diff --git a/src/model/solid_mechanics/solid_mechanics_model.cc b/src/model/solid_mechanics/solid_mechanics_model.cc
index 1d72196b9..75bfbc25f 100644
--- a/src/model/solid_mechanics/solid_mechanics_model.cc
+++ b/src/model/solid_mechanics/solid_mechanics_model.cc
@@ -1,1199 +1,1203 @@
 /**
  * @file   solid_mechanics_model.cc
  *
  * @author Ramin Aghababaei <ramin.aghababaei@epfl.ch>
  * @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
  * @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
  * @author David Simon Kammer <david.kammer@epfl.ch>
  * @author Daniel Pino Muñoz <daniel.pinomunoz@epfl.ch>
  * @author Nicolas Richart <nicolas.richart@epfl.ch>
  * @author Clement Roux <clement.roux@epfl.ch>
  * @author Marco Vocialta <marco.vocialta@epfl.ch>
  *
  * @date creation: Tue Jul 27 2010
  * @date last modification: Wed Feb 21 2018
  *
  * @brief  Implementation of the SolidMechanicsModel class
  *
  * @section LICENSE
  *
  * Copyright (©)  2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
  * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
  *
  * Akantu is free  software: you can redistribute it and/or  modify it under the
  * terms  of the  GNU Lesser  General Public  License as published by  the Free
  * Software Foundation, either version 3 of the License, or (at your option) any
  * later version.
  *
  * Akantu is  distributed in the  hope that it  will be useful, but  WITHOUT ANY
  * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
  * A PARTICULAR PURPOSE. See  the GNU  Lesser General  Public License  for more
  * details.
  *
  * You should  have received  a copy  of the GNU  Lesser General  Public License
  * along with Akantu. If not, see <http://www.gnu.org/licenses/>.
  *
  */
 
 /* -------------------------------------------------------------------------- */
 #include "solid_mechanics_model.hh"
 #include "integrator_gauss.hh"
 #include "shape_lagrange.hh"
 #include "solid_mechanics_model_tmpl.hh"
 
 #include "communicator.hh"
 #include "element_synchronizer.hh"
 #include "sparse_matrix.hh"
 #include "synchronizer_registry.hh"
 
 #include "dumpable_inline_impl.hh"
 #ifdef AKANTU_USE_IOHELPER
 #include "dumper_iohelper_paraview.hh"
 #endif
 
 #include "material_non_local.hh"
 /* -------------------------------------------------------------------------- */
 
 namespace akantu {
 
 /* -------------------------------------------------------------------------- */
 /**
  * A solid mechanics model need a mesh  and a dimension to be created. the model
  * by it  self can not  do a lot,  the good init  functions should be  called in
  * order to configure the model depending on what we want to do.
  *
  * @param  mesh mesh  representing  the model  we  want to  simulate
  * @param dim spatial  dimension of the problem, if dim =  0 (default value) the
  * dimension of the problem is assumed to be the on of the mesh
  * @param id an id to identify the model
  */
 SolidMechanicsModel::SolidMechanicsModel(Mesh & mesh, UInt dim, const ID & id,
                                          const MemoryID & memory_id,
                                          const ModelType model_type)
     : Model(mesh, model_type, dim, id, memory_id),
       material_index("material index", id, memory_id),
       material_local_numbering("material local numbering", id, memory_id) {
   AKANTU_DEBUG_IN();
 
   this->registerFEEngineObject<MyFEEngineType>("SolidMechanicsFEEngine", mesh,
                                                Model::spatial_dimension);
 
 #if defined(AKANTU_USE_IOHELPER)
   this->mesh.registerDumper<DumperParaview>("solid_mechanics_model", id, true);
   this->mesh.addDumpMesh(mesh, Model::spatial_dimension, _not_ghost,
                          _ek_regular);
 #endif
 
   material_selector = std::make_shared<DefaultMaterialSelector>(material_index),
 
   this->initDOFManager();
 
   this->registerDataAccessor(*this);
 
   if (this->mesh.isDistributed()) {
     auto & synchronizer = this->mesh.getElementSynchronizer();
     this->registerSynchronizer(synchronizer, SynchronizationTag::_material_id);
     this->registerSynchronizer(synchronizer, SynchronizationTag::_smm_mass);
     this->registerSynchronizer(synchronizer, SynchronizationTag::_smm_stress);
     this->registerSynchronizer(synchronizer, SynchronizationTag::_for_dump);
   }
 
   AKANTU_DEBUG_OUT();
 }
 
 /* -------------------------------------------------------------------------- */
 SolidMechanicsModel::~SolidMechanicsModel() = default;
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::setTimeStep(Real time_step, const ID & solver_id) {
   Model::setTimeStep(time_step, solver_id);
 
 #if defined(AKANTU_USE_IOHELPER)
   this->mesh.getDumper().setTimeStep(time_step);
 #endif
 }
 
 /* -------------------------------------------------------------------------- */
 /* Initialization                                                             */
 /* -------------------------------------------------------------------------- */
 /**
  * This function groups  many of the initialization in on  function. For most of
  * basics  case the  function should  be  enough. The  functions initialize  the
  * model, the internal  vectors, set them to 0, and  depending on the parameters
  * it also initialize the explicit or implicit solver.
  *
  * @param material_file the  file containing the materials to  use
  * @param method the analysis method wanted.  See the akantu::AnalysisMethod for
  * the different possibilities
  */
 void SolidMechanicsModel::initFullImpl(const ModelOptions & options) {
   material_index.initialize(mesh, _element_kind = _ek_not_defined,
                             _default_value = UInt(-1), _with_nb_element = true);
   material_local_numbering.initialize(mesh, _element_kind = _ek_not_defined,
                                       _with_nb_element = true);
 
