Page MenuHomec4science

No OneTemporary

File Metadata

Created
Fri, Nov 22, 09:11
This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/src/Makefiles/Makefile.SNs b/src/Makefiles/Makefile.SNs
index 976857c..c9fd087 100644
--- a/src/Makefiles/Makefile.SNs
+++ b/src/Makefiles/Makefile.SNs
@@ -1,875 +1,877 @@
#----------------------------------------------------------------------
# From the list below, please activate/deactivate the options that
# apply to your run. If you modify any of these options, make sure
# that you recompile the whole code by typing "make clean; make".
#
# Look at end of file for a brief guide to the compile-time options.
#----------------------------------------------------------------------
#--------------------------------------- Basic operation mode of code
OPT += -DPERIODIC
OPT += -DUNEQUALSOFTENINGS
#--------------------------------------- Things that are always recommended
OPT += -DPEANOHILBERT
OPT += -DWALLCLOCK
#--------------------------------------- TreePM Options
#OPT += -DPMGRID=128
#OPT += -DPLACEHIGHRESREGION=3
#OPT += -DENLARGEREGION=1.2
#OPT += -DASMTH=1.25
#OPT += -DRCUT=4.5
#--------------------------------------- Single/Double Precision
#OPT += -DDOUBLEPRECISION
#OPT += -DDOUBLEPRECISION_FFTW
#--------------------------------------- Time integration options
OPT += -DSYNCHRONIZATION
#OPT += -DFLEXSTEPS
#OPT += -DPSEUDOSYMMETRIC
OPT += -DNOSTOP_WHEN_BELOW_MINTIMESTEP
#OPT += -DNOPMSTEPADJUSTMENT
OPT += -DSYNCHRONIZE_NGB_TIMESTEP # ngb particles have synchronized time steps
OPT += -DTIMESTEP_UPDATE_FOR_FEEDBACK # timestep is updated when feedback occurs
OPT += -DIMPROVED_TIMESTEP_CRITERION_FORGAS # improvement of timestep criterion for the gas
#--------------------------------------- Output
OPT += -DADVANCEDSTATISTICS
OPT += -DADVANCEDCPUSTATISTICS
OPT += -DSYSTEMSTATISTICS
OPT += -DBLOCK_SKIPPING
#OPT += -DHAVE_HDF5
#OPT += -DOUTPUTPOTENTIAL
#OPT += -DOUTPUTACCELERATION
#OPT += -DOUTPUTCHANGEOFENTROPY
#OPT += -DOUTPUTTIMESTEP
#OPT += -DOUTPUTERADSTICKY
#OPT += -DOUTPUTERADFEEDBACK
#OPT += -DOUTPUTENERGYFLUX
OPT += -DOUTPUTOPTVAR1
OPT += -DOUTPUTSTELLAR_PROP
#--------------------------------------- Things for special behaviour
#OPT += -DNOGRAVITY
#OPT += -DNOTREERND
#OPT += -DNOTYPEPREFIX_FFTW
#OPT += -DLONG_X=60
#OPT += -DLONG_Y=5
#OPT += -DLONG_Z=0.2
#OPT += -DTWODIMS
#OPT += -DSPH_BND_PARTICLES
#OPT += -DNOVISCOSITYLIMITER
OPT += -DCOMPUTE_POTENTIAL_ENERGY
#OPT += -DLONGIDS
#OPT += -DISOTHERM_EQS
#OPT += -DADAPTIVE_GRAVSOFT_FORGAS
#OPT += -DSELECTIVE_NO_GRAVITY=2+4+8+16
#OPT += -DAVOIDNUMNGBPROBLEM
#OPT += -DLIMIT_DVEL=1.0
#OPT += -DOTHERINFO
#OPT += -DDOMAIN_AT_ORIGIN
OPT += -DNO_NEGATIVE_PRESSURE
#OPT += -DCOMPUTE_VELOCITY_DISPERSION
#OPT += -DCYLINDRICAL_SYMMETRY
OPT += -DWRITE_ALL_MASSES
-OPT += -DENTROPYPRED
OPT += -DCOUNT_ACTIVE_PARTICLES
OPT += -DRANDOMSEED_AS_PARAMETER
OPT += -DDETAILED_CPU
OPT += -DDETAILED_CPU_GRAVITY
OPT += -DDETAILED_CPU_DOMAIN
OPT += -DDETAILED_OUTPUT_IN_GRAVTREE
#OPT += -DSPLIT_DOMAIN_USING_TIME
OPT += -DCOSMICTIME
OPT += -DONLY_MASTER_READ_EWALD
#OPT += -DPNBODY
#OPT += -DPNBODY_OUTPUT_POS
#OPT += -DPNBODY_OUTPUT_VEL
#OPT += -DPNBODY_OUTPUT_NUM
#OPT += -DPNBODY_OUTPUT_MASS
#OPT += -DPNBODY_OUTPUT_TYPE
#OPT += -DPNBODY_OUTPUT_ENERGY
#OPT += -DPNBODY_OUTPUT_DENSITY
#OPT += -DPNBODY_OUTPUT_HSML
#OPT += -DPNBODY_OUTPUT_METALS
#--------------------------------------- Physical processes
OPT += -DCOOLING
#OPT += -DIMPLICIT_COOLING_INTEGRATION
#OPT += -DDO_NO_USE_HYDROGEN_MASSFRAC_IN_COOLING
#OPT += -DHEATING
#OPT += -DHEATING_PE # photo-electric heating
OPT += -DSFR
OPT += -DCOMPUTE_SFR_ENERGY
OPT += -DSFR_NEG_DIV_ONLY
OPT += -DSTELLAR_PROP
OPT += -DCHIMIE # need stellar prop
OPT += -DCHIMIE_THERMAL_FEEDBACK
OPT += -DCHIMIE_COMPUTE_THERMAL_FEEDBACK_ENERGY
#OPT += -DCHIMIE_KINETIC_FEEDBACK
#OPT += -DCHIMIE_COMPUTE_KINETIC_FEEDBACK_ENERGY
OPT += -DCHIMIE_EXTRAHEADER
#OPT += -DCHIMIE_INPUT_ALL
OPT += -DCHIMIE_MC_SUPERNOVAE
OPT += -DCHIMIE_ONE_SN_ONLY
#OPT += -DFEEDBACK
#OPT += -DFEEDBACK_WIND
#--------------------------------------- multiphase
#OPT += -DMULTIPHASE
#OPT += -DNO_HYDRO_FOR_GAS # do not use hydro routine (at all)
#OPT += -DNO_DENSITY_FOR_STICKY # do not compute density in sticky (need to be done in sfr)
#OPT += -DPHASE_MIXING # need MULTIPHASE : enable phase mixing
#OPT += -DCOLDGAS_CYCLE # need MULTIPHASE and PHASE_MIXING
#OPT += -DEXTERNAL_FLUX
#OPT += -DSTELLAR_FLUX
#OPT += -DCOUNT_COLLISIONS # count sticky collisions
#--------------------------------------- Outer potential
#OPT += -DOUTERPOTENTIAL
#OPT += -DNFW
#OPT += -DPISOTHERM
#OPT += -DPLUMMER
#OPT += -DMIYAMOTONAGAI
#OPT += -DCORIOLIS
#--------------------------------------- Testing and Debugging options
#OPT += -DFORCETEST=0.1
#OPT += -DWITH_ID_IN_HYDRA
#OPT += -DPARTICLE_FLAG
#OPT += -DOUTPUT_EVERY_TIMESTEP
#OPT += -DOUTPUT_COOLING_FUNCTION
OPT += -DCHECK_BLOCK_ORDER
OPT += -DCHECK_ENTROPY_SIGN
OPT += -DCHECK_TYPE_DURING_IO
OPT += -DCHECK_ID_CORRESPONDENCE
+#--------------------------------------- Sph flavor
+OPT += -DENTROPYPRED
+OPT += -DDENSITY_INDEPENDENT_SPH
#--------------------------------------- Glass making
#OPT += -DMAKEGLASS=262144
#--------------------------------------- Agn
#OPT += -DBUBBLES
#OPT += -DAGN_ACCRETION
#OPT += -DAGN_FEEDBACK
#OPT += -DAGN_USE_ANGULAR_MOMENTUM
#OPT += -DAGN_HEATING
#OPT += -DBONDI_ACCRETION
#OPT += -DUSE_BONDI_POWER
#----------------------------------------------------------------------
# Here, select compile environment for the target machine. This may need
# adjustment, depending on your local system. Follow the examples to add
# additional target platforms, and to get things properly compiled.
#----------------------------------------------------------------------
#--------------------------------------- Select some defaults
CC = mpicc # sets the C-compiler
OPTIMIZE = -O2 -Wall -g # sets optimization and warning flags
MPICHLIB = -lmpich
#--------------------------------------- Select target computer
SYSTYPE="obscalc"
#SYSTYPE="callisto-intel"
#SYSTYPE="bg1"
#SYSTYPE="obsds"
#SYSTYPE="leo_openmpi"
#SYSTYPE="leo_mpich2shm"
#SYSTYPE="graphor0"
#SYSTYPE="obsrevaz"
#SYSTYPE="regor_openmpigcc"
#SYSTYPE="regor_mvapich2gcc"
#SYSTYPE="meso_mpich2"
#SYSTYPE="meso"
#SYSTYPE="revaz/local"
#SYSTYPE="revaz/local_mpich2"
#SYSTYPE="horizon3_mpich1"
#SYSTYPE="horizon3_mpich2"
#SYSTYPE="horizon3"
#SYSTYPE="LUXOR"
#SYSTYPE="MPA"
#SYSTYPE="Mako"
#SYSTYPE="Regatta"
#SYSTYPE="RZG_LinuxCluster"
#SYSTYPE="RZG_LinuxCluster-gcc"
#SYSTYPE="OpteronMPA"
#SYSTYPE="OPA-Cluster32"
#SYSTYPE="OPA-Cluster64"
#--------------------------------------- Adjust settings for target computer
# module add openmpi-x86_64
ifeq ($(SYSTYPE),"obscalc")
CC = mpicc
OPTIMIZE =
GSL_INCL =
GSL_LIBS =
FFTW_INCL=
FFTW_LIBS=
MPICHLIB =
HDF5INCL =
HDF5LIB =
NO_FFTW_LIB = "yes"
PY_INCL = -I/usr/include/python2.6/
PY_LIB = -lpython2.6
endif
ifeq ($(SYSTYPE),"callisto-intel")
CC = mpicc
OPTIMIZE =
GSL_INCL = -I/u1/yrevaz/local/gsl-intel/include
GSL_LIBS = -L/u1/yrevaz/local/gsl-intel/lib
FFTW_INCL= -I/u1/yrevaz/local/fftw-2.1.5-intel/include
FFTW_LIBS= -L/u1/yrevaz/local/fftw-2.1.5-intel/lib
MPICHLIB =
HDF5INCL =
HDF5LIB =
endif
ifeq ($(SYSTYPE),"bg1")
CC = mpicc
OPTIMIZE = -O3 -Wall -g
GSL_INCL = -I/home/yrevaz/local/include
GSL_LIBS = -L/home/yrevaz/local/lib
FFTW_INCL=
FFTW_LIBS=
MPICHLIB =
HDF5INCL =
HDF5LIB =
NO_FFTW_LIB = "yes"
endif
ifeq ($(SYSTYPE),"obsds")
CC = mpicc
OPTIMIZE = -O3 -Wall -g
GSL_INCL =
GSL_LIBS =
FFTW_INCL=
FFTW_LIBS=
MPICHLIB =
HDF5INCL =
HDF5LIB =
NO_FFTW_LIB = "yes"
endif
ifeq ($(SYSTYPE),"graphor0")
CC = mpicc
OPTIMIZE = -O3 -Wall -g
GSL_INCL = -I/home/epfl/revaz/local/include
GSL_LIBS = -L/home/epfl/revaz/local/lib
FFTW_INCL= -I/home/epfl/revaz/local/include
FFTW_LIBS= -L/home/epfl/revaz/local/lib
MPICHLIB = -L/home/epfl/revaz/local/openmpi/lib -lmpi
HDF5INCL =
HDF5LIB =
endif
ifeq ($(SYSTYPE),"obsrevaz")
CC = mpicc
OPTIMIZE = -O3 -Wall -fpack-struct
GSL_INCL =
GSL_LIBS =
FFTW_INCL= -I/home/revaz/local/include/
FFTW_LIBS= -L/home/revaz/local/lib/
MPICHLIB = -lmpi
HDF5INCL =
HDF5LIB =
endif
ifeq ($(SYSTYPE),"regor_openmpigcc")
CC = mpicc
OPTIMIZE = -O3 -Wall -fpack-struct
GSL_INCL = -I/usr/include
GSL_LIBS = -L/usr/lib64/
FFTW_INCL= -I/home/revaz/local_mvapich2gcc/include/
FFTW_LIBS= -L/home/revaz/local_mvapich2gcc/lib/
MPICHLIB = -lmpi
HDF5INCL =
HDF5LIB =
OPT += -DMESOMACHINE
endif
ifeq ($(SYSTYPE),"regor_mpich2")
CC = mpicc
OPTIMIZE = -O3 -Wall -fpack-struct
GSL_INCL = -I/usr/include
GSL_LIBS = -L/usr/lib64/
FFTW_INCL= -I/home/revaz/local_mvapich2gcc/include/
FFTW_LIBS= -L/home/revaz/local_mvapich2gcc/lib/
MPICHLIB = -L/home/revaz/local/mpich2-1.0.6nemesis/lib/ -lmpich
HDF5INCL =
HDF5LIB =
OPT += -DMESOMACHINE
endif
ifeq ($(SYSTYPE),"regor_mvapich2gcc")
CC = mpicc
OPTIMIZE = -O3 -Wall -fpack-struct
GSL_INCL = -I/usr/include
GSL_LIBS = -L/usr/lib64/
FFTW_INCL= -I/home/revaz/local_mvapich2gcc/include/
FFTW_LIBS= -L/home/revaz/local_mvapich2gcc/lib/
MPICHLIB = -L/cvos/shared/apps/ofed/1.2.5.3/mpi/gcc/mvapich2-0.9.8-15/lib/ -lmpich
HDF5INCL =
HDF5LIB =
OPT += -DMESOMACHINE
endif
ifeq ($(SYSTYPE),"leo_openmpi")
CC = mpicc
OPTIMIZE = -O3 -Wall -fpack-struct
GSL_INCL = -I/export/revaz/local/include
GSL_LIBS = -L/export/revaz/local/lib
FFTW_INCL= -I/export/revaz/local/include
FFTW_LIBS= -L/export/revaz/local/lib
MPICHLIB = -L/usr/local/mpich2-pgi/lib -lmpi
HDF5INCL =
HDF5LIB =
endif
ifeq ($(SYSTYPE),"leo_mpich2shm")
CC = mpicc
OPTIMIZE = -O3 -Wall -g -fpack-struct
GSL_INCL = -I/export/revaz/local/include
GSL_LIBS = -L/export/revaz/local/lib
FFTW_INCL= -I/export/revaz/local/include
FFTW_LIBS= -L/export/revaz/local/lib
MPICHLIB = -L/usr/local/mpich2-pgi/lib -lmpich
HDF5INCL =
HDF5LIB =
endif
ifeq ($(SYSTYPE),"meso_mpich2")
CC = mpicc
OPTIMIZE = -O3 -Wall -g -fpack-struct
GSL_INCL = -I/home/revaz/local/include
GSL_LIBS = -L/home/revaz/local/lib
FFTW_INCL= -I/horizon1/x86_64_sl4/fftw/2.1.5/include/
FFTW_LIBS= -L/horizon1/x86_64_sl4/fftw/2.1.5/lib/
MPICHLIB = -L/home/revaz/local/mpich2-1.0.3/lib -lmpich
HDF5INCL =
HDF5LIB =
endif
ifeq ($(SYSTYPE),"meso")
CC = mpicc
OPTIMIZE = -O3 -g
GSL_INCL =
GSL_LIBS =
FFTW_INCL= -I/horizon1/x86_64_sl4/fftw/2.1.5/include/
FFTW_LIBS= -L/horizon1/x86_64_sl4/fftw/2.1.5/lib/
MPICHLIB =
HDF5INCL =
HDF5LIB =
OPT += -DMESOMACHINE
endif
ifeq ($(SYSTYPE),"revaz/local")
CC = mpicc
OPTIMIZE = -O3 -Wall -g
GSL_INCL = -I/home/revaz/local/include
GSL_LIBS = -L/home/revaz/local/lib
FFTW_INCL= -I/home/revaz/local/include
FFTW_LIBS= -L/home/revaz/local/lib
MPICHLIB = -L/home/revaz/local/mpich-1.2.5/ch_p4/lib -lmpich
HDF5INCL =
HDF5LIB =
endif
ifeq ($(SYSTYPE),"revaz/local_mpich2")
CC = mpicc
OPTIMIZE = -O3 -Wall -g
GSL_INCL = -I/home/revaz/local/include
GSL_LIBS = -L/home/revaz/local/lib
FFTW_INCL= -I/home/revaz/local/include
FFTW_LIBS= -L/home/revaz/local/lib
MPICHLIB = -L/home/revaz/local/mpich2-1.0.3/lib/ -lmpich
HDF5INCL =
HDF5LIB =
endif
ifeq ($(SYSTYPE),"LUXOR")
CC = mpicc
OPTIMIZE = -O3 -Wall -g
#GSL_INCL = -I/home/revaz/local/include
#GSL_LIBS = -L/home/revaz/local/lib
#FFTW_INCL= -I/home/revaz/local/include
#FFTW_LIBS= -L/home/revaz/local/lib
MPICHLIB = -L/home/revaz/local/mpich-1.2.7/ch_p4/lib -lmpich
HDF5INCL =
HDF5LIB =
endif
ifeq ($(SYSTYPE),"horizon3")
CC = mpicc
OPTIMIZE = -O3 -Wall -g -fpack-struct
GSL_INCL = -I/home/revaz/local/include
GSL_LIBS = -L/home/revaz/local/lib
FFTW_INCL= -I/home/revaz/local/include
FFTW_LIBS= -L/home/revaz/local/lib
MPICHLIB = -llam
HDF5INCL =
HDF5LIB =
endif
ifeq ($(SYSTYPE),"horizon3_mpich1")
CC = mpicc
OPTIMIZE = -O3 -Wall -g -fpack-struct
GSL_INCL = -I/home/revaz/local/include
GSL_LIBS = -L/home/revaz/local/lib
FFTW_INCL= -I/home/revaz/local/include
FFTW_LIBS= -L/home/revaz/local/lib
MPICHLIB = -L/home/revaz/local/mpich-1.2.7/lib -lmpich
HDF5INCL =
HDF5LIB =
endif
ifeq ($(SYSTYPE),"horizon3_mpich2")
CC = mpicc
OPTIMIZE = -O3 -Wall -g -fpack-struct
GSL_INCL = -I/home/revaz/local/include
GSL_LIBS = -L/home/revaz/local/lib
FFTW_INCL= -I/home/revaz/local/include
FFTW_LIBS= -L/home/revaz/local/lib
MPICHLIB = -L/usr/local/mpich2-pgi/lib -lmpich
HDF5INCL =
HDF5LIB =
endif
ifeq ($(SYSTYPE),"MPA")
CC = mpicc
OPTIMIZE = -O3 -Wall
GSL_INCL = -I/usr/common/pdsoft/include
GSL_LIBS = -L/usr/common/pdsoft/lib -Wl,"-R /usr/common/pdsoft/lib"
FFTW_INCL=
FFTW_LIBS=
MPICHLIB =
HDF5INCL =
HDF5LIB = -lhdf5 -lz
endif
ifeq ($(SYSTYPE),"OpteronMPA")
CC = mpicc
OPTIMIZE = -O3 -Wall -m64
GSL_INCL = -L/usr/local/include
GSL_LIBS = -L/usr/local/lib
FFTW_INCL=
FFTW_LIBS=
MPICHLIB =
HDF5INCL = -I/opt/hdf5/include
HDF5LIB = -L/opt/hdf5/lib -lhdf5 -lz -Wl,"-R /opt/hdf5/lib"
endif
ifeq ($(SYSTYPE),"OPA-Cluster32")
CC = mpicc
OPTIMIZE = -O3 -Wall
GSL_INCL = -I/afs/rzg/bc-b/vrs/opteron32/include
GSL_LIBS = -L/afs/rzg/bc-b/vrs/opteron32/lib -Wl,"-R /afs/rzg/bc-b/vrs/opteron32/lib"
FFTW_INCL= -I/afs/rzg/bc-b/vrs/opteron32/include
FFTW_LIBS= -L/afs/rzg/bc-b/vrs/opteron32/lib
MPICHLIB =
HDF5INCL =
HDF5LIB = -lhdf5 -lz
endif
ifeq ($(SYSTYPE),"OPA-Cluster64")
CC = mpicc
OPTIMIZE = -O3 -Wall -m64
GSL_INCL = -I/afs/rzg/bc-b/vrs/opteron64/include
GSL_LIBS = -L/afs/rzg/bc-b/vrs/opteron64/lib -Wl,"-R /afs/rzg/bc-b/vrs/opteron64/lib"
FFTW_INCL= -I/afs/rzg/bc-b/vrs/opteron64/include
FFTW_LIBS= -L/afs/rzg/bc-b/vrs/opteron64/lib
MPICHLIB =
HDF5INCL =
HDF5LIB = -lhdf5 -lz
endif
ifeq ($(SYSTYPE),"Mako")
CC = mpicc # sets the C-compiler
OPTIMIZE = -O3 -march=athlon-mp -mfpmath=sse
GSL_INCL =
GSL_LIBS =
FFTW_INCL=
FFTW_LIBS=
MPICHLIB =
HDF5INCL =
HDF5LIB = -lhdf5 -lz
endif
ifeq ($(SYSTYPE),"Regatta")
CC = mpcc_r
OPTIMIZE = -O5 -qstrict -qipa -q64
GSL_INCL = -I/afs/rzg/u/vrs/gsl_psi64/include
GSL_LIBS = -L/afs/rzg/u/vrs/gsl_psi64/lib
FFTW_INCL= -I/afs/rzg/u/vrs/fftw_psi64/include
FFTW_LIBS= -L/afs/rzg/u/vrs/fftw_psi64/lib -q64 -qipa
MPICHLIB =
HDF5INCL = -I/afs/rzg/u/vrs/hdf5_psi64/include
