diff --git a/src/model/solid_mechanics/materials/material_elastic.hh b/src/model/solid_mechanics/materials/material_elastic.hh
index 977a6e6aa..a88779574 100644
--- a/src/model/solid_mechanics/materials/material_elastic.hh
+++ b/src/model/solid_mechanics/materials/material_elastic.hh
@@ -1,126 +1,127 @@
 /**
  * @file   material_elastic.hh
  *
  * @author Nicolas Richart <nicolas.richart@epfl.ch>
  * @author Lucas Frerot <lucas.frerot@epfl.ch>
  *
  * @date   Wed Aug 04 10:58:42 2010
  *
  * @brief  Material isotropic elastic
  *
  * @section LICENSE
  *
  * Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
  * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
  *
  * Akantu is free  software: you can redistribute it and/or  modify it under the
  * terms  of the  GNU Lesser  General Public  License as  published by  the Free
  * Software Foundation, either version 3 of the License, or (at your option) any
  * later version.
  *
  * Akantu is  distributed in the  hope that it  will be useful, but  WITHOUT ANY
  * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
  * A  PARTICULAR PURPOSE. See  the GNU  Lesser General  Public License  for more
  * details.
  *
  * You should  have received  a copy  of the GNU  Lesser General  Public License
  * along with Akantu. If not, see <http://www.gnu.org/licenses/>.
  *
  */
 
 /* -------------------------------------------------------------------------- */
 #include "aka_common.hh"
 #include "material_thermal.hh"
 /* -------------------------------------------------------------------------- */
 
 #ifndef __AKANTU_MATERIAL_ELASTIC_HH__
 #define __AKANTU_MATERIAL_ELASTIC_HH__
 
 __BEGIN_AKANTU__
 
 /**
  * Material elastic isotropic
  *
  * parameters in the material files :
  *   - E   : Young's modulus (default: 0)
  *   - nu  : Poisson's ratio (default: 1/2)
  *   - Plane_Stress : if 0: plane strain, else: plane stress (default: 0)
  */
 template<UInt spatial_dimension>
 class MaterialElastic : public MaterialThermal<spatial_dimension> {
   /* ------------------------------------------------------------------------ */
   /* Constructors/Destructors                                                 */
   /* ------------------------------------------------------------------------ */
 public:
 
   MaterialElastic(SolidMechanicsModel & model, const ID & id = "");
 
   virtual ~MaterialElastic() {};
 
   /* ------------------------------------------------------------------------ */
   /* Methods                                                                  */
   /* ------------------------------------------------------------------------ */
 public:
 
   virtual void initMaterial();
 
   /// constitutive law for all element of a type
   virtual void computeStress(ElementType el_type, GhostType ghost_type = _not_ghost);
 
   /// compute the tangent stiffness matrix for an element type
   void computeTangentModuli(const ElementType & el_type,
 			    Array<Real> & tangent_matrix,
 			    GhostType ghost_type = _not_ghost);
 
   /// compute the p-wave speed in the material
   virtual Real getPushWaveSpeed() const;
 
   /// compute the s-wave speed in the material
   virtual Real getShearWaveSpeed() const;
 
 protected:
   /// constitutive law for a given quadrature point
   inline void computeStressOnQuad(const Matrix<Real> & grad_u,
-				  Matrix<Real> & sigma, Real sigma_th = 0);
+				  Matrix<Real> & sigma,
+          const Real sigma_th = 0);
 
   /// compute the tangent stiffness matrix for an element
   void computeTangentModuliOnQuad(Matrix<Real> & tangent);
 
   /// recompute the lame coefficient if E or nu changes
   virtual void updateInternalParameters();
 
   /* ------------------------------------------------------------------------ */
   /* Accessors                                                                */
   /* ------------------------------------------------------------------------ */
 public:
   /// get the stable time step
   inline Real getStableTimeStep(Real h, const Element & element);
 
   /* ------------------------------------------------------------------------ */
   /* Class Members                                                            */
   /* ------------------------------------------------------------------------ */
 protected:
 
   /// First Lamé coefficient
   Real lambda;
 
   /// Second Lamé coefficient (shear modulus)
   Real mu;
 
   /// Bulk modulus
   Real kpa;
 
   /// Plane stress or plane strain
   bool plane_stress;
 
 };
 
 /* -------------------------------------------------------------------------- */
 /* inline functions                                                           */
 /* -------------------------------------------------------------------------- */
 
 #include "material_elastic_inline_impl.cc"
 
