1: dynamic_cast<MaterialNonLocal<1> &>(*(this->non_local_materials[m])).computeNonLocalStresses(_not_ghost); break; case 2: dynamic_cast<MaterialNonLocal<2> &>(*(this->non_local_materials[m])).computeNonLocalStresses(_not_ghost); break; case 3: dynamic_cast<MaterialNonLocal<3> &>(*(this->non_local_materials[m])).computeNonLocalStresses(_not_ghost); break; } } } } /* -------------------------------------------------------------------------- */ void NonLocalManager::init(){ /// store the number of current ghost elements for each type in the mesh ElementTypeMap<UInt> nb_ghost_protected; Mesh & mesh = this->model.getMesh(); Mesh::type_iterator it = mesh.firstType(spatial_dimension, _ghost); Mesh::type_iterator last_type = mesh.lastType(spatial_dimension, _ghost); for(; it != last_type; ++it) nb_ghost_protected(mesh.getNbElement(*it, _ghost), *it, _ghost); /// exchange the missing ghosts for the non-local neighborhoods this->createNeighborhoodSynchronizers(); /// insert the ghost quadrature points of the non-local materials into the non-local neighborhoods for(UInt m = 0; m < this->non_local_materials.size(); ++m) { switch (spatial_dimension) { case 1: dynamic_cast<MaterialNonLocal<1> &>(*(this->non_local_materials[m])).insertQuadsInNeighborhoods(_ghost); break; case 2: dynamic_cast<MaterialNonLocal<2> &>(*(this->non_local_materials[m])).insertQuadsInNeighborhoods(_ghost); break; case 3: dynamic_cast<MaterialNonLocal<3> &>(*(this->non_local_materials[m])).insertQuadsInNeighborhoods(_ghost); break; } } FEEngine & fee = this->model.getFEEngine(); this->updatePairLists(); /// cleanup the unneccessary ghost elements this->cleanupExtraGhostElements(nb_ghost_protected); this->setJacobians(fee, _ek_regular); this->initNonLocalVariables(); this->computeWeights(); } /* -------------------------------------------------------------------------- */ void NonLocalManager::initNonLocalVariables(){ /// loop over all the non-local variables std::map<ID, NonLocalVariable *>::iterator non_local_variable_it = non_local_variables.begin(); std::map<ID, NonLocalVariable *>::iterator non_local_variable_end = non_local_variables.end(); for(; non_local_variable_it != non_local_variable_end; ++non_local_variable_it) { NonLocalVariable & variable = *(non_local_variable_it->second); this->initElementTypeMap(variable.nb_component, variable.non_local, this->model.getFEEngine()); } } /* -------------------------------------------------------------------------- */ void NonLocalManager::initElementTypeMap(UInt nb_component, ElementTypeMapReal & element_map, const FEEngine & fee, const ElementKind el_kind) { Mesh & mesh = this->model.getMesh(); /// need to resize the arrays for(UInt g = _not_ghost; g <= _ghost; ++g) { GhostType gt = (GhostType) g; Mesh::type_iterator it = mesh.firstType(spatial_dimension, gt, el_kind); Mesh::type_iterator end = mesh.lastType(spatial_dimension, gt, el_kind); for(; it != end; ++it) { ElementType el_type = *it; UInt nb_element = mesh.getNbElement(*it, gt); UInt nb_quads = fee.getNbIntegrationPoints(*it, gt); if (!element_map.exists(el_type, gt)) { element_map.alloc(nb_element * nb_quads, nb_component, el_type, gt); } } } } /* -------------------------------------------------------------------------- */ void NonLocalManager::distributeInternals(ElementKind kind) { /// loop over all the non-local variables and copy back their values into the materials std::map<ID, NonLocalVariable *>::iterator non_local_variable_it = non_local_variables.begin(); std::map<ID, NonLocalVariable *>::iterator non_local_variable_end = non_local_variables.end(); for(; non_local_variable_it != non_local_variable_end; ++non_local_variable_it) { NonLocalVariable * non_local_var = non_local_variable_it->second; const ID field_name = non_local_var->non_local.getName(); /// loop over all the materials for (UInt m = 0; m < this->non_local_materials.size(); ++m) { if (this->non_local_materials[m]->isInternal<Real>(field_name, kind)) switch (spatial_dimension) { case 1: dynamic_cast<MaterialNonLocal<1> &>(*(this->non_local_materials[m])).updateNonLocalInternals(non_local_var->non_local, field_name, non_local_var->nb_component); break; case 2: dynamic_cast<MaterialNonLocal<2> &>(*(this->non_local_materials[m])).updateNonLocalInternals(non_local_var->non_local, field_name, non_local_var->nb_component); break; case 3: dynamic_cast<MaterialNonLocal<3> &>(*(this->non_local_materials[m])).updateNonLocalInternals(non_local_var->non_local, field_name, non_local_var->nb_component); break; } } } } /* -------------------------------------------------------------------------- */ void NonLocalManager::computeAllNonLocalStresses() { /// update the flattened version of the internals std::map<ID, NonLocalVariable *>::iterator non_local_variable_it = non_local_variables.begin(); std::map<ID, NonLocalVariable *>::iterator non_local_variable_end = non_local_variables.end(); for(; non_local_variable_it != non_local_variable_end; ++non_local_variable_it) { non_local_variable_it->second->local.clear(); non_local_variable_it->second->non_local.clear(); for(UInt gt = _not_ghost; gt <= _ghost; ++gt) { GhostType ghost_type = (GhostType) gt; this->flattenInternal(non_local_variable_it->second->local, ghost_type, _ek_regular); } } this->volumes.clear(); ///loop over all the neighborhoods and compute intiate the /// exchange of the non-local_variables // std::set<ID>::const_iterator global_neighborhood_it = global_neighborhoods.begin(); // NeighborhoodMap::iterator it; // for(; global_neighborhood_it != global_neighborhoods.end(); ++global_neighborhood_it) { // it = neighborhoods.find(*global_neighborhood_it); // if (it != neighborhoods.end()) // it->second->getSynchronizerRegistry().asynchronousSynchronize(_gst_mnl_for_average); // else // dummy_synchronizers[*global_neighborhood_it]->asynchronousSynchronize(dummy_accessor, _gst_mnl_for_average); // } NeighborhoodMap::iterator neighborhood_it = neighborhoods.begin(); - NeighborhoodMap::iterator neighborhood_end = neighborhoods.end(); + //NeighborhoodMap::iterator neighborhood_end = neighborhoods.end(); for(; neighborhood_it != neighborhoods.end(); ++neighborhood_it) { neighborhood_it->second->getSynchronizerRegistry().asynchronousSynchronize(_gst_mnl_for_average); } this->averageInternals(_not_ghost); AKANTU_DEBUG_INFO("Wait distant non local stresses"); /// loop over all the neighborhoods and block until all non-local /// variables have been exchanged // global_neighborhood_it = global_neighborhoods.begin(); // for(; global_neighborhood_it != global_neighborhoods.end(); ++global_neighborhood_it) { // it = neighborhoods.find(*global_neighborhood_it); // if (it != neighborhoods.end()) // it->second->getSynchronizerRegistry().waitEndSynchronize(_gst_mnl_for_average); // else // dummy_synchronizers[*global_neighborhood_it]->waitEndSynchronize(dummy_accessor, _gst_mnl_for_average); // } neighborhood_it = neighborhoods.begin(); for(; neighborhood_it != neighborhoods.end(); ++neighborhood_it) { neighborhood_it->second->getSynchronizerRegistry().waitEndSynchronize(_gst_mnl_for_average); } this->averageInternals(_ghost); /// copy the results in the materials this->distributeInternals(_ek_regular); /// loop