diff --git a/doc/manual/manual-appendix-materials-cohesive.tex b/doc/manual/manual-appendix-materials-cohesive.tex index f125deb12..1d7341f3a 100644 --- a/doc/manual/manual-appendix-materials-cohesive.tex +++ b/doc/manual/manual-appendix-materials-cohesive.tex @@ -1,30 +1,30 @@ \section{Cohesive linear} \begin{MaterialDesc}{cohesive\_linear}{ssect:smm:cl:coh-snozzi} \matparam{sigma\_c}{Real}{Critical stress $\sigma_\mathrm{c}$} +\matparam{delta\_c}{Real}{Critical displacement $\delta_\mathrm{c}$} \matparam{beta}{Real}{$\beta$ parameter} -\matparam{G\_cI}{Real}{Mode I fracture energy} -\matparam{G\_cII}{Real}{Mode II fracture energy} +\matparam{G\_c}{Real}{Mode I fracture energy} \matparam{kappa}{Real}{$\kappa$ parameter} \matparam{penalty}{Real}{penalty coefficient $\alpha$} \end{MaterialDesc} \section{Cohesive bilinear} \begin{MaterialDesc}{cohesive\_bilinear}{ssect:smm:cl:coh-snozzi} \matparam{sigma\_c}{Real}{Critical stress $\sigma_\mathrm{c}$} +\matparam{delta\_c}{Real}{Critical displacement $\delta_\mathrm{c}$} \matparam{beta}{Real}{$\beta$ parameter} -\matparam{G\_cI}{Real}{Mode I fracture energy} -\matparam{G\_cII}{Real}{Mode II fracture energy} +\matparam{G\_c}{Real}{Mode I fracture energy} \matparam{kappa}{Real}{$\kappa$ parameter} \matparam{penalty}{Real}{Penalty coefficient $\alpha$} \matparam{delta\_0}{Real}{Elastic limit displacement $\delta_0$} \end{MaterialDesc} \section{Cohesive exponential} \begin{MaterialDesc}{cohesive\_exponential}{ssect:smm:cl:coh-exponential} \matparam{sigma\_c}{Real}{Critical stress $\sigma_\mathrm{c}$} -\matparam{beta}{Real}{$\beta$ parameter} \matparam{delta\_c}{Real}{Critical displacement $\delta_\mathrm{c}$} +\matparam{beta}{Real}{$\beta$ parameter} \end{MaterialDesc} diff --git a/doc/manual/manual-cohesive_laws.tex b/doc/manual/manual-cohesive_laws.tex index 4185d9645..ea1dbbd73 100644 --- a/doc/manual/manual-cohesive_laws.tex +++ b/doc/manual/manual-cohesive_laws.tex @@ -1,150 +1,150 @@ \subsection{Cohesive laws} \label{sec:cohesive-laws} \subsubsection{Snozzi-Molinari Law\matlabel{ssect:smm:cl:coh-snozzi}} \begin{figure}[!hbt] \centering \subfloat[Linear]{\includegraphics[width=0.4\textwidth]{figures/linear_cohesive_law}} \qquad \subfloat[Bilinear]{\includegraphics[width=0.4\textwidth]{figures/bilinear_cohesive_law}} \caption{Irreversible cohesive laws for explicit simulations.} \label{fig:smm:coh:linear_cohesive_law} \end{figure} \akantu includes the Snozzi-Molinari~\cite{snozzi_cohesive_2013} linear irreversible cohesive law (see Figure~\ref{fig:smm:coh:linear_cohesive_law}). It is an extension to the Camacho-Ortiz~\cite{camacho_computational_1996} cohesive law in order to make dissipated fracture energy path-dependent. The concept of free potential energy is dropped and a new independent parameter $\kappa$ is introduced: \begin{equation} \kappa = \frac{G_\mathrm{c, II}}{G_\mathrm{c, I}} \end{equation} where $G_\mathrm{c, I}$ and $G_\mathrm{c, II}$ are the necessary works of separation per unit area to open completely a cohesive zone under mode I and mode II, respectively. Their model yields to the following equation for cohesive tractions $\vec{T}$ in case of crack opening ${\delta}$: \begin{equation} \label{eq:smm:coh:tractions} \vec{T} = \left( \frac{\beta^2}{\kappa} \Delta_\mathrm{t} \vec{t} + \Delta_\mathrm{n} \vec{n} \right) \frac{\sigma_\mathrm{c}}{\delta} \left( 1- \frac{\delta}{\delta_\mathrm{c}} \right) = \hat{\vec T}\, \frac{\sigma_\mathrm{c}}{\delta} \left( 1- \frac{\delta}{\delta_\mathrm{c}} \right) \end{equation} where $\sigma_\mathrm{c}$ is the material strength along the fracture, $\delta_\mathrm{c}$ the critical effective displacement after which cohesive tractions are zero (complete decohesion), $\Delta_\mathrm{t}$ and $\Delta_\mathrm{n}$ are the tangential and normal components of the opening displacement vector $\vec{\Delta}$, respectively. The parameter $\beta$ is a weight that indicates how big the tangential opening contribution is. The effective opening displacement is: \begin{equation} \delta = \sqrt{\frac{\beta^2}{\kappa^2} \Delta_\mathrm{t}^2 + \Delta_\mathrm{n}^2} \end{equation} In case of unloading or reloading $\delta < \delta_\mathrm{max}$, tractions are calculated as: \begin{align} T_\mathrm{n} &= \Delta_\mathrm{n}\, \frac{\sigma_\mathrm{c}}{\delta_\mathrm{max}} \left( 1- \frac{\delta_\mathrm{max}}{\delta_\mathrm{c}} \right) \\ T_\mathrm{t} &= \frac{\beta^2}{\kappa}\, \Delta_\mathrm{t}\, \frac{\sigma_\mathrm{c}}{\delta_\mathrm{max}} \left( 1- \frac{\delta_\mathrm{max}}{\delta_\mathrm{c}} \right) \end{align} so that they vary linearly between the origin and the maximum attained tractions. As shown in Figure~\ref{fig:smm:coh:linear_cohesive_law}, in this law, the dissipated and reversible energies are: \begin{align} E_\mathrm{diss} &= \frac{1}{2} \sigma_\mathrm{c}\, \delta_\mathrm{max}\\[1ex] E_\mathrm{rev} &= \frac{1}{2} T\, \delta \end{align} Moreover, a damage parameter $D$ can be defined as: \begin{equation} D = \min \left( \frac{\delta_\mathrm{max}}{\delta_\mathrm{c}},1 \right) \end{equation} which varies from 0 (undamaged condition) and 1 (fully damaged condition). This variable can only increase because damage is an irreversible process. A simple penalty contact model has been incorporated in the cohesive law so that normal tractions can be returned in case of compression: \begin{equation} T_\mathrm{n} = \alpha \Delta_\mathrm{n} \quad\text{if $\Delta_\mathrm{n} < 0$} \end{equation} where $\alpha$ is a stiffness parameter that defaults to zero. The relative contact energy is equivalent to reversible energy but in compression. The material name of the linear decreasing cohesive law is \code{material\_cohesive\_linear} and its parameters with their respective default values are: \begin{itemize} \item \code{sigma\_c}: 0 +\item \code{delta\_c}: 0 \item \code{beta}: 0 -\item \code{G\_cI}: 0 -\item \code{G\_cII}: 0 +\item \code{G\_c}: 0 \item \code{kappa}: 1 \item \code{penalty}: 0 \end{itemize} -A random number generator can be used to assign a random -$\sigma_\mathrm{c}$ to each facet following a given -distribution (see Section~\ref{sect:smm:CL}). +where \code{G\_c} corresponds to $G_\mathrm{c, I}$. A random number +generator can be used to assign a random $\sigma_\mathrm{c}$ to each +facet following a given distribution (see Section~\ref{sect:smm:CL}). The bilinear constitutive law works exactly the same way as the linear one, except for the additional parameter \code{delta\_0} that by default is zero. Two examples for the extrinsic and intrinsic cohesive elements and also an example to assign different properties to intergranular and transgranular cohesive elements can be found in the folder \code{\examplesdir/cohesive\_element/}. \subsubsection{Exponential Cohesive Law\matlabel{ssect:smm:cl:coh-exponential}} Ortiz and Pandolfi proposed this cohesive law in 1999~\cite{ortiz1999}. The traction-opening equation for this law is as follows: \begin{equation} \label{eq:exponential_law} T = e \sigma_c \frac{\delta}{\delta_c}e^{-\delta/ \delta_c} \end{equation} This equation is plotted in Figure~\ref{fig:smm:CL:ECL}. The term $\partial{\vec{T}}/ \partial{\delta}$ of equation~\eqref{eq:cohesive_stiffness} after the necessary derivation can expressed as \begin{equation} \label{eq:tangent_cohesive} \frac{\partial{\vec{T}}} {\partial{\delta}} = \hat{\vec{T}} \otimes \frac {\partial{(T/\delta)}}{\partial{\delta}} \frac{\hat{\vec{T}}}{\delta}+ \frac{T}{\delta} \left[ \beta^2 \mat{I} + \left(1-\beta^2\right) \left(\vec{n} \otimes \vec{n}\right)\right] \end{equation} where \begin{equation} \frac{\partial{(T/ \delta)}}{\partial{\delta}} = \left\{\begin{array} {l l} -e \frac{\sigma_c}{\delta_c^2 }e^{-\delta / \delta_c} & \quad if \delta \geq \delta_{max}\\ 0 & \quad if \delta < \delta_{max}, \delta_n > 0 \end{array} \right. \end{equation} \begin{figure}[!htb] \begin{center} \includegraphics[width=0.6\textwidth,keepaspectratio=true]{figures/cohesive_exponential.pdf} \caption{Exponential cohesive law} \label{fig:smm:CL:ECL} \end{center} \end{figure} %%% Local Variables: %%% mode: latex %%% TeX-master: "manual" %%% End: diff --git a/extra_packages/parallel-cohesive-element b/extra_packages/parallel-cohesive-element index 24526c878..fcbcfd92d 160000 --- a/extra_packages/parallel-cohesive-element +++ b/extra_packages/parallel-cohesive-element @@ -1 +1 @@ -Subproject commit 24526c878f0d82ab2cafec99644c21bb063f0745 +Subproject commit fcbcfd92d92b13250bae93d86ecfd0420c9562e5