 __END_AKANTU__
 
 #endif /* __AKANTU_MATERIAL_ELASTIC_HH__ */
diff --git a/src/model/solid_mechanics/materials/material_elastic_inline_impl.cc b/src/model/solid_mechanics/materials/material_elastic_inline_impl.cc
index f14d3ca0a..9960dd5a7 100644
--- a/src/model/solid_mechanics/materials/material_elastic_inline_impl.cc
+++ b/src/model/solid_mechanics/materials/material_elastic_inline_impl.cc
@@ -1,105 +1,105 @@
 /**
  * @file   material_elastic_inline_impl.cc
  *
  * @author Nicolas Richart <nicolas.richart@epfl.ch>
  * @author Lucas Frerot <lucas.frerot@epfl.ch>
  *
  * @date   Wed Aug 04 10:58:42 2010
  *
  * @brief  Implementation of the inline functions of the material elastic
  *
  * @section LICENSE
  *
  * Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
  * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
  *
  * Akantu is free  software: you can redistribute it and/or  modify it under the
  * terms  of the  GNU Lesser  General Public  License as  published by  the Free
  * Software Foundation, either version 3 of the License, or (at your option) any
  * later version.
  *
  * Akantu is  distributed in the  hope that it  will be useful, but  WITHOUT ANY
  * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
  * A  PARTICULAR PURPOSE. See  the GNU  Lesser General  Public License  for more
  * details.
  *
  * You should  have received  a copy  of the GNU  Lesser General  Public License
  * along with Akantu. If not, see <http://www.gnu.org/licenses/>.
  *
  */
 
 /* -------------------------------------------------------------------------- */
 
 /* -------------------------------------------------------------------------- */
 template<UInt spatial_dimension>
 inline void MaterialElastic<spatial_dimension>::computeStressOnQuad(const Matrix<Real> & grad_u,
 								    Matrix<Real> & sigma,
-								    Real sigma_th) {
+								    const Real sigma_th) {
   Real trace = grad_u.trace();/// trace = (\nabla u)_{kk}
 
   /// \sigma_{ij} = \lambda * (\nabla u)_{kk} * \delta_{ij} + \mu * (\nabla u_{ij} + \nabla u_{ji})
   for (UInt i = 0; i < spatial_dimension; ++i) {
     for (UInt j = 0; j < spatial_dimension; ++j) {
       sigma(i, j) =  (i == j)*lambda*trace + mu*(grad_u(i, j) + grad_u(j, i)) + (i == j) * sigma_th;
     }
   }
 
 }
 
 /* -------------------------------------------------------------------------- */
 template<>
 inline void MaterialElastic<1>::computeStressOnQuad(const Matrix<Real> & grad_u,
 						    Matrix<Real> & sigma,
 						    Real sigma_th) {
   sigma(0, 0) = this->E * grad_u(0, 0) + sigma_th;
 }
 
 
 /* -------------------------------------------------------------------------- */
 template<UInt spatial_dimension>
 inline void MaterialElastic<spatial_dimension>::computeTangentModuliOnQuad(Matrix<Real> & tangent) {
   UInt n = tangent.cols();
 
   //Real Ep = E/((1+nu)*(1-2*nu));
   Real Miiii = lambda + 2*mu;
   Real Miijj = lambda;
   Real Mijij = mu;
 
   if(spatial_dimension == 1)
     tangent(0, 0) = this->E;
   else
     tangent(0, 0) = Miiii;
 
   // test of dimension should by optimized out by the compiler due to the template
   if(spatial_dimension >= 2) {
     tangent(1, 1) = Miiii;
     tangent(0, 1) = Miijj;
     tangent(1, 0) = Miijj;
 
     tangent(n - 1, n - 1) = Mijij;
   }
 
   if(spatial_dimension == 3) {
     tangent(2, 2) = Miiii;
     tangent(0, 2) = Miijj;
     tangent(1, 2) = Miijj;
     tangent(2, 0) = Miijj;
     tangent(2, 1) = Miijj;
 
     tangent(3, 3) = Mijij;
     tangent(4, 4) = Mijij;
   }
 }
 
 /* -------------------------------------------------------------------------- */
 template<>
 inline void MaterialElastic<1>::computeTangentModuliOnQuad(Matrix<Real> & tangent) {
   tangent(0, 0) = E;
 }
 
