diff --git a/test/test_solid_mechanics_model_igfem/test_material_igfem_iterative_stiffness_reduction_tangent_transfer.cc b/test/test_solid_mechanics_model_igfem/test_material_igfem_iterative_stiffness_reduction_tangent_transfer.cc
index a67af5693..26b524879 100644
--- a/test/test_solid_mechanics_model_igfem/test_material_igfem_iterative_stiffness_reduction_tangent_transfer.cc
+++ b/test/test_solid_mechanics_model_igfem/test_material_igfem_iterative_stiffness_reduction_tangent_transfer.cc
@@ -1,259 +1,259 @@
 /**
  * @file   test_material_igfem_iterative_stiffness_reduction_tangent_transfer.cc
  * @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
  * @date   Thu Nov 26 12:20:15 2015
  *
  * @brief test the tangent transfer for the material iterative
  * stiffness reduction
  *
  * @section LICENSE
  *
  * Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
  * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
  *
  * Akantu is free  software: you can redistribute it and/or  modify it under the
  * terms  of the  GNU Lesser  General Public  License as  published by  the Free
  * Software Foundation, either version 3 of the License, or (at your option) any
  * later version.
  *
  * Akantu is  distributed in the  hope that it  will be useful, but  WITHOUT ANY
  * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
  * A  PARTICULAR PURPOSE. See  the GNU  Lesser General  Public License  for more
  * details.
  *
  * You should  have received  a copy  of the GNU  Lesser General  Public License
  * along with Akantu. If not, see <http://www.gnu.org/licenses/>.
  *
  */
 
 /* -------------------------------------------------------------------------- */
 #include "solid_mechanics_model_igfem.hh"
 #include "material_iterative_stiffness_reduction.hh"
 #include "material_igfem_saw_tooth_damage.hh"
 /* -------------------------------------------------------------------------- */
 using namespace akantu;
 
 class TestMaterialSelector : public MaterialSelector  {
 public:
   TestMaterialSelector(SolidMechanicsModelIGFEM & model) : 
     MaterialSelector(),
     model(model),
     spatial_dimension(model.getSpatialDimension()){}
 
   UInt operator()(const Element & element) {
     if(Mesh::getKind(element.type) == _ek_igfem)
       return 2;
     else {
       /// regular elements
       const Mesh & mesh = model.getMesh();
       Vector<Real> barycenter(this->spatial_dimension);
       mesh.getBarycenter(element, barycenter);
       /// check if element belongs to ASR gel
       if(model.isInside(barycenter))
 	return 1;
     }
     return 0;
   }
 
 protected:
   SolidMechanicsModelIGFEM & model;
   UInt spatial_dimension;
 };
 
 /* -------------------------------------------------------------------------- */
 /* Main                                                                       */
 /* -------------------------------------------------------------------------- */
 int main(int argc, char *argv[]) {
 
   Math::setTolerance(1e-13);
   debug::setDebugLevel(dblWarning);
 
   initialize("material_stiffness_reduction_2.dat" ,argc, argv);
 
   const UInt spatial_dimension = 2;
   StaticCommunicator & comm = akantu::StaticCommunicator::getStaticCommunicator();
   Int psize = comm.getNbProc();
   Int prank = comm.whoAmI();
 
   /// read the mesh and partion it
   Mesh mesh(spatial_dimension);
   akantu::MeshPartition * partition = NULL;
 
   if(prank == 0) {
 
     mesh.read("test_damage_transfer.msh");
 
     /// partition the mesh
     partition = new MeshPartitionScotch(mesh, spatial_dimension);
 
     partition->partitionate(psize);
   }
 
   /// model creation
   SolidMechanicsModelIGFEM model(mesh);
   model.initParallel(partition);
   delete partition;
 