HDF5LIB = -L/afs/rzg/u/vrs/hdf5_psi64/lib -lhdf5 -lz
endif
ifeq ($(SYSTYPE),"RZG_LinuxCluster")
CC = mpicci
OPTIMIZE = -O3 -ip # Note: Don't use the "-rcd" optimization of Intel's compiler! (causes code crashes)
GSL_INCL = -I/afs/rzg/u/vrs/gsl_linux/include
GSL_LIBS = -L/afs/rzg/u/vrs/gsl_linux/lib -Wl,"-R /afs/rzg/u/vrs/gsl_linux/lib"
FFTW_INCL= -I/afs/rzg/u/vrs/fftw_linux/include
FFTW_LIBS= -L/afs/rzg/u/vrs/fftw_linux/lib
HDF5INCL = -I/afs/rzg/u/vrs/hdf5_linux/include
HDF5LIB = -L/afs/rzg/u/vrs/hdf5_linux/lib -lhdf5 -lz -Wl,"-R /afs/rzg/u/vrs/hdf5_linux/lib"
endif
ifeq ($(SYSTYPE),"RZG_LinuxCluster-gcc")
CC = mpiccg
OPTIMIZE = -Wall -g -O3 -march=pentium4
GSL_INCL = -I/afs/rzg/u/vrs/gsl_linux_gcc3.2/include
GSL_LIBS = -L/afs/rzg/u/vrs/gsl_linux_gcc3.2/lib -Wl,"-R /afs/rzg/u/vrs/gsl_linux_gcc3.2/lib"
FFTW_INCL= -I/afs/rzg/u/vrs/fftw_linux_gcc3.2/include
FFTW_LIBS= -L/afs/rzg/u/vrs/fftw_linux_gcc3.2/lib
HDF5INCL = -I/afs/rzg/u/vrs/hdf5_linux/include
HDF5LIB = -L/afs/rzg/u/vrs/hdf5_linux/lib -lhdf5 -lz -Wl,"-R /afs/rzg/u/vrs/hdf5_linux/lib"
endif
ifneq (HAVE_HDF5,$(findstring HAVE_HDF5,$(OPT)))
HDF5INCL =
HDF5LIB =
endif
OPTIONS = $(OPTIMIZE) $(OPT)
EXEC = Gadget2
OBJS = main.o run.o predict.o begrun.o endrun.o global.o \
timestep.o init.o restart.o io.o \
accel.o read_ic.o ngb.o \
system.o allocate.o density.o \
gravtree.o hydra.o driftfac.o \
domain.o allvars.o potential.o \
forcetree.o peano.o gravtree_forcetest.o \
pm_periodic.o pm_nonperiodic.o longrange.o \
cooling.o agn_heating.o phase.o sticky.o outerpotential.o starformation.o \
agn_feedback.o bubbles.o bondi_accretion.o chimie.o stars_density.o cosmictime.o \
pnbody.o ab_turb.o art_visc.o sigvel.o
INCL = allvars.h proto.h tags.h Makefile
CFLAGS = $(OPTIONS) $(GSL_INCL) $(FFTW_INCL) $(HDF5INCL) $(PY_INCL)
ifeq (NOTYPEPREFIX_FFTW,$(findstring NOTYPEPREFIX_FFTW,$(OPT))) # fftw installed with type prefix?
FFTW_LIB = $(FFTW_LIBS) -lrfftw_mpi -lfftw_mpi -lrfftw -lfftw
else
ifeq (DOUBLEPRECISION_FFTW,$(findstring DOUBLEPRECISION_FFTW,$(OPT)))
FFTW_LIB = $(FFTW_LIBS) -ldrfftw_mpi -ldfftw_mpi -ldrfftw -ldfftw
else
FFTW_LIB = $(FFTW_LIBS) -lsrfftw_mpi -lsfftw_mpi -lsrfftw -lsfftw
endif
endif
ifeq ($(NO_FFTW_LIB),"yes")
FFTW_LIB =
endif
LIBS = $(HDF5LIB) -g $(MPICHLIB) $(GSL_LIBS) -lgsl -lgslcblas -lm $(FFTW_LIB) $(PY_LIB)
$(EXEC): $(OBJS)
$(CC) $(OBJS) $(LIBS) -o $(EXEC)
$(OBJS): $(INCL)
clean:
rm -f $(OBJS) $(EXEC)
#-----------------------------------------------------------------------
#
# Brief guide to compile-time options of the code. More information
# can be found in the code documentation.
#
# - PERIODIC:
# Set this if you want to have periodic boundary conditions.
#
# - UNEQUALSOFTENINGS:
# Set this if you use particles with different gravitational
# softening lengths.
#
# - PEANOHILBERT:
# This is a tuning option. When set, the code will bring the
# particles after each domain decomposition into Peano-Hilbert
# order. This improves cache utilization and performance.
#
# - WALLCLOCK:
# If set, a wallclock timer is used by the code to measure internal
# time consumption (see cpu-log file). Otherwise, a timer that
# measures consumed processor ticks is used.
#
# - PMGRID:
# This enables the TreePM method, i.e. the long-range force is
# computed with a PM-algorithm, and the short range force with the
# tree. The parameter has to be set to the size of the mesh that
# should be used, (e.g. 64, 96, 128, etc). The mesh dimensions need
# not necessarily be a power of two. Note: If the simulation is
# not in a periodic box, then a FFT method for vacuum boundaries is
# employed, using an actual mesh with dimension twice(!) that
# specified by PMGRID.
#
# - PLACEHIGHRESREGION:
# If this option is set (will only work together with PMGRID), then
# the long range force is computed in two stages: One Fourier-grid
# is used to cover the whole simulation volume, allowing the
# computation of the longe-range force. A second Fourier mesh is
# placed on the region occupied by "high-resolution" particles,
# allowing the computation of an intermediate scale force. Finally,
# the force on short scales is computed with the tree. This
# procedure can be useful for "zoom-simulations", provided the
# majority of particles (the high-res particles) are occupying only
# a small fraction of the volume. To activate this option, the
# parameter needs to be set to an integer bit mask that encodes the
# particle types that make up the high-res particles.
# For example, if types 0, 1, and 4 form the high-res
# particles, set the parameter to PLACEHIGHRESREGION=19, because
# 2^0 + 2^1 + 2^4 = 19. The spatial region covered by the high-res
# grid is determined automatically from the initial conditions.
# Note: If a periodic box is used, the high-res zone may not intersect
# the box boundaries.
#
# - ENLARGEREGION:
# The spatial region covered by the high-res zone has a fixed size
# during the simulation, which initially is set to the smallest
# region that encompasses all high-res particles. Normally, the
# simulation will be interrupted if high-res particles leave this
# region in the course of the run. However, by setting this
# parameter to a value larger than one, the size of the high-res
# region can be expanded, providing a buffer region. For example,
# setting it to 1.4 will enlarge its side-length by 40% (it remains
# centered on the high-res particles). Hence, with this setting, the
# high-res region may expand or move by a limited amount.
# Note: If SYNCHRONIZATION is activated, the code will be able to
# continue even if high-res particles leave the initial high-res
# grid. In this case, the code will update the size and position of
# the grid that is placed onto the high-resolution region
# automatically. To prevent that this potentially happens every
# single PM step, one should nevertheless assign a value slightly
# larger than 1 to ENLARGEREGION.
#
# - ASMTH:
# This can be used to override the value assumed for the scale that
# defines the long-range/short-range force-split in the TreePM
# algorithm. The default value is 1.25, in mesh-cells.
#
# - RCUT:
# This can be used to override the maximum radius in which the
# short-range tree-force is evaluated (in case the TreePM algorithm
# is used). The default value is 4.5, given in mesh-cells.
#
# - DOUBLEPRECISION:
# This makes the code store and compute internal particle data in
# double precision. Note that output files are nevertheless written
# by converting the particle data to single precision.
#
# - DDOUBLEPRECISION_FFTW:
# If this is set, the code will use the double-precision version of
# FTTW, provided the latter has been explicitly installed with a
# "d" prefix, and NOTYPEPREFIX_FFTW is not set. Otherwise the
# single precision version ("s" prefix) is used.
#
# - SYNCHRONIZATION:
# When this is set, particles are kept in a binary hierarchy of
# timesteps and may only increase their timestep if the new
# timestep will put them into synchronization with the higher time
# level.
#
# - FLEXSTEPS:
# This is an alternative to SYNCHRONIZATION. Particle timesteps are
# here allowed to be integer multiples of the minimum timestep that
# occurs among the particles, which in turn is rounded down to the
# nearest power-of-two devision of the total simulated
# timespan. This option distributes particles more evenly over
# individual system timesteps, particularly once a simulation has
# run for a while, and may then result in a reduction of work-load
# imbalance losses.
#
# - PSEUDOSYMMETRIC:
# When this option is set, the code will try to "anticipate"
# timestep changes by extrapolating the change of the acceleration
# into the future. This can in certain idealized cases improve the
# long-term integration behaviour of periodic orbits, but should
# make little or no difference in most real-world applications. May
# only be used together with SYNCHRONIZATION.
#
# - NOSTOP_WHEN_BELOW_MINTIMESTEP:
# If this is activated, the code will not terminate when the
# timestep falls below the value of MinSizeTimestep specified in
# the parameterfile. This is useful for runs where one wants to
# enforce a constant timestep for all particles. This can be done
# by activating this option, and by setting MinSizeTimestep and
# MaxSizeTimestep to an equal value.
#
# - NOPMSTEPADJUSTMENT:
# When this is set, the long-range timestep for the PM-force
# computation (when the TreePM algorithm is used) is always
# determined by MaxSizeTimeStep. Otherwise, it is determined by
# the MaxRMSDisplacement parameter, or MaxSizeTimeStep, whichever
# gives the smaller step.
#
# - HAVE_HDF5:
# If this is set, the code will be compiled with support for input
# and output in the HDF5 format. You need to have the HDF5
# libraries and headers installed on your computer for this option
# to work. The HDF5 format can then be selected as format "3" in
# Gadget's parameterfile.
#
# - OUTPUTPOTENTIAL:
# This will make the code compute gravitational potentials for
# all particles each time a snapshot file is generated. The values
# are then included in the snapshot file. Note that the computation
# of the values of the gravitational potential costs additional CPU.
#
# - OUTPUTACCELERATION:
# This will include the physical acceleration of each particle in
# snapshot files.
#
# - OUTPUTCHANGEOFENTROPY:
# This will include the rate of change of entropy of gas particles
# in snapshot files.
#
# - OUTPUTTIMESTEP:
# This will include the current timesteps of all particles in the
# snapshot files.
#
# - NOGRAVITY
# This switches off gravity. Useful only for pure SPH simulations
# in non-expanding space.
#
# - NOTREERND:
# If this is not set, the tree construction will succeed even when
# there are a few particles at identical locations. This is done by
# `rerouting' particles once the node-size has fallen below 1.0e-3
# of the softening length. When this option is activated, this will
# be surpressed and the tree construction will always fail if there
# are particles at extremely close coordinates.
#
# - NOTYPEPREFIX_FFTW:
# This is an option that signals that FFTW has been compiled
# without the type-prefix option, i.e. no leading "d" or "s"
# characters are used to access the library.
#
# - LONG_X/Y/Z:
# These options can be used together with PERIODIC and NOGRAVITY only.
# When set, the options define numerical factors that can be used to
# distorts the periodic simulation cube into a parallelepiped of
# arbitrary aspect ratio. This can be useful for idealized SPH tests.
#
# - TWODIMS:
# This effectively switches of one dimension in SPH, i.e. the code
# follows only 2d hydrodynamics in the xy-, yz-, or xz-plane. This
# only works with NOGRAVITY, and if all coordinates of the third
# axis are exactly equal. Can be useful for idealized SPH tests.
#
# - SPH_BND_PARTICLES:
# If this is set, particles with a particle-ID equal to zero do not
# receive any SPH acceleration. This can be useful for idealized
# SPH tests, where these particles represent fixed "walls".
#
# - NOVISCOSITYLIMITER:
# If this is set, the code will not try to put an upper limit on
# the viscous force in case an implausibly high pair-wise viscous
# force (which may lead to a particle 'reflection' in case of poor
# timestepping) should arise. Note: For proper settings of the
# timestep parameters, this situation should not arise.
#
# - COMPUTE_POTENTIAL_ENERGY:
# When this option is set, the code will compute the gravitational
# potential energy each time a global statistics is computed. This
# can be useful for testing global energy conservation.
#
# - LONGIDS:
# If this is set, the code assumes that particle-IDs are stored as
# 64-bit long integers. This is only really needed if you want to
# go beyond ~2 billion particles.
#
# - ISOTHERM_EQS:
# This special option makes the gas behave like an isothermal gas
# with equation of state P = cs^2 * rho. The sound-speed cs is set by
# the thermal energy per unit mass in the intial conditions,
# i.e. cs^2=u. If the value for u is zero, then the initial gas
# temperature in the parameter file is used to define the sound speed
# according to cs^2 = 3/2 kT/mp, where mp is the proton mass.
#
# - ADAPTIVE_GRAVSOFT_FORGAS:
# When this option is set, the gravitational softening lengths used for
# gas particles is tied to their SPH smoothing length. This can be useful
# for dissipative collapse simulations. The option requires the setting
# of UNEQUALSOFTENINGS.
#
# - SELECTIVE_NO_GRAVITY:
# This can be used for special computations where one wants to
# exclude certain particle types from receiving gravitational
# forces. The particle types that are excluded in this fashion are
# specified by a bit mask, in the same as for the PLACEHIGHRESREGION
# option.
#
# - FORCETEST:
# This can be set to check the force accuracy of the code. The
# option needs to be set to a number between 0 and 1 (e.g. 0.01),
# which is taken to specify a random fraction of particles for
# which at each timestep forces by direct summation are
# computed. The normal tree-forces and the correct direct
# summation forces are collected in a file. Note that the
# simulation itself is unaffected by this option, but it will of
# course run much(!) slower, especially if
# FORCETEST*NumPart*NumPart >> NumPart. Note: Particle IDs must
# be set to numbers >=1 for this to work.
#
# - MAKEGLASS
# This option can be used to generate a glass-like particle
# configuration. The value assigned gives the particle load,
# which is initially generated as a Poisson sample and then
# evolved towards a glass with the sign of gravity reversed.
#
#-----------------------------------------------------------------------
diff --git a/src/allvars.h b/src/allvars.h
index 2c3dc56..f464ea5 100644
--- a/src/allvars.h
+++ b/src/allvars.h
@@ -1,2018 +1,2034 @@
/*! \file allvars.h
* \brief declares global variables.