   Model::initFullImpl(options);
 
   // initialize the materials
   if (this->parser.getLastParsedFile() != "") {
     this->instantiateMaterials();
   }
 
   this->initMaterials();
 
   this->initBC(*this, *displacement, *displacement_increment, *external_force);
 }
 
 /* -------------------------------------------------------------------------- */
 TimeStepSolverType SolidMechanicsModel::getDefaultSolverType() const {
   return TimeStepSolverType::_dynamic_lumped;
 }
 
 /* -------------------------------------------------------------------------- */
 ModelSolverOptions SolidMechanicsModel::getDefaultSolverOptions(
     const TimeStepSolverType & type) const {
   ModelSolverOptions options;
 
   switch (type) {
   case TimeStepSolverType::_dynamic_lumped: {
     options.non_linear_solver_type = NonLinearSolverType::_lumped;
     options.integration_scheme_type["displacement"] =
         IntegrationSchemeType::_central_difference;
     options.solution_type["displacement"] = IntegrationScheme::_acceleration;
     break;
   }
   case TimeStepSolverType::_static: {
     options.non_linear_solver_type = NonLinearSolverType::_newton_raphson;
     options.integration_scheme_type["displacement"] =
         IntegrationSchemeType::_pseudo_time;
     options.solution_type["displacement"] = IntegrationScheme::_not_defined;
     break;
   }
   case TimeStepSolverType::_dynamic: {
     if (this->method == _explicit_consistent_mass) {
       options.non_linear_solver_type = NonLinearSolverType::_newton_raphson;
       options.integration_scheme_type["displacement"] =
           IntegrationSchemeType::_central_difference;
       options.solution_type["displacement"] = IntegrationScheme::_acceleration;
     } else {
       options.non_linear_solver_type = NonLinearSolverType::_newton_raphson;
       options.integration_scheme_type["displacement"] =
           IntegrationSchemeType::_trapezoidal_rule_2;
       options.solution_type["displacement"] = IntegrationScheme::_displacement;
     }
     break;
   }
   default:
     AKANTU_EXCEPTION(type << " is not a valid time step solver type");
   }
 
   return options;
 }
 
 /* -------------------------------------------------------------------------- */
 std::tuple<ID, TimeStepSolverType>
 SolidMechanicsModel::getDefaultSolverID(const AnalysisMethod & method) {
   switch (method) {
   case _explicit_lumped_mass: {
     return std::make_tuple("explicit_lumped",
                            TimeStepSolverType::_dynamic_lumped);
   }
   case _explicit_consistent_mass: {
     return std::make_tuple("explicit", TimeStepSolverType::_dynamic);
   }
   case _static: {
     return std::make_tuple("static", TimeStepSolverType::_static);
   }
   case _implicit_dynamic: {
     return std::make_tuple("implicit", TimeStepSolverType::_dynamic);
   }
   default:
     return std::make_tuple("unknown", TimeStepSolverType::_not_defined);
   }
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::initSolver(TimeStepSolverType time_step_solver_type,
                                      NonLinearSolverType) {
   auto & dof_manager = this->getDOFManager();
 
   /* ------------------------------------------------------------------------ */
   // for alloc type of solvers
   this->allocNodalField(this->displacement, spatial_dimension, "displacement");
   this->allocNodalField(this->previous_displacement, spatial_dimension,
                         "previous_displacement");
   this->allocNodalField(this->displacement_increment, spatial_dimension,
                         "displacement_increment");
   this->allocNodalField(this->internal_force, spatial_dimension,
                         "internal_force");
   this->allocNodalField(this->external_force, spatial_dimension,
                         "external_force");
   this->allocNodalField(this->blocked_dofs, spatial_dimension, "blocked_dofs");
   this->allocNodalField(this->current_position, spatial_dimension,
                         "current_position");
 
   // initialize the current positions
   this->current_position->copy(this->mesh.getNodes());
 
   /* ------------------------------------------------------------------------ */
   if (!dof_manager.hasDOFs("displacement")) {
     dof_manager.registerDOFs("displacement", *this->displacement, _dst_nodal);
     dof_manager.registerBlockedDOFs("displacement", *this->blocked_dofs);
     dof_manager.registerDOFsIncrement("displacement",
                                       *this->displacement_increment);
     dof_manager.registerDOFsPrevious("displacement",
                                      *this->previous_displacement);
   }
 
   /* ------------------------------------------------------------------------ */
   // for dynamic
   if (time_step_solver_type == TimeStepSolverType::_dynamic ||
       time_step_solver_type == TimeStepSolverType::_dynamic_lumped) {
     this->allocNodalField(this->velocity, spatial_dimension, "velocity");
     this->allocNodalField(this->acceleration, spatial_dimension,
                           "acceleration");
 
     if (!dof_manager.hasDOFsDerivatives("displacement", 1)) {
       dof_manager.registerDOFsDerivative("displacement", 1, *this->velocity);
       dof_manager.registerDOFsDerivative("displacement", 2,
                                          *this->acceleration);
     }
   }
 }
 