   Math::setTolerance(1.e-14);
   /// intialize the geometry and set the material selector
   std::list<SK::Sphere_3> inclusions_list;
   model.registerGeometryObject(inclusions_list, "inclusion");
   Real val = 1000000000;
   Real radius_squared = (val-0.6)*(val-0.6);
   Vector<Real> center(spatial_dimension);
   center(0) = 0;
   center(1) = val;
   SK::Sphere_3 sphere(SK::Point_3(center(0), center(1), 0.), radius_squared);
   inclusions_list.push_back(sphere);
   TestMaterialSelector * mat_selector = new TestMaterialSelector(model);
   model.setMaterialSelector(*mat_selector);
 
   /// initialization of the model
   model.initFull();
 
   /// boundary conditions
   mesh.computeBoundingBox();
   const Vector<Real> & lowerBounds = mesh.getLowerBounds();
   const Vector<Real> & upperBounds = mesh.getUpperBounds();
   Real bottom  = lowerBounds(1);
   Real top = upperBounds(1);
   Real left = lowerBounds(0);
   Real eps = std::abs((top - bottom) * 1e-6);
   const Array<Real> & pos = mesh.getNodes();
   Array<bool> & boun = model.getBlockedDOFs();
   Array<Real> & disp = model.getDisplacement();
   for (UInt n = 0; n < mesh.getNbNodes(); ++n) {
     if (std::abs(pos(n,1) - bottom) < eps) {
       boun(n,1) = true;
       disp(n,1) = 0.;
     }
     if (std::abs(pos(n,1) - top) < eps) {
       boun(n,1) = true;
       disp(n,1) = 1.e-3;
     }
     if (std::abs(pos(n,0) - left) < eps) {
       boun(n,0) = true;
       disp(n,0) = 0.;
     } 
   }
 
   /// add fields that should be dumped
   model.setBaseName("regular");
   model.addDumpField("material_index");
   model.addDumpFieldVector("displacement");;
   model.addDumpField("stress");
   model.addDumpField("blocked_dofs");
   model.addDumpField("residual");
   model.addDumpField("grad_u");
   model.addDumpField("damage");
   model.addDumpField("partitions");
   model.addDumpField("Sc");
   model.addDumpField("force");
   model.addDumpField("equivalent_stress");
   model.addDumpField("ultimate_strain");
   model.setBaseNameToDumper("igfem elements", "igfem elements");
   model.addDumpFieldToDumper("igfem elements", "material_index");
   model.addDumpFieldVectorToDumper("igfem elements", "displacement");;
   model.addDumpFieldToDumper("igfem elements", "stress");
   model.addDumpFieldToDumper("igfem elements", "blocked_dofs");
   model.addDumpFieldToDumper("igfem elements", "residual");
   model.addDumpFieldToDumper("igfem elements", "grad_u");
   model.addDumpFieldToDumper("igfem elements", "damage");
   model.addDumpFieldToDumper("igfem elements", "partitions");
   model.addDumpFieldToDumper("igfem elements", "Sc");
   model.addDumpFieldToDumper("igfem elements", "force");
   model.addDumpFieldToDumper("igfem elements", "equivalent_stress");
   model.addDumpFieldToDumper("igfem elements", "ultimate_strain");
 
   model.dump();
   model.dump("igfem elements");
  
   /// get a reference to the damage materials
   MaterialIterativeStiffnessReduction<spatial_dimension> & material = dynamic_cast<MaterialIterativeStiffnessReduction<spatial_dimension> & >(model.getMaterial(0));
   MaterialIGFEMSawToothDamage<spatial_dimension> & igfem_material = dynamic_cast<MaterialIGFEMSawToothDamage<spatial_dimension> & >(model.getMaterial(2));
  