*
* This file declares all global variables. Further variables should be added here, and declared as
* 'extern'. The actual existence of these variables is provided by the file 'allvars.c'. To produce
* 'allvars.c' from 'allvars.h', do the following:
*
* - Erase all #define's, typedef's, and enum's
* - add #include "allvars.h", delete the #ifndef ALLVARS_H conditional
* - delete all keywords 'extern'
* - delete all struct definitions enclosed in {...}, e.g.
* "extern struct global_data_all_processes {....} All;"
* becomes "struct global_data_all_processes All;"
*/
#ifndef ALLVARS_H
#define ALLVARS_H
#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_spline.h>
#include <gsl/gsl_integration.h>
#include "tags.h"
#define GADGETVERSION "2.0" /*!< code version string */
#define TIMEBASE (1<<28) /*!< The simulated timespan is mapped onto the integer interval [0,TIMESPAN],
* where TIMESPAN needs to be a power of 2. Note that (1<<28) corresponds to 2^29
*/
#define MAXTOPNODES 200000 /*!< Maximum number of nodes in the top-level tree used for domain decomposition */
typedef long long peanokey; /*!< defines the variable type used for Peano-Hilbert keys */
#define BITS_PER_DIMENSION 18 /*!< Bits per dimension available for Peano-Hilbert order.
Note: If peanokey is defined as type int, the allowed maximum is 10.
If 64-bit integers are used, the maximum is 21 */
#define PEANOCELLS (((peanokey)1)<<(3*BITS_PER_DIMENSION)) /*!< The number of different Peano-Hilbert cells */
#define RNDTABLE 3000 /*!< gives the length of a table with random numbers, refreshed at every timestep.
This is used to allow application of random numbers to a specific particle
in a way that is independent of the number of processors used. */
#define MAX_REAL_NUMBER 1e37
#define MIN_REAL_NUMBER 1e-37
#define MAXLEN_FILENAME 100 /*!< Maximum number of characters for filenames (including the full path) */
#ifdef ISOTHERM_EQS
#define GAMMA (1.0) /*!< index for isothermal gas */
#else
#define GAMMA (5.0/3) /*!< adiabatic index of simulated gas */
#endif
#define GAMMA_MINUS1 (GAMMA-1)
#define HYDROGEN_MASSFRAC 0.76 /*!< mass fraction of hydrogen, relevant only for radiative cooling */
/* Some physical constants in cgs units */
#define GRAVITY 6.672e-8 /*!< Gravitational constant (in cgs units) */
#define SOLAR_MASS 1.989e33
#define SOLAR_LUM 3.826e33
#define RAD_CONST 7.565e-15
#define AVOGADRO 6.0222e23
#define BOLTZMANN 1.3806e-16
#define GAS_CONST 8.31425e7
#define C 2.9979e10
#define PLANCK 6.6262e-27
#define CM_PER_MPC 3.085678e24
#define PROTONMASS 1.6726e-24
#define ELECTRONMASS 9.10953e-28
#define THOMPSON 6.65245e-25
#define ELECTRONCHARGE 4.8032e-10
#define HUBBLE 3.2407789e-18 /* in h/sec */
#define YEAR_IN_SECOND 31536000.0 /* year in sec */
#define FEH_SOLAR 0.00181 /* used only if cooling with metal is on and chimie is off */
#define PI 3.1415926535897931
#define TWOPI 6.2831853071795862
/* Some conversion factors */
#define SEC_PER_MEGAYEAR 3.155e13
#define SEC_PER_YEAR 3.155e7
#ifndef ASMTH
#define ASMTH 1.25 /*!< ASMTH gives the scale of the short-range/long-range force split in units of FFT-mesh cells */
#endif
#ifndef RCUT
#define RCUT 4.5 /*!< RCUT gives the maximum distance (in units of the scale used for the force split) out to
which short-range forces are evaluated in the short-range tree walk. */
#endif
#define MAX_NGB 20000 /*!< defines maximum length of neighbour list */
#define MAXLEN_OUTPUTLIST 500 /*!< maxmimum number of entries in list of snapshot output times */
#define DRIFT_TABLE_LENGTH 1000 /*!< length of the lookup table used to hold the drift and kick factors */
#ifdef COSMICTIME
#define COSMICTIME_TABLE_LENGTH 1000 /*!< length of the lookup table used for the cosmic time computation */
#endif
#define MAXITER 1000 /*!< maxmimum number of steps for SPH neighbour iteration */
#ifdef DOUBLEPRECISION /*!< If defined, the variable type FLOAT is set to "double", otherwise to FLOAT */
#define FLOAT double
#else
#define FLOAT float
#endif
#ifndef TWODIMS
#define NUMDIMS 3 /*!< For 3D-normalized kernel */
#define KERNEL_COEFF_1 2.546479089470 /*!< Coefficients for SPH spline kernel and its derivative */
#define KERNEL_COEFF_2 15.278874536822
#define KERNEL_COEFF_3 45.836623610466
#define KERNEL_COEFF_4 30.557749073644
#define KERNEL_COEFF_5 5.092958178941
#define KERNEL_COEFF_6 (-15.278874536822)
#define NORM_COEFF 4.188790204786 /*!< Coefficient for kernel normalization. Note: 4.0/3 * PI = 4.188790204786 */
#else
#define NUMDIMS 2 /*!< For 2D-normalized kernel */
#define KERNEL_COEFF_1 (5.0/7*2.546479089470) /*!< Coefficients for SPH spline kernel and its derivative */
#define KERNEL_COEFF_2 (5.0/7*15.278874536822)
#define KERNEL_COEFF_3 (5.0/7*45.836623610466)
#define KERNEL_COEFF_4 (5.0/7*30.557749073644)
#define KERNEL_COEFF_5 (5.0/7*5.092958178941)
#define KERNEL_COEFF_6 (5.0/7*(-15.278874536822))
#define NORM_COEFF M_PI /*!< Coefficient for kernel normalization. */
#endif
#ifdef MULTIPHASE
#define GAS_SPH 0
#define GAS_STICKY 1
#define GAS_DARK 2
#endif
#if defined(SFR) || defined(STELLAR_PROP)
#define ST 1
#endif
#ifdef CHIMIE
#define NELEMENTS 5
#define MAXNELEMENTS 64
#define FIRST_ELEMENT "Fe"
#define FE 0
#endif
#ifdef COOLING
#define COOLING_NMETALICITIES 9
#define COOLING_NTEMPERATURES 171
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
#define VELOCITY_DISPERSION_SIZE 3
#endif
extern int SetMinTimeStepForActives;
extern int ThisTask; /*!< the rank of the local processor */
extern int NTask; /*!< number of processors */
extern int PTask; /*!< smallest integer such that NTask <= 2^PTask */
extern int NumPart; /*!< number of particles on the LOCAL processor */
extern int N_gas; /*!< number of gas particles on the LOCAL processor */
#if defined(SFR) || defined(STELLAR_PROP)
extern int N_stars; /*!< number of stars particle on the LOCAL processor */
#endif
#ifdef MULTIPHASE
extern int N_sph;
extern int N_sticky;
extern int N_stickyflaged;
extern int N_dark;
extern int NumColPotLocal; /*!< local number of potentially collisional particles */
extern int NumColPot; /*!< total number of potentially collisional particles */
extern int NumColLocal; /*!< local number of collisions */
extern int NumCol; /*!< total number of collisions */
extern int NumNoColLocal;
extern int NumNoCol;
#endif
extern long long Ntype[6]; /*!< total number of particles of each type */
extern int NtypeLocal[6]; /*!< local number of particles of each type */
extern int NumForceUpdate; /*!< number of active particles on local processor in current timestep */
extern int NumSphUpdate; /*!< number of active SPH particles on local processor in current timestep */
#ifdef CHIMIE
extern int NumStUpdate;
#endif
#ifdef TESSEL
extern int NumPTUpdate;
#endif
extern double CPUThisRun; /*!< Sums the CPU time for the process (current submission only) */
#ifdef SPLIT_DOMAIN_USING_TIME
extern double CPU_Gravity;
#endif
extern int RestartFlag; /*!< taken from command line used to start code. 0 is normal start-up from
initial conditions, 1 is resuming a run from a set of restart files, while 2
marks a restart from a snapshot file. */
extern char *Exportflag; /*!< Buffer used for flagging whether a particle needs to be exported to another process */
extern int *Ngblist; /*!< Buffer to hold indices of neighbours retrieved by the neighbour search routines */
extern int TreeReconstructFlag; /*!< Signals that a new tree needs to be constructed */
#ifdef SFR
extern int RearrangeParticlesFlag;/*!< Signals that particles must be rearanged */
#endif
extern int Flag_FullStep; /*!< This flag signals that the current step involves all particles */
extern gsl_rng *random_generator; /*!< the employed random number generator of the GSL library */
extern double RndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#ifdef SFR
extern double StarFormationRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef FEEDBACK_WIND
extern double FeedbackWindRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef CHIMIE
extern double ChimieRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
extern double ChimieKineticFeedbackRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef AB_TURB
//Ornstein-Uhlenbeck variables
extern double StOUVar;
extern double* StOUPhases;
extern gsl_rng* StRng;
//forcing field in fourie space
extern double* StAmpl;
extern double* StAka; //phases (real part)
extern double* StAkb; //phases (imag part)
extern double* StMode;
extern int StNModes;
//integertime StTPrev; (yr : ask ?)
extern int StTPrev;
extern double StSolWeightNorm;
#endif
#ifdef PY_INTERFACE
extern int NumPartQ;
extern int N_gasQ;
extern long long NtypeQ[6]; /*!< total number of particles of each type */
extern int NtypeLocalQ[6]; /*!< local number of particles of each type */
extern double DomainCornerQ[3]; /*!< gives the lower left corner of simulation volume */
extern double DomainCenterQ[3]; /*!< gives the center of simulation volume */
extern double DomainLenQ; /*!< gives the (maximum) side-length of simulation volume */
extern double DomainFacQ; /*!< factor used for converting particle coordinates to a Peano-Hilbert mesh covering the simulation volume */
extern int DomainMyStartQ; /*!< first domain mesh cell that resides on the local processor */
extern int DomainMyLastQ; /*!< last domain mesh cell that resides on the local processor */
extern int *DomainStartListQ; /*!< a table that lists the first domain mesh cell for all processors */
extern int *DomainEndListQ; /*!< a table that lists the last domain mesh cell for all processors */
extern double *DomainWorkQ; /*!< a table that gives the total "work" due to the particles stored by each processor */
extern int *DomainCountQ; /*!< a table that gives the total number of particles held by each processor */
extern int *DomainCountSphQ; /*!< a table that gives the total number of SPH particles held by each processor */
extern int *DomainTaskQ; /*!< this table gives for each leaf of the top-level tree the processor it was assigned to */
extern peanokey *DomainKeyBufQ; /*!< this points to a buffer used during the exchange of particle data */
extern int NTopnodesQ; /*!< total number of nodes in top-level tree */
extern int NTopleavesQ; /*!< number of leaves in top-level tree. Each leaf can be assigned to a different processor */
extern void *CommBufferQ; /*!< points to communication buffer, which is used in the domain decomposition, the
parallel tree-force computation, the SPH routines, etc. */
#endif
extern double DomainCorner[3]; /*!< gives the lower left corner of simulation volume */
extern double DomainCenter[3]; /*!< gives the center of simulation volume */
extern double DomainLen; /*!< gives the (maximum) side-length of simulation volume */
extern double DomainFac; /*!< factor used for converting particle coordinates to a Peano-Hilbert mesh covering the simulation volume */
extern int DomainMyStart; /*!< first domain mesh cell that resides on the local processor */
extern int DomainMyLast; /*!< last domain mesh cell that resides on the local processor */
extern int *DomainStartList; /*!< a table that lists the first domain mesh cell for all processors */
extern int *DomainEndList; /*!< a table that lists the last domain mesh cell for all processors */
extern double *DomainWork; /*!< a table that gives the total "work" due to the particles stored by each processor */
extern int *DomainCount; /*!< a table that gives the total number of particles held by each processor */
extern int *DomainCountSph; /*!< a table that gives the total number of SPH particles held by each processor */
extern int *DomainTask; /*!< this table gives for each leaf of the top-level tree the processor it was assigned to */
extern int *DomainNodeIndex; /*!< this table gives for each leaf of the top-level tree the corresponding node of the gravitational tree */
extern FLOAT *DomainTreeNodeLen; /*!< this table gives for each leaf of the top-level tree the side-length of the corresponding node of the gravitational tree */
extern FLOAT *DomainHmax; /*!< this table gives for each leaf of the top-level tree the maximum SPH smoothing length among the particles of the corresponding node of the gravitational tree */
extern struct DomainNODE
{
FLOAT s[3]; /*!< center-of-mass coordinates */
FLOAT vs[3]; /*!< center-of-mass velocities */
FLOAT mass; /*!< mass of node */
#ifdef STELLAR_FLUX
FLOAT starlum; /*!< star luminosity of node */
#endif
#ifdef UNEQUALSOFTENINGS
#ifndef ADAPTIVE_GRAVSOFT_FORGAS
int bitflags; /*!< this bit-field encodes the particle type with the largest softening among the particles of the nodes, and whether there are particles with different softening in the node */
#else
FLOAT maxsoft; /*!< hold the maximum gravitational softening of particles in the
node if the ADAPTIVE_GRAVSOFT_FORGAS option is selected */
#endif
#endif
}
*DomainMoment; /*!< this table stores for each node of the top-level tree corresponding node data from the gravitational tree */
extern peanokey *DomainKeyBuf; /*!< this points to a buffer used during the exchange of particle data */
extern peanokey *Key; /*!< a table used for storing Peano-Hilbert keys for particles */
extern peanokey *KeySorted; /*!< holds a sorted table of Peano-Hilbert keys for all particles, used to construct top-level tree */
extern int NTopnodes; /*!< total number of nodes in top-level tree */
extern int NTopleaves; /*!< number of leaves in top-level tree. Each leaf can be assigned to a different processor */
extern struct topnode_data
{
int Daughter; /*!< index of first daughter cell (out of 8) of top-level node */
int Pstart; /*!< for the present top-level node, this gives the index of the first node in the concatenated list of topnodes collected from all processors */
int Blocks; /*!< for the present top-level node, this gives the number of corresponding nodes in the concatenated list of topnodes collected from all processors */
int Leaf; /*!< if the node is a leaf, this gives its number when all leaves are traversed in Peano-Hilbert order */
peanokey Size; /*!< number of Peano-Hilbert mesh-cells represented by top-level node */
peanokey StartKey; /*!< first Peano-Hilbert key in top-level node */
long long Count; /*!< counts the number of particles in this top-level node */
}
#ifdef PY_INTERFACE
*TopNodesQ,
#endif
*TopNodes; /*!< points to the root node of the top-level tree */
extern double TimeOfLastTreeConstruction; /*!< holds what it says, only used in connection with FORCETEST */
/* variables for input/output, usually only used on process 0 */
extern char ParameterFile[MAXLEN_FILENAME]; /*!< file name of parameterfile used for starting the simulation */
extern FILE *FdInfo; /*!< file handle for info.txt log-file. */
extern FILE *FdLog; /*!< file handle for log.txt log-file. */
extern FILE *FdEnergy; /*!< file handle for energy.txt log-file. */
#ifdef SYSTEMSTATISTICS
extern FILE *FdSystem;
#endif
extern FILE *FdTimings; /*!< file handle for timings.txt log-file. */
extern FILE *FdCPU; /*!< file handle for cpu.txt log-file. */
#ifdef FORCETEST
extern FILE *FdForceTest; /*!< file handle for forcetest.txt log-file. */
#endif
#ifdef SFR
extern FILE *FdSfr; /*!< file handle for sfr.txt log-file. */
#endif
#ifdef CHIMIE
extern FILE *FdChimie; /*!< file handle for chimie log-file. */
#endif
#ifdef MULTIPHASE
extern FILE *FdPhase; /*!< file handle for pase.txt log-file. */
extern FILE *FdSticky; /*!< file handle for sticky.txt log-file. */
#endif
#ifdef AGN_ACCRETION
extern FILE *FdAccretion; /*!< file handle for accretion.txt log-file. */
#endif
#ifdef BONDI_ACCRETION
extern FILE *FdBondi; /*!< file handle for bondi.txt log-file. */
#endif
#ifdef BUBBLES
extern FILE *FdBubble; /*!< file handle for bubble.txt log-file. */
#endif
extern double DriftTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological drift factors */
extern double GravKickTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological kick factor for gravitational forces */
extern double HydroKickTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological kick factor for hydrodynmical forces */
#ifdef COSMICTIME
extern double CosmicTimeTable[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
extern double FullCosmicTimeTable[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
extern double FullCosmicTimeTableInv[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
#endif
extern void *CommBuffer; /*!< points to communication buffer, which is used in the domain decomposition, the
parallel tree-force computation, the SPH routines, etc. */
/*! This structure contains data which is the SAME for all tasks (mostly code parameters read from the
* parameter file). Holding this data in a structure is convenient for writing/reading the restart file, and
* it allows the introduction of new global variables in a simple way. The only thing to do is to introduce
* them into this structure.
