diff --git a/src/model/solid_mechanics/materials/material_elastic.hh b/src/model/solid_mechanics/materials/material_elastic.hh index 977a6e6aa..a88779574 100644 --- a/src/model/solid_mechanics/materials/material_elastic.hh +++ b/src/model/solid_mechanics/materials/material_elastic.hh @@ -1,126 +1,127 @@ /** * @file material_elastic.hh * * @author Nicolas Richart <nicolas.richart@epfl.ch> * @author Lucas Frerot <lucas.frerot@epfl.ch> * * @date Wed Aug 04 10:58:42 2010 * * @brief Material isotropic elastic * * @section LICENSE * * Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see <http://www.gnu.org/licenses/>. * */ /* -------------------------------------------------------------------------- */ #include "aka_common.hh" #include "material_thermal.hh" /* -------------------------------------------------------------------------- */ #ifndef __AKANTU_MATERIAL_ELASTIC_HH__ #define __AKANTU_MATERIAL_ELASTIC_HH__ __BEGIN_AKANTU__ /** * Material elastic isotropic * * parameters in the material files : * - E : Young's modulus (default: 0) * - nu : Poisson's ratio (default: 1/2) * - Plane_Stress : if 0: plane strain, else: plane stress (default: 0) */ template<UInt spatial_dimension> class MaterialElastic : public MaterialThermal<spatial_dimension> { /* ------------------------------------------------------------------------ */ /* Constructors/Destructors */ /* ------------------------------------------------------------------------ */ public: MaterialElastic(SolidMechanicsModel & model, const ID & id = ""); virtual ~MaterialElastic() {}; /* ------------------------------------------------------------------------ */ /* Methods */ /* ------------------------------------------------------------------------ */ public: virtual void initMaterial(); /// constitutive law for all element of a type virtual void computeStress(ElementType el_type, GhostType ghost_type = _not_ghost); /// compute the tangent stiffness matrix for an element type void computeTangentModuli(const ElementType & el_type, Array<Real> & tangent_matrix, GhostType ghost_type = _not_ghost); /// compute the p-wave speed in the material virtual Real getPushWaveSpeed() const; /// compute the s-wave speed in the material virtual Real getShearWaveSpeed() const; protected: /// constitutive law for a given quadrature point inline void computeStressOnQuad(const Matrix<Real> & grad_u, - Matrix<Real> & sigma, Real sigma_th = 0); + Matrix<Real> & sigma, + const Real sigma_th = 0); /// compute the tangent stiffness matrix for an element void computeTangentModuliOnQuad(Matrix<Real> & tangent); /// recompute the lame coefficient if E or nu changes virtual void updateInternalParameters(); /* ------------------------------------------------------------------------ */ /* Accessors */ /* ------------------------------------------------------------------------ */ public: /// get the stable time step inline Real getStableTimeStep(Real h, const Element & element); /* ------------------------------------------------------------------------ */ /* Class Members */ /* ------------------------------------------------------------------------ */ protected: /// First Lamé coefficient Real lambda; /// Second Lamé coefficient (shear modulus) Real mu; /// Bulk modulus Real kpa; /// Plane stress or plane strain bool plane_stress; }; /* -------------------------------------------------------------------------- */ /* inline functions */ /* -------------------------------------------------------------------------- */ #include "material_elastic_inline_impl.cc" __END_AKANTU__ #endif /* __AKANTU_MATERIAL_ELASTIC_HH__ */ diff --git a/src/model/solid_mechanics/materials/material_elastic_inline_impl.cc b/src/model/solid_mechanics/materials/material_elastic_inline_impl.cc index f14d3ca0a..9960dd5a7 100644 --- a/src/model/solid_mechanics/materials/material_elastic_inline_impl.cc +++ b/src/model/solid_mechanics/materials/material_elastic_inline_impl.cc @@ -1,105 +1,105 @@ /** * @file material_elastic_inline_impl.cc * * @author Nicolas Richart <nicolas.richart@epfl.ch> * @author