 /* -------------------------------------------------------------------------- */
 /**
  * Initialize the model,basically it  pre-compute the shapes, shapes derivatives
  * and jacobian
  */
 void SolidMechanicsModel::initModel() {
   /// \todo add  the current position  as a parameter to  initShapeFunctions for
   /// large deformation
   getFEEngine().initShapeFunctions(_not_ghost);
   getFEEngine().initShapeFunctions(_ghost);
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::assembleResidual() {
   AKANTU_DEBUG_IN();
 
   /* ------------------------------------------------------------------------ */
   // computes the internal forces
   this->assembleInternalForces();
 
   /* ------------------------------------------------------------------------ */
   this->getDOFManager().assembleToResidual("displacement",
                                            *this->external_force, 1);
   this->getDOFManager().assembleToResidual("displacement",
                                            *this->internal_force, 1);
 
   AKANTU_DEBUG_OUT();
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::assembleResidual(const ID & residual_part) {
   AKANTU_DEBUG_IN();
 
   if ("external" == residual_part) {
     this->getDOFManager().assembleToResidual("displacement",
                                              *this->external_force, 1);
     AKANTU_DEBUG_OUT();
     return;
   }
 
   if ("internal" == residual_part) {
     this->getDOFManager().assembleToResidual("displacement",
                                              *this->internal_force, 1);
     AKANTU_DEBUG_OUT();
     return;
   }
 
   AKANTU_CUSTOM_EXCEPTION(
       debug::SolverCallbackResidualPartUnknown(residual_part));
 
   AKANTU_DEBUG_OUT();
 }
 
 /* -------------------------------------------------------------------------- */
 MatrixType SolidMechanicsModel::getMatrixType(const ID & matrix_id) {
   // \TODO check the materials to know what is the correct answer
   if (matrix_id == "C")
     return _mt_not_defined;
 
   if (matrix_id == "K") {
     auto matrix_type = _unsymmetric;
 
     for (auto & material : materials) {
       matrix_type = std::max(matrix_type, material->getMatrixType(matrix_id));
     }
   }
   return _symmetric;
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::assembleMatrix(const ID & matrix_id) {
   if (matrix_id == "K") {
     this->assembleStiffnessMatrix();
   } else if (matrix_id == "M") {
     this->assembleMass();
   }
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::assembleLumpedMatrix(const ID & matrix_id) {
   if (matrix_id == "M") {
     this->assembleMassLumped();
   }
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::beforeSolveStep() {
   for (auto & material : materials)
     material->beforeSolveStep();
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::afterSolveStep(bool converged) {
   for (auto & material : materials)
     material->afterSolveStep(converged);
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::predictor() { ++displacement_release; }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::corrector() { ++displacement_release; }
 
 /* -------------------------------------------------------------------------- */
 /**
  * This function computes the internal forces as F_{int} = \int_{\Omega} N
  * \sigma d\Omega@f$
  */
 void SolidMechanicsModel::assembleInternalForces() {
   AKANTU_DEBUG_IN();
 
   AKANTU_DEBUG_INFO("Assemble the internal forces");
 
   this->internal_force->clear();
 
   // compute the stresses of local elements
   AKANTU_DEBUG_INFO("Compute local stresses");
   for (auto & material : materials) {
     material->computeAllStresses(_not_ghost);
   }
 
   /* ------------------------------------------------------------------------ */
   /* Computation of the non local part */
   if (this->non_local_manager)
     this->non_local_manager->computeAllNonLocalStresses();
 
   // communicate the stresses
   AKANTU_DEBUG_INFO("Send data for residual assembly");
   this->asynchronousSynchronize(SynchronizationTag::_smm_stress);
 
   // assemble the forces due to local stresses
   AKANTU_DEBUG_INFO("Assemble residual for local elements");
   for (auto & material : materials) {
     material->assembleInternalForces(_not_ghost);
   }
 
   // finalize communications
   AKANTU_DEBUG_INFO("Wait distant stresses");
   this->waitEndSynchronize(SynchronizationTag::_smm_stress);
 
   // assemble the stresses due to ghost elements
   AKANTU_DEBUG_INFO("Assemble residual for ghost elements");
   for (auto & material : materials) {
     material->assembleInternalForces(_ghost);
   }
 
   AKANTU_DEBUG_OUT();
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::assembleStiffnessMatrix() {
   AKANTU_DEBUG_IN();
 
   AKANTU_DEBUG_INFO("Assemble the new stiffness matrix.");
 
   // Check if materials need to recompute the matrix
   bool need_to_reassemble = false;
 
   for (auto & material : materials) {
     need_to_reassemble |= material->hasMatrixChanged("K");
   }
 
   if (need_to_reassemble) {
     this->getDOFManager().getMatrix("K").clear();
 
     // call compute stiffness matrix on each local elements
     for (auto & material : materials) {
       material->assembleStiffnessMatrix(_not_ghost);
     }
   }
 