 /* -------------------------------------------------------------------------- */
 template<UInt spatial_dimension>
 inline Real MaterialElastic<spatial_dimension>::getStableTimeStep(Real h,
 								  __attribute__ ((unused)) const Element & element) {
   return (h/getPushWaveSpeed());
 }
diff --git a/src/model/solid_mechanics/materials/material_plasticityinc/material_plasticityinc_inline_impl.cc b/src/model/solid_mechanics/materials/material_plasticityinc/material_plasticityinc_inline_impl.cc
index ecc0fc10e..a5821eaf7 100644
--- a/src/model/solid_mechanics/materials/material_plasticityinc/material_plasticityinc_inline_impl.cc
+++ b/src/model/solid_mechanics/materials/material_plasticityinc/material_plasticityinc_inline_impl.cc
@@ -1,165 +1,165 @@
 /**
  * @file   material_plasticity_inc.cc
  *
  * @author Ramin Aghababaei <ramin.aghababaei@epfl.ch>
  * @author Lucas Frerot <lucas.frerot@epfl.ch>
  *
  * @date   Tue Jul 09 18:15:37 20130
  *
  * @brief  Implementation of the inline functions of the material plasticity
  *
  * @section LICENSE
  *
  * Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
  * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
  *
  * Akantu is free  software: you can redistribute it and/or  modify it under the
  * terms  of the  GNU Lesser  General Public  License as  published by  the Free
  * Software Foundation, either version 3 of the License, or (at your option) any
  * later version.
  *
  * Akantu is  distributed in the  hope that it  will be useful, but  WITHOUT ANY
  * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
  * A  PARTICULAR PURPOSE. See  the GNU  Lesser General  Public License  for more
  * details.
  *
  * You should  have received  a copy  of the GNU  Lesser General  Public License
  * along with Akantu. If not, see <http://www.gnu.org/licenses/>.
  *
  */
 
 #include <cmath>
 #include "material_plasticityinc.hh"
 
 
 /* -------------------------------------------------------------------------- */
 
 /* -------------------------------------------------------------------------- */
 template<UInt dim>
 inline void MaterialPlasticityinc<dim>::computeStressOnQuad(Matrix<Real> & grad_u,
 							    Matrix<Real> & grad_delta_u,
 							    Matrix<Real> & sigma,
 							    Matrix<Real> & inelas_strain,
 							    Real & iso_hardening,
 							    Real sigma_th_cur,
 							    Real sigma_th_prev) {
   //Infinitesimal plasticity
   Matrix<Real> sigma_tr(dim, dim);
   Matrix<Real> sigma_tr_dev(dim, dim);
   Matrix<Real> d_inelas_strain(dim,dim);
   //Real r=iso_hardening;
   Real dp=0.0;
   Real d_dp=0.0;
   UInt n=0;
 
   Real delta_sigma_th = sigma_th_cur - sigma_th_prev;
 
   //Compute trial stress, sigma_tr
-  MaterialElastic<dim>::computeStressOnQuad(sigma, grad_delta_u, delta_sigma_th);
+  MaterialElastic<dim>::computeStressOnQuad(grad_delta_u, sigma_tr, delta_sigma_th);
   sigma_tr += sigma;
 
   // Compute deviatoric trial stress,  sigma_tr_dev
   sigma_tr_dev  = sigma_tr;
   sigma_tr_dev -= Matrix<Real>::eye(dim, sigma_tr.trace() / 3.0);
 
   // Compute effective deviatoric trial stress
   Real s = sigma_tr_dev.doubleDot(sigma_tr_dev);
   Real sigma_tr_dev_eff = std::sqrt(3./2. * s);
 
   //Loop for correcting stress based on yield function
   while ((sigma_tr_dev_eff-iso_hardening-sigmay) > 0) {
     //r = r +  h * dp;
     d_dp = (sigma_tr_dev_eff - 3. * this->mu *dp -  iso_hardening - sigmay) / (3. * this->mu + h);
 
     iso_hardening = iso_hardening + h * d_dp;
     dp = dp + d_dp;
 
     ++n;
     if ((d_dp < 1e-5) || (n>50))
       break;
   }
 
   //Update internal variable
   if (std::abs(sigma_tr_dev_eff) >
       sigma_tr_dev.norm<L_inf>() * Math::getTolerance()) {
     d_inelas_strain = sigma_tr_dev;
     d_inelas_strain *= 3./2. * dp / sigma_tr_dev_eff;
   }
 
-  Matrix<Real> grad_u_elsatic(dim, dim);
-  grad_u_elsatic  = grad_delta_u;
-  grad_u_elsatic -= d_inelas_strain;
+  Matrix<Real> grad_u_elastic(dim, dim);
+  grad_u_elastic  = grad_delta_u;
+  grad_u_elastic -= d_inelas_strain;
 
