diff --git a/doc/manual/manual-io.tex b/doc/manual/manual-io.tex index 51584d692..bc53574f1 100644 --- a/doc/manual/manual-io.tex +++ b/doc/manual/manual-io.tex @@ -1,105 +1,107 @@ \chapter{Input/Output}\index{I\/O} \section{Generic data} In this chapter, we address ways to get the internal data in human-readable formats. The models in \akantu handle data associated to the mesh, but this data can be split into several \code{Arrays}. For example, the data stored per element type in a \code{ElementTypeMapArray} is composed of as many \code{Array}s as types in the mesh. In order to get this data in a visualization software, the models contain a object to dump \code{VTK} files. These files can be visualized in software such as \code{ParaView}\cite{paraview}, \code{ViSit}\cite{visit} or \code{Mayavi}\cite{mayavi}. The internal dumper of the model can be configured to specify which data fields are to be written. This is done with the \code{addDumpField}\index{I\/O!addDumpField} method. By default all the files are generated in a folder called \code{paraview/} \begin{cpp} model.setBaseName("output"); // prefix for all generated files model.addDumpField("displacement"); model.addDumpField("stress"); ... model.dump() \end{cpp} The fields are dumped with the number of components of the memory. For example, in 2D, the memory has \code{Vector}s of 2 components, or the $2^{nd}$ order tensors with $2\times2$ components. This memory can be dealt with \code{addDumpFieldVector}\index{I\/O!addDumpFieldVector} which always dumps \code{Vector}s with 3 components or \code{addDumpFieldTensor}\index{I\/O!addDumpFieldTensor} which dumps $2^{nd}$ order tensors with $3\times3$ components respectively. The routines \code{addDumpFieldVector}\index{I\/O!addDumpFieldVector} and \code{addDumpFieldTensor}\index{I\/O!addDumpFieldTensor} were introduced because of Paraview which mostly manipulate 3D data. Those fields which are stored by quadrature point are modified to be seen in the \code{VTK} file as elemental data. To do this, the default is to average the values of all the quadrature points. The list of fields depends on the models (for \code{SolidMechanicsModel} see table~\ref{tab:io:smm_field_list}). \begin{table} \centering \begin{tabular}{llll} \toprule key & type & support \\ \midrule displacement & Vector<Real> & nodes \\ velocity & Vector<Real> & nodes \\ acceleration & Vector<Real> & nodes \\ force & Vector<Real> & nodes \\ residual & Vector<Real> & nodes \\ boundary & Vector<bool> & nodes \\ mass & Vector<Real> & nodes \\ partitions & Real & elements \\ stress & Matrix<Real> & quadrature points \\ + Von Mises stress & Real & quadrature points \\ + grad_u & Matrix<Real> & quadrature points \\ strain & Matrix<Real> & quadrature points \\ \textit{material internals} & variable & quadrature points \\ \bottomrule \end{tabular} \caption{List of dumpable fields for \code{SolidMechanicsModel}.} \label{tab:io:smm_field_list} \end{table} The user can also register external fields which have the same mesh as the mesh from the model as support. To do this, an object of type \code{Field} has to be created.\index{I\/O!addDumpFieldExternal} \begin{itemize} \item For nodal fields : \begin{cpp} Vector<T> vect(nb_nodes, nb_component); Field field = new DumperIOHelper::NodalField<T>(vect)); model.addDumpFieldExternal("my_field", field); \end{cpp} \item For elemental fields : \begin{cpp} ElementTypeMapArray<T> arr; Field field = new DumperIOHelper::ElementalField<T>(arr, spatial_displacement)); model.addDumpFieldExternal("my_field", field); \end{cpp} \end{itemize} \section{Cohesive elements' data} Cohesive elements and their relative data can be easily dumped thanks to a specific dumper contained in \code{SolidMechanicsModelCohesive}. In order to use it, one has just to add the string \code{"cohesive elements"} when calling each method already illustrated. Here is an example on how to dump displacement and damage: \begin{cpp} model.setBaseNameToDumper("cohesive elements", "cohesive_elements_output"); model.addDumpFieldVectorToDumper("cohesive elements", "displacement"); model.addDumpFieldToDumper("cohesive elements", "damage"); ... model.dump("cohesive elements"); \end{cpp} %%% Local Variables: %%% mode: latex %%% TeX-master: "manual" %%% End: diff --git a/src/io/dumper/dumper_material_padders.hh b/src/io/dumper/dumper_material_padders.hh index db4a43bb2..67eae531d 100644 --- a/src/io/dumper/dumper_material_padders.hh +++ b/src/io/dumper/dumper_material_padders.hh @@ -1,167 +1,237 @@ /** * @file dumper_material_padders.hh * * @author Nicolas Richart <nicolas.richart@epfl.ch> * * @date creation: Tue Sep 02 2014 * @date last modification: Fri Sep 19 2014 * * @brief Material padders for plane stress/ plane strain * * @section LICENSE * * Copyright (©) 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see <http://www.gnu.org/licenses/>. * */ #ifndef __AKANTU_DUMPER_MATERIAL_PADDERS_HH__ #define __AKANTU_DUMPER_MATERIAL_PADDERS_HH__ /* -------------------------------------------------------------------------- */ #include "dumper_padding_helper.hh" /* -------------------------------------------------------------------------- */ __BEGIN_AKANTU__ __BEGIN_AKANTU_DUMPER__ /* -------------------------------------------------------------------------- */ - - -template<class T, class R> -class MaterialPadder : public PadderGeneric<Vector<T>, R > { - +class MaterialFunctor { /* ------------------------------------------------------------------------ */ /* Constructors/Destructors */ /* ------------------------------------------------------------------------ */ - public: - MaterialPadder(const SolidMechanicsModel & model) : + MaterialFunctor(const SolidMechanicsModel & model) : model(model), - material_index(model.getMaterialByElement()) {} + material_index(model.getMaterialByElement()), + spatial_dimension(model.getSpatialDimension()){} /* ------------------------------------------------------------------------ */ /* Methods */ /* ------------------------------------------------------------------------ */ - /// return the material from the global element index const Material & getMaterialFromGlobalIndex(Element global_index){ - UInt index = global_index.getIndex(); UInt material_id = material_index(global_index.getType())(index); const Material & material = model.getMaterial(material_id); return material; } /// return the type of the element from global index ElementType getElementTypeFromGlobalIndex(Element global_index){ return global_index.getType(); } protected: - /* ------------------------------------------------------------------------ */ /* Class Members */ /* ------------------------------------------------------------------------ */ /// all material padders probably need access to solid mechanics model const SolidMechanicsModel & model; + /// they also need an access to the map from global ids to material id and local ids const ElementTypeMapArray<UInt> & material_index; /// the number of data per element const ElementTypeMapArray<UInt> nb_data_per_element; + UInt spatial_dimension; +}; + +/* -------------------------------------------------------------------------- */ +template<class T, class R> +class MaterialPadder : public MaterialFunctor, public PadderGeneric<Vector<T>, R > { +public: + MaterialPadder(const SolidMechanicsModel & model) : + MaterialFunctor(model) {} }; /* -------------------------------------------------------------------------- */ template <UInt spatial_dimension> -class StressPadder : - public MaterialPadder<Real,Matrix<Real> > { +class StressPadder : public MaterialPadder<Real, Matrix<Real> > { public: StressPadder(const SolidMechanicsModel & model) : MaterialPadder<Real, Matrix<Real> >(model){ this->setPadding(3,3); } inline Matrix<Real> func(const Vector<Real> & in, Element global_element_id){ UInt nrows = spatial_dimension; UInt ncols = in.size() / nrows; UInt nb_data = in.size() / (nrows*nrows); - Matrix<Real> stress = this->pad(in, nrows,ncols, nb_data); + Matrix<Real> stress = this->pad(in, nrows, ncols, nb_data); const Material & material = this->getMaterialFromGlobalIndex(global_element_id); bool plane_strain = true; if(spatial_dimension == 2) plane_strain = !material.getParam<bool>("Plane_Stress"); if(plane_strain) { Real nu = material.getParam<Real>("nu"); for (UInt d = 0; d < nb_data; ++d) { stress(2, 2 + 3*d) = nu * (stress(0, 0 + 3*d) + stress(1, 1 + 3*d)); } } return stress; } UInt getDim(){return 9;}; UInt getNbComponent(UInt old_nb_comp){ return this->getDim(); }; }; /* -------------------------------------------------------------------------- */ template<UInt spatial_dimension> -class StrainPadder : public MaterialPadder<Real, Matrix<Real> > { +class StrainPadder : public MaterialFunctor, public PadderGeneric< Matrix<Real>, Matrix<Real> > { public: StrainPadder(const SolidMechanicsModel & model) : - MaterialPadder<Real, Matrix<Real> >(model) { + MaterialFunctor(model) { this->setPadding(3,3); } - inline Matrix<Real> func(const Vector<Real> & in, Element global_element_id){ - + inline Matrix<Real> func(const Matrix<Real> & in, Element global_element_id){ UInt nrows = spatial_dimension; - UInt ncols = in.size() / nrows; - UInt nb_data = in.size() / ncols; + UInt nb_data = in.size() / (nrows*nrows); - Matrix<Real> strain = this->pad(in, nrows,ncols, nb_data); + Matrix<Real> strain = this->pad(in, nb_data); const Material & material = this->getMaterialFromGlobalIndex(global_element_id); bool plane_stress = material.getParam<bool>("Plane_Stress"); + if(plane_stress) { Real nu = material.getParam<Real>("nu"); for (UInt d = 0; d < nb_data; ++d) { strain(2, 2 + 3*d) = nu / (nu - 1) * (strain(0, 0 + 3*d) + strain(1, 1 + 3*d)); } } + return strain; } UInt getDim(){return 9;}; UInt getNbComponent(UInt old_nb_comp){ return this->getDim(); }; }; +/* -------------------------------------------------------------------------- */ +class ComputeStrain : public MaterialFunctor, public ComputeFunctor<Vector<Real>, Matrix<Real> > { +public: + ComputeStrain(const SolidMechanicsModel & model) : MaterialFunctor(model) { } + + inline Matrix<Real> func(const Vector<Real> & in, Element global_element_id){ + UInt nrows = spatial_dimension; + UInt ncols = in.size() / nrows; + UInt nb_data = in.size() / (nrows*nrows); + + Matrix<Real> ret_all_strain(nrows, ncols); + Tensor3<Real> all_grad_u(in.storage(), nrows, nrows, nb_data); + Tensor3<Real> all_strain(ret_all_strain.storage(), nrows, nrows, nb_data); + + for (UInt d = 0; d < nb_data; ++d) { + Matrix<Real> grad_u = all_grad_u(d); + Matrix<Real> strain = all_strain(d); + + if (spatial_dimension == 2) + Material::gradUToEpsilon<2>(grad_u, strain); + else if (spatial_dimension == 3) + Material::gradUToEpsilon<3>(grad_u, strain); + } + + return ret_all_strain; + } + + UInt getDim() { return spatial_dimension*spatial_dimension; }; + + UInt getNbComponent(UInt old_nb_comp){ + return this->getDim(); + }; + +}; + +/* -------------------------------------------------------------------------- */ + +/* -------------------------------------------------------------------------- */ +class ComputeVonMisesStress : public MaterialFunctor, + public ComputeFunctor<Vector<Real>, Vector<Real> > { +public: + ComputeVonMisesStress(const SolidMechanicsModel & model) : MaterialFunctor(model) { } + + inline Vector<Real> func(const Vector<Real> & in, Element global_element_id){ + UInt nrows = spatial_dimension; + UInt nb_data = in.size() / (nrows*nrows); + + Vector<Real> von_mises_stress(nb_data); + Matrix<Real> deviatoric_stress(3, 3); + + for (UInt d = 0; d < nb_data; ++d) { + Matrix<Real> cauchy_stress(in.storage() + d * nrows*nrows, nrows, nrows); + von_mises_stress(d) = Material::stressToVonMises(cauchy_stress); + } + + return von_mises_stress; + } + + UInt getDim() { return 1; }; + + UInt getNbComponent(UInt old_nb_comp){ + return this->getDim(); + }; + +}; + + + /* -------------------------------------------------------------------------- */ __END_AKANTU_DUMPER__ __END_AKANTU__ #endif /* __AKANTU_DUMPER_MATERIAL_PADDERS_HH__ */ diff --git a/src/model/solid_mechanics/material.hh b/src/model/solid_mechanics/material.hh index b53e92ae8..ac55f055e 100644 --- a/src/model/solid_mechanics/material.hh +++ b/src/model/solid_mechanics/material.hh @@ -1,596 +1,600 @@ /** * @file material.hh * * @author Marco Vocialta <marco.vocialta@epfl.ch> * @author Nicolas Richart <nicolas.richart@epfl.ch> * @author Daniel Pino Muñoz <daniel.pinomunoz@epfl.ch> * * @date creation: Tue Jul 27 2010 * @date last modification: Tue Sep 16 2014 * * @brief Mother class for all materials * * @section LICENSE * * Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see <http://www.gnu.org/licenses/>. * */ /* -------------------------------------------------------------------------- */ #include "aka_common.hh" #include "aka_memory.hh" #include "aka_voigthelper.hh" #include "parser.hh" #include "parsable.hh" #include "data_accessor.hh" #include "internal_field.hh" #include "random_internal_field.hh" #include "solid_mechanics_model_event_handler.hh" /* -------------------------------------------------------------------------- */ #ifndef __AKANTU_MATERIAL_HH__ #define __AKANTU_MATERIAL_HH__ /* -------------------------------------------------------------------------- */ namespace akantu { class Model; class SolidMechanicsModel; } __BEGIN_AKANTU__ /** * Interface of all materials * Prerequisites for a new material * - inherit from this class * - implement the following methods: * \code * virtual Real getStableTimeStep(Real h, const Element & element = ElementNull); * * virtual void computeStress(ElementType el_type, * GhostType ghost_type = _not_ghost); * * virtual void computeTangentStiffness(const ElementType & el_type, * Array<Real> & tangent_matrix, * GhostType ghost_type = _not_ghost); * \endcode * */ class Material : public Memory, public DataAccessor, public Parsable, public MeshEventHandler, protected SolidMechanicsModelEventHandler { /* ------------------------------------------------------------------------ */ /* Constructors/Destructors */ /* ------------------------------------------------------------------------ */ public: Material(SolidMechanicsModel & model, const ID & id = ""); virtual ~Material(); /* ------------------------------------------------------------------------ */ /* Function that materials can/should reimplement */ /* ------------------------------------------------------------------------ */ protected: /// constitutive law virtual void computeStress(__attribute__((unused)) ElementType el_type, __attribute__((unused)) GhostType ghost_type = _not_ghost) { AKANTU_DEBUG_TO_IMPLEMENT(); } /// compute the tangent stiffness matrix virtual void computeTangentModuli(__attribute__((unused)) const ElementType & el_type, __attribute__((unused)) Array<Real> & tangent_matrix, __attribute__((unused)) GhostType ghost_type = _not_ghost) { AKANTU_DEBUG_TO_IMPLEMENT(); } /// compute the potential energy virtual void computePotentialEnergy(ElementType el_type, GhostType ghost_type = _not_ghost); /// compute the potential energy for an element virtual void computePotentialEnergyByElement(__attribute__((unused)) ElementType type, __attribute__((unused)) UInt index, __attribute__((unused)) Vector<Real> & epot_on_quad_points) { AKANTU_DEBUG_TO_IMPLEMENT(); } virtual void updateEnergies(__attribute__((unused)) ElementType el_type, __attribute__((unused)) GhostType ghost_type = _not_ghost) { } virtual void updateEnergiesAfterDamage(__attribute__((unused)) ElementType el_type, __attribute__((unused)) GhostType ghost_type = _not_ghost) {} /// set the material to steady state (to be implemented for materials that need it) virtual void setToSteadyState(__attribute__((unused)) ElementType el_type, __attribute__((unused)) GhostType ghost_type = _not_ghost) { } /// function called to update the internal parameters when the modifiable /// parameters are modified virtual void updateInternalParameters() {} public: /// compute the p-wave speed in the material virtual Real getPushWaveSpeed(const Element & element) const { AKANTU_DEBUG_TO_IMPLEMENT(); } /// compute the s-wave speed in the material virtual Real getShearWaveSpeed(const Element & element) const { AKANTU_DEBUG_TO_IMPLEMENT(); } /// get a material celerity to compute the stable time step (default: is the push wave speed) virtual Real getCelerity(const Element & element) const { return getPushWaveSpeed(element); } /* ------------------------------------------------------------------------ */ /* Methods */ /* ------------------------------------------------------------------------ */ public: template<typename T> void registerInternal(__attribute__((unused)) InternalField<T> & vect) { AKANTU_DEBUG_TO_IMPLEMENT(); } template<typename T> void unregisterInternal(__attribute__((unused)) InternalField<T> & vect) { AKANTU_DEBUG_TO_IMPLEMENT(); } /// initialize the material computed parameter virtual void initMaterial(); /// compute the residual for this material virtual void updateResidual(GhostType ghost_type = _not_ghost); /// assemble the residual for this material virtual void assembleResidual(GhostType ghost_type); /// Operations before and after solveStep in implicit virtual void beforeSolveStep() {} virtual void afterSolveStep() {} /// save the stress in the previous_stress if needed virtual void savePreviousState(); /// compute the stresses for this material virtual void computeAllStresses(GhostType ghost_type = _not_ghost); virtual void computeAllNonLocalStresses(__attribute__((unused)) GhostType ghost_type = _not_ghost) {}; virtual void computeAllStressesFromTangentModuli(GhostType ghost_type = _not_ghost); virtual void computeAllCauchyStresses(GhostType ghost_type = _not_ghost); /// set material to steady state void setToSteadyState(GhostType ghost_type = _not_ghost); /// compute the stiffness matrix virtual void assembleStiffnessMatrix(GhostType ghost_type); /// add an element to the local mesh filter inline UInt addElement(const ElementType & type, UInt element, const GhostType & ghost_type); /// add many elements at once void addElements(const Array<Element> & elements_to_add); /// remove many element at once void removeElements(const Array<Element> & elements_to_remove); /// function to print the contain of the class virtual void printself(std::ostream & stream, int indent = 0) const; /** * interpolate stress on given positions for each element by means * of a geometrical interpolation on quadrature points */ void interpolateStress(ElementTypeMapArray<Real> & result, const GhostType ghost_type = _not_ghost); /** * interpolate stress on given positions for each element by means * of a geometrical interpolation on quadrature points and store the * results per facet */ void interpolateStressOnFacets(ElementTypeMapArray<Real> & result, const GhostType ghost_type = _not_ghost); /** * function to initialize the elemental field interpolation * function by inverting the quadrature points' coordinates */ void initElementalFieldInterpolation(const ElementTypeMapArray<Real> & interpolation_points_coordinates); /* ------------------------------------------------------------------------ */ /* Common part */ /* ------------------------------------------------------------------------ */ protected: /// assemble the residual template<UInt dim> void assembleResidual(GhostType ghost_type); /// Computation of Cauchy stress tensor in the case of finite deformation template<UInt dim> void computeCauchyStress(__attribute__((unused)) ElementType el_type, __attribute__((unused)) GhostType ghost_type = _not_ghost); template<UInt dim > inline void computeCauchyStressOnQuad(const Matrix<Real> & F, const Matrix<Real> & S, Matrix<Real> & cauchy, const Real & C33 = 1.0 ) const; template<UInt dim> void computeAllStressesFromTangentModuli(const ElementType & type, GhostType ghost_type); template<UInt dim> void assembleStiffnessMatrix(const ElementType & type, GhostType ghost_type); /// assembling in finite deformation template<UInt dim> void assembleStiffnessMatrixNL(const ElementType & type, GhostType ghost_type); template<UInt dim> void assembleStiffnessMatrixL2(const ElementType & type, GhostType ghost_type); /// write the stress tensor in the Voigt notation. template<UInt dim> inline void SetCauchyStressArray(const Matrix<Real> & S_t, Matrix<Real> & Stress_vect); inline UInt getTangentStiffnessVoigtSize(UInt spatial_dimension) const; /// Size of the Stress matrix for the case of finite deformation see: Bathe et al, IJNME, Vol 9, 353-386, 1975 inline UInt getCauchyStressMatrixSize(UInt spatial_dimension) const; /// Sets the stress matrix according to Bathe et al, IJNME, Vol 9, 353-386, 1975 template<UInt dim> inline void setCauchyStressMatrix(const Matrix<Real> & S_t, Matrix<Real> & Stress_matrix); /// compute the potential energy by element void computePotentialEnergyByElements(); /// resize the intenals arrays void resizeInternals(); public: /// compute the coordinates of the quadrature points void computeQuadraturePointsCoordinates(ElementTypeMapArray<Real> & quadrature_points_coordinates, const GhostType & ghost_type) const; protected: /// interpolate an elemental field on given points for each element void interpolateElementalField(const ElementTypeMapArray<Real> & field, ElementTypeMapArray<Real> & result, const GhostType ghost_type); /// interpolate an elemental field and store the results per facet void interpolateElementalFieldOnFacets(const ElementTypeMapArray<Real> & field, ElementTypeMapArray<Real> & result, const GhostType ghost_type); /// template function to initialize the elemental field interpolation template <ElementType type> void initElementalFieldInterpolation(const Array<Real> & quad_coordinates, const Array<Real> & interpolation_points_coordinates, const UInt nb_interpolation_points_per_elem, const GhostType ghost_type); /// build the coordinate matrix for the interpolation on elemental field template <ElementType type> inline void buildElementalFieldInterpolationCoodinates(const Matrix<Real> & coordinates, Matrix<Real> & coordMatrix); /// build interpolation coordinates for basic linear elements inline void buildElementalFieldInterpolationCoodinatesLinear(const Matrix<Real> & coordinates, Matrix<Real> & coordMatrix); /// build interpolation coordinates for basic quadratic elements inline void buildElementalFieldInterpolationCoodinatesQuadratic(const Matrix<Real> & coordinates, Matrix<Real> & coordMatrix); public: /* ------------------------------------------------------------------------ */ /* Conversion functions */ /* ------------------------------------------------------------------------ */ template<UInt dim> - inline void gradUToF (const Matrix<Real> & grad_u, Matrix<Real> & F) const; - inline void rightCauchy(const Matrix<Real> & F, Matrix<Real> & C) const; - inline void leftCauchy (const Matrix<Real> & F, Matrix<Real> & B) const; + static inline void gradUToF (const Matrix<Real> & grad_u, Matrix<Real> & F); + static inline void rightCauchy(const Matrix<Real> & F, Matrix<Real> & C); + static inline void leftCauchy (const Matrix<Real> & F, Matrix<Real> & B); template<UInt dim> - inline void gradUToEpsilon(const Matrix<Real> & grad_u, Matrix<Real> & epsilon) const; + static inline void gradUToEpsilon(const Matrix<Real> & grad_u, + Matrix<Real> & epsilon); template<UInt dim> - inline void gradUToGreenStrain(const Matrix<Real> & grad_u, - Matrix<Real> & epsilon) const; + static inline void gradUToGreenStrain(const Matrix<Real> & grad_u, + Matrix<Real> & epsilon); + + static inline Real stressToVonMises(const Matrix<Real> & stress); + protected: /// converts global element to local element inline Element convertToLocalElement(const Element & global_element) const; /// converts local element to global element inline Element convertToGlobalElement(const Element & local_element) const; /// converts global quadrature point to local quadrature point inline QuadraturePoint convertToLocalPoint(const QuadraturePoint & global_point) const; /// converts local quadrature point to global quadrature point inline QuadraturePoint convertToGlobalPoint(const QuadraturePoint & local_point) const; /* ------------------------------------------------------------------------ */ /* DataAccessor inherited members */ /* ------------------------------------------------------------------------ */ public: virtual inline UInt getNbDataForElements(const Array<Element> & elements, SynchronizationTag tag) const; virtual inline void packElementData(CommunicationBuffer & buffer, const Array<Element> & elements, SynchronizationTag tag) const; virtual inline void unpackElementData(CommunicationBuffer & buffer, const Array<Element> & elements, SynchronizationTag tag); template<typename T> inline void packElementDataHelper(const ElementTypeMapArray<T> & data_to_pack, CommunicationBuffer & buffer, const Array<Element> & elements, const ID & fem_id = ID()) const; template<typename T> inline void unpackElementDataHelper(ElementTypeMapArray<T> & data_to_unpack, CommunicationBuffer & buffer, const Array<Element> & elements, const ID & fem_id = ID()); /* ------------------------------------------------------------------------ */ /* MeshEventHandler inherited members */ /* ------------------------------------------------------------------------ */ public: /* ------------------------------------------------------------------------ */ virtual void onElementsAdded(const Array<Element> & element_list, const NewElementsEvent & event); virtual void onElementsRemoved(const