*/
extern struct global_data_all_processes
{
long long TotNumPart; /*!< total particle numbers (global value) */
long long TotN_gas; /*!< total gas particle number (global value) */
#ifdef PY_INTERFACE
long long TotNumPartQ; /*!< total particle numbers (global value) */
long long TotN_gasQ; /*!< total gas particle number (global value) */
int MaxPartQ; /*!< This gives the maxmimum number of particles that can be stored on one processor. */
int MaxPartSphQ; /*!< This gives the maxmimum number of SPH particles that can be stored on one processor. */
int BunchSizeSph;
int BunchSizeDensitySph;
double ForceSofteningQ;
#endif
#if defined(SFR) || defined(STELLAR_PROP)
long long TotN_stars; /*!< total stars particle number (global value) */
#endif
#ifdef MULTIPHASE
long long TotN_sph; /*!< total sph particle number (global value) */
long long TotN_sticky; /*!< total sticky particle number (global value) */
long long TotN_stickyflaged; /*!< total sticky flaged particle number (global value) */
long long TotN_stickyactive; /*!< total sticky active particle number (global value) */
long long TotN_dark; /*!< total dark particle number (global value) */
#endif
int MaxPart; /*!< This gives the maxmimum number of particles that can be stored on one processor. */
int MaxPartSph; /*!< This gives the maxmimum number of SPH particles that can be stored on one processor. */
#ifdef TESSEL
int MaxgPart;
#endif
#ifdef STELLAR_PROP
int MaxPartStars; /*!< This gives the maxmimum number of Star particles that can be stored on one processor. */
#endif
double BoxSize; /*!< Boxsize in case periodic boundary conditions are used */
int ICFormat; /*!< selects different versions of IC file-format */
int SnapFormat; /*!< selects different versions of snapshot file-formats */
int NumFilesPerSnapshot; /*!< number of files in multi-file snapshot dumps */
int NumFilesWrittenInParallel;/*!< maximum number of files that may be written simultaneously when
writing/reading restart-files, or when writing snapshot files */
int BufferSize; /*!< size of communication buffer in MB */
int BunchSizeForce; /*!< number of particles fitting into the buffer in the parallel tree-force algorithm */
int BunchSizeDensity; /*!< number of particles fitting into the communication buffer in the density computation */
int BunchSizeHydro; /*!< number of particles fitting into the communication buffer in the SPH hydrodynamical force computation */
int BunchSizeDomain; /*!< number of particles fitting into the communication buffer in the domain decomposition */
#ifdef MULTIPHASE
int BunchSizeSticky; /*!< number of particles fitting into the communication buffer in the Chimie computation */
#endif
#ifdef CHIMIE
int BunchSizeChimie; /*!< number of particles fitting into the communication buffer in the Chimie computation */
int BunchSizeStarsDensity; /*!< number of particles fitting into the communication buffer in the star density computation */
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
int BunchSizeSynchronizeNgBTimestep;
#endif
#ifdef TESSEL
int BunchSizeGhost;
#endif
double PartAllocFactor; /*!< in order to maintain work-load balance, the particle load will usually
NOT be balanced. Each processor allocates memory for PartAllocFactor times
the average number of particles to allow for that */
double TreeAllocFactor; /*!< Each processor allocates a number of nodes which is TreeAllocFactor times
the maximum(!) number of particles. Note: A typical local tree for N
particles needs usually about ~0.65*N nodes. */
#ifdef SFR
double StarsAllocFactor; /*!< Estimated fraction of gas particles that will form stars during the simulation
This allow to reduce the memory stored for stellar particles */
#endif
/* some SPH parameters */
double DesNumNgb; /*!< Desired number of SPH neighbours */
double MaxNumNgbDeviation; /*!< Maximum allowed deviation neighbour number */
double ArtBulkViscConst; /*!< Sets the parameter \f$\alpha\f$ of the artificial viscosity */
#ifdef ART_CONDUCTIVITY
double ArtCondConst; /*!< Sets the parameter \f$\alpha\f$ of the artificial conductivity */
double ArtCondThreshold;
#endif
double InitGasTemp; /*!< may be used to set the temperature in the IC's */
double MinGasTemp; /*!< may be used to set a floor for the gas temperature */
double MinEgySpec; /*!< the minimum allowed temperature expressed as energy per unit mass */
/* Usefull constants */
double Boltzmann;
double ProtonMass;
double mumh;
#ifdef COOLING
/* Cooling parameters */
double *logT;
double *logL;
gsl_interp_accel *acc_cooling_spline;
gsl_spline *cooling_spline;
double CoolingType;
#ifdef PYCOOL
char * CoolingFile;
#else
char CoolingFile[MAXLEN_FILENAME]; /*!< cooling file */
#endif
double CutofCoolingTemperature;
/*
new metal dependent cooling
*/
double CoolingParameters_zmin;
double CoolingParameters_zmax;
double CoolingParameters_slz;
double CoolingParameters_tmin;
double CoolingParameters_tmax;
double CoolingParameters_slt;
double CoolingParameters_FeHSolar;
double CoolingParameters_cooling_data_max;
double CoolingParameters_cooling_data[COOLING_NMETALICITIES][COOLING_NTEMPERATURES];
int CoolingParameters_p;
int CoolingParameters_q;
#ifdef LAMBDA_DEPRAZ
float*** COOLING_TABLES_METAL_FREE;
float** COOLING_TABLES_TOTAL_METAL;
float*** ELECTRON_DENSITY_OVER_N_H_TABLES;
float** ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR;
float* HYDROGEN_TABLES;
float* TEMPERATURE_TABLES;
float* HELIUM_ABOUNDANCE_TABLES;
//corresponding sizes
int SIZE_HYDROGEN_TABLES;
int SIZE_TEMPERATURE_TABLES;
int SIZE_HELIUM_ABOUNDANCE_TABLES;
// current redshift value determining the cooling file
// from which the data is interpolated
float CURRENT_TABLE_REDSHIFT;
#endif
#endif
#ifdef CHIMIE
int ChimieNumberOfParameterFiles;
#ifdef PYCHEM
char * ChimieParameterFile;
#else
char ChimieParameterFile[MAXLEN_FILENAME]; /*!< chimie parameter file */
#endif
double ChimieSupernovaEnergy;
double ChimieKineticFeedbackFraction;
double ChimieWindSpeed;
double ChimieWindTime;
double ChimieSNIaThermalTime;
double ChimieSNIIThermalTime;
double ChimieMaxSizeTimestep;
#ifdef CHIMIE_ONE_SN_ONLY /*!< explode only one sn>*/
int ChimieOneSN;
#endif
#endif
#if defined (CHIMIE) || defined (COOLING)
double InitGasMetallicity;
#endif
#if !defined (HEATING_PE)
double HeatingPeElectronFraction;
#endif
#if !defined (HEATING_PE) || defined (STELLAR_FLUX) || defined (EXTERNAL_FLUX)
double HeatingPeSolarEnergyDensity;
#endif
#if !defined (HEATING_PE) || defined (STELLAR_FLUX)
double HeatingPeLMRatioGas;
double HeatingPeLMRatioHalo;
double HeatingPeLMRatioDisk;
double HeatingPeLMRatioBulge;
double HeatingPeLMRatioStars;
double HeatingPeLMRatioBndry;
double HeatingPeLMRatio[6];
#endif
#ifdef EXTERNAL_FLUX
double HeatingExternalFLuxEnergyDensity;
#endif
#ifdef MULTIPHASE
double CriticalTemperature;
double CriticalEgySpec;
double CriticalNonCollisionalTemperature;
double CriticalNonCollisionalEgySpec;
#ifdef COLDGAS_CYCLE
double ColdGasCycleTransitionTime;
double ColdGasCycleTransitionParameter;
#endif
#endif
#ifdef MULTIPHASE
/* some STICKY parameters */
int StickyUseGridForCollisions;
double StickyTime; /*!< Cooling time of sticky particle collision */
double StickyCollisionTime;
double StickyLastCollisionTime;
double StickyIdleTime;
double StickyMinVelocity;
double StickyMaxVelocity;
int StickyGridNx;
int StickyGridNy;
int StickyGridNz;
double StickyGridXmin;
double StickyGridXmax;
double StickyGridYmin;
double StickyGridYmax;
double StickyGridZmin;
double StickyGridZmax;
double StickyLambda;
double StickyDensity;
double StickyDensityPower;
double StickyBetaR;
double StickyBetaT;
double StickyRsphFact; /*!< Fraction of the sph radius used in sticky particle */
#endif
#ifdef OUTERPOTENTIAL
#ifdef NFW
double HaloConcentration;
double HaloMass;
double GasMassFraction;
double NFWPotentialCte;
double Rs;
#endif
#ifdef PLUMMER
double PlummerMass;
double PlummerSoftenning;
double PlummerPotentialCte;
#endif
#ifdef MIYAMOTONAGAI
double MiyamotoNagaiMass;
double MiyamotoNagaiHr;
double MiyamotoNagaiHz;
double MiyamotoNagaiPotentialCte;
#endif
#ifdef PISOTHERM
double Rho0;
double Rc;
double PisothermPotentialCte;
double GasMassFraction;
double PotentialInf;
gsl_function PotentialF;
gsl_integration_workspace *Potentialw;
#endif
#ifdef CORIOLIS
double CoriolisOmegaX;
double CoriolisOmegaY;
double CoriolisOmegaZ;
double CoriolisOmegaX0;
double CoriolisOmegaY0;
double CoriolisOmegaZ0;
#endif
#endif
#ifdef SFR
int StarFormationNStarsFromGas;
double StarFormationStarMass;
double StarFormationMgMsFraction;
int StarFormationType;
double StarFormationCstar;
double StarFormationTime;
double StarFormationDensity;
double StarFormationTemperature;
double ThresholdDensity;
#endif
#ifdef FEEDBACK
double SupernovaTime;
#endif
#ifdef FEEDBACK_WIND
double SupernovaWindEgySpecPerMassUnit;
double SupernovaWindFractionInEgyKin;
double SupernovaWindParameter;
double SupernovaWindSpeed;
double SupernovaWindIntAccuracy;
#endif
#ifdef AGN_ACCRETION
double TimeBetAccretion;
double AccretionRadius;
double AGNFactor;
double MinMTotInRa;
double TimeLastAccretion;
double LastMTotInRa;
double MTotInRa;
double dMTotInRa;
#endif
#ifdef BUBBLES
char BubblesInitFile[MAXLEN_FILENAME]; /*!< bubble file */
double *BubblesTime;
double *BubblesD;
double *BubblesR;
double *BubblesE;
double *BubblesA;
double *BubblesB;
int BubblesIndex;
double BubblesAlpha;
double BubblesBeta;
double BubblesDelta;
double BubblesRadiusFactor;
double EnergyBubbles;
#endif
#ifdef AGN_HEATING
double AGNHeatingPower;
double AGNHeatingRmax;
#endif
#ifdef BONDI_ACCRETION
double BondiEfficiency;
double BondiBlackHoleMass;
double BondiHsmlFactor;
double BondiPower;
double BondiTimeBet;
double BondiTimeLast;
#endif
#if defined (AGN_ACCRETION) || defined (BONDI_ACCRETION)
double LightSpeed;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
double ArtBulkViscConstMin;
double ArtBulkViscConstMax;
double ArtBulkViscConstL;
#endif
#ifdef AB_TURB
double StDecay;
double StEnergy;
double StDtFreq;
double StKmin;
double StKmax;
double StSolWeight;
double StAmplFac;
int StSpectForm;
int StSeed;
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
int NgbFactorTimestep;
#endif
/* some force counters */
long long TotNumOfForces; /*!< counts total number of force computations */
long long NumForcesSinceLastDomainDecomp; /*!< count particle updates since last domain decomposition */
/* system of units */
double G; /*!< Gravity-constant in internal units */
double UnitTime_in_s; /*!< factor to convert internal time unit to seconds/h */
double UnitMass_in_g; /*!< factor to convert internal mass unit to grams/h */
double UnitVelocity_in_cm_per_s; /*!< factor to convert intqernal velocity unit to cm/sec */
double UnitLength_in_cm; /*!< factor to convert internal length unit to cm/h */
double UnitPressure_in_cgs; /*!< factor to convert internal pressure unit to cgs units (little 'h' still around!) */
double UnitDensity_in_cgs; /*!< factor to convert internal length unit to g/cm^3*h^2 */
double UnitCoolingRate_in_cgs; /*!< factor to convert internal cooling rate to cgs units */
double UnitEnergy_in_cgs; /*!< factor to convert internal energy to cgs units */
double UnitTime_in_Megayears; /*!< factor to convert internal time to megayears/h */
double GravityConstantInternal; /*!< If set to zero in the parameterfile, the internal value of the
gravitational constant is set to the Newtonian value based on the system of
units specified. Otherwise the value provided is taken as internal gravity constant G. */
/* Cosmological parameters */
double Hubble; /*!< Hubble-constant in internal units */
double Omega0; /*!< matter density in units of the critical density (at z=0)*/
double OmegaLambda; /*!< vaccum energy density relative to crictical density (at z=0) */
double OmegaBaryon; /*!< baryon density in units of the critical density (at z=0)*/
double HubbleParam; /*!< little `h', i.e. Hubble constant in units of 100 km/s/Mpc. Only needed to get absolute physical values for cooling physics */
/* Code options */
int ComovingIntegrationOn; /*!< flags that comoving integration is enabled */
int PeriodicBoundariesOn; /*!< flags that periodic boundaries are enabled */
int ResubmitOn; /*!< flags that automatic resubmission of job to queue system is enabled */
int TypeOfOpeningCriterion; /*!< determines tree cell-opening criterion: 0 for Barnes-Hut, 1 for relative criterion */
int TypeOfTimestepCriterion; /*!< gives type of timestep criterion (only 0 supported right now - unlike gadget-1.1) */
int OutputListOn; /*!< flags that output times are listed in a specified file */
/* Parameters determining output frequency */
int SnapshotFileCount; /*!< number of snapshot that is written next */
double TimeBetSnapshot; /*!< simulation time interval between snapshot files */
double TimeOfFirstSnapshot; /*!< simulation time of first snapshot files */
double CpuTimeBetRestartFile; /*!< cpu-time between regularly generated restart files */
double TimeLastRestartFile; /*!< cpu-time when last restart-file was written */
double TimeBetStatistics; /*!< simulation time interval between computations of energy statistics */
double TimeLastStatistics; /*!< simulation time when the energy statistics was computed the last time */
int NumCurrentTiStep; /*!< counts the number of system steps taken up to this point */
/* Current time of the simulation, global step, and end of simulation */
double Time; /*!< current time of the simulation */
double TimeBegin; /*!< time of initial conditions of the simulation */
double TimeStep; /*!< difference between current times of previous and current timestep */
double TimeMax; /*!< marks the point of time until the simulation is to be evolved */
/* variables for organizing discrete timeline */
double Timebase_interval; /*!< factor to convert from floating point time interval to integer timeline */
int Ti_Current; /*!< current time on integer timeline */
int Ti_nextoutput; /*!< next output time on integer timeline */
#ifdef FLEXSTEPS
int PresentMinStep; /*!< If FLEXSTEPS is used, particle timesteps are chosen as multiples of the present minimum timestep. */
int PresentMaxStep; /*!< If FLEXSTEPS is used, this is the maximum timestep in timeline units, rounded down to the next power 2 division */
#endif
#ifdef PMGRID
int PM_Ti_endstep; /*!< begin of present long-range timestep */
int PM_Ti_begstep; /*!< end of present long-range timestep */
#endif
/* Placement of PM grids */
#ifdef PMGRID
double Asmth[2]; /*!< Gives the scale of the long-range/short-range split (in mesh-cells), both for the coarse and the high-res mesh */
double Rcut[2]; /*!< Gives the maximum radius for which the short-range force is evaluated with the tree (in mesh-cells), both for the coarse and the high-res mesh */
double Corner[2][3]; /*!< lower left corner of coarse and high-res PM-mesh */
double UpperCorner[2][3]; /*!< upper right corner of coarse and high-res PM-mesh */
double Xmintot[2][3]; /*!< minimum particle coordinates both for coarse and high-res PM-mesh */
double Xmaxtot[2][3]; /*!< maximum particle coordinates both for coarse and high-res PM-mesh */
double TotalMeshSize[2]; /*!< total extension of coarse and high-res PM-mesh */
#endif
/* Variables that keep track of cumulative CPU consumption */
double TimeLimitCPU; /*!< CPU time limit as defined in parameterfile */
double CPU_TreeConstruction; /*!< time spent for constructing the gravitational tree */
double CPU_TreeWalk; /*!< actual time spent for pure tree-walks */
double CPU_Gravity; /*!< cumulative time used for gravity computation (tree-algorithm only) */
double CPU_Potential; /*!< time used for computing gravitational potentials */
double CPU_Domain; /*!< cumulative time spent for domain decomposition */
double CPU_Snapshot; /*!< time used for writing snapshot files */
double CPU_Total; /*!< cumulative time spent for domain decomposition */
double CPU_CommSum; /*!< accumulated time used for communication, and for collecting partial results, in tree-gravity */
double CPU_Imbalance; /*!< cumulative time lost accross all processors as work-load imbalance in gravitational tree */
double CPU_HydCompWalk; /*!< time used for actual SPH computations, including neighbour search */
double CPU_HydCommSumm; /*!< cumulative time used for communication in SPH, and for collecting partial results */
double CPU_HydImbalance; /*!< cumulative time lost due to work-load imbalance in SPH */
double CPU_Hydro; /*!< cumulative time spent for SPH related computations */
#ifdef SFR
double CPU_StarFormation; /*!< cumulative time spent for star formation computations */
#endif
#ifdef CHIMIE
double CPU_Chimie; /*!< cumulative time spent for chimie computations */
double CPU_ChimieDensCompWalk;
double CPU_ChimieDensCommSumm;
double CPU_ChimieDensImbalance;
double CPU_ChimieDensEnsureNgb;
double CPU_ChimieCompWalk;
double CPU_ChimieCommSumm;
double CPU_ChimieImbalance;
#endif
#ifdef MULTIPHASE
double CPU_Sticky; /*!< cumulative time spent for sticky computations */
#endif
double CPU_EnsureNgb; /*!< time needed to iterate on correct neighbour numbers */
double CPU_Predict; /*!< cumulative time to drift the system forward in time, including dynamic tree updates */
double CPU_TimeLine; /*!< time used for determining new timesteps, and for organizing the timestepping, including kicks of active particles */
double CPU_PM; /*!< time used for long-range gravitational force */
double CPU_Peano; /*!< time required to establish Peano-Hilbert order */
#ifdef DETAILED_CPU_DOMAIN
double CPU_Domain_findExtend;
double CPU_Domain_determineTopTree;
double CPU_Domain_sumCost;
double CPU_Domain_findSplit;
double CPU_Domain_shiftSplit;
double CPU_Domain_countToGo;
double CPU_Domain_exchange;
#endif
#ifdef DETAILED_CPU_GRAVITY
double CPU_Gravity_TreeWalk1;
double CPU_Gravity_TreeWalk2;
double CPU_Gravity_CommSum1;
double CPU_Gravity_CommSum2;
double CPU_Gravity_Imbalance1;
double CPU_Gravity_Imbalance2;
#endif
#ifdef COOLING
double CPU_Cooling;
#endif
#ifdef DETAILED_CPU
double CPU_Leapfrog;
double CPU_Physics;
double CPU_Residual;
double CPU_Accel;
double CPU_Begrun;
#endif
/* tree code opening criterion */
double ErrTolTheta; /*!< BH tree opening angle */
double ErrTolForceAcc; /*!< parameter for relative opening criterion in tree walk */
/* adjusts accuracy of time-integration */
double ErrTolIntAccuracy; /*!< accuracy tolerance parameter \f$ \eta \f$ for timestep criterion. The
timestep is \f$ \Delta t = \sqrt{\frac{2 \eta eps}{a}} \f$ */
double MinSizeTimestep; /*!< minimum allowed timestep. Normally, the simulation terminates if the
timestep determined by the timestep criteria falls below this limit. */
double MaxSizeTimestep; /*!< maximum allowed timestep */
double MaxRMSDisplacementFac; /*!< this determines a global timestep criterion for cosmological simulations
in comoving coordinates. To this end, the code computes the rms velocity
of all particles, and limits the timestep such that the rms displacement
is a fraction of the mean particle separation (determined from the
particle mass and the cosmological parameters). This parameter specifies
this fraction. */
double CourantFac; /*!< SPH-Courant factor */
/* frequency of tree reconstruction/domain decomposition */
double TreeDomainUpdateFrequency; /*!< controls frequency of domain decompositions */
/* Gravitational and hydrodynamical softening lengths (given in terms of an `equivalent' Plummer softening length).