   Matrix<Real> sigma_elastic(dim, dim);
-  MaterialElastic<dim>::computeStressOnQuad(sigma_elastic, grad_u_elsatic, delta_sigma_th);
+  MaterialElastic<dim>::computeStressOnQuad(grad_u_elastic, sigma_elastic, delta_sigma_th);
   sigma += sigma_elastic;
 
   inelas_strain += d_inelas_strain;
 }
 
 /* -------------------------------------------------------------------------- */
 template<UInt dim>
 inline void MaterialPlasticityinc<dim>::computeTangentModuliOnQuad(Matrix<Real> & tangent,
 								   Matrix<Real> & grad_delta_u,
 								   Matrix<Real> & sigma_tensor,
 								   Matrix<Real> & previous_sigma_tensor,
 								   Real & iso_hardening) {
   UInt cols = tangent.cols();
   UInt rows = tangent.rows();
   Matrix<Real> sigma_dev(dim, dim);
   Matrix<Real> sigma_tr(dim, dim);
   Matrix<Real> sigma_tr_dev(dim, dim);
   // Real r=iso_hardening;
 
   //Compute trial stress, sigma_tr
-  MaterialElastic<dim>::computeStressOnQuad(sigma_tr, grad_delta_u);
+  MaterialElastic<dim>::computeStressOnQuad(grad_delta_u, sigma_tr);
   sigma_tr += previous_sigma_tensor;
 
   // Compute deviatoric trial stress,  sigma_tr_dev
   sigma_tr_dev  = sigma_tr;
   sigma_tr_dev -= Matrix<Real>::eye(dim, sigma_tr.trace() / 3.0);
 
   // Compute effective deviatoric trial stress
   Real s = sigma_tr_dev.doubleDot(sigma_tr_dev);
   Real sigma_tr_dev_eff=std::sqrt(3./2. * s);
 
   // Compute deviatoric stress,  sigma_dev
   sigma_dev  = sigma_tensor;
   sigma_dev -= Matrix<Real>::eye(dim, sigma_tensor.trace() / 3.0);
 
   // Compute effective deviatoric stress
   s =  sigma_dev.doubleDot(sigma_dev);
   Real sigma_dev_eff = std::sqrt(3./2. * s);
 
   Real xr = 0.0;
   if(sigma_tr_dev_eff > sigma_dev_eff * Math::getTolerance())
     xr = sigma_dev_eff / sigma_tr_dev_eff;
 
   Real q = 1.5 * (1. / (1. +  3. * this->mu  / h) - xr);
 
   for (UInt m = 0; m < rows; ++m) {
     UInt i = VoigtHelper<dim>::vec[m][0];
     UInt j = VoigtHelper<dim>::vec[m][1];
 
     for (UInt n = 0; n < cols; ++n) {
-      UInt k = VoigtHelper<dim>::vec[m][0];
-      UInt l = VoigtHelper<dim>::vec[m][1];
+      UInt k = VoigtHelper<dim>::vec[n][0];
+      UInt l = VoigtHelper<dim>::vec[n][1];
 
       if (((sigma_tr_dev_eff-iso_hardening-sigmay) > 0) && (xr > 0)) {
-	tangent(m,n) =
-	  2. * this->mu * q * (sigma_tr_dev (i,j) / sigma_tr_dev_eff) * (sigma_tr_dev (k,l) / sigma_tr_dev_eff) +
-	  (i==k) * (j==l) * 2. * this->mu * xr +
-	  (i==j) * (k==l) * (this->kpa - 2./3. * this->mu * xr);
-	if ((m == n) && (m>=dim))
-	  tangent(m, n) = tangent(m, n) - this->mu * xr;
+        tangent(m,n) =
+          2. * this->mu * q * (sigma_tr_dev (i,j) / sigma_tr_dev_eff) * (sigma_tr_dev (k,l) / sigma_tr_dev_eff) +
+          (i==k) * (j==l) * 2. * this->mu * xr +
+          (i==j) * (k==l) * (this->kpa - 2./3. * this->mu * xr);
+        if ((m == n) && (m>=dim))
+          tangent(m, n) = tangent(m, n) - this->mu * xr;
       } else {
-	tangent(m,n) =
-	  (i==k) * (j==l) * 2. * this->mu +
-	  (i==j) * (k==l) * this->lambda;
-	if ((m==n) && (m>=dim))
-	  tangent(m,n) = tangent(m,n) - this->mu;
+        tangent(m,n) =
+          (i==k) * (j==l) * 2. * this->mu +
+          (i==j) * (k==l) * this->lambda;
+        if ((m==n) && (m>=dim))
+          tangent(m,n) = tangent(m,n) - this->mu;
       }
       //correct tangent stiffness for shear component
     }
   }
 }