Lucas Frerot <lucas.frerot@epfl.ch> * * @date Wed Aug 04 10:58:42 2010 * * @brief Implementation of the inline functions of the material elastic * * @section LICENSE * * Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see <http://www.gnu.org/licenses/>. * */ /* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */ template<UInt spatial_dimension> inline void MaterialElastic<spatial_dimension>::computeStressOnQuad(const Matrix<Real> & grad_u, Matrix<Real> & sigma, - Real sigma_th) { + const Real sigma_th) { Real trace = grad_u.trace();/// trace = (\nabla u)_{kk} /// \sigma_{ij} = \lambda * (\nabla u)_{kk} * \delta_{ij} + \mu * (\nabla u_{ij} + \nabla u_{ji}) for (UInt i = 0; i < spatial_dimension; ++i) { for (UInt j = 0; j < spatial_dimension; ++j) { sigma(i, j) = (i == j)*lambda*trace + mu*(grad_u(i, j) + grad_u(j, i)) + (i == j) * sigma_th; } } } /* -------------------------------------------------------------------------- */ template<> inline void MaterialElastic<1>::computeStressOnQuad(const Matrix<Real> & grad_u, Matrix<Real> & sigma, Real sigma_th) { sigma(0, 0) = this->E * grad_u(0, 0) + sigma_th; } /* -------------------------------------------------------------------------- */ template<UInt spatial_dimension> inline void MaterialElastic<spatial_dimension>::computeTangentModuliOnQuad(Matrix<Real> & tangent) { UInt n = tangent.cols(); //Real Ep = E/((1+nu)*(1-2*nu)); Real Miiii = lambda + 2*mu; Real Miijj = lambda; Real Mijij = mu; if(spatial_dimension == 1) tangent(0, 0) = this->E; else tangent(0, 0) = Miiii; // test of dimension should by optimized out by the compiler due to the template if(spatial_dimension >= 2) { tangent(1, 1) = Miiii; tangent(0, 1) = Miijj; tangent(1, 0) = Miijj; tangent(n - 1, n - 1) = Mijij; } if(spatial_dimension == 3) { tangent(2, 2) = Miiii; tangent(0, 2) = Miijj; tangent(1, 2) = Miijj; tangent(2, 0) = Miijj; tangent(2, 1) = Miijj; tangent(3, 3) = Mijij; tangent(4, 4) = Mijij; } } /* -------------------------------------------------------------------------- */ template<> inline void MaterialElastic<1>::computeTangentModuliOnQuad(Matrix<Real> & tangent) { tangent(0, 0) = E; } /* -------------------------------------------------------------------------- */ template<UInt spatial_dimension> inline Real MaterialElastic<spatial_dimension>::getStableTimeStep(Real h, __attribute__ ((unused)) const Element & element) { return (h/getPushWaveSpeed()); } diff --git a/src/model/solid_mechanics/materials/material_plasticityinc/material_plasticityinc_inline_impl.cc b/src/model/solid_mechanics/materials/material_plasticityinc/material_plasticityinc_inline_impl.cc index ecc0fc10e..a5821eaf7 100644 --- a/src/model/solid_mechanics/materials/material_plasticityinc/material_plasticityinc_inline_impl.cc +++ b/src/model/solid_mechanics/materials/material_plasticityinc/material_plasticityinc_inline_impl.cc @@ -1,165 +1,165 @@ /** * @file material_plasticity_inc.cc * * @author Ramin Aghababaei <ramin.aghababaei@epfl.ch> * @author Lucas Frerot <lucas.frerot@epfl.ch> * * @date Tue Jul 09 18:15:37 20130 * * @brief Implementation of the inline functions of the material plasticity * * @section LICENSE * * Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see <http://www.gnu.org/licenses/>. * */ #include <cmath> #include "material_plasticityinc.hh" /* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */ template<UInt dim> inline void MaterialPlasticityinc<dim>::computeStressOnQuad(Matrix<Real> & grad_u, Matrix<Real> & grad_delta_u, Matrix<Real> & sigma, Matrix<Real> & inelas_strain, Real & iso_hardening, Real sigma_th_cur, Real sigma_th_prev) { //Infinitesimal plasticity Matrix<Real> sigma_tr(dim, dim); Matrix<Real> sigma_tr_dev(dim, dim); Matrix<Real> d_inelas_strain(dim,dim); //Real r=iso_hardening; Real dp=0.0; Real d_dp=0.0; UInt n=0; Real delta_sigma_th = sigma_th_cur - sigma_th_prev; //Compute trial stress, sigma_tr - MaterialElastic<dim>::computeStressOnQuad(sigma, grad_delta_u, delta_sigma_th); + MaterialElastic<dim>::computeStressOnQuad(grad_delta_u, sigma_tr, delta_sigma_th); sigma_tr += sigma; // Compute deviatoric trial stress, sigma_tr_dev sigma_tr_dev = sigma_tr; sigma_tr_dev -= Matrix<Real>::eye(dim, sigma_tr.trace() / 3.0); // Compute effective deviatoric trial stress Real s = sigma_tr_dev.doubleDot(sigma_tr_dev); Real sigma_tr_dev_eff = std::sqrt(3./2. * s); //Loop for correcting stress based on yield function while ((sigma_tr_dev_eff-iso_hardening-sigmay) > 0) { //r = r + h * dp; d_dp = (sigma_tr_dev_eff - 3. * this->mu *dp - iso_hardening - sigmay) / (3. * this->mu + h); iso_hardening = iso_hardening + h * d_dp; dp = dp + d_dp; ++n; if ((d_dp < 1e-5) || (n>50)) break; } //Update internal variable if (std::abs(sigma_tr_dev_eff) > sigma_tr_dev.norm<L_inf>() * Math::getTolerance()) { d_inelas_strain = sigma_tr_dev; d_inelas_strain *= 3./2. * dp / sigma_tr_dev_eff; } - Matrix<Real> grad_u_elsatic(dim, dim); - grad_u_elsatic = grad_delta_u; - grad_u_elsatic -= d_inelas_strain; + Matrix<Real> grad_u_elastic(dim, dim); + grad_u_elastic = grad_delta_u; + grad_u_elastic -= d_inelas_strain; Matrix<Real> sigma_elastic(dim, dim); - MaterialElastic<dim>::computeStressOnQuad(sigma_elastic, grad_u_elsatic, delta_sigma_th); + MaterialElastic<dim>::computeStressOnQuad(grad_u_elastic, sigma_elastic, delta_sigma_th); sigma += sigma_elastic; inelas_strain += d_inelas_strain; } /* -------------------------------------------------------------------------- */ template<UInt dim> inline void MaterialPlasticityinc<dim>::computeTangentModuliOnQuad(Matrix<Real> & tangent, Matrix<Real> & grad_delta_u, Matrix<Real> & sigma_tensor, Matrix<Real> & previous_sigma_tensor, Real & iso_hardening) { UInt cols = tangent.cols(); UInt rows = tangent.rows(); Matrix<Real> sigma_dev(dim, dim); Matrix<Real> sigma_tr(dim, dim); Matrix<Real> sigma_tr_dev(dim, dim); // Real r=iso_hardening; //Compute trial stress, sigma_tr - MaterialElastic<dim>::computeStressOnQuad(sigma_tr, grad_delta_u); + MaterialElastic<dim>::computeStressOnQuad(grad_delta_u, sigma_tr); sigma_tr += previous_sigma_tensor; // Compute deviatoric trial stress, sigma_tr_dev sigma_tr_dev = sigma_tr; sigma_tr_dev -= Matrix<Real>::eye(dim, sigma_tr.trace() / 3.0); // Compute effective deviatoric trial stress Real s = sigma_tr_dev.doubleDot(sigma_tr_dev); Real sigma_tr_dev_eff=std::sqrt(3./2. * s); // Compute deviatoric stress, sigma_dev sigma_dev = sigma_tensor; sigma_dev -= Matrix<Real>::eye(dim, sigma_tensor.trace() / 3.0); // Compute effective deviatoric stress s = sigma_dev.doubleDot(sigma_dev); Real sigma_dev_eff = std::sqrt(3./2. * s); Real xr = 0.0; if(sigma_tr_dev_eff > sigma_dev_eff * Math::getTolerance()) xr = sigma_dev_eff / sigma_tr_dev_eff; Real q = 1.5 * (1. / (1. + 3. * this->mu / h) - xr); for (UInt m = 0; m < rows; ++m) { UInt i = VoigtHelper<dim>::vec[m][0]; UInt j = VoigtHelper<dim>::vec[m][1]; for (UInt n = 0; n < cols; ++n) { - UInt k = VoigtHelper<dim>::vec[m][0]; - UInt l = VoigtHelper<dim>::vec[m][1]; + UInt k = VoigtHelper<dim>::vec[n][0]; + UInt l = VoigtHelper<dim>::vec[n][1]; if (((sigma_tr_dev_eff-iso_hardening-sigmay) > 0) && (xr > 0)) { - tangent(m,n) = - 2. * this->mu * q * (sigma_tr_dev (i,j) / sigma_tr_dev_eff) * (sigma_tr_dev (k,l) / sigma_tr_dev_eff) + - (i==k) * (j==l) * 2. * this->mu * xr + - (i==j) * (k==l) * (this->kpa - 2./3. * this->mu * xr); - if ((m == n) && (m>=dim)) - tangent(m, n) = tangent(m, n) - this->mu * xr; + tangent(m,n) = + 2. * this->mu * q * (sigma_tr_dev (i,j) / sigma_tr_dev_eff) * (sigma_tr_dev (k,l) / sigma_tr_dev_eff) + + (i==k) * (j==l) * 2. * this->mu * xr + + (i==j) * (k==l) * (this->kpa - 2./3. * this->mu * xr); + if ((m == n) && (m>=dim)) + tangent(m, n) = tangent(m, n) - this->mu * xr; } else { - tangent(m,n) = - (i==k) * (j==l) * 2. * this->mu + - (i==j) * (k==l) * this->lambda; - if ((m==n) && (m>=dim)) - tangent(m,n) = tangent(m,n) - this->mu; + tangent(m,n) = + (i==k) * (j==l) * 2. * this->mu + + (i==j) * (k==l) * this->lambda; + if ((m==n) && (m>=dim)) + tangent(m,n) = tangent(m,n) - this->mu; } //correct tangent stiffness for shear component } } }