* Five groups of particles are supported 0="gas", 1="halo", 2="disk", 3="bulge", 4="stars", 5="bndry"
*/
double MinGasHsmlFractional; /*!< minimum allowed SPH smoothing length in units of SPH gravitational softening length */
double MinGasHsml; /*!< minimum allowed SPH smoothing length */
double SofteningGas; /*!< comoving gravitational softening lengths for type 0 */
double SofteningHalo; /*!< comoving gravitational softening lengths for type 1 */
double SofteningDisk; /*!< comoving gravitational softening lengths for type 2 */
double SofteningBulge; /*!< comoving gravitational softening lengths for type 3 */
double SofteningStars; /*!< comoving gravitational softening lengths for type 4 */
double SofteningBndry; /*!< comoving gravitational softening lengths for type 5 */
double SofteningGasMaxPhys; /*!< maximum physical softening length for type 0 */
double SofteningHaloMaxPhys; /*!< maximum physical softening length for type 1 */
double SofteningDiskMaxPhys; /*!< maximum physical softening length for type 2 */
double SofteningBulgeMaxPhys; /*!< maximum physical softening length for type 3 */
double SofteningStarsMaxPhys; /*!< maximum physical softening length for type 4 */
double SofteningBndryMaxPhys; /*!< maximum physical softening length for type 5 */
double SofteningTable[6]; /*!< current (comoving) gravitational softening lengths for each particle type */
double ForceSoftening[6]; /*!< the same, but multiplied by a factor 2.8 - at that scale the force is Newtonian */
double MassTable[6]; /*!< Table with particle masses for particle types with equal mass.
If particle masses are all equal for one type, the corresponding entry in MassTable
is set to this value, allowing the size of the snapshot files to be reduced. */
/* some filenames */
char InitCondFile[MAXLEN_FILENAME]; /*!< filename of initial conditions */
char OutputDir[MAXLEN_FILENAME]; /*!< output directory of the code */
char SnapshotFileBase[MAXLEN_FILENAME]; /*!< basename to construct the names of snapshotf files */
char EnergyFile[MAXLEN_FILENAME]; /*!< name of file with energy statistics */
#ifdef SYSTEMSTATISTICS
char SystemFile[MAXLEN_FILENAME];
#endif
char CpuFile[MAXLEN_FILENAME]; /*!< name of file with cpu-time statistics */
char InfoFile[MAXLEN_FILENAME]; /*!< name of log-file with a list of the timesteps taken */
char LogFile[MAXLEN_FILENAME]; /*!< name of log-file with varied info */
#ifdef SFR
char SfrFile[MAXLEN_FILENAME]; /*!< name of file with sfr records */
#endif
#ifdef CHIMIE
char ChimieFile[MAXLEN_FILENAME]; /*!< name of file with chimie records */
#endif
#ifdef MULTIPHASE
char PhaseFile[MAXLEN_FILENAME]; /*!< name of file with phase records */
char StickyFile[MAXLEN_FILENAME]; /*!< name of file with sticky records */
#endif
#ifdef AGN_ACCRETION
char AccretionFile[MAXLEN_FILENAME]; /*!< name of file with accretion records */
#endif
#ifdef BONDI_ACCRETION
char BondiFile[MAXLEN_FILENAME]; /*!< name of file with bondi records */
#endif
#ifdef BUBBLES
char BubbleFile[MAXLEN_FILENAME]; /*!< name of file with bubble records */
#endif
char TimingsFile[MAXLEN_FILENAME]; /*!< name of file with performance metrics of gravitational tree algorithm */
char RestartFile[MAXLEN_FILENAME]; /*!< basename of restart-files */
char ResubmitCommand[MAXLEN_FILENAME]; /*!< name of script-file that will be executed for automatic restart */
char OutputListFilename[MAXLEN_FILENAME]; /*!< name of file with list of desired output times */
double OutputListTimes[MAXLEN_OUTPUTLIST]; /*!< table with desired output times */
int OutputListLength; /*!< number of output times stored in the table of desired output times */
#ifdef RANDOMSEED_AS_PARAMETER
int RandomSeed; /*!< initial random seed >*/
#endif
}
All; /*!< a container variable for global variables that are equal on all processors */
/*! This structure holds all the information that is
* stored for each particle of the simulation.
*/
extern struct particle_data
{
FLOAT Pos[3]; /*!< particle position at its current time */
FLOAT Mass; /*!< particle mass */
FLOAT Vel[3]; /*!< particle velocity at its current time */
FLOAT GravAccel[3]; /*!< particle acceleration due to gravity */
#ifdef PMGRID
FLOAT GravPM[3]; /*!< particle acceleration due to long-range PM gravity force*/
#endif
#ifdef FORCETEST
FLOAT GravAccelDirect[3]; /*!< particle acceleration when computed with direct summation */
#endif
FLOAT Potential; /*!< gravitational potential */
FLOAT OldAcc; /*!< magnitude of old gravitational force. Used in relative opening criterion */
#ifndef LONGIDS
unsigned int ID; /*!< particle identifier */
#else
unsigned long long ID; /*!< particle identifier */
#endif
int Type; /*!< flags particle type. 0=gas, 1=halo, 2=disk, 3=bulge, 4=stars, 5=bndry */
int Ti_endstep; /*!< marks start of current timestep of particle on integer timeline */
int Ti_begstep; /*!< marks end of current timestep of particle on integer timeline */
#ifdef SYNCHRONIZE_NGB_TIMESTEP
int Old_Ti_endstep; /*!< marks start of old current timestep of particle on integer timeline */
int Old_Ti_begstep; /*!< marks end of old current timestep of particle on integer timeline */
#endif
#ifdef FLEXSTEPS
int FlexStepGrp; /*!< a random 'offset' on the timeline to create a smooth groouping of particles */
#endif
float GravCost; /*!< weight factor used for balancing the work-load */
#ifdef PSEUDOSYMMETRIC
float AphysOld; /*!< magnitude of acceleration in last timestep. Used to make a first order
prediction of the change of acceleration expected in the future, thereby
allowing to guess whether a decrease/increase of the timestep should occur
in the timestep that is started. */
#endif
#ifdef PARTICLE_FLAG
float Flag;
#endif
#ifdef STELLAR_PROP
unsigned int StPIdx; /*!< index to the corresponding StP particle */
#endif
#ifdef TESSEL
int iT; /*!< index of a triangle to which the point belong to */
int IsDone;
int IsAdded; /*!< if the point has already be added in the tesselation */
int ivPoint; /*!< index of first voronoi point */
int nvPoints; /*!< number of voronoi points */
int iMedian;
int nMedians;
double Volume;
double Density;
double Pressure;
double Entropy;
double rSearch; /*!< radius in which particles must search for ngbs */
int iPref; /*!< for a ghost point, index of the reference point */
FLOAT tesselAccel[3];
#endif
# ifdef SYNCHRONIZE_NGB_TIMESTEP
int Ti_step;
#endif
}
*P, /*!< holds particle data on local processor */
#ifdef PY_INTERFACE
*Q,
*DomainPartBufQ, /*!< buffer for particle data used in domain decomposition */
#endif
*DomainPartBuf; /*!< buffer for particle data used in domain decomposition */
/* the following struture holds data that is stored for each SPH particle in addition to the collisionless
* variables.
*/
extern struct sph_particle_data
{
FLOAT Entropy; /*!< current value of entropy (actually entropic function) of particle */
FLOAT Density; /*!< current baryonic mass density of particle */
FLOAT Hsml; /*!< current smoothing length */
FLOAT Left; /*!< lower bound in iterative smoothing length search */
FLOAT Right; /*!< upper bound in iterative smoothing length search */
FLOAT NumNgb; /*!< weighted number of neighbours found */
#ifdef AVOIDNUMNGBPROBLEM
FLOAT OldNumNgb;
#endif
FLOAT Pressure; /*!< current pressure */
FLOAT DtEntropy; /*!< rate of change of entropy */
#ifdef COOLING
//FLOAT EntropyRad; /*!< current value of entropy resulting from the cooling */
FLOAT DtEntropyRad; /*!< rate of change of entropy due to cooling */
FLOAT DtEnergyRad;
#endif
#ifdef STELLAR_FLUX
FLOAT EnergyFlux; /*!< current value of local energy flux - Sph particles */
#endif
#ifdef AGN_HEATING
FLOAT EgySpecAGNHeat; /*!< current value of specific energy radiated of particle - Sph particles */
FLOAT DtEgySpecAGNHeat; /*!< rate of change of specific radiated energy - Sph particles */
FLOAT DtEntropyAGNHeat;
#endif
#ifdef MULTIPHASE
FLOAT StickyTime;
int StickyFlag;
#ifdef COUNT_COLLISIONS
float StickyCollisionNumber;
#endif
#endif
#ifdef FEEDBACK
FLOAT EgySpecFeedback;
FLOAT DtEgySpecFeedback;
FLOAT EnergySN;
FLOAT EnergySNrem;
FLOAT TimeSN;
FLOAT FeedbackVel[3]; /*!< kick due to feedback force */
#endif
#ifdef FEEDBACK_WIND
FLOAT FeedbackWindVel[3]; /*!< kick due to feedback force */
#endif
FLOAT HydroAccel[3]; /*!< acceleration due to hydrodynamical force */
FLOAT VelPred[3]; /*!< predicted SPH particle velocity at the current time */
FLOAT DivVel; /*!< local velocity divergence */
FLOAT CurlVel; /*!< local velocity curl */
FLOAT Rot[3]; /*!< local velocity curl */
FLOAT DhsmlDensityFactor; /*!< correction factor needed in the equation of motion of the conservative entropy formulation of SPH */
FLOAT MaxSignalVel; /*!< maximum "signal velocity" occuring for this particle */
#ifdef MULTIPHASE
int Phase;
int StickyIndex;
int StickyNgb;
int StickyMaxID;
float StickyMaxFs;
FLOAT StickyNewVel[3];
#endif
#ifdef OUTPUTOPTVAR1
FLOAT OptVar1; /*!< optional variable 1 */
#endif
#ifdef OUTPUTOPTVAR2
FLOAT OptVar2; /*!< optional variable 2 */
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
FLOAT VelocityDispersion[VELOCITY_DISPERSION_SIZE]; /*!< velocity dispersion */
#endif
#ifdef CHIMIE
FLOAT Metal[NELEMENTS];
FLOAT dMass; /*!< mass variation due to mass transfere */
#ifdef CHIMIE_THERMAL_FEEDBACK
FLOAT DeltaEgySpec;
FLOAT SNIaThermalTime; /*!< flag particles that got energy from SNIa */
FLOAT SNIIThermalTime; /*!< flag particles that got energy from SNII */
double NumberOfSNIa;
double NumberOfSNII;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
FLOAT WindTime; /*!< flag particles that belongs to the wind */
unsigned int WindFlag; /*!< flag particles that will be part of the wind */
#endif
#endif /*CHIMIE*/
#ifdef ENTROPYPRED
FLOAT EntropyPred; /*!< predicted entropy at the current time */
#endif
#ifdef ART_CONDUCTIVITY
FLOAT EnergyIntPred;
FLOAT GradEnergyInt[3];
#endif
#ifdef AB_TURB
FLOAT TurbAccel[3];
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
double ArtBulkViscConst;
#ifdef ART_VISCO_CD
double DmatCD[3][3];
double TmatCD[3][3];
double DiVelAccurate;
double DiVelTemp;
double ArtBulkViscConstOld;
double R_CD;
FLOAT MaxSignalVelCD;
#endif
#endif
#if PY_INTERFACE
FLOAT Observable;
FLOAT ObsMoment0;
FLOAT ObsMoment1;
FLOAT GradObservable[3];
#endif
# ifdef SYNCHRONIZE_NGB_TIMESTEP
int Ti_minNgbStep;
#endif
#ifdef TIMESTEP_UPDATE_FOR_FEEDBACK
FLOAT FeedbackUpdatedAccel[3]; /*!< acceleration after feedback injection */
#endif
-
+
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ FLOAT EgyWtDensity; /*!< 'effective' rho to use in hydro equations */
+ FLOAT EntVarPred; /*!< predicted entropy variable */
+ FLOAT DhsmlEgyDensityFactor; /*!< correction factor for density-independent entropy formulation */
+#endif
+
}
*SphP, /*!< holds SPH particle data on local processor */
#ifdef PY_INTERFACE
*SphQ,
*DomainSphBufQ, /*!< buffer for SPH particle data in domain decomposition */
#endif
*DomainSphBuf; /*!< buffer for SPH particle data in domain decomposition */
#ifdef STELLAR_PROP
/* the following struture holds data that is stored for each SPH particle in addition to the collisionless
* variables.
*/
extern struct st_particle_data
{
#ifdef CHECK_ID_CORRESPONDENCE
unsigned int ID; /*!< particle identifier (must be the same as P[].ID) only used to check ID correspondance */
#endif
FLOAT FormationTime; /*!< star formation time of particle */
FLOAT InitialMass; /*!< initial stellar mass */
#ifndef LONGIDS
unsigned int IDProj; /*!< id of projenitor particle */
#else
unsigned long long IDProj; /*!< id of projenitor particle */
#endif
FLOAT Metal[NELEMENTS];
FLOAT Density; /*!< current baryonic mass density of particle */
FLOAT Volume; /*!< current volume of particle */
FLOAT Hsml; /*!< current smoothing length */
FLOAT Left; /*!< lower bound in iterative smoothing length search */
FLOAT Right; /*!< upper bound in iterative smoothing length search */
FLOAT NumNgb; /*!< weighted number of neighbours found */
unsigned int PIdx; /*!< index to the corresponding particle */
#ifdef AVOIDNUMNGBPROBLEM
FLOAT OldNumNgb;
#endif
FLOAT DhsmlDensityFactor; /*!< correction factor needed in the equation of motion of the conservative entropy formulation of SPH */
double TotalEjectedGasMass;
double TotalEjectedEltMass[NELEMENTS];
double TotalEjectedEgySpec;
double NumberOfSNIa;
double NumberOfSNII;
#ifdef CHIMIE_KINETIC_FEEDBACK
double NgbMass; /*!< mass of neighbours */
#endif
#ifdef CHIMIE
unsigned int Flag;
#endif
}
*StP, /*!< holds ST particle data on local processor */
*DomainStBuf; /*!< buffer for ST particle data in domain decomposition */
#endif
/* Variables for Tree
*/
extern int MaxNodes; /*!< maximum allowed number of internal nodes */
extern int Numnodestree; /*!< number of (internal) nodes in each tree */
extern struct NODE
{
FLOAT len; /*!< sidelength of treenode */
FLOAT center[3]; /*!< geometrical center of node */
#ifdef ADAPTIVE_GRAVSOFT_FORGAS
FLOAT maxsoft; /*!< hold the maximum gravitational softening of particles in the
node if the ADAPTIVE_GRAVSOFT_FORGAS option is selected */
#endif
#ifdef STELLAR_FLUX
FLOAT starlum ; /*!< star luminosity of node */
#endif
union
{
int suns[8]; /*!< temporary pointers to daughter nodes */
struct
{
FLOAT s[3]; /*!< center of mass of node */
FLOAT mass; /*!< mass of node */
int bitflags; /*!< a bit-field with various information on the node */
int sibling; /*!< this gives the next node in the walk in case the current node can be used */
int nextnode; /*!< this gives the next node in case the current node needs to be opened */
int father; /*!< this gives the parent node of each node (or -1 if we have the root node) */
}
d;
}
u;
}
*Nodes_base, /*!< points to the actual memory allocted for the nodes */
*Nodes; /*!< this is a pointer used to access the nodes which is shifted such that Nodes[All.MaxPart]
gives the first allocated node */
extern int *Nextnode; /*!< gives next node in tree walk */
extern int *Father; /*!< gives parent node in tree */
extern struct extNODE /*!< this structure holds additional tree-node information which is not needed in the actual gravity computation */
{
FLOAT hmax; /*!< maximum SPH smoothing length in node. Only used for gas particles */
FLOAT vs[3]; /*!< center-of-mass velocity */
}
*Extnodes_base, /*!< points to the actual memory allocted for the extended node information */
*Extnodes; /*!< provides shifted access to extended node information, parallel to Nodes/Nodes_base */
/*! Header for the standard file format.