   AKANTU_DEBUG_OUT();
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::updateCurrentPosition() {
   if (this->current_position_release == this->displacement_release)
     return;
 
   this->current_position->copy(this->mesh.getNodes());
 
   auto cpos_it = this->current_position->begin(Model::spatial_dimension);
   auto cpos_end = this->current_position->end(Model::spatial_dimension);
   auto disp_it = this->displacement->begin(Model::spatial_dimension);
 
   for (; cpos_it != cpos_end; ++cpos_it, ++disp_it) {
     *cpos_it += *disp_it;
   }
 
   this->current_position_release = this->displacement_release;
 }
 
 /* -------------------------------------------------------------------------- */
 const Array<Real> & SolidMechanicsModel::getCurrentPosition() {
   this->updateCurrentPosition();
   return *this->current_position;
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::updateDataForNonLocalCriterion(
     ElementTypeMapReal & criterion) {
   const ID field_name = criterion.getName();
   for (auto & material : materials) {
     if (!material->isInternal<Real>(field_name, _ek_regular))
       continue;
 
     for (auto ghost_type : ghost_types) {
       material->flattenInternal(field_name, criterion, ghost_type, _ek_regular);
     }
   }
 }
 
 /* -------------------------------------------------------------------------- */
 /* Information                                                                */
 /* -------------------------------------------------------------------------- */
 Real SolidMechanicsModel::getStableTimeStep() {
   AKANTU_DEBUG_IN();
 
   Real min_dt = getStableTimeStep(_not_ghost);
 
   /// reduction min over all processors
   mesh.getCommunicator().allReduce(min_dt, SynchronizerOperation::_min);
 
   AKANTU_DEBUG_OUT();
   return min_dt;
 }
 
 /* -------------------------------------------------------------------------- */
 Real SolidMechanicsModel::getStableTimeStep(const GhostType & ghost_type) {
   AKANTU_DEBUG_IN();
 
   Real min_dt = std::numeric_limits<Real>::max();
 
   this->updateCurrentPosition();
 
   Element elem;
   elem.ghost_type = ghost_type;
 
   for (auto type :
        mesh.elementTypes(Model::spatial_dimension, ghost_type, _ek_regular)) {
     elem.type = type;
     UInt nb_nodes_per_element = mesh.getNbNodesPerElement(type);
     UInt nb_element = mesh.getNbElement(type);
 
     auto mat_indexes = material_index(type, ghost_type).begin();
     auto mat_loc_num = material_local_numbering(type, ghost_type).begin();
 
     Array<Real> X(0, nb_nodes_per_element * Model::spatial_dimension);
     FEEngine::extractNodalToElementField(mesh, *current_position, X, type,
                                          _not_ghost);
 
     auto X_el = X.begin(Model::spatial_dimension, nb_nodes_per_element);
 
     for (UInt el = 0; el < nb_element;
          ++el, ++X_el, ++mat_indexes, ++mat_loc_num) {
       elem.element = *mat_loc_num;
       Real el_h = getFEEngine().getElementInradius(*X_el, type);
       Real el_c = this->materials[*mat_indexes]->getCelerity(elem);
       Real el_dt = el_h / el_c;
 
       min_dt = std::min(min_dt, el_dt);
     }
   }
 
   AKANTU_DEBUG_OUT();
   return min_dt;
 }
 
 /* -------------------------------------------------------------------------- */
 Real SolidMechanicsModel::getKineticEnergy() {
   AKANTU_DEBUG_IN();
 
   Real ekin = 0.;
   UInt nb_nodes = mesh.getNbNodes();
 
   if (this->getDOFManager().hasLumpedMatrix("M")) {
     auto m_it = this->mass->begin(Model::spatial_dimension);
     auto m_end = this->mass->end(Model::spatial_dimension);
     auto v_it = this->velocity->begin(Model::spatial_dimension);
 
     for (UInt n = 0; m_it != m_end; ++n, ++m_it, ++v_it) {
       const auto & v = *v_it;
       const auto & m = *m_it;
 
       Real mv2 = 0.;
       auto is_local_node = mesh.isLocalOrMasterNode(n);
       // bool is_not_pbc_slave_node = !isPBCSlaveNode(n);
       auto count_node = is_local_node; // && is_not_pbc_slave_node;
       if (count_node) {
         for (UInt i = 0; i < Model::spatial_dimension; ++i) {
           if (m(i) > std::numeric_limits<Real>::epsilon())
             mv2 += v(i) * v(i) * m(i);
         }
       }
 
       ekin += mv2;
     }
   } else if (this->getDOFManager().hasMatrix("M")) {
     Array<Real> Mv(nb_nodes, Model::spatial_dimension);
     this->getDOFManager().assembleMatMulVectToArray("displacement", "M",
                                                     *this->velocity, Mv);
 
     for (auto && data : zip(arange(nb_nodes), make_view(Mv, spatial_dimension),
                             make_view(*this->velocity, spatial_dimension))) {
       ekin += std::get<2>(data).dot(std::get<1>(data)) *
               mesh.isLocalOrMasterNode(std::get<0>(data));
     }
   } else {
     AKANTU_ERROR("No function called to assemble the mass matrix.");
   }
 
   mesh.getCommunicator().allReduce(ekin, SynchronizerOperation::_sum);
 
   AKANTU_DEBUG_OUT();
   return ekin * .5;
 }
 
 /* -------------------------------------------------------------------------- */
 Real SolidMechanicsModel::getKineticEnergy(const ElementType & type,
                                            UInt index) {
   AKANTU_DEBUG_IN();
 