over all the materials and update the weights for (UInt m = 0; m < this->non_local_materials.size(); ++m) { switch (spatial_dimension) { case 1: dynamic_cast<MaterialNonLocal<1> &>(*(this->non_local_materials[m])).computeNonLocalStresses(_not_ghost); break; case 2: dynamic_cast<MaterialNonLocal<2> &>(*(this->non_local_materials[m])).computeNonLocalStresses(_not_ghost); break; case 3: dynamic_cast<MaterialNonLocal<3> &>(*(this->non_local_materials[m])).computeNonLocalStresses(_not_ghost); break; } } ++this->compute_stress_calls; } /* -------------------------------------------------------------------------- */ void NonLocalManager::cleanupExtraGhostElements(ElementTypeMap<UInt> & nb_ghost_protected) { typedef std::set<Element> ElementSet; ElementSet relevant_ghost_elements; ElementSet to_keep_per_neighborhood; /// loop over all the neighborhoods and get their protected ghosts NeighborhoodMap::iterator neighborhood_it = neighborhoods.begin(); NeighborhoodMap::iterator neighborhood_end = neighborhoods.end(); for (; neighborhood_it != neighborhood_end; ++neighborhood_it) { neighborhood_it->second->cleanupExtraGhostElements(to_keep_per_neighborhood); ElementSet::const_iterator it = to_keep_per_neighborhood.begin(); for(; it != to_keep_per_neighborhood.end(); ++it) relevant_ghost_elements.insert(*it); to_keep_per_neighborhood.clear(); } /// remove all unneccessary ghosts from the mesh /// Create list of element to remove and new numbering for element to keep Mesh & mesh = this->model.getMesh(); ElementSet ghost_to_erase; Mesh::type_iterator it = mesh.firstType(spatial_dimension, _ghost); Mesh::type_iterator last_type = mesh.lastType(spatial_dimension, _ghost); RemovedElementsEvent remove_elem(mesh); Element element; element.ghost_type = _ghost; for(; it != last_type; ++it) { element.type = *it; UInt nb_ghost_elem = mesh.getNbElement(*it, _ghost); UInt nb_ghost_elem_protected = 0; try { nb_ghost_elem_protected = nb_ghost_protected(*it, _ghost); } catch (...) {} if(!remove_elem.getNewNumbering().exists(*it, _ghost)) remove_elem.getNewNumbering().alloc(nb_ghost_elem, 1, *it, _ghost); else remove_elem.getNewNumbering(*it, _ghost).resize(nb_ghost_elem); Array<UInt> & new_numbering = remove_elem.getNewNumbering(*it, _ghost); for (UInt g = 0; g < nb_ghost_elem; ++g) { element.element = g; if (element.element >= nb_ghost_elem_protected && relevant_ghost_elements.find(element) == relevant_ghost_elements.end()) { remove_elem.getList().push_back(element); new_numbering(element.element) = UInt(-1); } } /// renumber remaining ghosts UInt ng = 0; for (UInt g = 0; g < nb_ghost_elem; ++g) { if (new_numbering(g) != UInt(-1)) { new_numbering(g) = ng; ++ng; } } } it = mesh.firstType(spatial_dimension, _not_ghost); last_type = mesh.lastType(spatial_dimension, _not_ghost); for(; it != last_type; ++it) { UInt nb_elem = mesh.getNbElement(*it, _not_ghost); if(!remove_elem.getNewNumbering().exists(*it, _not_ghost)) remove_elem.getNewNumbering().alloc(nb_elem, 1, *it, _not_ghost); Array<UInt> & new_numbering = remove_elem.getNewNumbering(*it, _not_ghost); for (UInt e = 0; e < nb_elem; ++e) { new_numbering(e) = e; } } mesh.sendEvent(remove_elem); } /* -------------------------------------------------------------------------- */ void NonLocalManager::onElementsRemoved(const Array<Element> & element_list, const ElementTypeMapArray<UInt> & new_numbering, __attribute__((unused)) const RemovedElementsEvent & event) { FEEngine & fee = this->model.getFEEngine(); this->removeIntegrationPointsFromMap(event.getNewNumbering(), spatial_dimension, quad_positions, fee, _ek_regular); this->removeIntegrationPointsFromMap(event.getNewNumbering(), 