Array<Element> & element_list, const ElementTypeMapArray<UInt> & new_numbering, const RemovedElementsEvent & event); /* ------------------------------------------------------------------------ */ /* SolidMechanicsModelEventHandler inherited members */ /* ------------------------------------------------------------------------ */ public: virtual void onBeginningSolveStep(const AnalysisMethod & method); virtual void onEndSolveStep(const AnalysisMethod & method); virtual void onDamageIteration(); virtual void onDamageUpdate(); virtual void onDump(); /* ------------------------------------------------------------------------ */ /* Accessors */ /* ------------------------------------------------------------------------ */ public: AKANTU_GET_MACRO(Model, *model, const SolidMechanicsModel &) AKANTU_GET_MACRO(ID, Memory::getID(), const ID &); AKANTU_GET_MACRO(Rho, rho, Real); AKANTU_SET_MACRO(Rho, rho, Real); /// return the potential energy for the subset of elements contained by the material Real getPotentialEnergy(); /// return the potential energy for the provided element Real getPotentialEnergy(ElementType & type, UInt index); /// return the energy (identified by id) for the subset of elements contained by the material virtual Real getEnergy(std::string energy_id); /// return the energy (identified by id) for the provided element virtual Real getEnergy(std::string energy_id, ElementType type, UInt index); AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(ElementFilter, element_filter, UInt); AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(GradU, gradu, Real); AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(Stress, stress, Real); AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(PotentialEnergy, potential_energy, Real); AKANTU_GET_MACRO(GradU, gradu, const ElementTypeMapArray<Real> &); AKANTU_GET_MACRO(Stress, stress, const ElementTypeMapArray<Real> &); AKANTU_GET_MACRO(ElementFilter, element_filter, const ElementTypeMapArray<UInt> &); bool isNonLocal() const { return is_non_local; } const Array<Real> & getArray(const ID & id, const ElementType & type, const GhostType & ghost_type = _not_ghost) const; Array<Real> & getArray(const ID & id, const ElementType & type, const GhostType & ghost_type = _not_ghost); const InternalField<Real> & getInternal(const ID & id) const; InternalField<Real> & getInternal(const ID & id); inline bool isInternal(const ID & id, const ElementKind & element_kind) const; inline ElementTypeMap<UInt> getInternalDataPerElem(const ID & id, const ElementKind & element_kind) const; bool isFiniteDeformation() const { return finite_deformation; } bool isInelasticDeformation() const { return inelastic_deformation; } template <typename T> inline void setParam(const ID & param, T value); template <typename T> inline const T & getParam(const ID & param) const; void flattenInternal(const std::string & field_id, ElementTypeMapArray<Real> & internal_flat, const GhostType ghost_type = _not_ghost, ElementKind element_kind = _ek_not_defined); protected: bool isInit() const { return is_init; } /* ------------------------------------------------------------------------ */ /* Class Members */ /* ------------------------------------------------------------------------ */ private: /// boolean to know if the material has been initialized bool is_init; std::map<ID, InternalField<Real> *> internal_vectors_real; std::map<ID, InternalField<UInt> *> internal_vectors_uint; protected: /// Finite deformation bool finite_deformation; /// Finite deformation bool inelastic_deformation; /// material name std::string name; /// The model to witch the material belong SolidMechanicsModel * model; /// density : rho Real rho; /// spatial dimension UInt spatial_dimension; /// list of element handled by the material ElementTypeMapArray<UInt> element_filter; /// stresses arrays ordered by element types InternalField<Real> stress; /// eigenstrain arrays ordered by element types InternalField<Real> eigenstrain; /// grad_u arrays ordered by element types InternalField<Real> gradu; /// Green Lagrange strain (Finite deformation) InternalField<Real> green_strain; /// Second Piola-Kirchhoff stress tensor arrays ordered by element types (Finite deformation) InternalField<Real> piola_kirchhoff_2; /// potential energy by element InternalField<Real> potential_energy; /// tell if using in non local mode or not bool is_non_local; /// tell if the material need the previous stress state bool use_previous_stress; /// tell if the material need the previous strain state bool use_previous_gradu; /// elemental field interpolation coordinates InternalField<Real> interpolation_inverse_coordinates; /// elemental field interpolation points InternalField<Real> interpolation_points_matrices; }; /* -------------------------------------------------------------------------- */ /* inline functions */ /* -------------------------------------------------------------------------- */ #include "material_inline_impl.cc" /// standard output stream operator inline std::ostream & operator <<(std::ostream & stream, const Material & _this) { _this.printself(stream); return stream; } __END_AKANTU__ #include "internal_field_tmpl.hh" #include "random_internal_field_tmpl.hh" /* -------------------------------------------------------------------------- */ /* Auto loop */ /* -------------------------------------------------------------------------- */ #define MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN(el_type, ghost_type) \ Array<Real>::matrix_iterator gradu_it = \ this->gradu(el_type, ghost_type).begin(this->spatial_dimension, \ this->spatial_dimension); \ Array<Real>::matrix_iterator gradu_end = \ this->gradu(el_type, ghost_type).end(this->spatial_dimension, \ this->spatial_dimension); \ \ this->stress(el_type, \ ghost_type).resize(this->gradu(el_type, \ ghost_type).getSize()); \ \ Array<Real>::iterator< Matrix<Real> > stress_it = \ this->stress(el_type, ghost_type).begin(this->spatial_dimension, \ this->spatial_dimension); \ \ if(this->isFiniteDeformation()){ \ this->piola_kirchhoff_2(el_type, \ ghost_type).resize(this->gradu(el_type, \ ghost_type).getSize()); \ stress_it = \ this->piola_kirchhoff_2(el_type, \ ghost_type).begin(this->spatial_dimension, \ this->spatial_dimension); \ } \ \ for(;gradu_it != gradu_end; ++gradu_it, ++stress_it) { \ Matrix<Real> & __attribute__((unused)) grad_u = *gradu_it; \ Matrix<Real> & __attribute__((unused)) sigma = *stress_it #define MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END \ } \ #define MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_BEGIN(tangent_mat) \ Array<Real>::matrix_iterator gradu_it = \ this->gradu(el_type, ghost_type).begin(this->spatial_dimension, \ this->spatial_dimension); \ Array<Real>::matrix_iterator gradu_end = \ this->gradu(el_type, ghost_type).end(this->spatial_dimension, \ this->spatial_dimension); \ Array<Real>::matrix_iterator sigma_it = \ this->stress(el_type, ghost_type).begin(this->spatial_dimension, \ this->spatial_dimension); \ \ tangent_mat.resize(this->gradu(el_type, ghost_type).getSize()); \ \ UInt tangent_size = \ this->getTangentStiffnessVoigtSize(this->spatial_dimension); \ Array<Real>::matrix_iterator tangent_it = \ tangent_mat.begin(tangent_size, \ tangent_size); \ \ for(;gradu_it != gradu_end; ++gradu_it, ++sigma_it, ++tangent_it) { \ Matrix<Real> & __attribute__((unused)) grad_u = *gradu_it; \ Matrix<Real> & __attribute__((unused)) sigma_tensor = *sigma_it; \ Matrix<Real> & tangent = *tangent_it #define MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_END \ } \ /* -------------------------------------------------------------------------- */ #define INSTANSIATE_MATERIAL(mat_name) \ template class mat_name<1>; \ template class mat_name<2>; \ template class mat_name<3> #endif /* __AKANTU_MATERIAL_HH__ */ diff --git a/src/model/solid_mechanics/material_inline_impl.cc b/src/model/solid_mechanics/material_inline_impl.cc index 9819833f6..28473d8a4 100644 --- a/src/model/solid_mechanics/material_inline_impl.cc +++ b/src/model/solid_mechanics/material_inline_impl.cc @@ -1,476 +1,490 @@ /** * @file material_inline_impl.cc * * @author Marco Vocialta <marco.vocialta@epfl.ch> * @author Nicolas Richart <nicolas.richart@epfl.ch> * @author Daniel Pino Muñoz <daniel.pinomunoz@epfl.ch> * * @date creation: Tue Jul 27 2010 * @date last modification: Tue Sep 16 2014 * * @brief Implementation of the inline functions of the class material * * @section LICENSE * * Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see <http://www.gnu.org/licenses/>. * */ __END_AKANTU__ #include "solid_mechanics_model.hh" #include <iostream> __BEGIN_AKANTU__ /* -------------------------------------------------------------------------- */ inline UInt Material::addElement(const ElementType & type, UInt element, const GhostType & ghost_type) { Array<UInt> & el_filter = element_filter(type, ghost_type); el_filter.push_back(element); return el_filter.getSize()-1; } /* -------------------------------------------------------------------------- */ inline UInt Material::getTangentStiffnessVoigtSize(UInt dim) const { return (dim * (dim - 1) / 2 + dim); } /* -------------------------------------------------------------------------- */ inline UInt Material::getCauchyStressMatrixSize(UInt dim) const { return (dim * dim); } /* -------------------------------------------------------------------------- */ template<UInt dim> inline void Material::gradUToF(const Matrix<Real> & grad_u, - Matrix<Real> & F) const { + Matrix<Real> & F) { AKANTU_DEBUG_ASSERT(F.size() >= grad_u.size() && grad_u.size() == dim*dim, "The dimension of the tensor F should be greater or equal to the dimension of the tensor grad_u."); F.eye(); for (UInt i = 0; i < dim; ++i) for (UInt j = 0; j < dim; ++j) F(i, j) += grad_u(i, j); } /* -------------------------------------------------------------------------- */ template<UInt dim > inline void Material::computeCauchyStressOnQuad(const Matrix<Real> & F, const Matrix<Real> & piola, Matrix<Real> & sigma, const Real & C33 ) const { Real J = F.det() * sqrt(C33); Matrix<Real> F_S(dim, dim); F_S.mul<false, false>(F, piola); Real constant = J ? 1./J : 0; sigma.mul<false, true>(F_S, F, constant); } /* -------------------------------------------------------------------------- */ inline void Material::rightCauchy(const Matrix<Real> & F, - Matrix<Real> & C) const { + Matrix<Real> & C) { C.mul<true, false>(F, F); } /* -------------------------------------------------------------------------- */ inline void Material::leftCauchy(const Matrix<Real> & F, - Matrix<Real> & B) const { + Matrix<Real> & B) { B.mul<false, true>(F, F); } /* -------------------------------------------------------------------------- */ template<UInt dim> inline void Material::gradUToEpsilon(const Matrix<Real> & grad_u, - Matrix<Real> & epsilon) const { + Matrix<Real> & epsilon) { for (UInt i = 0; i < dim; ++i) for (UInt j = 0; j < dim; ++j) epsilon(i, j) = 0.5*(grad_u(i, j) + grad_u(j, i)); } /* -------------------------------------------------------------------------- */ template<UInt dim> inline void Material::gradUToGreenStrain(const Matrix<Real> & grad_u, - Matrix<Real> & epsilon) const { + Matrix<Real> & epsilon) { epsilon.mul<true, false>(grad_u, grad_u, .5); for (UInt i = 0; i < dim; ++i) for (UInt j = 0; j < dim; ++j) epsilon(i, j) += 0.5 * (grad_u(i, j) + grad_u(j, i)); } +/* -------------------------------------------------------------------------- */ +inline Real Material::stressToVonMises(const Matrix<Real> & stress) { + // compute deviatoric stress + UInt dim = stress.cols(); + Matrix<Real> deviatoric_stress = Matrix<Real>::eye(dim, -1. * stress.trace() / 3.); + + for (UInt i = 0; i < dim; ++i) + for (UInt j = 0; j < dim; ++j) + deviatoric_stress(i,j) += stress(i,j); + + // return Von Mises stress + return std::sqrt(3. * deviatoric_stress.doubleDot(deviatoric_stress) / 2.); +} + /* ---------------------------------------------------------------------------*/ template<UInt dim> inline void Material::SetCauchyStressArray(const Matrix<Real> & S_t, Matrix<Real> & Stress_vect) { AKANTU_DEBUG_IN(); Stress_vect.clear(); //UInt cauchy_matrix_size = getCauchyStressArraySize(dim); //see Finite ekement formulations for large deformation dynamic analysis, Bathe et al. IJNME vol 9, 1975, page 364 ^t\tau /* * 1d: [ s11 ]' * 2d: [ s11 s22 s12 ]' * 3d: [ s11 s22 s33 s23 s13 s12 ] */ for (UInt i = 0; i < dim; ++i)//diagonal terms Stress_vect(i, 0) = S_t(i, i); for (UInt i = 1; i < dim; ++i)// term s12 in 2D and terms s23 s13 in 3D Stress_vect(dim+i-1, 0) = S_t(dim-i-1, dim-1); for (UInt i = 2; i < dim; ++i)//term s13 in 3D Stress_vect(dim+i, 0) = S_t(0, 1); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ template<UInt