   UInt nb_quadrature_points = getFEEngine().getNbIntegrationPoints(type);
 
   Array<Real> vel_on_quad(nb_quadrature_points, Model::spatial_dimension);
   Array<UInt> filter_element(1, 1, index);
 
   getFEEngine().interpolateOnIntegrationPoints(*velocity, vel_on_quad,
                                                Model::spatial_dimension, type,
                                                _not_ghost, filter_element);
 
   auto vit = vel_on_quad.begin(Model::spatial_dimension);
   auto vend = vel_on_quad.end(Model::spatial_dimension);
 
   Vector<Real> rho_v2(nb_quadrature_points);
 
   Real rho = materials[material_index(type)(index)]->getRho();
 
   for (UInt q = 0; vit != vend; ++vit, ++q) {
     rho_v2(q) = rho * vit->dot(*vit);
   }
 
   AKANTU_DEBUG_OUT();
 
   return .5 * getFEEngine().integrate(rho_v2, type, index);
 }
 
 /* -------------------------------------------------------------------------- */
 Real SolidMechanicsModel::getExternalWork() {
   AKANTU_DEBUG_IN();
 
   auto ext_force_it = external_force->begin(Model::spatial_dimension);
   auto int_force_it = internal_force->begin(Model::spatial_dimension);
   auto boun_it = blocked_dofs->begin(Model::spatial_dimension);
 
   decltype(ext_force_it) incr_or_velo_it;
   if (this->method == _static) {
     incr_or_velo_it =
         this->displacement_increment->begin(Model::spatial_dimension);
   } else {
     incr_or_velo_it = this->velocity->begin(Model::spatial_dimension);
   }
 
   Real work = 0.;
 
   UInt nb_nodes = this->mesh.getNbNodes();
 
   for (UInt n = 0; n < nb_nodes;
        ++n, ++ext_force_it, ++int_force_it, ++boun_it, ++incr_or_velo_it) {
     const auto & int_force = *int_force_it;
     const auto & ext_force = *ext_force_it;
     const auto & boun = *boun_it;
     const auto & incr_or_velo = *incr_or_velo_it;
 
     bool is_local_node = this->mesh.isLocalOrMasterNode(n);
     // bool is_not_pbc_slave_node = !this->isPBCSlaveNode(n);
     bool count_node = is_local_node; // && is_not_pbc_slave_node;
 
     if (count_node) {
       for (UInt i = 0; i < Model::spatial_dimension; ++i) {
         if (boun(i))
           work -= int_force(i) * incr_or_velo(i);
         else
           work += ext_force(i) * incr_or_velo(i);
       }
     }
   }
 
   mesh.getCommunicator().allReduce(work, SynchronizerOperation::_sum);
 
   if (this->method != _static)
     work *= this->getTimeStep();
 
   AKANTU_DEBUG_OUT();
   return work;
 }
 
 /* -------------------------------------------------------------------------- */
 Real SolidMechanicsModel::getEnergy(const std::string & energy_id) {
   AKANTU_DEBUG_IN();
 
   if (energy_id == "kinetic") {
     return getKineticEnergy();
   } else if (energy_id == "external work") {
     return getExternalWork();
   }
 
   Real energy = 0.;
   for (auto & material : materials)
     energy += material->getEnergy(energy_id);
 
   /// reduction sum over all processors
   mesh.getCommunicator().allReduce(energy, SynchronizerOperation::_sum);
 
   AKANTU_DEBUG_OUT();
   return energy;
 }
 /* -------------------------------------------------------------------------- */
 Real SolidMechanicsModel::getEnergy(const std::string & energy_id,
                                     const ElementType & type, UInt index) {
   AKANTU_DEBUG_IN();
 
   if (energy_id == "kinetic") {
     return getKineticEnergy(type, index);
   }
 
   UInt mat_index = this->material_index(type, _not_ghost)(index);
   UInt mat_loc_num = this->material_local_numbering(type, _not_ghost)(index);
   Real energy =
       this->materials[mat_index]->getEnergy(energy_id, type, mat_loc_num);
 
   AKANTU_DEBUG_OUT();
   return energy;
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::onElementsAdded(const Array<Element> & element_list,
                                           const NewElementsEvent & event) {
   AKANTU_DEBUG_IN();
 
   this->material_index.initialize(mesh, _element_kind = _ek_not_defined,
                                   _with_nb_element = true,
                                   _default_value = UInt(-1));
   this->material_local_numbering.initialize(
       mesh, _element_kind = _ek_not_defined, _with_nb_element = true,
       _default_value = UInt(-1));
 
   ElementTypeMapArray<UInt> filter("new_element_filter", this->getID(),
                                    this->getMemoryID());
 
+  UInt count = 0;
   for (auto & elem : element_list) {
     if (mesh.getSpatialDimension(elem.type) != spatial_dimension)
       continue;
 
     if (!filter.exists(elem.type, elem.ghost_type))
       filter.alloc(0, 1, elem.type, elem.ghost_type);
     filter(elem.type, elem.ghost_type).push_back(elem.element);
+
+    ++count;
   }
 
-  this->assignMaterialToElements(&filter);
+  if (count != 0)
+    this->assignMaterialToElements(&filter);
 
   for (auto & material : materials)
     material->onElementsAdded(element_list, event);
 