*/
extern struct io_header
{
int npart[6]; /*!< number of particles of each type in this file */
double mass[6]; /*!< mass of particles of each type. If 0, then the masses are explicitly
stored in the mass-block of the snapshot file, otherwise they are omitted */
double time; /*!< time of snapshot file */
double redshift; /*!< redshift of snapshot file */
int flag_sfr; /*!< flags whether the simulation was including star formation */
int flag_feedback; /*!< flags whether feedback was included (obsolete) */
unsigned int npartTotal[6]; /*!< total number of particles of each type in this snapshot. This can be
different from npart if one is dealing with a multi-file snapshot. */
int flag_cooling; /*!< flags whether cooling was included */
int num_files; /*!< number of files in multi-file snapshot */
double BoxSize; /*!< box-size of simulation in case periodic boundaries were used */
double Omega0; /*!< matter density in units of critical density */
double OmegaLambda; /*!< cosmological constant parameter */
double HubbleParam; /*!< Hubble parameter in units of 100 km/sec/Mpc */
int flag_stellarage; /*!< flags whether the file contains formation times of star particles */
int flag_metals; /*!< flags whether the file contains metallicity values for gas and star particles */
unsigned int npartTotalHighWord[6]; /*!< High word of the total number of particles of each type */
int flag_entropy_instead_u; /*!< flags that IC-file contains entropy instead of u */
int flag_chimie_extraheader; /*!< flags that IC-file contains extra-header for chimie */
#ifdef MULTIPHASE
double critical_energy_spec;
#ifdef MESOMACHINE
char fill[38];
#else
char fill[48]; /* use 42 with regor... */
#endif
#else
char fill[56]; /*!< fills to 256 Bytes */
#endif
}
header; /*!< holds header for snapshot files */
#ifdef CHIMIE_EXTRAHEADER
/*! Header for the chimie part.
*/
extern struct io_chimie_extraheader
{
int nelts; /*!< number of chemical element followed */
float SolarAbundances[NELEMENTS];
char labels[256-4-4*(NELEMENTS)];
}
chimie_extraheader;
#endif
#define IO_NBLOCKS 24 /*!< total number of defined information blocks for snapshot files.
Must be equal to the number of entries in "enum iofields" */
enum iofields /*!< this enumeration lists the defined output blocks in snapshot files. Not all of them need to be present. */
{
IO_POS,
IO_VEL,
IO_ID,
IO_MASS,
IO_U,
IO_RHO,
IO_HSML,
IO_POT,
IO_ACCEL,
IO_DTENTR,
IO_TSTP,
IO_ERADSPH,
IO_ERADSTICKY,
IO_ERADFEEDBACK,
IO_ENERGYFLUX,
IO_METALS,
IO_STAR_FORMATIONTIME,
IO_INITIAL_MASS,
IO_STAR_IDPROJ,
IO_STAR_RHO,
IO_STAR_HSML,
IO_STAR_METALS,
IO_OPTVAR1,
IO_OPTVAR2
};
extern char Tab_IO_Labels[IO_NBLOCKS][4]; /*<! This table holds four-byte character tags used for fileformat 2 */
/* global state of system, used for global statistics
*/
extern struct state_of_system
{
double Mass;
double EnergyKin;
double EnergyPot;
double EnergyInt;
#ifdef COOLING
double EnergyRadSph;
#endif
#ifdef AGN_HEATING
double EnergyAGNHeat;
#endif
#ifdef MULTIPHASE
double EnergyRadSticky;
#endif
#ifdef FEEDBACK_WIND
double EnergyFeedbackWind;
#endif
#ifdef BUBBLES
double EnergyBubbles;
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
double EnergyThermalFeedback;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double EnergyKineticFeedback;
#endif
double EnergyTot;
double Momentum[4];
double AngMomentum[4];
double CenterOfMass[4];
double MassComp[6];
double EnergyKinComp[6];
double EnergyPotComp[6];
double EnergyIntComp[6];
#ifdef COOLING
double EnergyRadSphComp[6];
#endif
#ifdef AGN_HEATING
double EnergyAGNHeatComp[6];
#endif
#ifdef MULTIPHASE
double EnergyRadStickyComp[6];
#endif
#ifdef FEEDBACK_WIND
double EnergyFeedbackWindComp[6];
#endif
#ifdef BUBBLES
double EnergyBubblesComp[6];
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
double EnergyThermalFeedbackComp[6];
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double EnergyKineticFeedbackComp[6];
#endif
double EnergyTotComp[6];
double MomentumComp[6][4];
double AngMomentumComp[6][4];
double CenterOfMassComp[6][4];
}
SysState; /*<! Structure for storing some global statistics about the simulation. */
/*! This structure contains data related to the energy budget.
These values are different for each task. It need to be stored
in the restart flag.
*/
extern struct local_state_of_system
{
double EnergyTest;
double EnergyInt1;
double EnergyInt2;
double EnergyKin1;
double EnergyKin2;
#ifdef COOLING
double RadiatedEnergy;
#endif
#ifdef SFR
double StarEnergyInt;
#ifdef FEEDBACK
double StarEnergyFeedback;
#endif
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
double EnergyThermalFeedback;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double EnergyKineticFeedback;
#endif
#ifdef MULTIPHASE
double EnergyRadSticky;
#endif
#ifdef FEEDBACK_WIND
double EnergyFeedbackWind;
#endif
}
LocalSysState; /*<! Structure for storing some local statistics about the simulation. */
/* Various structures for communication
*/
extern struct gravdata_in
{
union
{
FLOAT Pos[3];
FLOAT Acc[3];
FLOAT Potential;
}
u;
#if defined(UNEQUALSOFTENINGS) || defined(STELLAR_FLUX)
int Type;
#ifdef ADAPTIVE_GRAVSOFT_FORGAS
FLOAT Soft;
#endif
#endif
#ifdef STELLAR_FLUX
FLOAT EnergyFlux;
#endif
union
{
FLOAT OldAcc;
int Ninteractions;
}
w;
}
*GravDataIn, /*!< holds particle data to be exported to other processors */
*GravDataGet, /*!< holds particle data imported from other processors */
*GravDataResult, /*!< holds the partial results computed for imported particles. Note: We use GravDataResult = GravDataGet, such that the result replaces the imported data */
*GravDataOut; /*!< holds partial results received from other processors. This will overwrite the GravDataIn array */
extern struct gravdata_index
{
int Task;
int Index;
int SortIndex;
}
*GravDataIndexTable; /*!< the particles to be exported are grouped by task-number. This table allows the results to be disentangled again and to be assigned to the correct particle */
extern struct densdata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
#ifdef MULTIPHASE
int Phase;
#endif
int Index;
int Task;
#ifdef ART_CONDUCTIVITY
FLOAT EnergyIntPred;
#endif
}
*DensDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*DensDataGet; /*!< holds imported particle data for SPH density computation */
extern struct densdata_out
{
FLOAT Rho;
FLOAT Div, Rot[3];
FLOAT DhsmlDensity;
FLOAT Ngb;
#ifdef ART_CONDUCTIVITY
FLOAT GradEnergyInt[3];
#endif
+#ifdef DENSITY_INDEPENDENT_SPH
+ FLOAT EgyRho;
+ FLOAT DhsmlEgyDensity;
+#endif
}
*DensDataResult, /*!< stores the locally computed SPH density results for imported particles */
*DensDataPartialResult; /*!< imported partial SPH density results from other processors */
extern struct hydrodata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
#ifdef FEEDBACK
FLOAT EnergySN;
#endif
#ifdef MULTIPHASE
int Phase;
FLOAT Entropy;
int StickyFlag;
#endif
FLOAT Mass;
FLOAT Density;
FLOAT Pressure;
FLOAT F1;
FLOAT DhsmlDensityFactor;
int Timestep;
int Task;
int Index;
#ifdef WITH_ID_IN_HYDRA
int ID;
#endif
#ifdef ART_CONDUCTIVITY
FLOAT NormGradEnergyInt;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
double ArtBulkViscConst;
#endif
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ FLOAT EgyRho;
+ FLOAT EntVarPred;
+#endif
}
*HydroDataIn, /*!< holds particle data for SPH hydro-force computation to be exported to other processors */
*HydroDataGet; /*!< holds imported particle data for SPH hydro-force computation */
extern struct hydrodata_out
{
FLOAT Acc[3];
FLOAT DtEntropy;
#ifdef FEEDBACK
FLOAT DtEgySpecFeedback;
FLOAT FeedbackAccel[3]; /*!< acceleration due to feedback force */
#endif
FLOAT MaxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
FLOAT VelocityDispersion[VELOCITY_DISPERSION_SIZE];
#endif
#ifdef MULTIPHASE
FLOAT StickyDVel[3]; /*!< differences in velocities induced by sticky collisions */
#endif
#ifdef OUTPUT_CONDUCTIVITY
FLOAT OptVar2;
#endif
#ifdef ART_VISCO_CD
double DmatCD[3][3];
double TmatCD[3][3];
double R_CD;
FLOAT MaxSignalVelCD;
#endif
}
*HydroDataResult, /*!< stores the locally computed SPH hydro results for imported particles */
*HydroDataPartialResult; /*!< imported partial SPH hydro-force results from other processors */
#ifdef MULTIPHASE
extern struct stickydata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Mass;
FLOAT Hsml;
int ID;
int StickyMaxID;
int StickyNgb;
float StickyMaxFs;
int Task;
int Index;
}
*StickyDataIn, /*!< holds particle data for sticky computation to be exported to other processors */
*StickyDataGet; /*!< holds imported particle data for sticky computation */
extern struct stickydata_out
{
int StickyMaxID;
int StickyNgb;
float StickyMaxFs;
FLOAT StickyNewVel[3];
}
*StickyDataResult, /*!< stores the locally computed sticky results for imported particles */
*StickyDataPartialResult; /*!< imported partial sticky results from other processors */
extern struct Sticky_index
{
int Index;
int CellIndex;
int Flag;
}
*StickyIndex;
#endif
#ifdef CHIMIE
extern struct chimiedata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
#ifndef LONGIDS
unsigned int ID; /*!< particle identifier */
#else
unsigned long long ID; /*!< particle identifier */
#endif
FLOAT Hsml;
#ifdef FEEDBACK
FLOAT EnergySN;
#endif
#ifdef MULTIPHASE
int Phase;
FLOAT Entropy;
int StickyFlag;
#endif
FLOAT Density;
FLOAT Volume;
FLOAT Pressure;
FLOAT F1;
FLOAT DhsmlDensityFactor;
int Timestep;
int Task;
int Index;
#ifdef WITH_ID_IN_HYDRA
int ID;
#endif
double TotalEjectedGasMass;
double TotalEjectedEltMass[NELEMENTS];
double TotalEjectedEgySpec;
double NumberOfSNIa;
double NumberOfSNII;
#ifdef CHIMIE_KINETIC_FEEDBACK
FLOAT NgbMass;
#endif
}
*ChimieDataIn, /*!< holds particle data for Chimie computation to be exported to other processors */
*ChimieDataGet; /*!< holds imported particle data for Chimie computation */
extern struct chimiedata_out
{
FLOAT Acc[3];
FLOAT DtEntropy;
#ifdef FEEDBACK
FLOAT DtEgySpecFeedback;
FLOAT FeedbackAccel[3]; /*!< acceleration due to feedback force */
#endif
FLOAT MaxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
FLOAT VelocityDispersion[VELOCITY_DISPERSION_SIZE];
#endif
#ifdef MULTIPHASE
FLOAT StickyDVel[3]; /*!< differences in velocities induced by sticky collisions */
#endif
}
*ChimieDataResult, /*!< stores the locally computed Chimie results for imported particles */
*ChimieDataPartialResult; /*!< imported partial Chimie results from other processors */
extern struct starsdensdata_in
{
FLOAT Pos[3];
FLOAT Hsml;
int Index;
int Task;
}
*StarsDensDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*StarsDensDataGet; /*!< holds imported particle data for SPH density computation */
extern struct starsdensdata_out
{
FLOAT Rho;
FLOAT Volume;
FLOAT DhsmlDensity;
FLOAT Ngb;
#ifdef CHIMIE_KINETIC_FEEDBACK
FLOAT NgbMass;
#endif
}
*StarsDensDataResult, /*!< stores the locally computed SPH density results for imported particles */
*StarsDensDataPartialResult; /*!< imported partial SPH density results from other processors */
#endif /*CHIMIE*/
#ifdef TESSEL
extern struct ghostdata_in
{
FLOAT Pos[3];
FLOAT rSearch;
int Index;
int Task;
}
*GhostDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*GhostDataGet; /*!< holds imported particle data for SPH density computation */
extern struct ghostdata_out
{
FLOAT Value;
}
*GhostDataResult, /*!< stores the locally computed SPH density results for imported particles */
*GhostDataPartialResult; /*!< imported partial SPH density results from other processors */
/* ghost particles */
//extern struct ghost_particle_data
//{
// FLOAT Pos[3]; /*!< particle position at its current time */
// FLOAT Mass; /*!< particle mass */
//}
// *gP;
extern int NumgPart;
#endif /* TESSEL */
#ifdef SYNCHRONIZE_NGB_TIMESTEP
extern struct SynchroinzeNgbTimestepdata_in
{
FLOAT Pos[3];
FLOAT Hsml;
int Ti_step;
int Ti_endstep;
int Index;
int Task;
#ifdef MULTIPHASE
int Phase;
#endif
}
*SynchroinzeNgbTimestepDataIn,
*SynchroinzeNgbTimestepDataGet;
#endif
#ifdef PY_INTERFACE
extern struct denssphdata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
FLOAT Density;
FLOAT DhsmlDensityFactor;
int Index;
int Task;
FLOAT Observable;
}
*DensSphDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*DensSphDataGet; /*!< holds imported particle data for SPH density computation */
extern struct denssphdata_out
{
FLOAT Rho;
FLOAT Div, Rot[3];
FLOAT DhsmlDensity;
FLOAT Ngb;
FLOAT GradObservable[3];
}
*DensSphDataResult, /*!< stores the locally computed SPH density results for imported particles */
*DensSphDataPartialResult; /*!< imported partial SPH density results from other processors */
extern struct sphdata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
FLOAT Density;
FLOAT DhsmlDensityFactor;
FLOAT ObsMoment0;
FLOAT ObsMoment1;
FLOAT Observable;
int Task;
int Index;
}
*SphDataIn, /*!< holds particle data for SPH hydro-force computation to be exported to other processors */
*SphDataGet; /*!< holds imported particle data for SPH hydro-force computation */
extern struct sphdata_out
{
FLOAT ObsMoment0;
FLOAT ObsMoment1;
FLOAT GradObservable[3];
}
*SphDataResult, /*!< stores the locally computed SPH hydro results for imported particles */
*SphDataPartialResult; /*!< imported partial SPH hydro-force results from other processors */
#endif /*PY_INTERFACE*/
#endif
diff --git a/src/density.c b/src/density.c
index adb9371..c259cbe 100644
--- a/src/density.c
+++ b/src/density.c
@@ -1,822 +1,873 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include "allvars.h"
#include "proto.h"
/*! \file density.c
* \brief SPH density computation and smoothing length determination
*
* This file contains the "first SPH loop", where the SPH densities and
* some auxiliary quantities are computed. If the number of neighbours
* obtained falls outside the target range, the correct smoothing
* length is determined iteratively, if needed.
*/
#ifdef PERIODIC
static double boxSize, boxHalf;
#ifdef LONG_X
static double boxSize_X, boxHalf_X;
#else
#define boxSize_X boxSize
#define boxHalf_X boxHalf
#endif
#ifdef LONG_Y
static double boxSize_Y, boxHalf_Y;
#else
#define boxSize_Y boxSize
#define boxHalf_Y boxHalf
#endif
#ifdef LONG_Z
static double boxSize_Z, boxHalf_Z;
#else
#define boxSize_Z boxSize
#define boxHalf_Z boxHalf
#endif
#endif
/*! This function computes the local density for each active SPH particle,
* the number of neighbours in the current smoothing radius, and the
* divergence and curl of the velocity field. The pressure is updated as
* well. If a particle with its smoothing region is fully inside the
* local domain, it is not exported to the other processors. The function
* also detects particles that have a number of neighbours outside the
* allowed tolerance range. For these particles, the smoothing length is
* adjusted accordingly, and the density computation is executed again.
* Note that the smoothing length is not allowed to fall below the lower
* bound set by MinGasHsml.