1, volumes, fee, _ek_regular); /// loop over all the neighborhoods and call onElementsRemoved std::set<ID>::const_iterator global_neighborhood_it = global_neighborhoods.begin(); NeighborhoodMap::iterator it; for(; global_neighborhood_it != global_neighborhoods.end(); ++global_neighborhood_it) { it = neighborhoods.find(*global_neighborhood_it); if (it != neighborhoods.end()) it->second->onElementsRemoved(element_list, new_numbering, event); else dummy_synchronizers[*global_neighborhood_it]->onElementsRemoved(element_list, new_numbering, event); } } /* -------------------------------------------------------------------------- */ void NonLocalManager::onElementsAdded(__attribute__((unused)) const Array<Element> & element_list, __attribute__((unused)) const NewElementsEvent & event) { this->resizeElementTypeMap(1, volumes, model.getFEEngine()); this->resizeElementTypeMap(spatial_dimension, quad_positions, model.getFEEngine()); } /* -------------------------------------------------------------------------- */ void NonLocalManager::resizeElementTypeMap(UInt nb_component, ElementTypeMapReal & element_map, const FEEngine & fee, const ElementKind el_kind) { Mesh & mesh = this->model.getMesh(); for(UInt g = _not_ghost; g <= _ghost; ++g) { GhostType gt = (GhostType) g; Mesh::type_iterator it = mesh.firstType(spatial_dimension, gt, el_kind); Mesh::type_iterator end = mesh.lastType(spatial_dimension, gt, el_kind); for(; it != end; ++it) { UInt nb_element = mesh.getNbElement(*it, gt); UInt nb_quads = fee.getNbIntegrationPoints(*it, gt); if(!element_map.exists(*it, gt)) element_map.alloc(nb_element * nb_quads, nb_component, *it, gt); else element_map(*it, gt).resize(nb_element * nb_quads); } } } /* -------------------------------------------------------------------------- */ void NonLocalManager::removeIntegrationPointsFromMap(const ElementTypeMapArray<UInt> & new_numbering, UInt nb_component, ElementTypeMapReal & element_map, const FEEngine & fee, const ElementKind el_kind) { for(UInt g = _not_ghost; g <= _ghost; ++g) { GhostType gt = (GhostType) g; ElementTypeMapArray<UInt>::type_iterator it = new_numbering.firstType(_all_dimensions, gt, el_kind); ElementTypeMapArray<UInt>::type_iterator end = new_numbering.lastType(_all_dimensions, gt, el_kind); for (; it != end; ++it) { ElementType type = *it; if(element_map.exists(type, gt)){ const Array<UInt> & renumbering = new_numbering(type, gt); Array<Real> & vect = element_map(type, gt); UInt nb_quad_per_elem = fee.getNbIntegrationPoints(type, gt); Array<Real> tmp(renumbering.getSize()*nb_quad_per_elem, nb_component); AKANTU_DEBUG_ASSERT(tmp.getSize() == vect.getSize(), "Something strange append some mater was created from nowhere!!"); AKANTU_DEBUG_ASSERT(tmp.getSize() == vect.getSize(), "Something strange append some mater was created or disappeared in "<< vect.getID() << "("<< vect.getSize() <<"!=" << tmp.getSize() <<") ""!!"); UInt new_size = 0; for (UInt i = 0; i < renumbering.getSize(); ++i) { UInt new_i = renumbering(i); if(new_i != UInt(-1)) { memcpy(tmp.storage() + new_i * nb_component * nb_quad_per_elem, vect.storage() + i * nb_component * nb_quad_per_elem, nb_component * nb_quad_per_elem * sizeof(Real)); ++new_size; } } tmp.resize(new_size * nb_quad_per_elem); vect.copy(tmp); } } } } __END_AKANTU__ diff --git a/test/test_model/test_solid_mechanics_model/test_materials/test_material_mazars.cc b/test/test_model/test_solid_mechanics_model/test_materials/test_material_mazars.cc index 4f6ef2b26..a74ad2b74 100644 --- a/test/test_model/test_solid_mechanics_model/test_materials/test_material_mazars.cc +++ b/test/test_model/test_solid_mechanics_model/test_materials/test_material_mazars.cc @@ -1,304 +1,304 @@ /** * @file tes_material_mazars.cc * @author Clement Roux-Langlois <clement.roux@epfl.ch> * @date Fri Sep 11 20151 * * @brief test for material mazars, dissymmetric * * @section LICENSE * * Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see <http://www.gnu.org/licenses/>. * */ /* -------------------------------------------------------------------------- */ #include "aka_common.hh" #include "mesh.hh" #include "mesh_io.hh" #include "solid_mechanics_model.hh" #include "material.hh" //#include "io_helper_tools.hh" /* -------------------------------------------------------------------------- */ using namespace akantu; /* -------------------------------------------------------------------------- */ int main(int argc, char *argv[]) { debug::setDebugLevel(akantu::dblWarning); akantu::initialize("material_mazars.dat", argc, argv); const UInt spatial_dimension = 3; // ElementType type = _quadrangle_4; ElementType type = _hexahedron_8; // UInt compression_steps = 5e5; // Real max_compression = 0.01; // UInt traction_steps = 1e4; // Real max_traction = 0.001; Mesh mesh(spatial_dimension); mesh.addConnectivityType(type); Array<Real> & nodes = const_cast<Array<Real> &>(mesh.getNodes()); Array<UInt> & connectivity = const_cast<Array<UInt> &>(mesh.getConnectivity(type)); const Real width = 1; UInt nb_dof = 0; connectivity.resize(1); if(type == _hexahedron_8) { nb_dof = 8; nodes.resize(nb_dof); nodes(0,0) = 0.; nodes(0,1) = 0.; nodes(0,2) = 0.; nodes(1,0) = width; nodes(1,1) = 0.; nodes(1,2) = 0.; nodes(2,0) = width; nodes(2,1) = width; nodes(2,2) = 0; nodes(3,0) = 0; nodes(3,1) = width; nodes(3,2) = 0; nodes(4,0) = 0.; nodes(4,1) = 0.; nodes(4,2) = width; nodes(5,0) = width; nodes(5,1) = 0.; nodes(5,2) = width; nodes(6,0) = width; nodes(6,1) = width; nodes(6,2) = width; nodes(7,0) = 0; nodes(7,1) = width; nodes(7,2) = width; connectivity(0,0) = 0; connectivity(0,1) = 1; connectivity(0,2) = 2; connectivity(0,3) = 3; connectivity(0,4) = 4; connectivity(0,5) = 5; connectivity(0,6) = 6; connectivity(0,7) = 7; } else if (type == _quadrangle_4) { nb_dof = 4; nodes.resize(nb_dof); nodes(0,0) = 0.; nodes(0,1) = 0.; nodes(1,0) = width; nodes(1,1) = 0; nodes(2,0) = width; nodes(2,1) = width; nodes(3,0) = 0.; nodes(3,1) = width; connectivity(0,0) = 0; connectivity(0,1) = 1; connectivity(0,2) = 2; connectivity(0,3) = 3; } SolidMechanicsModel model(mesh); model.initFull(); Material & mat = model.getMaterial(0); std::cout << mat << std::endl; /// boundary conditions Array<Real> & disp = model.getDisplacement(); Array<Real> & velo = model.getVelocity(); Array<bool> & boun = model.getBlockedDOFs(); for (UInt i = 0; i < nb_dof; ++i) { boun(i,0) = true; } // boun(0,1) = true; // boun(1,1) = true; // boun(2,1) = true; // boun(0,2) = true; // boun(1,2) = true; // boun(2,2) = true; // disp(1,0) = 0; // forc(1,0) = atof(argv[2]); // velo(0,0) = -atof(argv[2]); // velo(1,0) = atof(argv[2]); model.assembleMassLumped(); Real time_step = model.getStableTimeStep() * .5; //Real time_step = 1e-5; std::cout << "Time Step = " << time_step << "s - nb elements : " << mesh.getNbElement(type) << std::endl; model.setTimeStep(time_step); model.updateResidual(); std::ofstream energy; energy.open("energies_and_scalar_mazars.csv"); energy << "id,rtime,epot,ekin,u,wext,kin+pot,D,strain_xx,strain_yy,stress_xx,stress_yy,edis,tot" << std::endl; /// Set dumper