   AKANTU_DEBUG_OUT();
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::onElementsRemoved(
     const Array<Element> & element_list,
     const ElementTypeMapArray<UInt> & new_numbering,
     const RemovedElementsEvent & event) {
   for (auto & material : materials) {
     material->onElementsRemoved(element_list, new_numbering, event);
   }
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::onNodesAdded(const Array<UInt> & nodes_list,
                                        const NewNodesEvent & event) {
   AKANTU_DEBUG_IN();
   UInt nb_nodes = mesh.getNbNodes();
 
   if (displacement) {
     displacement->resize(nb_nodes, 0.);
     ++displacement_release;
   }
   if (mass)
     mass->resize(nb_nodes, 0.);
   if (velocity)
     velocity->resize(nb_nodes, 0.);
   if (acceleration)
     acceleration->resize(nb_nodes, 0.);
   if (external_force)
     external_force->resize(nb_nodes, 0.);
   if (internal_force)
     internal_force->resize(nb_nodes, 0.);
   if (blocked_dofs)
     blocked_dofs->resize(nb_nodes, 0.);
   if (current_position)
     current_position->resize(nb_nodes, 0.);
 
   if (previous_displacement)
     previous_displacement->resize(nb_nodes, 0.);
   if (displacement_increment)
     displacement_increment->resize(nb_nodes, 0.);
 
   for (auto & material : materials) {
     material->onNodesAdded(nodes_list, event);
   }
 
   need_to_reassemble_lumped_mass = true;
   need_to_reassemble_mass = true;
 
   AKANTU_DEBUG_OUT();
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::onNodesRemoved(const Array<UInt> & /*element_list*/,
                                          const Array<UInt> & new_numbering,
                                          const RemovedNodesEvent & /*event*/) {
   if (displacement) {
     mesh.removeNodesFromArray(*displacement, new_numbering);
     ++displacement_release;
   }
   if (mass)
     mesh.removeNodesFromArray(*mass, new_numbering);
   if (velocity)
     mesh.removeNodesFromArray(*velocity, new_numbering);
   if (acceleration)
     mesh.removeNodesFromArray(*acceleration, new_numbering);
   if (internal_force)
     mesh.removeNodesFromArray(*internal_force, new_numbering);
   if (external_force)
     mesh.removeNodesFromArray(*external_force, new_numbering);
   if (blocked_dofs)
     mesh.removeNodesFromArray(*blocked_dofs, new_numbering);
 
   // if (increment_acceleration)
   //   mesh.removeNodesFromArray(*increment_acceleration, new_numbering);
   if (displacement_increment)
     mesh.removeNodesFromArray(*displacement_increment, new_numbering);
 
   if (previous_displacement)
     mesh.removeNodesFromArray(*previous_displacement, new_numbering);
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::printself(std::ostream & stream, int indent) const {
   std::string space(indent, AKANTU_INDENT);
 
   stream << space << "Solid Mechanics Model [" << std::endl;
   stream << space << " + id                : " << id << std::endl;
   stream << space << " + spatial dimension : " << Model::spatial_dimension
          << std::endl;
 
   stream << space << " + fem [" << std::endl;
   getFEEngine().printself(stream, indent + 2);
   stream << space << " ]" << std::endl;
 
   stream << space << " + nodals information [" << std::endl;
   displacement->printself(stream, indent + 2);
   if (velocity)
     velocity->printself(stream, indent + 2);
   if (acceleration)
     acceleration->printself(stream, indent + 2);
   if (mass)
     mass->printself(stream, indent + 2);
   external_force->printself(stream, indent + 2);
   internal_force->printself(stream, indent + 2);
   blocked_dofs->printself(stream, indent + 2);
   stream << space << " ]" << std::endl;
 
   stream << space << " + material information [" << std::endl;
   material_index.printself(stream, indent + 2);
   stream << space << " ]" << std::endl;
 
   stream << space << " + materials [" << std::endl;
   for (auto & material : materials)
     material->printself(stream, indent + 2);
   stream << space << " ]" << std::endl;
 
   stream << space << "]" << std::endl;
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::initializeNonLocal() {
   this->non_local_manager->synchronize(*this, SynchronizationTag::_material_id);
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::insertIntegrationPointsInNeighborhoods(
     const GhostType & ghost_type) {
   for (auto & mat : materials) {
     MaterialNonLocalInterface * mat_non_local;
     if ((mat_non_local =
              dynamic_cast<MaterialNonLocalInterface *>(mat.get())) == nullptr)
       continue;
 
     ElementTypeMapArray<Real> quadrature_points_coordinates(
         "quadrature_points_coordinates_tmp_nl", this->id, this->memory_id);
     quadrature_points_coordinates.initialize(this->getFEEngine(),
                                              _nb_component = spatial_dimension,
                                              _ghost_type = ghost_type);
 
     for (auto & type : quadrature_points_coordinates.elementTypes(
              Model::spatial_dimension, ghost_type)) {
       this->getFEEngine().computeIntegrationPointsCoordinates(
           quadrature_points_coordinates(type, ghost_type), type, ghost_type);
     }
 
     mat_non_local->initMaterialNonLocal();
 
     mat_non_local->insertIntegrationPointsInNeighborhoods(
         ghost_type, quadrature_points_coordinates);
   }
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::computeNonLocalStresses(
     const GhostType & ghost_type) {
   for (auto & mat : materials) {
     if (not aka::is_of_type<MaterialNonLocalInterface>(*mat))
       continue;
 