dim> inline void Material::setCauchyStressMatrix(const Matrix<Real> & S_t, Matrix<Real> & Stress_matrix) { AKANTU_DEBUG_IN(); Stress_matrix.clear(); /// see Finite ekement formulations for large deformation dynamic analysis, /// Bathe et al. IJNME vol 9, 1975, page 364 ^t\tau for (UInt i = 0; i < dim; ++i) { for (UInt m = 0; m < dim; ++m) { for (UInt n = 0; n < dim; ++n) { Stress_matrix(i * dim + m, i * dim + n) = S_t(m, n); } } } //other terms from the diagonal /*for (UInt i = 0; i < 3 - dim; ++i) { Stress_matrix(dim * dim + i, dim * dim + i) = S_t(dim + i, dim + i); }*/ AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ inline Element Material::convertToLocalElement(const Element & global_element) const { UInt ge = global_element.element; #ifndef AKANTU_NDEBUG UInt model_mat_index = this->model->getMaterialByElement(global_element.type, global_element.ghost_type)(ge); UInt mat_index = this->model->getMaterialIndex(this->name); AKANTU_DEBUG_ASSERT(model_mat_index == mat_index, "Conversion of a global element in a local element for the wrong material " << this->name << std::endl); #endif UInt le = this->model->getMaterialLocalNumbering(global_element.type, global_element.ghost_type)(ge); Element tmp_quad(global_element.type, le, global_element.ghost_type); return tmp_quad; } /* -------------------------------------------------------------------------- */ inline Element Material::convertToGlobalElement(const Element & local_element) const { UInt le = local_element.element; UInt ge = this->element_filter(local_element.type, local_element.ghost_type)(le); Element tmp_quad(local_element.type, ge, local_element.ghost_type); return tmp_quad; } /* -------------------------------------------------------------------------- */ inline QuadraturePoint Material::convertToLocalPoint(const QuadraturePoint & global_point) const { const FEEngine & fem = this->model->getFEEngine(); UInt nb_quad = fem.getNbQuadraturePoints(global_point.type); Element el = this->convertToLocalElement(static_cast<const Element &>(global_point)); QuadraturePoint tmp_quad(el, global_point.num_point, nb_quad); return tmp_quad; } /* -------------------------------------------------------------------------- */ inline QuadraturePoint Material::convertToGlobalPoint(const QuadraturePoint & local_point) const { const FEEngine & fem = this->model->getFEEngine(); UInt nb_quad = fem.getNbQuadraturePoints(local_point.type); Element el = this->convertToGlobalElement(static_cast<const Element &>(local_point)); QuadraturePoint tmp_quad(el, local_point.num_point, nb_quad); return tmp_quad; } /* -------------------------------------------------------------------------- */ template<ElementType type> inline void Material::buildElementalFieldInterpolationCoodinates(__attribute__((unused)) const Matrix<Real> & coordinates, __attribute__((unused)) Matrix<Real> & coordMatrix) { AKANTU_DEBUG_TO_IMPLEMENT(); } /* -------------------------------------------------------------------------- */ inline void Material::buildElementalFieldInterpolationCoodinatesLinear(const Matrix<Real> & coordinates, Matrix<Real> & coordMatrix) { for (UInt i = 0; i < coordinates.cols(); ++i) coordMatrix(i, 0) = 1; } /* -------------------------------------------------------------------------- */ inline void Material::buildElementalFieldInterpolationCoodinatesQuadratic(const Matrix<Real> & coordinates, Matrix<Real> & coordMatrix) { UInt nb_quadrature_points = coordMatrix.cols(); for (UInt i = 0; i < coordinates.cols(); ++i) { coordMatrix(i, 0) = 1; for (UInt j = 1; j < nb_quadrature_points; ++j) coordMatrix(i, j) = coordinates(j-1, i); } } /* -------------------------------------------------------------------------- */ template<> inline void Material::buildElementalFieldInterpolationCoodinates<_segment_2>(const Matrix<Real> & coordinates, Matrix<Real> & coordMatrix) { buildElementalFieldInterpolationCoodinatesLinear(coordinates, coordMatrix); } /* -------------------------------------------------------------------------- */ template<> inline void Material::buildElementalFieldInterpolationCoodinates<_segment_3>(const Matrix<Real> & coordinates, Matrix<Real> & coordMatrix) { buildElementalFieldInterpolationCoodinatesQuadratic(coordinates, coordMatrix); } /* -------------------------------------------------------------------------- */ template<> inline void Material::buildElementalFieldInterpolationCoodinates<_triangle_3>(const Matrix<Real> & coordinates, Matrix<Real> & coordMatrix) { buildElementalFieldInterpolationCoodinatesLinear(coordinates, coordMatrix); } /* -------------------------------------------------------------------------- */ template<> inline void Material::buildElementalFieldInterpolationCoodinates<_triangle_6>(const Matrix<Real> & coordinates, Matrix<Real> & coordMatrix) { buildElementalFieldInterpolationCoodinatesQuadratic(coordinates, coordMatrix); } /* -------------------------------------------------------------------------- */ template<> inline void Material::buildElementalFieldInterpolationCoodinates<_tetrahedron_4>(const Matrix<Real> & coordinates, Matrix<Real> & coordMatrix) { buildElementalFieldInterpolationCoodinatesLinear(coordinates, coordMatrix); } /* -------------------------------------------------------------------------- */ template<> inline void Material::buildElementalFieldInterpolationCoodinates<_tetrahedron_10>(const Matrix<Real> & coordinates, Matrix<Real> & coordMatrix) { buildElementalFieldInterpolationCoodinatesQuadratic(coordinates, coordMatrix); } /** * @todo Write a more efficient interpolation for quadrangles by * dropping unnecessary quadrature points * */ /* -------------------------------------------------------------------------- */ template<> inline void Material::buildElementalFieldInterpolationCoodinates<_quadrangle_4>(const Matrix<Real> & coordinates, Matrix<Real> & coordMatrix) { for (UInt i = 0; i < coordinates.cols(); ++i) { Real x = coordinates(0, i); Real y = coordinates(1, i); coordMatrix(i, 0) = 1; coordMatrix(i, 1) = x; coordMatrix(i, 2) = y; coordMatrix(i, 3) = x * y; } } /* -------------------------------------------------------------------------- */ template<> inline void Material::buildElementalFieldInterpolationCoodinates<_quadrangle_8>(const Matrix<Real> & coordinates, Matrix<Real> & coordMatrix) { for (UInt i = 0; i < coordinates.cols(); ++i) { UInt j = 0; Real x = coordinates(0, i); Real y = coordinates(1, i); for (UInt e = 0; e <= 2; ++e) { for (UInt n = 0; n <= 2; ++n) { coordMatrix(i, j) = std::pow(x, e) * std::pow(y, n); ++j; } } } } /* -------------------------------------------------------------------------- */ inline UInt Material::getNbDataForElements(const Array<Element> & elements, SynchronizationTag tag) const { if(tag == _gst_smm_stress) { return (this->isFiniteDeformation() ? 3 : 1) * spatial_dimension * spatial_dimension * sizeof(Real) * this->getModel().getNbQuadraturePoints(elements); } return 0; } /* -------------------------------------------------------------------------- */ inline void Material::packElementData(CommunicationBuffer & buffer, const Array<Element> & elements, SynchronizationTag tag) const { if(tag == _gst_smm_stress) { if(this->isFiniteDeformation()) { packElementDataHelper(piola_kirchhoff_2, buffer, elements); packElementDataHelper(gradu, buffer, elements); } packElementDataHelper(stress, buffer, elements); } } /* -------------------------------------------------------------------------- */ inline void Material::unpackElementData(CommunicationBuffer & buffer, const Array<Element> & elements, SynchronizationTag tag) { if(tag == _gst_smm_stress) { if(this->isFiniteDeformation()) { unpackElementDataHelper(piola_kirchhoff_2, buffer, elements); unpackElementDataHelper(gradu, buffer, elements); } unpackElementDataHelper(stress, buffer, elements); } } /* -------------------------------------------------------------------------- */ template <typename T> inline const T & Material::getParam(const ID & param) const { try { return get<T>(param); } catch (...) { AKANTU_EXCEPTION("No parameter " << param << " in the material " << getID()); } } /* -------------------------------------------------------------------------- */ template <typename T> inline void Material::setParam(const ID & param, T value) { try { set<T>(param, value); } catch(...) { AKANTU_EXCEPTION("No parameter " << param << " in the material " << getID()); } updateInternalParameters(); } /* -------------------------------------------------------------------------- */ template<typename T> inline void Material::packElementDataHelper(const ElementTypeMapArray<T> & data_to_pack, CommunicationBuffer & buffer, const Array<Element> & elements, const ID & fem_id) const { DataAccessor::packElementalDataHelper<T>(data_to_pack, buffer, elements, true, model->getFEEngine(fem_id)); } /* -------------------------------------------------------------------------- */ template<typename T> inline void Material::unpackElementDataHelper(ElementTypeMapArray<T> & data_to_unpack, CommunicationBuffer & buffer, const Array<Element> & elements, const ID & fem_id) { DataAccessor::unpackElementalDataHelper<T>(data_to_unpack, buffer, elements, true, model->getFEEngine(fem_id)); } /* -------------------------------------------------------------------------- */ template<> inline void Material::registerInternal<Real>(InternalField<Real> & vect) { internal_vectors_real[vect.getID()] = &vect; } template<> inline void Material::registerInternal<UInt>(InternalField<UInt> & vect) { internal_vectors_uint[vect.getID()] = &vect; } /* -------------------------------------------------------------------------- */ template<> inline void Material::unregisterInternal<Real>(InternalField<Real> & vect) { internal_vectors_real.erase(vect.getID()); } template<> inline void Material::unregisterInternal<UInt>(InternalField<UInt> & vect) { internal_vectors_uint.erase(vect.getID()); } /* -------------------------------------------------------------------------- */ inline bool Material::isInternal(const ID & id, const ElementKind & element_kind) const { std::map<ID, InternalField<Real> *>::const_iterator internal_array = internal_vectors_real.find(this->getID()+":"+id); if (internal_array == internal_vectors_real.end()) return false; if (internal_array->second->getElementKind() != element_kind) return false; return true; } /* -------------------------------------------------------------------------- */ inline ElementTypeMap<UInt> Material::getInternalDataPerElem(const ID & id, const ElementKind & element_kind) const { std::map<ID, InternalField<Real> *>::const_iterator internal_array = internal_vectors_real.find(this->getID()+":"+id); if (internal_array == internal_vectors_real.end()) AKANTU_EXCEPTION("cannot find internal " << id); if (internal_array->second->getElementKind() != element_kind) AKANTU_EXCEPTION("cannot find internal " << id); InternalField<Real> & internal = *internal_array->second; InternalField<Real>::type_iterator it = internal.firstType(spatial_dimension, _not_ghost,element_kind); InternalField<Real>::type_iterator last_type = internal.lastType(spatial_dimension, _not_ghost,element_kind); ElementTypeMap<UInt> res; for(; it != last_type; ++it) { UInt nb_quadrature_points = 0; if (element_kind == _ek_regular) nb_quadrature_points = model->getFEEngine().getNbQuadraturePoints(*it); #if defined(AKANTU_COHESIVE_ELEMENT) else if (element_kind == _ek_cohesive) nb_quadrature_points = model->getFEEngine("CohesiveFEEngine").getNbQuadraturePoints(*it); #endif res(*it) = internal.getNbComponent() * nb_quadrature_points; } return res; } diff --git a/src/model/solid_mechanics/solid_mechanics_model.cc b/src/model/solid_mechanics/solid_mechanics_model.cc index c15522ea8..f93dc12d7 100644 --- a/src/model/solid_mechanics/solid_mechanics_model.cc +++ b/src/model/solid_mechanics/solid_mechanics_model.cc @@ -1,1801 +1,1815 @@ /** * @file solid_mechanics_model.cc * * @author Guillaume Anciaux <guillaume.anciaux@epfl.ch> * @author David Simon Kammer <david.kammer@epfl.ch> * @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch> * @author Daniel Pino Muñoz <daniel.pinomunoz@epfl.ch> * @author Nicolas Richart <nicolas.richart@epfl.ch> * * @date creation: Tue Jul 27 2010 * @date last modification: Fri Sep 19 2014 * * @brief Implementation of the SolidMechanicsModel class * * @section LICENSE * * Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne) * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * Akantu is free software: you can redistribute it and/or modify it under the * terms of the GNU Lesser General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any * later version. * * Akantu is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with Akantu. If not, see <http://www.gnu.org/licenses/>. * */ /* -------------------------------------------------------------------------- */ #include "aka_math.hh" #include "aka_common.hh" #include "solid_mechanics_model.hh" #include "group_manager_inline_impl.cc" #include "dumpable_inline_impl.hh" #include "integration_scheme_2nd_order.hh" #include "element_group.hh" #include "static_communicator.hh" #include "dof_synchronizer.hh" #include "element_group.hh" #include <cmath> #ifdef AKANTU_USE_MUMPS #include "solver_mumps.hh" #endif #ifdef AKANTU_USE_PETSC #include "solver_petsc.hh" #include "petsc_matrix.hh" #endif #ifdef AKANTU_USE_IOHELPER # include "dumper_field.hh" # include "dumper_paraview.hh" # include "dumper_homogenizing_field.hh" # include "dumper_material_internal_field.hh" # include "dumper_elemental_field.hh" # include "dumper_material_padders.hh" # include "dumper_element_partition.hh" # include "dumper_iohelper.hh" #endif /* -------------------------------------------------------------------------- */ __BEGIN_AKANTU__ const SolidMechanicsModelOptions default_solid_mechanics_model_options(_explicit_lumped_mass, false); /* -------------------------------------------------------------------------- */ /** * A solid mechanics model need a mesh and a dimension to be created. the model * by it self can not do a lot, the good init functions should be called in * order to configure the model depending on what we want to do. * * @param mesh mesh representing the model we want to simulate * @param dim spatial dimension of the problem, if dim = 0 (default value) the * dimension of the problem is assumed to be the on of the mesh * @param id an id to identify the model */ SolidMechanicsModel::SolidMechanicsModel(Mesh & mesh, UInt dim, const ID & id, const MemoryID & memory_id) : Model(mesh, dim, id, memory_id), BoundaryCondition<SolidMechanicsModel>(), time_step(NAN), f_m2a(1.0), mass_matrix(NULL), velocity_damping_matrix(NULL), stiffness_matrix(NULL), jacobian_matrix(NULL), material_index("material index", id), material_local_numbering("material local numbering", id), material_selector(new DefaultMaterialSelector(material_index)), is_default_material_selector(true), integrator(NULL), increment_flag(false), solver(NULL), synch_parallel(NULL), are_materials_instantiated(false) { AKANTU_DEBUG_IN(); createSynchronizerRegistry(this); registerFEEngineObject<MyFEEngineType>("SolidMechanicsFEEngine", mesh, spatial_dimension); this->displacement = NULL; this->mass = NULL; this->velocity = NULL; this->acceleration = NULL; this->force = NULL; this->residual = NULL; this->blocked_dofs = NULL; this->increment = NULL; this->increment_acceleration = NULL; this->dof_synchronizer = NULL; this->previous_displacement = NULL; materials.clear(); mesh.registerEventHandler(*this); #if defined(AKANTU_USE_IOHELPER) this->mesh.registerDumper<DumperParaview>("paraview_all", id, true); this->mesh.addDumpMesh(mesh, spatial_dimension, _not_ghost, _ek_regular); #endif AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ SolidMechanicsModel::~SolidMechanicsModel() { AKANTU_DEBUG_IN(); std::vector<Material *>::iterator mat_it; for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { delete *mat_it; } materials.clear(); delete integrator; delete solver; delete mass_matrix; delete velocity_damping_matrix; if(stiffness_matrix && stiffness_matrix != jacobian_matrix) delete stiffness_matrix; delete jacobian_matrix; delete synch_parallel; if(is_default_material_selector) { delete material_selector; material_selector = NULL; } AKANTU_DEBUG_OUT(); } void SolidMechanicsModel::setTimeStep(Real time_step) { this->time_step = time_step; #if defined(AKANTU_USE_IOHELPER) this->mesh.getDumper().setTimeStep(time_step); #endif } /* -------------------------------------------------------------------------- */ /* Initialisation */ /* -------------------------------------------------------------------------- */ /** * This function groups many of the initialization in on function. For most of * basics case the function should be enough. The functions initialize the * model, the internal vectors, set them to 0, and depending on the parameters * it also initialize the explicit or implicit solver. * * @param material_file the file containing the materials to use * @param method the analysis method wanted. See the akantu::AnalysisMethod for * the different possibilities */ void SolidMechanicsModel::initFull(const ModelOptions & options) { Model::initFull(options); const SolidMechanicsModelOptions & smm_options = dynamic_cast<const SolidMechanicsModelOptions &>(options); method = smm_options.analysis_method; // initialize the vectors initArrays(); // set the initial condition to 0 force->clear(); velocity->clear(); acceleration->clear(); displacement->clear(); // initialize pcb if(pbc_pair.size()!=0) initPBC(); // initialize the time integration schemes switch(method) { case _explicit_lumped_mass: initExplicit(); break; case _explicit_consistent_mass: initSolver(); initExplicit(); break; case _implicit_dynamic: initImplicit(true); break; case _static: initImplicit(false); break; default: AKANTU_EXCEPTION("analysis method not recognised by SolidMechanicsModel"); break; } // initialize the materials if(this->parser->getLastParsedFile() != "") { instantiateMaterials(); } if(!smm_options.no_init_materials) { initMaterials(); } if(increment_flag) initBC(*this, *displacement, *increment, *force); else initBC(*this, *displacement, *force); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::initParallel(MeshPartition * partition, DataAccessor * data_accessor) { AKANTU_DEBUG_IN(); if (data_accessor == NULL) data_accessor = this; synch_parallel = &createParallelSynch(partition,data_accessor); synch_registry->registerSynchronizer(*synch_parallel, _gst_material_id); synch_registry->registerSynchronizer(*synch_parallel, _gst_smm_mass); synch_registry->registerSynchronizer(*synch_parallel, _gst_smm_stress); synch_registry->registerSynchronizer(*synch_parallel, _gst_smm_boundary); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::initFEEngineBoundary() { FEEngine & fem_boundary = getFEEngineBoundary(); fem_boundary.initShapeFunctions(_not_ghost); fem_boundary.initShapeFunctions(_ghost); fem_boundary.computeNormalsOnControlPoints(_not_ghost); fem_boundary.computeNormalsOnControlPoints(_ghost); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::initExplicit(AnalysisMethod analysis_method) { AKANTU_DEBUG_IN(); //in case of switch from implicit to explicit if(!this->isExplicit()) method = analysis_method; if (integrator) delete integrator; integrator = new CentralDifference(); UInt nb_nodes = acceleration->getSize(); UInt nb_degree_of_freedom = acceleration->getNbComponent(); std::stringstream sstr; sstr << id << ":increment_acceleration"; increment_acceleration = &(alloc<Real>(sstr.str(), nb_nodes, nb_degree_of_freedom, Real())); AKANTU_DEBUG_OUT(); } void SolidMechanicsModel::initArraysPreviousDisplacment() { AKANTU_DEBUG_IN(); SolidMechanicsModel::setIncrementFlagOn(); UInt nb_nodes = mesh.getNbNodes(); std::stringstream sstr_disp_t; sstr_disp_t << id << ":previous_displacement"; previous_displacement = &(alloc<Real > (sstr_disp_t.str(), nb_nodes, spatial_dimension, 0.)); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ /** * Allocate all the needed vectors. By default their are not necessarily set to * 0 * */ void SolidMechanicsModel::initArrays() { AKANTU_DEBUG_IN(); UInt nb_nodes = mesh.getNbNodes(); std::stringstream sstr_disp; sstr_disp << id << ":displacement"; // std::stringstream sstr_mass; sstr_mass << id << ":mass"; std::stringstream sstr_velo; sstr_velo << id << ":velocity"; std::stringstream sstr_acce; sstr_acce << id << ":acceleration"; std::stringstream sstr_forc; sstr_forc << id << ":force"; std::stringstream sstr_resi; sstr_resi << id << ":residual"; std::stringstream sstr_boun; sstr_boun << id << ":blocked_dofs"; displacement = &(alloc<Real>(sstr_disp.str(), nb_nodes, spatial_dimension, REAL_INIT_VALUE)); // mass = &(alloc<Real>(sstr_mass.str(), nb_nodes, spatial_dimension, 0)); velocity = &(alloc<Real>(sstr_velo.str(), nb_nodes, spatial_dimension, REAL_INIT_VALUE)); acceleration = &(alloc<Real>(sstr_acce.str(), nb_nodes, spatial_dimension, REAL_INIT_VALUE)); force = &(alloc<Real>(sstr_forc.str(), nb_nodes, spatial_dimension, REAL_INIT_VALUE)); residual = &(alloc<Real>(sstr_resi.str(), nb_nodes, spatial_dimension, REAL_INIT_VALUE)); blocked_dofs = &(alloc<bool>(sstr_boun.str(), nb_nodes, spatial_dimension, false)); std::stringstream sstr_curp; sstr_curp << id << ":current_position"; current_position = &(alloc<Real>(sstr_curp.str(), 0, spatial_dimension, REAL_INIT_VALUE)); for(UInt g = _not_ghost; g <= _ghost; ++g) { GhostType gt = (GhostType) g; Mesh::type_iterator it = mesh.firstType(spatial_dimension, gt, _ek_not_defined); Mesh::type_iterator end = mesh.lastType(spatial_dimension, gt, _ek_not_defined); for(; it != end; ++it) { UInt nb_element = mesh.getNbElement(*it, gt); material_index.alloc(nb_element, 1, *it, gt); material_local_numbering.alloc(nb_element, 1, *it, gt); } } dof_synchronizer = new DOFSynchronizer(mesh, spatial_dimension); dof_synchronizer->initLocalDOFEquationNumbers(); dof_synchronizer->initGlobalDOFEquationNumbers(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ /** * Initialize the model,basically it pre-compute the shapes, shapes derivatives * and jacobian * */ void SolidMechanicsModel::initModel() { /// \todo add the current position as a parameter to initShapeFunctions for /// large deformation getFEEngine().initShapeFunctions(_not_ghost); getFEEngine().initShapeFunctions(_ghost); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::initPBC() { Model::initPBC(); registerPBCSynchronizer(); // as long as there are ones on the diagonal of the matrix, we can put boudandary true for slaves std::map<UInt, UInt>::iterator it = pbc_pair.begin(); std::map<UInt, UInt>::iterator end = pbc_pair.end(); UInt dim = mesh.getSpatialDimension(); while(it != end) { for (UInt i=0; i<dim; ++i) (*blocked_dofs)((*it).first,i) = true; ++it; } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::registerPBCSynchronizer(){ PBCSynchronizer * synch = new PBCSynchronizer(pbc_pair); synch_registry->registerSynchronizer(*synch, _gst_smm_uv); synch_registry->registerSynchronizer(*synch, _gst_smm_mass); synch_registry->registerSynchronizer(*synch, _gst_smm_res); synch_registry->registerSynchronizer(*synch, _gst_for_dump); changeLocalEquationNumberForPBC(pbc_pair, mesh.getSpatialDimension()); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updateCurrentPosition() { AKANTU_DEBUG_IN(); UInt nb_nodes = mesh.getNbNodes(); current_position->resize(nb_nodes); Real * current_position_val = current_position->storage(); Real * position_val = mesh.getNodes().storage(); Real * displacement_val = displacement->storage(); /// compute current_position = initial_position + displacement memcpy(current_position_val, position_val, nb_nodes*spatial_dimension*sizeof(Real)); for (UInt n = 0; n < nb_nodes*spatial_dimension; ++n) { *current_position_val++ += *displacement_val++; } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::initializeUpdateResidualData() { AKANTU_DEBUG_IN(); UInt nb_nodes = mesh.getNbNodes(); residual->resize(nb_nodes); /// copy the forces in residual for boundary conditions memcpy(residual->storage(), force->storage(), nb_nodes*spatial_dimension*sizeof(Real)); // start synchronization synch_registry->asynchronousSynchronize(_gst_smm_uv); synch_registry->waitEndSynchronize(_gst_smm_uv); updateCurrentPosition(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ /* Explicit scheme */ /* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */ /** * This function compute the second member of the motion equation. That is to * say the sum of forces @f$ r = F_{ext} - F_{int} @f$. @f$ F_{ext} @f$ is given * by the user in the force vector, and @f$ F_{int} @f$ is computed as @f$ * F_{int} = \int_{\Omega} N \sigma d\Omega@f$ * */ void SolidMechanicsModel::updateResidual(bool need_initialize) { AKANTU_DEBUG_IN(); AKANTU_DEBUG_INFO("Assemble the internal forces"); // f = f_ext - f_int // f = f_ext if(need_initialize) initializeUpdateResidualData(); AKANTU_DEBUG_INFO("Compute local stresses"); std::vector<Material *>::iterator mat_it; for (mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { Material & mat = **mat_it; mat.computeAllStresses(_not_ghost); } #ifdef AKANTU_DAMAGE_NON_LOCAL /* ------------------------------------------------------------------------ */ /* Computation of the non local part */ synch_registry->asynchronousSynchronize(_gst_mnl_for_average); AKANTU_DEBUG_INFO("Compute non local stresses for local elements"); for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { Material & mat = **mat_it; mat.computeAllNonLocalStresses(_not_ghost); } AKANTU_DEBUG_INFO("Wait distant non local stresses"); synch_registry->waitEndSynchronize(_gst_mnl_for_average); AKANTU_DEBUG_INFO("Compute non local stresses for ghosts elements"); for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { Material & mat = **mat_it; mat.computeAllNonLocalStresses(_ghost); } #endif /* ------------------------------------------------------------------------ */ /* assembling the forces internal */ // communicate the stress AKANTU_DEBUG_INFO("Send data for residual assembly"); synch_registry->asynchronousSynchronize(_gst_smm_stress); AKANTU_DEBUG_INFO("Assemble residual for local elements"); for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { Material & mat = **mat_it; mat.assembleResidual(_not_ghost); } AKANTU_DEBUG_INFO("Wait distant stresses"); // finalize communications synch_registry->waitEndSynchronize(_gst_smm_stress); AKANTU_DEBUG_INFO("Assemble residual for ghost elements"); for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { Material & mat = **mat_it; mat.assembleResidual(_ghost); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::computeStresses() { if (isExplicit()) { // start synchronization synch_registry->asynchronousSynchronize(_gst_smm_uv); synch_registry->waitEndSynchronize(_gst_smm_uv); // compute stresses on all local elements for each materials std::vector<Material *>::iterator mat_it; for (mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { Material & mat = **mat_it; mat.computeAllStresses(_not_ghost); } /* ------------------------------------------------------------------------ */ #ifdef AKANTU_DAMAGE_NON_LOCAL /* Computation of the non local part */ synch_registry->asynchronousSynchronize(_gst_mnl_for_average); for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { Material & mat = **mat_it; mat.computeAllNonLocalStresses(_not_ghost); } synch_registry->waitEndSynchronize(_gst_mnl_for_average); for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { Material & mat = **mat_it; mat.computeAllNonLocalStresses(_ghost); } #endif } else { std::vector<Material *>::iterator mat_it; for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { Material & mat = **mat_it; mat.computeAllStressesFromTangentModuli(_not_ghost); } } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updateResidualInternal() { AKANTU_DEBUG_IN(); AKANTU_DEBUG_INFO("Update the residual"); // f = f_ext - f_int - Ma - Cv = r - Ma - Cv; if(method != _static) { // f -= Ma if(mass_matrix) { // if full mass_matrix Array<Real> * Ma = new Array<Real>(*acceleration, true, "Ma"); *Ma *= *mass_matrix; /// \todo check unit conversion for implicit dynamics // *Ma /= f_m2a *residual -= *Ma; delete Ma; } else if (mass) { // else lumped mass UInt nb_nodes = acceleration->getSize(); UInt nb_degree_of_freedom = acceleration->getNbComponent(); Real * mass_val = mass->storage(); Real * accel_val = acceleration->storage(); Real * res_val = residual->storage(); bool * blocked_dofs_val = blocked_dofs->storage(); for (UInt n = 0; n < nb_nodes * nb_degree_of_freedom; ++n) { if(!(*blocked_dofs_val)) { *res_val -= *accel_val * *mass_val /f_m2a; } blocked_dofs_val++; res_val++; mass_val++; accel_val++; } } else { AKANTU_DEBUG_ERROR("No function called to assemble the mass matrix."); } // f -= Cv if(velocity_damping_matrix) { Array<Real> * Cv = new Array<Real>(*velocity); *Cv *= *velocity_damping_matrix; *residual -= *Cv; delete Cv; } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updateAcceleration() { AKANTU_DEBUG_IN(); updateResidualInternal(); if(method == _explicit_lumped_mass) { /* residual = residual_{n+1} - M * acceleration_n therefore solution = increment acceleration not acceleration */ solveLumped(*increment_acceleration, *mass, *residual, *blocked_dofs, f_m2a); } else if (method == _explicit_consistent_mass) { solve<NewmarkBeta::_acceleration_corrector>(*increment_acceleration); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::solveLumped(Array<Real> & x, const Array<Real> & A, const Array<Real> & b, const Array<bool> & blocked_dofs, Real alpha) { Real * A_val = A.storage(); Real * b_val = b.storage(); Real * x_val = x.storage(); bool * blocked_dofs_val = blocked_dofs.storage(); UInt nb_degrees_of_freedom = x.getSize() * x.getNbComponent(); for (UInt n = 0; n < nb_degrees_of_freedom; ++n) { if(!(*blocked_dofs_val)) { *x_val = alpha * (*b_val / *A_val); } x_val++; A_val++; b_val++; blocked_dofs_val++; } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::explicitPred() { AKANTU_DEBUG_IN(); if(increment_flag) { if(previous_displacement) increment->copy(*previous_displacement); else increment->copy(*displacement); } AKANTU_DEBUG_ASSERT(integrator,"itegrator should have been allocated: " << "have called initExplicit ? " << "or initImplicit ?"); integrator->integrationSchemePred(time_step, *displacement, *velocity, *acceleration, *blocked_dofs); if(increment_flag) { Real * inc_val = increment->storage(); Real * dis_val = displacement->storage(); UInt nb_degree_of_freedom = displacement->getSize() * displacement->getNbComponent(); for (UInt n = 0; n < nb_degree_of_freedom; ++n) { *inc_val = *dis_val - *inc_val; inc_val++; dis_val++; } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::explicitCorr() { AKANTU_DEBUG_IN(); integrator->integrationSchemeCorrAccel(time_step, *displacement, *velocity, *acceleration, *blocked_dofs, *increment_acceleration); if(previous_displacement) previous_displacement->copy(*displacement); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::solveStep() { AKANTU_DEBUG_IN(); EventManager::sendEvent(SolidMechanicsModelEvent::BeforeSolveStepEvent(method)); this->explicitPred(); this->updateResidual(); this->updateAcceleration(); this->explicitCorr(); EventManager::sendEvent(SolidMechanicsModelEvent::AfterSolveStepEvent(method)); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ /* Implicit scheme */ /* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */ /** * Initialize the solver and create the sparse matrices needed. * */ void SolidMechanicsModel::initSolver(__attribute__((unused)) SolverOptions & options) { #if !defined(AKANTU_USE_MUMPS) && !defined(AKANTU_USE_PETSC)// or other solver in the future \todo add AKANTU_HAS_SOLVER in CMake AKANTU_DEBUG_ERROR("You should at least activate one solver."); #else UInt nb_global_nodes = mesh.getNbGlobalNodes(); delete jacobian_matrix; std::stringstream sstr; sstr << id << ":jacobian_matrix"; #ifdef AKANTU_USE_PETSC jacobian_matrix = new PETScMatrix(nb_global_nodes * spatial_dimension, _symmetric, sstr.str(), memory_id); #else jacobian_matrix = new SparseMatrix(nb_global_nodes * spatial_dimension, _symmetric, sstr.str(), memory_id); #endif //AKANTU_USE PETSC jacobian_matrix->buildProfile(mesh, *dof_synchronizer, spatial_dimension); if (!isExplicit()) { delete stiffness_matrix; std::stringstream sstr_sti; sstr_sti << id << ":stiffness_matrix"; #ifdef AKANTU_USE_PETSC stiffness_matrix = new SparseMatrix(nb_global_nodes * spatial_dimension, _symmetric, sstr.str(), memory_id); stiffness_matrix->buildProfile(mesh, *dof_synchronizer, spatial_dimension); #else stiffness_matrix = new SparseMatrix(*jacobian_matrix, sstr_sti.str(), memory_id); #endif //AKANTU_USE_PETSC } delete solver; std::stringstream sstr_solv; sstr_solv << id << ":solver"; #ifdef AKANTU_USE_PETSC solver = new SolverPETSc(*jacobian_matrix, sstr_solv.str()); #elif defined(AKANTU_USE_MUMPS) solver = new SolverMumps(*jacobian_matrix, sstr_solv.str()); dof_synchronizer->initScatterGatherCommunicationScheme(); #else AKANTU_DEBUG_ERROR("You should at least activate one solver."); #endif //AKANTU_USE_MUMPS if(solver) solver->initialize(options); #endif //AKANTU_HAS_SOLVER } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::initJacobianMatrix() { #if defined(AKANTU_USE_MUMPS) && !defined(AKANTU_USE_PETSC) // @todo make it more flexible: this is an ugly patch to treat the case of non // fix profile of the K matrix delete jacobian_matrix; std::stringstream sstr_sti; sstr_sti << id << ":jacobian_matrix"; jacobian_matrix = new SparseMatrix(*stiffness_matrix, sstr_sti.str(), memory_id); std::stringstream sstr_solv; sstr_solv << id << ":solver"; delete solver; solver = new SolverMumps(*jacobian_matrix, sstr_solv.str()); if(solver) solver->initialize(_solver_no_options); #else AKANTU_DEBUG_ERROR("You need to activate the solver mumps."); #endif } /* -------------------------------------------------------------------------- */ /** * Initialize the implicit solver, either for dynamic or static cases, * * @param dynamic */ void SolidMechanicsModel::initImplicit(bool dynamic, SolverOptions & solver_options) { AKANTU_DEBUG_IN(); method = dynamic ? _implicit_dynamic : _static; if (!increment) setIncrementFlagOn(); initSolver(solver_options); if(method == _implicit_dynamic) { if(integrator) delete integrator; integrator = new TrapezoidalRule2(); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::initialAcceleration() { AKANTU_DEBUG_IN(); AKANTU_DEBUG_INFO("Solving Ma = f"); Solver * acc_solver = NULL; std::stringstream sstr; sstr << id << ":tmp_mass_matrix"; SparseMatrix * tmp_mass = new SparseMatrix(*mass_matrix, sstr.str(), memory_id); #ifdef AKANTU_USE_MUMPS std::stringstream sstr_solver; sstr << id << ":solver_mass_matrix"; acc_solver = new SolverMumps(*mass_matrix, sstr_solver.str()); dof_synchronizer->initScatterGatherCommunicationScheme(); #else AKANTU_DEBUG_ERROR("You should at least activate one solver."); #endif //AKANTU_USE_MUMPS acc_solver->initialize(); tmp_mass->applyBoundary(*blocked_dofs); acc_solver->setRHS(*residual); acc_solver->solve(*acceleration); delete acc_solver; delete tmp_mass; AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::assembleStiffnessMatrix() { AKANTU_DEBUG_IN(); AKANTU_DEBUG_INFO("Assemble the new stiffness matrix."); stiffness_matrix->clear(); // call compute stiffness matrix on each local elements std::vector<Material *>::iterator mat_it; for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { (*mat_it)->assembleStiffnessMatrix(_not_ghost); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ SparseMatrix & SolidMechanicsModel::initVelocityDampingMatrix() { if(!velocity_damping_matrix) velocity_damping_matrix = new SparseMatrix(*jacobian_matrix, id + ":velocity_damping_matrix", memory_id); return *velocity_damping_matrix; } /* -------------------------------------------------------------------------- */ template<> bool SolidMechanicsModel::testConvergence<_scc_increment>(Real tolerance, Real & error){ AKANTU_DEBUG_IN(); UInt nb_nodes = displacement->getSize(); UInt nb_degree_of_freedom = displacement->getNbComponent(); error = 0; Real norm[2] = {0., 0.}; Real * increment_val = increment->storage(); bool * blocked_dofs_val = blocked_dofs->storage(); Real * displacement_val = displacement->storage(); for (UInt n = 0; n < nb_nodes; ++n) { bool is_local_node = mesh.isLocalOrMasterNode(n); for (UInt d = 0; d < nb_degree_of_freedom; ++d) { if(!(*blocked_dofs_val) && is_local_node) { norm[0] += *increment_val * *increment_val; norm[1] += *displacement_val * *displacement_val; } blocked_dofs_val++; increment_val++; displacement_val++; } } StaticCommunicator::getStaticCommunicator().allReduce(norm, 2, _so_sum); norm[0] = sqrt(norm[0]); norm[1] = sqrt(norm[1]); AKANTU_DEBUG_ASSERT(!Math::isnan(norm[0]), "Something goes wrong in the solve phase"); if (norm[1] < Math::getTolerance()) { error = norm[0]; AKANTU_DEBUG_OUT(); // cout<<"Error 1: "<<error<<endl; return error < tolerance; } AKANTU_DEBUG_OUT(); if(norm[1] > Math::getTolerance()) error = norm[0] / norm[1]; else error = norm[0]; //In case the total displacement is zero! // cout<<"Error 2: "<<error<<endl; return (error < tolerance); } /* -------------------------------------------------------------------------- */ template<> bool SolidMechanicsModel::testConvergence<_scc_residual>(Real tolerance, Real & norm) { AKANTU_DEBUG_IN(); UInt nb_nodes = residual->getSize(); norm = 0; Real * residual_val = residual->storage(); bool * blocked_dofs_val = blocked_dofs->storage(); for (UInt n = 0; n < nb_nodes; ++n) { bool is_local_node = mesh.isLocalOrMasterNode(n); if(is_local_node) { for (UInt d = 0; d < spatial_dimension; ++d) { if(!(*blocked_dofs_val)) { norm += *residual_val * *residual_val; } blocked_dofs_val++; residual_val++; } } else { blocked_dofs_val += spatial_dimension; residual_val += spatial_dimension; } } StaticCommunicator::getStaticCommunicator().allReduce(&norm, 1, _so_sum); norm = sqrt(norm); AKANTU_DEBUG_ASSERT(!Math::isnan(norm), "Something goes wrong in the solve phase"); AKANTU_DEBUG_OUT(); return (norm < tolerance); } /* -------------------------------------------------------------------------- */ template<> bool SolidMechanicsModel::testConvergence<_scc_residual_mass_wgh>(Real tolerance, Real & norm) { AKANTU_DEBUG_IN(); UInt nb_nodes = residual->getSize(); norm = 0; Real * residual_val = residual->storage(); Real * mass_val = this->mass->storage(); bool * blocked_dofs_val = blocked_dofs->storage(); for (UInt n = 0; n < nb_nodes; ++n) { bool is_local_node = mesh.isLocalOrMasterNode(n); if(is_local_node) { for (UInt d = 0; d < spatial_dimension; ++d) { if(!