*/
void density(int mode)
{
long long ntot, ntotleft;
int *noffset, *nbuffer, *nsend, *nsend_local, *numlist, *ndonelist;
int i, j, n, ndone, npleft, maxfill, source, iter = 0;
int level, ngrp, sendTask, recvTask, place, nexport;
double dt_entr, tstart, tend, tstart_ngb = 0, tend_ngb = 0;
double sumt, sumcomm, timengb, sumtimengb;
double timecomp = 0, timeimbalance = 0, timecommsumm = 0, sumimbalance;
MPI_Status status;
#ifdef DETAILED_CPU_OUTPUT_IN_DENSITY
double *timengblist;
double *timecomplist;
double *timecommsummlist;
double *timeimbalancelist;
#endif
#ifdef DETAILED_CPU
double t0=0,t1=0;
#endif
#ifdef PERIODIC
boxSize = All.BoxSize;
boxHalf = 0.5 * All.BoxSize;
#ifdef LONG_X
boxHalf_X = boxHalf * LONG_X;
boxSize_X = boxSize * LONG_X;
#endif
#ifdef LONG_Y
boxHalf_Y = boxHalf * LONG_Y;
boxSize_Y = boxSize * LONG_Y;
#endif
#ifdef LONG_Z
boxHalf_Z = boxHalf * LONG_Z;
boxSize_Z = boxSize * LONG_Z;
#endif
#endif
#ifdef DETAILED_CPU
if (mode==1)
t0 = second();
#endif
noffset = malloc(sizeof(int) * NTask); /* offsets of bunches in common list */
nbuffer = malloc(sizeof(int) * NTask);
nsend_local = malloc(sizeof(int) * NTask);
nsend = malloc(sizeof(int) * NTask * NTask);
ndonelist = malloc(sizeof(int) * NTask);
for(n = 0, NumSphUpdate = 0; n < N_gas; n++)
{
SphP[n].Left = SphP[n].Right = 0;
#ifdef AVOIDNUMNGBPROBLEM
SphP[n].OldNumNgb = -1;
#endif
#ifdef ART_CONDUCTIVITY
SphP[n].EnergyIntPred = GAMMA_MINUS1*SphP[n].Pressure/SphP[n].Density ;
#endif
#ifdef SFR
if((P[n].Ti_endstep == All.Ti_Current) && (P[n].Type == 0))
#else
if(P[n].Ti_endstep == All.Ti_Current)
#endif
NumSphUpdate++;
}
numlist = malloc(NTask * sizeof(int) * NTask);
MPI_Allgather(&NumSphUpdate, 1, MPI_INT, numlist, 1, MPI_INT, MPI_COMM_WORLD);
for(i = 0, ntot = 0; i < NTask; i++)
ntot += numlist[i];
free(numlist);
/* we will repeat the whole thing for those particles where we didn't
* find enough neighbours
*/
do
{
i = 0; /* beginn with this index */
ntotleft = ntot; /* particles left for all tasks together */
while(ntotleft > 0)
{
for(j = 0; j < NTask; j++)
nsend_local[j] = 0;
/* do local particles and prepare export list */
tstart = second();
for(nexport = 0, ndone = 0; i < N_gas && nexport < All.BunchSizeDensity - NTask; i++)
#ifdef SFR
if((P[i].Ti_endstep == All.Ti_Current) && (P[i].Type == 0))
#else
if(P[i].Ti_endstep == All.Ti_Current)
#endif
{
ndone++;
for(j = 0; j < NTask; j++)
Exportflag[j] = 0;
density_evaluate(i, 0);
for(j = 0; j < NTask; j++)
{
if(Exportflag[j])
{
DensDataIn[nexport].Pos[0] = P[i].Pos[0];
DensDataIn[nexport].Pos[1] = P[i].Pos[1];
DensDataIn[nexport].Pos[2] = P[i].Pos[2];
DensDataIn[nexport].Vel[0] = SphP[i].VelPred[0];
DensDataIn[nexport].Vel[1] = SphP[i].VelPred[1];
DensDataIn[nexport].Vel[2] = SphP[i].VelPred[2];
DensDataIn[nexport].Hsml = SphP[i].Hsml;
#ifdef MULTIPHASE
DensDataIn[nexport].Phase = SphP[i].Phase;
#endif
DensDataIn[nexport].Index = i;
DensDataIn[nexport].Task = j;
#ifdef ART_CONDUCTIVITY
DensDataIn[nexport].EnergyIntPred = SphP[i].EnergyIntPred ;
#endif
nexport++;
nsend_local[j]++;
}
}
}
tend = second();
timecomp += timediff(tstart, tend);
qsort(DensDataIn, nexport, sizeof(struct densdata_in), dens_compare_key);
for(j = 1, noffset[0] = 0; j < NTask; j++)
noffset[j] = noffset[j - 1] + nsend_local[j - 1];
tstart = second();
MPI_Allgather(nsend_local, NTask, MPI_INT, nsend, NTask, MPI_INT, MPI_COMM_WORLD);
tend = second();
timeimbalance += timediff(tstart, tend);
/* now do the particles that need to be exported */
for(level = 1; level < (1 << PTask); level++)
{
tstart = second();
for(j = 0; j < NTask; j++)
nbuffer[j] = 0;
for(ngrp = level; ngrp < (1 << PTask); ngrp++)
{
maxfill = 0;
for(j = 0; j < NTask; j++)
{
if((j ^ ngrp) < NTask)
if(maxfill < nbuffer[j] + nsend[(j ^ ngrp) * NTask + j])
maxfill = nbuffer[j] + nsend[(j ^ ngrp) * NTask + j];
}
if(maxfill >= All.BunchSizeDensity)
break;
sendTask = ThisTask;
recvTask = ThisTask ^ ngrp;
if(recvTask < NTask)
{
if(nsend[ThisTask * NTask + recvTask] > 0 || nsend[recvTask * NTask + ThisTask] > 0)
{
/* get the particles */
MPI_Sendrecv(&DensDataIn[noffset[recvTask]],
nsend_local[recvTask] * sizeof(struct densdata_in), MPI_BYTE,
recvTask, TAG_DENS_A,
&DensDataGet[nbuffer[ThisTask]],
nsend[recvTask * NTask + ThisTask] * sizeof(struct densdata_in),
MPI_BYTE, recvTask, TAG_DENS_A, MPI_COMM_WORLD, &status);
}
}
for(j = 0; j < NTask; j++)
if((j ^ ngrp) < NTask)
nbuffer[j] += nsend[(j ^ ngrp) * NTask + j];
}
tend = second();
timecommsumm += timediff(tstart, tend);
tstart = second();
for(j = 0; j < nbuffer[ThisTask]; j++)
density_evaluate(j, 1);
tend = second();
timecomp += timediff(tstart, tend);
/* do a block to explicitly measure imbalance */
tstart = second();
MPI_Barrier(MPI_COMM_WORLD);
tend = second();
timeimbalance += timediff(tstart, tend);
/* get the result */
tstart = second();
for(j = 0; j < NTask; j++)
nbuffer[j] = 0;
for(ngrp = level; ngrp < (1 << PTask); ngrp++)
{
maxfill = 0;
for(j = 0; j < NTask; j++)
{
if((j ^ ngrp) < NTask)
if(maxfill < nbuffer[j] + nsend[(j ^ ngrp) * NTask + j])
maxfill = nbuffer[j] + nsend[(j ^ ngrp) * NTask + j];
}
if(maxfill >= All.BunchSizeDensity)
break;
sendTask = ThisTask;
recvTask = ThisTask ^ ngrp;
if(recvTask < NTask)
{
if(nsend[ThisTask * NTask + recvTask] > 0 || nsend[recvTask * NTask + ThisTask] > 0)
{
/* send the results */
MPI_Sendrecv(&DensDataResult[nbuffer[ThisTask]],
nsend[recvTask * NTask + ThisTask] * sizeof(struct densdata_out),
MPI_BYTE, recvTask, TAG_DENS_B,
&DensDataPartialResult[noffset[recvTask]],
nsend_local[recvTask] * sizeof(struct densdata_out),
MPI_BYTE, recvTask, TAG_DENS_B, MPI_COMM_WORLD, &status);
/* add the result to the particles */
for(j = 0; j < nsend_local[recvTask]; j++)
{
source = j + noffset[recvTask];
place = DensDataIn[source].Index;
SphP[place].NumNgb += DensDataPartialResult[source].Ngb;
SphP[place].Density += DensDataPartialResult[source].Rho;
SphP[place].DivVel += DensDataPartialResult[source].Div;
SphP[place].DhsmlDensityFactor += DensDataPartialResult[source].DhsmlDensity;
-
+#ifdef DENSITY_INDEPENDENT_SPH
+ SphP[place].EgyWtDensity += DensDataPartialResult[source].EgyRho;
+ SphP[place].DhsmlEgyDensityFactor += DensDataPartialResult[source].DhsmlEgyDensity;
+#endif
+
SphP[place].Rot[0] += DensDataPartialResult[source].Rot[0];
SphP[place].Rot[1] += DensDataPartialResult[source].Rot[1];
SphP[place].Rot[2] += DensDataPartialResult[source].Rot[2];
#ifdef ART_CONDUCTIVITY
SphP[place].GradEnergyInt[0] += DensDataPartialResult[source].GradEnergyInt[0];
SphP[place].GradEnergyInt[1] += DensDataPartialResult[source].GradEnergyInt[1];
SphP[place].GradEnergyInt[2] += DensDataPartialResult[source].GradEnergyInt[2];
#endif
}
}
}
for(j = 0; j < NTask; j++)
if((j ^ ngrp) < NTask)
nbuffer[j] += nsend[(j ^ ngrp) * NTask + j];
}
tend = second();
timecommsumm += timediff(tstart, tend);
level = ngrp - 1;
}
MPI_Allgather(&ndone, 1, MPI_INT, ndonelist, 1, MPI_INT, MPI_COMM_WORLD);
for(j = 0; j < NTask; j++)
ntotleft -= ndonelist[j];
}
/* do final operations on results */
tstart = second();
for(i = 0, npleft = 0; i < N_gas; i++)
{
#ifdef SFR
if((P[i].Ti_endstep == All.Ti_Current) && (P[i].Type == 0))
#else
if(P[i].Ti_endstep == All.Ti_Current)
#endif
{
{
- SphP[i].DhsmlDensityFactor =
- 1 / (1 + SphP[i].Hsml * SphP[i].DhsmlDensityFactor / (NUMDIMS * SphP[i].Density));
+
+ /* this two following lines where the old Gadget-2 version */
+ //SphP[i].DhsmlDensityFactor =
+ // 1 / (1 + SphP[i].Hsml * SphP[i].DhsmlDensityFactor / (NUMDIMS * SphP[i].Density));
+
+ /* they are replaced by the next ones, from Hopkins */
+ SphP[i].DhsmlDensityFactor *= SphP[i].Hsml / (NUMDIMS * SphP[i].Density);
+ if (SphP[i].DhsmlDensityFactor > -0.9)
+ {
+ SphP[i].DhsmlDensityFactor = 1 / (1 + SphP[i].DhsmlDensityFactor);
+ } else {
+ SphP[i].DhsmlDensityFactor = 1;
+ }
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ if((SphP[i].EntVarPred>0)&&(SphP[i].EgyWtDensity>0))
+ {
+ SphP[i].DhsmlEgyDensityFactor *= SphP[i].Hsml/ (NUMDIMS * SphP[i].EgyWtDensity);
+ SphP[i].DhsmlEgyDensityFactor *= -SphP[i].DhsmlDensityFactor;
+ SphP[i].EgyWtDensity /= SphP[i].EntVarPred;
+ } else {
+ SphP[i].DhsmlEgyDensityFactor=0; SphP[i].EntVarPred=0; SphP[i].EgyWtDensity=0;
+ }
+#endif
+
+
+
SphP[i].CurlVel = sqrt(SphP[i].Rot[0] * SphP[i].Rot[0] +
SphP[i].Rot[1] * SphP[i].Rot[1] +
SphP[i].Rot[2] * SphP[i].Rot[2]) / SphP[i].Density;
SphP[i].DivVel /= SphP[i].Density;
dt_entr = (All.Ti_Current - (P[i].Ti_begstep + P[i].Ti_endstep) / 2) * All.Timebase_interval;
+#ifdef DENSITY_INDEPENDENT_SPH
+ SphP[i].Pressure = pow(SphP[i].EntVarPred*SphP[i].EgyWtDensity,GAMMA);
+#else
SphP[i].Pressure =
(SphP[i].Entropy + SphP[i].DtEntropy * dt_entr) * pow(SphP[i].Density, GAMMA);
-
+#endif
+
#ifdef ART_CONDUCTIVITY
SphP[i].GradEnergyInt[0] /= SphP[i].Density;
SphP[i].GradEnergyInt[1] /= SphP[i].Density;
SphP[i].GradEnergyInt[2] /= SphP[i].Density;
#endif
}
/* now check whether we had enough neighbours */
if(SphP[i].NumNgb < (All.DesNumNgb - All.MaxNumNgbDeviation) ||
(SphP[i].NumNgb > (All.DesNumNgb + All.MaxNumNgbDeviation)
&& SphP[i].Hsml > (1.01 * All.MinGasHsml)))
{
#ifdef AVOIDNUMNGBPROBLEM
// if((SphP[i].NumNgb>SphP[i].OldNumNgb-All.MaxNumNgbDeviation/10000.)
// &&(SphP[i].NumNgb<SphP[i].OldNumNgb+All.MaxNumNgbDeviation/10000.))
if(SphP[i].NumNgb==SphP[i].OldNumNgb)
{
P[i].Ti_endstep = -P[i].Ti_endstep - 1;
printf("ID=%d NumNgb=%g OldNumNgb=%g\n",P[i].ID,SphP[i].NumNgb,SphP[i].OldNumNgb);
continue;
}
SphP[i].OldNumNgb = SphP[i].NumNgb;
#endif
/* need to redo this particle */
npleft++;
if(SphP[i].Left > 0 && SphP[i].Right > 0)
if((SphP[i].Right - SphP[i].Left) < 1.0e-3 * SphP[i].Left)
{
/* this one should be ok */
npleft--;
P[i].Ti_endstep = -P[i].Ti_endstep - 1; /* Mark as inactive */
continue;
}
if(SphP[i].NumNgb < (All.DesNumNgb - All.MaxNumNgbDeviation))
SphP[i].Left = dmax(SphP[i].Hsml, SphP[i].Left);
else
{
if(SphP[i].Right != 0)
{
if(SphP[i].Hsml < SphP[i].Right)
SphP[i].Right = SphP[i].Hsml;
}
else
SphP[i].Right = SphP[i].Hsml;
}
if(iter >= MAXITER - 10)
{
printf
("i=%d task=%d ID=%d Hsml=%g Left=%g Right=%g Ngbs=%g Right-Left=%g\n pos=(%g|%g|%g)\n",
i, ThisTask, (int) P[i].ID, SphP[i].Hsml, SphP[i].Left, SphP[i].Right,
(float) SphP[i].NumNgb, SphP[i].Right - SphP[i].Left, P[i].Pos[0], P[i].Pos[1],
P[i].Pos[2]);
fflush(stdout);
}
if(SphP[i].Right > 0 && SphP[i].Left > 0)
SphP[i].Hsml = pow(0.5 * (pow(SphP[i].Left, 3) + pow(SphP[i].Right, 3)), 1.0 / 3);
else
{
if(SphP[i].Right == 0 && SphP[i].Left == 0)
{
printf
("i=%d task=%d ID=%d Hsml=%g Left=%g Right=%g Ngbs=%g Right-Left=%g\n pos=(%g|%g|%g)\n",
i, ThisTask, (int) P[i].ID, SphP[i].Hsml, SphP[i].Left, SphP[i].Right,
(float) SphP[i].NumNgb, SphP[i].Right - SphP[i].Left, P[i].Pos[0], P[i].Pos[1],
P[i].Pos[2]);
fflush(stdout);
endrun(8188); /* can't occur */
}
if(SphP[i].Right == 0 && SphP[i].Left > 0)
{
if(P[i].Type == 0 && fabs(SphP[i].NumNgb - All.DesNumNgb) < 0.5 * All.DesNumNgb)
{
SphP[i].Hsml *=
1 - (SphP[i].NumNgb -
All.DesNumNgb) / (NUMDIMS * SphP[i].NumNgb) * SphP[i].DhsmlDensityFactor;
}
else
SphP[i].Hsml *= 1.26;
}
if(SphP[i].Right > 0 && SphP[i].Left == 0)
{
if(P[i].Type == 0 && fabs(SphP[i].NumNgb - All.DesNumNgb) < 0.5 * All.DesNumNgb)
{
SphP[i].Hsml *=
1 - (SphP[i].NumNgb -
All.DesNumNgb) / (NUMDIMS * SphP[i].NumNgb) * SphP[i].DhsmlDensityFactor;
}
else
SphP[i].Hsml /= 1.26;
}
}
if(SphP[i].Hsml < All.MinGasHsml)
SphP[i].Hsml = All.MinGasHsml;
}
else
P[i].Ti_endstep = -P[i].Ti_endstep - 1; /* Mark as inactive */
}
}
tend = second();
timecomp += timediff(tstart, tend);
numlist = malloc(NTask * sizeof(int) * NTask);
MPI_Allgather(&npleft, 1, MPI_INT, numlist, 1, MPI_INT, MPI_COMM_WORLD);
for(i = 0, ntot = 0; i < NTask; i++)
ntot += numlist[i];
free(numlist);
if(ntot > 0)
{
if(iter == 0)
tstart_ngb = second();
iter++;
if(iter > 0 && ThisTask == 0)
{
printf("ngb iteration %d: need to repeat for %d%09d particles.\n", iter,
(int) (ntot / 1000000000), (int) (ntot % 1000000000));
fflush(stdout);
}
if(iter > MAXITER)
{
printf("failed to converge in neighbour iteration in density()\n");
fflush(stdout);
endrun(1155);
}
}
else
tend_ngb = second();
}
while(ntot > 0);
/* mark as active again */
for(i = 0; i < NumPart; i++)
if(P[i].Ti_endstep < 0)
P[i].Ti_endstep = -P[i].Ti_endstep - 1;
free(ndonelist);
free(nsend);
free(nsend_local);
free(nbuffer);
free(noffset);
/* collect some timing information */
if(iter > 0)
timengb = timediff(tstart_ngb, tend_ngb);
else
timengb = 0;
MPI_Reduce(&timengb, &sumtimengb, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timecomp, &sumt, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timecommsumm, &sumcomm, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timeimbalance, &sumimbalance, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
#ifdef DETAILED_CPU_OUTPUT_IN_DENSITY
numlist = malloc(sizeof(int) * NTask);
timengblist = malloc(sizeof(double) * NTask);
timecomplist = malloc(sizeof(double) * NTask);
timecommsummlist = malloc(sizeof(double) * NTask);
timeimbalancelist = malloc(sizeof(double) * NTask);
MPI_Gather(&NumSphUpdate, 1, MPI_INT, numlist, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Gather(&timengb, 1, MPI_DOUBLE, timengblist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timecomp, 1, MPI_DOUBLE, timecomplist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timecommsumm, 1, MPI_DOUBLE, timecommsummlist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timeimbalance, 1, MPI_DOUBLE, timeimbalancelist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
if(ThisTask == 0)
{
fprintf(FdTimings, "\n density (mode=%d)\n\n",mode);
fprintf(FdTimings, "Nupdate ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12d ",numlist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timengb ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timengblist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timecomp ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timecomplist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timecommsumm ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timecommsummlist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timeimbalance ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timeimbalancelist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "\n");
}
free(timeimbalancelist);
free(timecommsummlist);
free(timecomplist);
free(numlist);
#endif
#ifdef DETAILED_CPU
if (mode==1)
{
t1 = second();
All.CPU_StarFormation += timediff(t0, t1);
}
else
if(ThisTask == 0)
{
All.CPU_HydCompWalk += sumt / NTask;
All.CPU_HydCommSumm += sumcomm / NTask;
All.CPU_HydImbalance += sumimbalance / NTask;
All.CPU_EnsureNgb += sumtimengb / NTask;
}
#else
if(ThisTask == 0)
{
All.CPU_HydCompWalk += sumt / NTask;
All.CPU_HydCommSumm += sumcomm / NTask;
All.CPU_HydImbalance += sumimbalance / NTask;
All.CPU_EnsureNgb += sumtimengb / NTask;
}
#endif
}
/*! This function represents the core of the SPH density computation. The
* target particle may either be local, or reside in the communication
* buffer.