     auto & mat_non_local = dynamic_cast<MaterialNonLocalInterface &>(*mat);
     mat_non_local.computeNonLocalStresses(ghost_type);
   }
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::updateLocalInternal(
     ElementTypeMapReal & internal_flat, const GhostType & ghost_type,
     const ElementKind & kind) {
   const ID field_name = internal_flat.getName();
   for (auto & material : materials) {
     if (material->isInternal<Real>(field_name, kind))
       material->flattenInternal(field_name, internal_flat, ghost_type, kind);
   }
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::updateNonLocalInternal(
     ElementTypeMapReal & internal_flat, const GhostType & ghost_type,
     const ElementKind & kind) {
 
   const ID field_name = internal_flat.getName();
 
   for (auto & mat : materials) {
     if (not aka::is_of_type<MaterialNonLocalInterface>(*mat))
       continue;
 
     auto & mat_non_local = dynamic_cast<MaterialNonLocalInterface &>(*mat);
     mat_non_local.updateNonLocalInternals(internal_flat, field_name, ghost_type,
                                           kind);
   }
 }
 
 /* -------------------------------------------------------------------------- */
 FEEngine & SolidMechanicsModel::getFEEngineBoundary(const ID & name) {
   return getFEEngineClassBoundary<MyFEEngineType>(name);
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::splitElementByMaterial(
     const Array<Element> & elements,
     std::vector<Array<Element>> & elements_per_mat) const {
   for (const auto & el : elements) {
     Element mat_el = el;
     mat_el.element = this->material_local_numbering(el);
     elements_per_mat[this->material_index(el)].push_back(mat_el);
   }
 }
 
 /* -------------------------------------------------------------------------- */
 UInt SolidMechanicsModel::getNbData(const Array<Element> & elements,
                                     const SynchronizationTag & tag) const {
   AKANTU_DEBUG_IN();
 
   UInt size = 0;
   UInt nb_nodes_per_element = 0;
 
   for (const Element & el : elements) {
     nb_nodes_per_element += Mesh::getNbNodesPerElement(el.type);
   }
 
   switch (tag) {
   case SynchronizationTag::_material_id: {
     size += elements.size() * sizeof(UInt);
     break;
   }
   case SynchronizationTag::_smm_mass: {
     size += nb_nodes_per_element * sizeof(Real) *
             Model::spatial_dimension; // mass vector
     break;
   }
   case SynchronizationTag::_smm_for_gradu: {
     size += nb_nodes_per_element * Model::spatial_dimension *
             sizeof(Real); // displacement
     break;
   }
   case SynchronizationTag::_smm_boundary: {
     // force, displacement, boundary
     size += nb_nodes_per_element * Model::spatial_dimension *
             (2 * sizeof(Real) + sizeof(bool));
     break;
   }
   case SynchronizationTag::_for_dump: {
     // displacement, velocity, acceleration, residual, force
     size += nb_nodes_per_element * Model::spatial_dimension * sizeof(Real) * 5;
     break;
   }
   default: {
   }
   }
 
   if (tag != SynchronizationTag::_material_id) {
     splitByMaterial(elements, [&](auto && mat, auto && elements) {
       size += mat.getNbData(elements, tag);
     });
   }
 
   AKANTU_DEBUG_OUT();
   return size;
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::packData(CommunicationBuffer & buffer,
                                    const Array<Element> & elements,
                                    const SynchronizationTag & tag) const {
   AKANTU_DEBUG_IN();
 
   switch (tag) {
   case SynchronizationTag::_material_id: {
     this->packElementalDataHelper(material_index, buffer, elements, false,
                                   getFEEngine());
     break;
   }
   case SynchronizationTag::_smm_mass: {
     packNodalDataHelper(*mass, buffer, elements, mesh);
     break;
   }
   case SynchronizationTag::_smm_for_gradu: {
     packNodalDataHelper(*displacement, buffer, elements, mesh);
     break;
   }
   case SynchronizationTag::_for_dump: {
     packNodalDataHelper(*displacement, buffer, elements, mesh);
     packNodalDataHelper(*velocity, buffer, elements, mesh);
     packNodalDataHelper(*acceleration, buffer, elements, mesh);
     packNodalDataHelper(*internal_force, buffer, elements, mesh);
     packNodalDataHelper(*external_force, buffer, elements, mesh);
     break;
   }
   case SynchronizationTag::_smm_boundary: {
     packNodalDataHelper(*external_force, buffer, elements, mesh);
     packNodalDataHelper(*velocity, buffer, elements, mesh);
     packNodalDataHelper(*blocked_dofs, buffer, elements, mesh);
     break;
   }
   default: {
   }
   }
 
   if (tag != SynchronizationTag::_material_id) {
     splitByMaterial(elements, [&](auto && mat, auto && elements) {
       mat.packData(buffer, elements, tag);
     });
   }
   AKANTU_DEBUG_OUT();
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::unpackData(CommunicationBuffer & buffer,
                                      const Array<Element> & elements,
                                      const SynchronizationTag & tag) {
   AKANTU_DEBUG_IN();
 
   switch (tag) {
   case SynchronizationTag::_material_id: {
     for (auto && element : elements) {
       UInt recv_mat_index;
       buffer >> recv_mat_index;
       UInt & mat_index = material_index(element);
       if (mat_index != UInt(-1))
         continue;
 