model.setBaseName("uniaxial_comp-trac_mazars"); model.addDumpFieldVector("displacement"); model.addDumpField("velocity" ); model.addDumpField("acceleration"); model.addDumpField("damage" ); model.addDumpField("strain" ); model.addDumpField("stress" ); model.addDumpField("partitions" ); model.dump(); const Array<Real> & strain = mat.getGradU(type); const Array<Real> & stress = mat.getStress(type); const Array<Real> & damage = mat.getArray<Real>("damage", type); /* ------------------------------------------------------------------------ */ /* Main loop */ /* ------------------------------------------------------------------------ */ Real wext = 0.; Real sigma_max=0, sigma_min=0; Real max_disp; Real stress_xx_compression_1; UInt nb_steps = 7e5/150; Real adisp = 0; for(UInt s = 0; s < nb_steps; ++s) { if(s == 0) { max_disp = 0.003; adisp = -(max_disp * 8./nb_steps) /2.; std::cout << "Step " << s << " compression: " << max_disp <<std::endl; } if(s == (2*nb_steps / 8)) { stress_xx_compression_1 = stress(0,0); max_disp = 0+max_disp; adisp = max_disp * 8./nb_steps; std::cout << "Step " << s << " discharge" << std::endl; } if(s == (3*nb_steps / 8)) { max_disp = 0.004; adisp = - max_disp * 8./nb_steps; std::cout << "Step " << s << " compression: " << max_disp <<std::endl; } if(s == (4*nb_steps / 8)) { if(stress(0,0)<stress_xx_compression_1){ std::cout << "after this second compression step softening should have started" << std::endl; return EXIT_FAILURE; } max_disp = 0.0015+max_disp; adisp = max_disp * 8./nb_steps; std::cout << "Step " << s << " discharge tension: " << max_disp <<std::endl; } if(s == (5*nb_steps / 8)) { max_disp = 0.+0.0005; adisp = - max_disp * 8./nb_steps; std::cout << "Step " << s << " discharge" << std::endl; } if(s == (6*nb_steps / 8)) { max_disp = 0.0035-0.001; adisp = max_disp * 8./nb_steps; std::cout << "Step " << s << " tension: " << max_disp <<std::endl; } if(s == (7*nb_steps / 8)) { - max_disp = max_disp; + //max_disp = max_disp; adisp = - max_disp * 8./nb_steps; std::cout << "Step " << s << " discharge" << std::endl; } for (UInt i = 0; i < nb_dof; ++i) { if(std::abs(nodes(i,0) - width) < std::numeric_limits<Real>::epsilon()) { disp(i,0) += adisp; velo(i,0) = adisp / time_step; } } std::cout << "S: " << s << "/" << nb_steps << " inc disp: " << adisp << " disp: " << std::setw(5) << disp(2,0) << "\r" << std::flush; model.explicitPred(); model.updateResidual(); model.updateAcceleration(); model.explicitCorr(); Real epot = model.getEnergy("potential"); Real ekin = model.getEnergy("kinetic"); Real edis = model.getEnergy("dissipated"); wext += model.getEnergy("external work"); /*for (UInt i = 0; i < nb_dof; ++i) { wext += boun(i,0) * forc(i,0) * velo(i,0) * time_step; }*/ sigma_max = std::max(sigma_max,stress(0,0)); sigma_min = std::min(sigma_min,stress(0,0)); if(s % 10 == 0) energy << s << "," // 1 << s*time_step << "," // 2 << epot << "," // 3 << ekin << "," // 4 << disp(2,0) << "," // 5 << wext << "," // 6 << epot + ekin << "," // 7 << damage(0) << "," // 8 << strain(0,0) << "," // 9 << strain(0,3) << "," // 11 << stress(0,0) << "," // 10 << stress(0,3) << "," // 10 << edis << "," // 12 << epot + ekin + edis // 13 << std::endl; if(s % 100 == 0) model.dump(); } std::cout << std::endl << "sigma_max = " << sigma_max << ", sigma_min = " << sigma_min << std::endl; /// Verif the maximal/minimal stress values - if( (abs(sigma_max)>abs(sigma_min)) || (abs(sigma_max-6.24e6)>1e5) - || (abs(sigma_min+2.943e7)>1e6) ) + if( (std::abs(sigma_max)>std::abs(sigma_min)) || (std::abs(sigma_max-6.24e6)>1e5) + || (std::abs(sigma_min+2.943e7)>1e6) ) return EXIT_FAILURE; energy.close(); akantu::finalize(); return EXIT_SUCCESS; }