(*blocked_dofs_val)) { norm += *residual_val * *residual_val/(*mass_val * *mass_val); } blocked_dofs_val++; residual_val++; mass_val++; } } else { blocked_dofs_val += spatial_dimension; residual_val += spatial_dimension; mass_val += spatial_dimension; } } StaticCommunicator::getStaticCommunicator().allReduce(&norm, 1, _so_sum); norm = sqrt(norm); AKANTU_DEBUG_ASSERT(!Math::isnan(norm), "Something goes wrong in the solve phase"); AKANTU_DEBUG_OUT(); return (norm < tolerance); } /* -------------------------------------------------------------------------- */ bool SolidMechanicsModel::testConvergenceResidual(Real tolerance){ AKANTU_DEBUG_IN(); Real error=0; bool res = this->testConvergence<_scc_residual>(tolerance, error); AKANTU_DEBUG_OUT(); return res; } /* -------------------------------------------------------------------------- */ bool SolidMechanicsModel::testConvergenceResidual(Real tolerance, Real & error){ AKANTU_DEBUG_IN(); bool res = this->testConvergence<_scc_residual>(tolerance, error); AKANTU_DEBUG_OUT(); return res; } /* -------------------------------------------------------------------------- */ bool SolidMechanicsModel::testConvergenceIncrement(Real tolerance){ AKANTU_DEBUG_IN(); Real error=0; bool res = this->testConvergence<_scc_increment>(tolerance, error); AKANTU_DEBUG_OUT(); return res; } /* -------------------------------------------------------------------------- */ bool SolidMechanicsModel::testConvergenceIncrement(Real tolerance, Real & error){ AKANTU_DEBUG_IN(); bool res = this->testConvergence<_scc_increment>(tolerance, error); AKANTU_DEBUG_OUT(); return res; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::implicitPred() { AKANTU_DEBUG_IN(); if(previous_displacement) previous_displacement->copy(*displacement); if(method == _implicit_dynamic) integrator->integrationSchemePred(time_step, *displacement, *velocity, *acceleration, *blocked_dofs); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::implicitCorr() { AKANTU_DEBUG_IN(); if(method == _implicit_dynamic) { integrator->integrationSchemeCorrDispl(time_step, *displacement, *velocity, *acceleration, *blocked_dofs, *increment); } else { UInt nb_nodes = displacement->getSize(); UInt nb_degree_of_freedom = displacement->getNbComponent() * nb_nodes; Real * incr_val = increment->storage(); Real * disp_val = displacement->storage(); bool * boun_val = blocked_dofs->storage(); for (UInt j = 0; j < nb_degree_of_freedom; ++j, ++disp_val, ++incr_val, ++boun_val){ *incr_val *= (1. - *boun_val); *disp_val += *incr_val; } } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updateIncrement() { AKANTU_DEBUG_IN(); AKANTU_DEBUG_ASSERT(previous_displacement,"The previous displacement has to be initialized." << " Are you working with Finite or Ineslactic deformations?"); UInt nb_nodes = displacement->getSize(); UInt nb_degree_of_freedom = displacement->getNbComponent() * nb_nodes; Real * incr_val = increment->storage(); Real * disp_val = displacement->storage(); Real * prev_disp_val = previous_displacement->storage(); for (UInt j = 0; j < nb_degree_of_freedom; ++j, ++disp_val, ++incr_val, ++prev_disp_val) *incr_val = (*disp_val - *prev_disp_val); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updatePreviousDisplacement() { AKANTU_DEBUG_IN(); AKANTU_DEBUG_ASSERT(previous_displacement,"The previous displacement has to be initialized." << " Are you working with Finite or Ineslactic deformations?"); previous_displacement->copy(*displacement); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ /* Information */ /* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::synchronizeBoundaries() { AKANTU_DEBUG_IN(); AKANTU_DEBUG_ASSERT(synch_registry,"Synchronizer registry was not initialized." << " Did you call initParallel?"); synch_registry->synchronize(_gst_smm_boundary); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::synchronizeResidual() { AKANTU_DEBUG_IN(); AKANTU_DEBUG_ASSERT(synch_registry,"Synchronizer registry was not initialized." << " Did you call initPBC?"); synch_registry->synchronize(_gst_smm_res); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::setIncrementFlagOn() { AKANTU_DEBUG_IN(); if(!increment) { UInt nb_nodes = mesh.getNbNodes(); std::stringstream sstr_inc; sstr_inc << id << ":increment"; increment = &(alloc<Real>(sstr_inc.str(), nb_nodes, spatial_dimension, 0.)); } increment_flag = true; AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getStableTimeStep() { AKANTU_DEBUG_IN(); Real min_dt = getStableTimeStep(_not_ghost); /// reduction min over all processors StaticCommunicator::getStaticCommunicator().allReduce(&min_dt, 1, _so_min); AKANTU_DEBUG_OUT(); return min_dt; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getStableTimeStep(const GhostType & ghost_type) { AKANTU_DEBUG_IN(); Material ** mat_val = &(materials.at(0)); Real min_dt = std::numeric_limits<Real>::max(); updateCurrentPosition(); Element elem; elem.ghost_type = ghost_type; elem.kind = _ek_regular; Mesh::type_iterator it = mesh.firstType(spatial_dimension, ghost_type); Mesh::type_iterator end = mesh.lastType(spatial_dimension, ghost_type); for(; it != end; ++it) { elem.type = *it; UInt nb_nodes_per_element = mesh.getNbNodesPerElement(*it); UInt nb_element = mesh.getNbElement(*it); Array<UInt>::const_scalar_iterator mat_indexes = material_index(*it, ghost_type).begin(); Array<UInt>::const_scalar_iterator mat_loc_num = material_local_numbering(*it, ghost_type).begin(); Array<Real> X(0, nb_nodes_per_element*spatial_dimension); FEEngine::extractNodalToElementField(mesh, *current_position, X, *it, _not_ghost); Array<Real>::matrix_iterator X_el = X.begin(spatial_dimension, nb_nodes_per_element); for (UInt el = 0; el < nb_element; ++el, ++X_el, ++mat_indexes, ++mat_loc_num) { elem.element = *mat_loc_num; Real el_h = getFEEngine().getElementInradius(*X_el, *it); Real el_c = mat_val[*mat_indexes]->getCelerity(elem); Real el_dt = el_h / el_c; min_dt = std::min(min_dt, el_dt); } } AKANTU_DEBUG_OUT(); return min_dt; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getPotentialEnergy() { AKANTU_DEBUG_IN(); Real energy = 0.; /// call update residual on each local elements std::vector<Material *>::iterator mat_it; for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { energy += (*mat_it)->getPotentialEnergy(); } /// reduction sum over all processors StaticCommunicator::getStaticCommunicator().allReduce(&energy, 1, _so_sum); AKANTU_DEBUG_OUT(); return energy; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getKineticEnergy() { AKANTU_DEBUG_IN(); if (!mass && !mass_matrix) AKANTU_DEBUG_ERROR("No function called to assemble the mass matrix."); Real ekin = 0.; UInt nb_nodes = mesh.getNbNodes(); Real * vel_val = velocity->storage(); Real * mass_val = mass->storage(); for (UInt n = 0; n < nb_nodes; ++n) { Real mv2 = 0; bool is_local_node = mesh.isLocalOrMasterNode(n); bool is_not_pbc_slave_node = !isPBCSlaveNode(n); bool count_node = is_local_node && is_not_pbc_slave_node; for (UInt i = 0; i < spatial_dimension; ++i) { if (count_node) mv2 += *vel_val * *vel_val * *mass_val; vel_val++; mass_val++; } ekin += mv2; } StaticCommunicator::getStaticCommunicator().allReduce(&ekin, 1, _so_sum); AKANTU_DEBUG_OUT(); return ekin * .5; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getKineticEnergy(const ElementType & type, UInt index) { AKANTU_DEBUG_IN(); UInt nb_quadrature_points = getFEEngine().getNbQuadraturePoints(type); Array<Real> vel_on_quad(nb_quadrature_points, spatial_dimension); Array<UInt> filter_element(1, 1, index); getFEEngine().interpolateOnQuadraturePoints(*velocity, vel_on_quad, spatial_dimension, type, _not_ghost, filter_element); Array<Real>::vector_iterator vit = vel_on_quad.begin(spatial_dimension); Array<Real>::vector_iterator vend = vel_on_quad.end(spatial_dimension); Vector<Real> rho_v2(nb_quadrature_points); Real rho = materials[material_index(type)(index)]->getRho(); for (UInt q = 0; vit != vend; ++vit, ++q) { rho_v2(q) = rho * vit->dot(*vit); } AKANTU_DEBUG_OUT(); return .5*getFEEngine().integrate(rho_v2, type, index); } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getExternalWork() { AKANTU_DEBUG_IN(); Real * velo = velocity->storage(); Real * forc = force->storage(); Real * resi = residual->storage(); bool * boun = blocked_dofs->storage(); Real work = 0.; UInt nb_nodes = mesh.getNbNodes(); for (UInt n = 0; n < nb_nodes; ++n) { bool is_local_node = mesh.isLocalOrMasterNode(n); bool is_not_pbc_slave_node = !isPBCSlaveNode(n); bool count_node = is_local_node && is_not_pbc_slave_node; for (UInt i = 0; i < spatial_dimension; ++i) { if (count_node) { if(*boun) work -= *resi * *velo * time_step; else work += *forc * *velo * time_step; } ++velo; ++forc; ++resi; ++boun; } } StaticCommunicator::getStaticCommunicator().allReduce(&work, 1, _so_sum); AKANTU_DEBUG_OUT(); return work; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getEnergy(const std::string & energy_id) { AKANTU_DEBUG_IN(); if (energy_id == "kinetic") { return getKineticEnergy(); } else if (energy_id == "external work"){ return getExternalWork(); } Real energy = 0.; std::vector<Material *>::iterator mat_it; for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { energy += (*mat_it)->getEnergy(energy_id); } /// reduction sum over all processors StaticCommunicator::getStaticCommunicator().allReduce(&energy, 1, _so_sum); AKANTU_DEBUG_OUT(); return energy; } /* -------------------------------------------------------------------------- */ Real SolidMechanicsModel::getEnergy(const std::string & energy_id, const ElementType & type, UInt index){ AKANTU_DEBUG_IN(); if (energy_id == "kinetic") { return getKineticEnergy(type, index); } std::vector<Material *>::iterator mat_it; UInt mat_index = this->material_index(type, _not_ghost)(index); UInt mat_loc_num = this->material_local_numbering(type, _not_ghost)(index); Real energy = this->materials[mat_index]->getEnergy(energy_id, type, mat_loc_num); AKANTU_DEBUG_OUT(); return energy; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::onElementsAdded(const Array<Element> & element_list, const NewElementsEvent & event) { AKANTU_DEBUG_IN(); this->getFEEngine().initShapeFunctions(_not_ghost); this->getFEEngine().initShapeFunctions(_ghost); for(UInt g = _not_ghost; g <= _ghost; ++g) { GhostType gt = (GhostType) g; Mesh::type_iterator it = this->mesh.firstType(spatial_dimension, gt, _ek_not_defined); Mesh::type_iterator end = this->mesh.lastType(spatial_dimension, gt, _ek_not_defined); for(; it != end; ++it) { UInt nb_element = this->mesh.getNbElement(*it, gt); if(!material_index.exists(*it, gt)) { this->material_index .alloc(nb_element, 1, *it, gt); this->material_local_numbering.alloc(nb_element, 1, *it, gt); } else { this->material_index (*it, gt).resize(nb_element); this->material_local_numbering(*it, gt).resize(nb_element); } } } Array<Element>::const_iterator<Element> it = element_list.begin(); Array<Element>::const_iterator<Element> end = element_list.end(); ElementTypeMapArray<UInt> filter("new_element_filter", this->getID()); for (UInt el = 0; it != end; ++it, ++el) { const Element & elem = *it; if(!filter.exists(elem.type, elem.ghost_type)) filter.alloc(0, 1, elem.type, elem.ghost_type); filter(elem.type, elem.ghost_type).push_back(elem.element); } this->assignMaterialToElements(&filter); std::vector<Material *>::iterator mat_it; for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { (*mat_it)->onElementsAdded(element_list, event); } if(method == _explicit_lumped_mass) this->assembleMassLumped(); AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::onElementsRemoved(__attribute__((unused)) const Array<Element> & element_list, const ElementTypeMapArray<UInt> & new_numbering, const RemovedElementsEvent & event) { this->getFEEngine().initShapeFunctions(_not_ghost); this->getFEEngine().initShapeFunctions(_ghost); std::vector<Material *>::iterator mat_it; for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { (*mat_it)->onElementsRemoved(element_list, new_numbering, event); } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::onNodesAdded(const Array<UInt> & nodes_list, __attribute__((unused)) const NewNodesEvent & event) { AKANTU_DEBUG_IN(); UInt nb_nodes = mesh.getNbNodes(); if(displacement) displacement->resize(nb_nodes); if(mass ) mass ->resize(nb_nodes); if(velocity ) velocity ->resize(nb_nodes); if(acceleration) acceleration->resize(nb_nodes); if(force ) force ->resize(nb_nodes); if(residual ) residual ->resize(nb_nodes); if(blocked_dofs) blocked_dofs->resize(nb_nodes); if(previous_displacement) previous_displacement->resize(nb_nodes); if(increment_acceleration) increment_acceleration->resize(nb_nodes); if(increment) increment->resize(nb_nodes); if(current_position) current_position->resize(nb_nodes); delete dof_synchronizer; dof_synchronizer = new DOFSynchronizer(mesh, spatial_dimension); dof_synchronizer->initLocalDOFEquationNumbers(); dof_synchronizer->initGlobalDOFEquationNumbers(); std::vector<Material *>::iterator mat_it; for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { (*mat_it)->onNodesAdded(nodes_list, event); } if (method != _explicit_lumped_mass) { this->initSolver(); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::onNodesRemoved(__attribute__((unused)) const Array<UInt> & element_list, const Array<UInt> & new_numbering, __attribute__((unused)) const RemovedNodesEvent & event) { if(displacement) mesh.removeNodesFromArray(*displacement, new_numbering); if(mass ) mesh.removeNodesFromArray(*mass , new_numbering); if(velocity ) mesh.removeNodesFromArray(*velocity , new_numbering); if(acceleration) mesh.removeNodesFromArray(*acceleration, new_numbering); if(force ) mesh.removeNodesFromArray(*force , new_numbering); if(residual ) mesh.removeNodesFromArray(*residual , new_numbering); if(blocked_dofs) mesh.removeNodesFromArray(*blocked_dofs, new_numbering); if(increment_acceleration) mesh.removeNodesFromArray(*increment_acceleration, new_numbering); if(increment) mesh.removeNodesFromArray(*increment , new_numbering); delete dof_synchronizer; dof_synchronizer = new DOFSynchronizer(mesh, spatial_dimension); dof_synchronizer->initLocalDOFEquationNumbers(); dof_synchronizer->initGlobalDOFEquationNumbers(); if (method != _explicit_lumped_mass) { this->initSolver(); } } /* -------------------------------------------------------------------------- */ bool SolidMechanicsModel::isInternal(const std::string & field_name, const ElementKind & element_kind){ bool is_internal = false; /// check if at least one material contains field_id as an internal for (UInt m = 0; m < materials.size() && !is_internal; ++m) { is_internal |= materials[m]->isInternal(field_name, element_kind); } return is_internal; } /* -------------------------------------------------------------------------- */ ElementTypeMap<UInt> SolidMechanicsModel::getInternalDataPerElem(const std::string & field_name, const ElementKind & element_kind){ if (!(this->isInternal(field_name,element_kind))) AKANTU_EXCEPTION("unknown internal " << field_name); for (UInt m = 0; m < materials.size() ; ++m) { if (materials[m]->isInternal(field_name, element_kind)) return materials[m]->getInternalDataPerElem(field_name,element_kind); } return ElementTypeMap<UInt>(); } /* -------------------------------------------------------------------------- */ ElementTypeMapArray<Real> & SolidMechanicsModel::flattenInternal(const std::string & field_name, const ElementKind & kind, const GhostType ghost_type){ std::pair<std::string,ElementKind> key(field_name,kind); if (this->registered_internals.count(key) == 0){ this->registered_internals[key] = new ElementTypeMapArray<Real>(field_name,this->id); } ElementTypeMapArray<Real> * internal_flat = this->registered_internals[key]; for (UInt m = 0; m < materials.size(); ++m) materials[m]->flattenInternal(field_name,*internal_flat,ghost_type,kind); return *internal_flat; } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::flattenAllRegisteredInternals(const ElementKind & kind){ std::map<std::pair<std::string,ElementKind>,ElementTypeMapArray<Real> *> ::iterator it = this->registered_internals.begin(); std::map<std::pair<std::string,ElementKind>,ElementTypeMapArray<Real> *>::iterator end = this->registered_internals.end(); while (it != end){ if (kind == it->first.second) this->flattenInternal(it->first.first,kind); ++it; } } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::onDump(){ this->flattenAllRegisteredInternals(_ek_regular); } /* -------------------------------------------------------------------------- */ #ifdef AKANTU_USE_IOHELPER dumper::Field * SolidMechanicsModel ::createElementalField(const std::string & field_name, const std::string & group_name, bool padding_flag, const ElementKind & kind){ dumper::Field * field = NULL; if(field_name == "partitions") field = mesh.createElementalField<UInt, dumper::ElementPartitionField>(mesh.getConnectivities(),group_name,this->spatial_dimension,kind); else if(field_name == "material_index") field = mesh.createElementalField<UInt, Vector, dumper::ElementalField >(material_index,group_name,this->spatial_dimension,kind); else { + // this copy of field_name is used to compute derivated data such as + // strain and von mises stress that are based on grad_u and stress + std::string field_name_copy(field_name); - bool is_internal = this->isInternal(field_name,kind); + if (field_name == "strain") + field_name_copy = "grad_u"; + else if (field_name == "Von Mises stress") + field_name_copy = "stress"; + + bool is_internal = this->isInternal(field_name_copy,kind); if (is_internal) { - ElementTypeMap<UInt> nb_data_per_elem = this->getInternalDataPerElem(field_name,kind); - ElementTypeMapArray<Real> & internal_flat = this->flattenInternal(field_name,kind); + ElementTypeMap<UInt> nb_data_per_elem = this->getInternalDataPerElem(field_name_copy,kind); + ElementTypeMapArray<Real> & internal_flat = this->flattenInternal(field_name_copy,kind); field = mesh.createElementalField<Real, dumper::InternalMaterialField>(internal_flat, group_name, this->spatial_dimension,kind,nb_data_per_elem); + if (field_name == "strain"){ + dumper::ComputeStrain * foo = new dumper::ComputeStrain(*this); + field = dumper::FieldComputeProxy::createFieldCompute(field,*foo); + } else if (field_name == "Von Mises stress") { + dumper::ComputeVonMisesStress * foo = new dumper::ComputeVonMisesStress(*this); + field = dumper::FieldComputeProxy::createFieldCompute(field,*foo); + } //treat the paddings if (padding_flag){ if (field_name == "stress"){ if (this->spatial_dimension == 2) { dumper::StressPadder<2> * foo = new dumper::StressPadder<2>(*this); field = dumper::FieldComputeProxy::createFieldCompute(field,*foo); } + } else if (field_name == "strain"){ + if (this->spatial_dimension == 2) { + dumper::StrainPadder<2> * foo = new dumper::StrainPadder<2>(*this); + field = dumper::FieldComputeProxy::createFieldCompute(field,*foo); + } } - // else if (field_name == "strain"){ - // if (this->spatial_dimension == 2) { - // dumper::StrainPadder<2> * foo = new dumper::StrainPadder<2>(*this); - // field = dumper::FieldComputeProxy::createFieldCompute(field,*foo); - // } - // } } // homogenize the field dumper::ComputeFunctorInterface * foo = dumper::HomogenizerProxy::createHomogenizer(*field); field = dumper::FieldComputeProxy::createFieldCompute(field,*foo); } } return field; } /* -------------------------------------------------------------------------- */ dumper::Field * SolidMechanicsModel::createNodalFieldReal(const std::string & field_name, const std::string & group_name, bool padding_flag) { std::map<std::string,Array<Real>* > real_nodal_fields; real_nodal_fields["displacement" ] = displacement; real_nodal_fields["mass" ] = mass; real_nodal_fields["velocity" ] = velocity; real_nodal_fields["acceleration" ] = acceleration; real_nodal_fields["force" ] = force; real_nodal_fields["residual" ] = residual; real_nodal_fields["increment" ] = increment; dumper::Field * field = NULL; if (padding_flag) field = mesh.createNodalField(real_nodal_fields[field_name],group_name, 3); else field = mesh.createNodalField(real_nodal_fields[field_name],group_name); return field; } /* -------------------------------------------------------------------------- */ dumper::Field * SolidMechanicsModel::createNodalFieldBool(const std::string & field_name, const std::string & group_name, bool padding_flag) { std::map<std::string,Array<bool>* > uint_nodal_fields; uint_nodal_fields["blocked_dofs" ] = blocked_dofs; dumper::Field * field = NULL; field = mesh.createNodalField(uint_nodal_fields[field_name],group_name); return field; } /* -------------------------------------------------------------------------- */ #else /* -------------------------------------------------------------------------- */ dumper::Field * SolidMechanicsModel ::createElementalField(const std::string & field_name, const std::string & group_name, bool padding_flag, const ElementKind & kind){ return NULL; } /* -------------------------------------------------------------------------- */ dumper::Field * SolidMechanicsModel::createNodalFieldReal(const std::string & field_name, const std::string & group_name, bool padding_flag) { return NULL; } /* -------------------------------------------------------------------------- */ dumper::Field * SolidMechanicsModel::createNodalFieldBool(const std::string & field_name, const std::string & group_name, bool padding_flag) { return NULL; } #endif /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::dump(const std::string & dumper_name) { this->onDump(); EventManager::sendEvent(SolidMechanicsModelEvent::BeforeDumpEvent()); synch_registry->synchronize(_gst_for_dump); mesh.dump(dumper_name); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::dump(const std::string & dumper_name, UInt step) { this->onDump(); EventManager::sendEvent(SolidMechanicsModelEvent::BeforeDumpEvent()); synch_registry->synchronize(_gst_for_dump); mesh.dump(dumper_name, step); } /* ------------------------------------------------------------------------- */ void SolidMechanicsModel::dump(const std::string & dumper_name, Real time, UInt step) { this->onDump(); EventManager::sendEvent(SolidMechanicsModelEvent::BeforeDumpEvent()); synch_registry->synchronize(_gst_for_dump); mesh.dump(dumper_name, time, step); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::dump() { this->onDump(); EventManager::sendEvent(SolidMechanicsModelEvent::BeforeDumpEvent()); mesh.dump(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::dump(UInt step) { this->onDump(); EventManager::sendEvent(SolidMechanicsModelEvent::BeforeDumpEvent()); mesh.dump(step); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::dump(Real time, UInt step) { this->onDump(); EventManager::sendEvent(SolidMechanicsModelEvent::BeforeDumpEvent()); mesh.dump(time, step); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::computeCauchyStresses() { AKANTU_DEBUG_IN(); // call compute stiffness matrix on each local elements std::vector<Material *>::iterator mat_it; for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { Material & mat = **mat_it; if(mat.isFiniteDeformation()) mat.computeAllCauchyStresses(_not_ghost); } AKANTU_DEBUG_OUT(); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::saveStressAndStrainBeforeDamage() { EventManager::sendEvent(SolidMechanicsModelEvent::BeginningOfDamageIterationEvent()); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::updateEnergiesAfterDamage() { EventManager::sendEvent(SolidMechanicsModelEvent::AfterDamageEvent()); } /* -------------------------------------------------------------------------- */ void SolidMechanicsModel::printself(std::ostream & stream, int indent) const { std::string space; for(Int i = 0; i < indent; i++, space += AKANTU_INDENT); stream << space << "Solid Mechanics Model [" << std::endl; stream << space << " + id : " << id << std::endl; stream << space << " + spatial dimension : " << spatial_dimension << std::endl; stream << space << " + fem [" << std::endl; getFEEngine().printself(stream, indent + 2); stream << space << AKANTU_INDENT << "]" << std::endl; stream << space << " + nodals information [" << std::endl; displacement->printself(stream, indent + 2); mass ->printself(stream, indent + 2); velocity ->printself(stream, indent + 2); acceleration->printself(stream, indent + 2); force ->printself(stream, indent + 2); residual ->printself(stream, indent + 2); blocked_dofs->printself(stream, indent + 2); stream << space << AKANTU_INDENT << "]" << std::endl; stream << space << " + material information [" << std::endl; material_index.printself(stream, indent + 2); stream << space << AKANTU_INDENT << "]" << std::endl; stream << space << " + materials [" << std::endl; std::vector<Material *>::const_iterator mat_it; for(mat_it = materials.begin(); mat_it != materials.end(); ++mat_it) { const Material & mat = *(*mat_it); mat.printself(stream, indent + 1); } stream << space << AKANTU_INDENT << "]" << std::endl; stream << space << "]" << std::endl; } /* -------------------------------------------------------------------------- */ __END_AKANTU__