       // add ghosts element to the correct material
       mat_index = recv_mat_index;
       UInt index = materials[mat_index]->addElement(element);
       material_local_numbering(element) = index;
     }
     break;
   }
   case SynchronizationTag::_smm_mass: {
     unpackNodalDataHelper(*mass, buffer, elements, mesh);
     break;
   }
   case SynchronizationTag::_smm_for_gradu: {
     unpackNodalDataHelper(*displacement, buffer, elements, mesh);
     break;
   }
   case SynchronizationTag::_for_dump: {
     unpackNodalDataHelper(*displacement, buffer, elements, mesh);
     unpackNodalDataHelper(*velocity, buffer, elements, mesh);
     unpackNodalDataHelper(*acceleration, buffer, elements, mesh);
     unpackNodalDataHelper(*internal_force, buffer, elements, mesh);
     unpackNodalDataHelper(*external_force, buffer, elements, mesh);
     break;
   }
   case SynchronizationTag::_smm_boundary: {
     unpackNodalDataHelper(*external_force, buffer, elements, mesh);
     unpackNodalDataHelper(*velocity, buffer, elements, mesh);
     unpackNodalDataHelper(*blocked_dofs, buffer, elements, mesh);
     break;
   }
   default: {
   }
   }
 
   if (tag != SynchronizationTag::_material_id) {
     splitByMaterial(elements, [&](auto && mat, auto && elements) {
       mat.unpackData(buffer, elements, tag);
     });
   }
 
   AKANTU_DEBUG_OUT();
 }
 
 /* -------------------------------------------------------------------------- */
 UInt SolidMechanicsModel::getNbData(const Array<UInt> & dofs,
                                     const SynchronizationTag & tag) const {
   AKANTU_DEBUG_IN();
 
   UInt size = 0;
   //  UInt nb_nodes = mesh.getNbNodes();
 
   switch (tag) {
   case SynchronizationTag::_smm_uv: {
     size += sizeof(Real) * Model::spatial_dimension * 2;
     break;
   }
   case SynchronizationTag::_smm_res: {
     size += sizeof(Real) * Model::spatial_dimension;
     break;
   }
   case SynchronizationTag::_smm_mass: {
     size += sizeof(Real) * Model::spatial_dimension;
     break;
   }
   case SynchronizationTag::_for_dump: {
     size += sizeof(Real) * Model::spatial_dimension * 5;
     break;
   }
   default: {
     AKANTU_ERROR("Unknown ghost synchronization tag : " << tag);
   }
   }
 
   AKANTU_DEBUG_OUT();
   return size * dofs.size();
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::packData(CommunicationBuffer & buffer,
                                    const Array<UInt> & dofs,
                                    const SynchronizationTag & tag) const {
   AKANTU_DEBUG_IN();
 
   switch (tag) {
   case SynchronizationTag::_smm_uv: {
     packDOFDataHelper(*displacement, buffer, dofs);
     packDOFDataHelper(*velocity, buffer, dofs);
     break;
   }
   case SynchronizationTag::_smm_res: {
     packDOFDataHelper(*internal_force, buffer, dofs);
     break;
   }
   case SynchronizationTag::_smm_mass: {
     packDOFDataHelper(*mass, buffer, dofs);
     break;
   }
   case SynchronizationTag::_for_dump: {
     packDOFDataHelper(*displacement, buffer, dofs);
     packDOFDataHelper(*velocity, buffer, dofs);
     packDOFDataHelper(*acceleration, buffer, dofs);
     packDOFDataHelper(*internal_force, buffer, dofs);
     packDOFDataHelper(*external_force, buffer, dofs);
     break;
   }
   default: {
     AKANTU_ERROR("Unknown ghost synchronization tag : " << tag);
   }
   }
 
   AKANTU_DEBUG_OUT();
 }
 
 /* -------------------------------------------------------------------------- */
 void SolidMechanicsModel::unpackData(CommunicationBuffer & buffer,
                                      const Array<UInt> & dofs,
                                      const SynchronizationTag & tag) {
   AKANTU_DEBUG_IN();
 
   switch (tag) {
   case SynchronizationTag::_smm_uv: {
     unpackDOFDataHelper(*displacement, buffer, dofs);
     unpackDOFDataHelper(*velocity, buffer, dofs);
     break;
   }
   case SynchronizationTag::_smm_res: {
     unpackDOFDataHelper(*internal_force, buffer, dofs);
     break;
   }
   case SynchronizationTag::_smm_mass: {
     unpackDOFDataHelper(*mass, buffer, dofs);
     break;
   }
   case SynchronizationTag::_for_dump: {
     unpackDOFDataHelper(*displacement, buffer, dofs);
     unpackDOFDataHelper(*velocity, buffer, dofs);
     unpackDOFDataHelper(*acceleration, buffer, dofs);
     unpackDOFDataHelper(*internal_force, buffer, dofs);
     unpackDOFDataHelper(*external_force, buffer, dofs);
     break;
   }
   default: {
     AKANTU_ERROR("Unknown ghost synchronization tag : " << tag);
   }
   }
 
   AKANTU_DEBUG_OUT();
 }
 
 } // namespace akantu