   /// check that the tangent of the softening law has been computed correctly
   const Array<Real> & Sc = material.getInternal<Real>("Sc")(_triangle_3, _not_ghost);
   Array<Real>::const_scalar_iterator Sc_it = Sc.begin();
   const Array<Real> & D = material.getInternal<Real>("tangent")(_triangle_3, _not_ghost);
   Array<Real>::const_scalar_iterator D_it = D.begin();
   Real E = material.getParam<Real>("E");
   Real Gf = 20.;
   Real ultimate_strain = 0;
   Real crack_band_width = 0.25;
   Real D_exact = 0.;
   Math::setTolerance(1.e-13);
   for (UInt i = 0; i < Sc.getSize(); ++i, ++Sc_it, ++D_it) {
     ultimate_strain = 2. * Gf / (*Sc_it * crack_band_width);
     D_exact = *Sc_it / (ultimate_strain - (*Sc_it/E));
     if (!Math::are_float_equal(*D_it, D_exact)) {
-      std::cout << "error in the tangent or ultimate strain" << std::cout;
+      std::cout << "error in the tangent or ultimate strain" << std::endl;
       finalize();
       return EXIT_FAILURE;
     }
   }
 
 
   /// regular elements are linear triganle elements -> only one integration point
 
   const Array<Real> & eps_u = material.getInternal<Real>("ultimate_strain")(_triangle_3, _not_ghost);
 
   Real D_el_27 = D(27);
   Real D_el_19 = D(19);
   Real epsu_el_27 = eps_u(27);
   Real epsu_el_19 = eps_u(19);
   
   /// create the interface
   Real new_radius = (val-0.1);
   model.moveInterface(new_radius);
   model.dump();   
   model.dump("igfem elements");
 
   /// check that the damage reduction step has been correctly computed
   /// regular element id -> igfem element id
   /// 27 -> 7; 19 -> 5 
   const Array<Real> & epsu_igfem = igfem_material.getInternal<Real>("ultimate_strain")(_igfem_triangle_5, _not_ghost);
   Array<Real>::const_scalar_iterator epsu_igfem_it = epsu_igfem.begin();
   const Array<Real> & D_igfem = igfem_material.getInternal<Real>("tangent")(_igfem_triangle_5, _not_ghost);
   Array<Real>::const_scalar_iterator D_igfem_it = D_igfem.begin();
 
   /// check the igfem elements
   UInt nb_igfem_elements = mesh.getNbElement(_igfem_triangle_5, _not_ghost);
   UInt nb_quads = model.getFEEngine("IGFEMFEEngine").getNbIntegrationPoints(_igfem_triangle_5, _not_ghost);
   const Array<UInt> & sub_material = igfem_material.getInternal<UInt>("sub_material")(_igfem_triangle_5, _not_ghost);
   Array<UInt>::const_scalar_iterator sub_it = sub_material.begin();
   for (UInt e = 0; e < nb_igfem_elements; ++e) {
     for (UInt q = 0; q < nb_quads; ++q, ++sub_it, ++D_igfem_it, ++epsu_igfem_it) {
       if (!*sub_it) {
 	if(!Math::are_float_equal(*epsu_igfem_it, 0.) ||
 	   !Math::are_float_equal(*D_igfem_it, 0.)) {
 	  std::cout << "the tangent and ultimate strain of a sub-element must be zero!!" << std::endl;
 	  finalize();
 	  return EXIT_FAILURE;
 	}
       }
       else {
 	if (e == 7){
 	  if(!Math::are_float_equal(*epsu_igfem_it, epsu_el_27) ||
 	     !Math::are_float_equal(*D_igfem_it, D_el_27)) {
 	    std::cout << "error in tangent or ultimate strain!!" << std::endl;
 	    finalize();
 	    return EXIT_FAILURE;
 	  }
 	}
 	else if (e == 5){
 	  if(!Math::are_float_equal(*epsu_igfem_it, epsu_el_19) ||
 	     !Math::are_float_equal(*D_igfem_it, D_el_19)) {
 	    std::cout << "error in tangent or ultimate strain!!" << std::endl;
 	    finalize();
 	    return EXIT_FAILURE;
 	  }
 	}
       }
     }
   }
 
   finalize();
 
   return EXIT_SUCCESS;
 }