*/
void density_evaluate(int target, int mode)
{
int j, n, startnode, numngb, numngb_inbox;
double h, h2, fac, hinv, hinv3, hinv4;
double rho, divv, wk, dwk;
double dx, dy, dz, r, r2, u, mass_j;
double dvx, dvy, dvz, rotv[3];
double weighted_numngb, dhsmlrho;
FLOAT *pos, *vel;
int phase=0;
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ double egyrho, dhsmlegyrho;
+#endif
#ifdef ART_CONDUCTIVITY
double gradux, graduy, graduz;
double energyintpred;
#endif
if(mode == 0)
{
pos = P[target].Pos;
vel = SphP[target].VelPred;
h = SphP[target].Hsml;
#ifdef MULTIPHASE
phase = SphP[target].Phase;
#endif
#ifdef ART_CONDUCTIVITY
energyintpred = SphP[target].EnergyIntPred;
#endif
}
else
{
pos = DensDataGet[target].Pos;
vel = DensDataGet[target].Vel;
h = DensDataGet[target].Hsml;
#ifdef MULTIPHASE
phase = DensDataGet[target].Phase;
#endif
#ifdef ART_CONDUCTIVITY
energyintpred = DensDataGet[target].EnergyIntPred;
#endif
}
h2 = h * h;
hinv = 1.0 / h;
#ifndef TWODIMS
hinv3 = hinv * hinv * hinv;
#else
hinv3 = hinv * hinv / boxSize_Z;
#endif
hinv4 = hinv3 * hinv;
rho = divv = rotv[0] = rotv[1] = rotv[2] = 0;
weighted_numngb = 0;
dhsmlrho = 0;
#ifdef ART_CONDUCTIVITY
gradux=graduy=graduz=0;
#endif
-
+#ifdef DENSITY_INDEPENDENT_SPH
+ egyrho=0; dhsmlegyrho=0;
+#endif
startnode = All.MaxPart;
numngb = 0;
do
{
numngb_inbox = ngb_treefind_variable(&pos[0], h, phase, &startnode);
for(n = 0; n < numngb_inbox; n++)
{
j = Ngblist[n];
dx = pos[0] - P[j].Pos[0];
dy = pos[1] - P[j].Pos[1];
dz = pos[2] - P[j].Pos[2];
#ifdef PERIODIC /* now find the closest image in the given box size */
if(dx > boxHalf_X)
dx -= boxSize_X;
if(dx < -boxHalf_X)
dx += boxSize_X;
if(dy > boxHalf_Y)
dy -= boxSize_Y;
if(dy < -boxHalf_Y)
dy += boxSize_Y;
if(dz > boxHalf_Z)
dz -= boxSize_Z;
if(dz < -boxHalf_Z)
dz += boxSize_Z;
#endif
r2 = dx * dx + dy * dy + dz * dz;
if(r2 < h2)
{
numngb++;
r = sqrt(r2);
u = r * hinv;
if(u < 0.5)
{
wk = hinv3 * (KERNEL_COEFF_1 + KERNEL_COEFF_2 * (u - 1) * u * u);
dwk = hinv4 * u * (KERNEL_COEFF_3 * u - KERNEL_COEFF_4);
}
else
{
wk = hinv3 * KERNEL_COEFF_5 * (1.0 - u) * (1.0 - u) * (1.0 - u);
dwk = hinv4 * KERNEL_COEFF_6 * (1.0 - u) * (1.0 - u);
}
mass_j = P[j].Mass;
rho += mass_j * wk;
weighted_numngb += NORM_COEFF * wk / hinv3;
dhsmlrho += -mass_j * (NUMDIMS * hinv * wk + u * dwk);
-
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ egyrho += mass_j * SphP[j].EntVarPred * wk;
+ dhsmlegyrho += -mass_j * SphP[j].EntVarPred * (NUMDIMS * hinv * wk + u * dwk);
+#endif
if(r > 0)
{
fac = mass_j * dwk / r;
dvx = vel[0] - SphP[j].VelPred[0];
dvy = vel[1] - SphP[j].VelPred[1];
dvz = vel[2] - SphP[j].VelPred[2];
divv -= fac * (dx * dvx + dy * dvy + dz * dvz);
rotv[0] += fac * (dz * dvy - dy * dvz);
rotv[1] += fac * (dx * dvz - dz * dvx);
rotv[2] += fac * (dy * dvx - dx * dvy);
#ifdef ART_CONDUCTIVITY
if (All.NumCurrentTiStep==0)
fac = 0;
gradux += fac * (energyintpred-SphP[j].EnergyIntPred)*dx;
graduy += fac * (energyintpred-SphP[j].EnergyIntPred)*dy;
graduz += fac * (energyintpred-SphP[j].EnergyIntPred)*dz;
#endif
}
}
}
}
while(startnode >= 0);
if(mode == 0)
{
SphP[target].NumNgb = weighted_numngb;
SphP[target].Density = rho;
SphP[target].DivVel = divv;
SphP[target].DhsmlDensityFactor = dhsmlrho;
SphP[target].Rot[0] = rotv[0];
SphP[target].Rot[1] = rotv[1];
SphP[target].Rot[2] = rotv[2];
#ifdef ART_CONDUCTIVITY
SphP[target].GradEnergyInt[0] = gradux;
SphP[target].GradEnergyInt[1] = graduy;
SphP[target].GradEnergyInt[2] = graduz;
#endif
+#ifdef DENSITY_INDEPENDENT_SPH
+ SphP[target].EgyWtDensity = egyrho;
+ SphP[target].DhsmlEgyDensityFactor = dhsmlegyrho;
+#endif
}
else
{
DensDataResult[target].Rho = rho;
DensDataResult[target].Div = divv;
DensDataResult[target].Ngb = weighted_numngb;
DensDataResult[target].DhsmlDensity = dhsmlrho;
DensDataResult[target].Rot[0] = rotv[0];
DensDataResult[target].Rot[1] = rotv[1];
DensDataResult[target].Rot[2] = rotv[2];
#ifdef ART_CONDUCTIVITY
DensDataResult[target].GradEnergyInt[0] = gradux;
DensDataResult[target].GradEnergyInt[1] = graduy;
DensDataResult[target].GradEnergyInt[2] = graduz;
#endif
+#ifdef DENSITY_INDEPENDENT_SPH
+ DensDataResult[target].EgyRho = egyrho;
+ DensDataResult[target].DhsmlEgyDensity = dhsmlegyrho;
+#endif
}
}
/*! This routine is a comparison kernel used in a sort routine to group
* particles that are exported to the same processor.
*/
int dens_compare_key(const void *a, const void *b)
{
if(((struct densdata_in *) a)->Task < (((struct densdata_in *) b)->Task))
return -1;
if(((struct densdata_in *) a)->Task > (((struct densdata_in *) b)->Task))
return +1;
return 0;
}
diff --git a/src/global.c b/src/global.c
index 611e74a..c684e53 100644
--- a/src/global.c
+++ b/src/global.c
@@ -1,380 +1,396 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include "allvars.h"
#include "proto.h"
/*! \file global.c
* \brief Computes global physical properties of the system
*/
/*! This routine computes various global properties of the particle
* distribution and stores the result in the struct `SysState'.
* Currently, not all the information that's computed here is actually
* used (e.g. momentum is not really used anywhere), just the energies are
* written to a log-file every once in a while.
*/
void compute_global_quantities_of_system(void)
{
int i, j, n;
struct state_of_system sys;
double a1, a2, a3;
double entr = 0, egyspec, vel[3];
#ifdef AGN_HEATING
double especagnheat = 0;
#endif
#ifdef SFR
/* see starformation.c */
#endif
double dt_entr, dt_gravkick, dt_hydrokick;
if(All.ComovingIntegrationOn)
{
a1 = All.Time;
a2 = All.Time * All.Time;
a3 = All.Time * All.Time * All.Time;
}
else
{
a1 = a2 = a3 = 1;
}
for(n = 0; n < 6; n++)
{
sys.MassComp[n] = sys.EnergyKinComp[n] = sys.EnergyPotComp[n] = sys.EnergyIntComp[n] = 0;
#ifdef COOLING
sys.EnergyRadSphComp[n] = 0;
#endif
#ifdef AGN_HEATING
sys.EnergyAGNHeatComp[n] = 0;
#endif
for(j = 0; j < 4; j++)
sys.CenterOfMassComp[n][j] = sys.MomentumComp[n][j] = sys.AngMomentumComp[n][j] = 0;
}
#ifdef SFR
rearrange_particle_sequence();
#endif
for(i = 0; i < NumPart; i++)
{
sys.MassComp[P[i].Type] += P[i].Mass;
sys.EnergyPotComp[P[i].Type] += 0.5 * P[i].Mass * P[i].Potential / a1;
if(All.ComovingIntegrationOn)
{
dt_entr = (All.Ti_Current - (P[i].Ti_begstep + P[i].Ti_endstep) / 2) * All.Timebase_interval;
dt_gravkick = get_gravkick_factor(P[i].Ti_begstep, All.Ti_Current) -
get_gravkick_factor(P[i].Ti_begstep, (P[i].Ti_begstep + P[i].Ti_endstep) / 2);
dt_hydrokick = get_hydrokick_factor(P[i].Ti_begstep, All.Ti_Current) -
get_hydrokick_factor(P[i].Ti_begstep, (P[i].Ti_begstep + P[i].Ti_endstep) / 2);
}
else
dt_entr = dt_gravkick = dt_hydrokick =
(All.Ti_Current - (P[i].Ti_begstep + P[i].Ti_endstep) / 2) * All.Timebase_interval;
for(j = 0; j < 3; j++)
{
vel[j] = P[i].Vel[j] + P[i].GravAccel[j] * dt_gravkick;
if(P[i].Type == 0)
vel[j] += SphP[i].HydroAccel[j] * dt_hydrokick;
}
if(P[i].Type == 0)
{
entr = SphP[i].Entropy + SphP[i].DtEntropy * dt_entr;
#ifdef AGN_HEATING
especagnheat = SphP[i].EgySpecAGNHeat + SphP[i].DtEgySpecAGNHeat * dt_entr;
#endif
#ifdef SFR
/* see starformation.c */
#endif
}
#ifdef PMGRID
if(All.ComovingIntegrationOn)
dt_gravkick = get_gravkick_factor(All.PM_Ti_begstep, All.Ti_Current) -
get_gravkick_factor(All.PM_Ti_begstep, (All.PM_Ti_begstep + All.PM_Ti_endstep) / 2);
else
dt_gravkick = (All.Ti_Current - (All.PM_Ti_begstep + All.PM_Ti_endstep) / 2) * All.Timebase_interval;
for(j = 0; j < 3; j++)
vel[j] += P[i].GravPM[j] * dt_gravkick;
#endif
sys.EnergyKinComp[P[i].Type] +=
0.5 * P[i].Mass * (vel[0] * vel[0] + vel[1] * vel[1] + vel[2] * vel[2]) / a2;
if(P[i].Type == 0)
{
+
+
#ifdef ISOTHERM_EQS
egyspec = entr;
#else
#ifdef MULTIPHASE
if (SphP[i].Phase== GAS_SPH)
- egyspec = entr / (GAMMA_MINUS1) * pow(SphP[i].Density / a3, GAMMA_MINUS1);
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ egyspec = entr / (GAMMA_MINUS1) * pow(SphP[i].EgyWtDensity / a3, GAMMA_MINUS1);
+#else
+ egyspec = entr / (GAMMA_MINUS1) * pow(SphP[i].Density / a3, GAMMA_MINUS1);
+#endif
+
else
egyspec = entr;
#else
- egyspec = entr / (GAMMA_MINUS1) * pow(SphP[i].Density / a3, GAMMA_MINUS1);
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ egyspec = entr / (GAMMA_MINUS1) * pow(SphP[i].EgyWtDensity / a3, GAMMA_MINUS1);
+#else
+ egyspec = entr / (GAMMA_MINUS1) * pow(SphP[i].Density / a3, GAMMA_MINUS1);
+#endif
-#endif
+#endif /*ISOTHERM_EQS*/
+
+
+
if(All.MinEgySpec)
egyspec = dmax(All.MinEgySpec,egyspec);
#endif
sys.EnergyIntComp[0] += P[i].Mass * egyspec;
#ifdef AGN_HEATING
sys.EnergyAGNHeatComp[0] += P[i].Mass * especagnheat;
#endif
#ifdef SFR
/* see starformation.c */
#endif
}
for(j = 0; j < 3; j++)
{
sys.MomentumComp[P[i].Type][j] += P[i].Mass * vel[j];
sys.CenterOfMassComp[P[i].Type][j] += P[i].Mass * P[i].Pos[j];
}
sys.AngMomentumComp[P[i].Type][0] += P[i].Mass * (P[i].Pos[1] * vel[2] - P[i].Pos[2] * vel[1]);
sys.AngMomentumComp[P[i].Type][1] += P[i].Mass * (P[i].Pos[2] * vel[0] - P[i].Pos[0] * vel[2]);
sys.AngMomentumComp[P[i].Type][2] += P[i].Mass * (P[i].Pos[0] * vel[1] - P[i].Pos[1] * vel[0]);
}
/* count energy lost by different processes */
#ifdef COOLING
sys.EnergyRadSphComp[0]=LocalSysState.RadiatedEnergy;
#endif
#ifdef SFR
sys.EnergyIntComp[ST]=LocalSysState.StarEnergyInt;
#endif
/* count thermal feedback */
#ifdef CHIMIE_THERMAL_FEEDBACK
sys.EnergyThermalFeedbackComp[0]=LocalSysState.EnergyThermalFeedback;
for(i = 1; i < 6; i++)
sys.EnergyThermalFeedbackComp[i]=0;
#endif
/* count kinetic feedback */
#ifdef CHIMIE_KINETIC_FEEDBACK
sys.EnergyKineticFeedbackComp[0]=LocalSysState.EnergyKineticFeedback;
for(i = 1; i < 6; i++)
sys.EnergyKineticFeedbackComp[i]=0;
#endif
/* count sticky */
#ifdef MULTIPHASE
sys.EnergyRadStickyComp[0]=LocalSysState.EnergyRadSticky;
for(i = 1; i < 6; i++)
sys.EnergyRadStickyComp[i]=0;
#endif
/* count feedback wind */
#ifdef FEEDBACK_WIND
sys.EnergyFeedbackWindComp[0]=LocalSysState.EnergyFeedbackWind;
for(i = 1; i < 6; i++)
sys.EnergyFeedbackWindComp[i]=0;
#endif
/* some the stuff over all processors */
MPI_Reduce(&sys.MassComp[0], &SysState.MassComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&sys.EnergyPotComp[0], &SysState.EnergyPotComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&sys.EnergyIntComp[0], &SysState.EnergyIntComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
#ifdef COOLING
MPI_Reduce(&sys.EnergyRadSphComp[0], &SysState.EnergyRadSphComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
#endif
#ifdef AGN_HEATING
MPI_Reduce(&sys.EnergyAGNHeatComp[0], &SysState.EnergyAGNHeatComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
MPI_Reduce(&sys.EnergyThermalFeedbackComp[0], &SysState.EnergyThermalFeedbackComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
MPI_Reduce(&sys.EnergyKineticFeedbackComp[0], &SysState.EnergyKineticFeedbackComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
#endif
#ifdef MULTIPHASE
MPI_Reduce(&sys.EnergyRadStickyComp[0], &SysState.EnergyRadStickyComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
#endif
#ifdef FEEDBACK_WIND
MPI_Reduce(&sys.EnergyFeedbackWindComp[0], &SysState.EnergyFeedbackWindComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
#endif
MPI_Reduce(&sys.EnergyKinComp[0], &SysState.EnergyKinComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&sys.MomentumComp[0][0], &SysState.MomentumComp[0][0], 6 * 4, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);
MPI_Reduce(&sys.AngMomentumComp[0][0], &SysState.AngMomentumComp[0][0], 6 * 4, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);
MPI_Reduce(&sys.CenterOfMassComp[0][0], &SysState.CenterOfMassComp[0][0], 6 * 4, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);
#ifdef BUBBLES
SysState.EnergyBubblesComp[0]=All.EnergyBubbles;
for(i = 1; i < 6; i++)
SysState.EnergyBubblesComp[i]=0;
#endif
if(ThisTask == 0)
{
for(i = 0; i < 6; i++)
{
SysState.EnergyTotComp[i] = SysState.EnergyKinComp[i]
+ SysState.EnergyPotComp[i]
+ SysState.EnergyIntComp[i];
#ifdef COOLING
SysState.EnergyTotComp[i] += SysState.EnergyRadSphComp[i];
#endif
#ifdef AGN_HEATING
SysState.EnergyTotComp[i] += SysState.EnergyAGNHeatComp[i];
#endif
#ifdef MULTIPHASE
SysState.EnergyTotComp[i] += SysState.EnergyRadStickyComp[i];
#endif
#ifdef FEEDBACK_WIND
SysState.EnergyTotComp[i] += SysState.EnergyFeedbackWindComp[i];
#endif
#ifdef BUBBLES
SysState.EnergyTotComp[i] += SysState.EnergyBubblesComp[i];
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
SysState.EnergyTotComp[i] += SysState.EnergyThermalFeedbackComp[i];
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
SysState.EnergyTotComp[i] += SysState.EnergyKineticFeedbackComp[i];
#endif
}
SysState.Mass = SysState.EnergyKin = SysState.EnergyPot = SysState.EnergyInt = SysState.EnergyTot = 0;
#ifdef COOLING
SysState.EnergyRadSph = 0;
#endif
#ifdef AGN_HEATING
SysState.EnergyAGNHeat = 0;
#endif
#ifdef MULTIPHASE
SysState.EnergyRadSticky = 0;
#endif
#ifdef FEEDBACK_WIND
SysState.EnergyFeedbackWind = 0;
#endif
#ifdef BUBBLES
SysState.EnergyBubbles = 0;
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
SysState.EnergyThermalFeedback = 0;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
SysState.EnergyKineticFeedback = 0;
#endif
for(j = 0; j < 3; j++)
SysState.Momentum[j] = SysState.AngMomentum[j] = SysState.CenterOfMass[j] = 0;
for(i = 0; i < 6; i++)
{
SysState.Mass += SysState.MassComp[i];
SysState.EnergyKin += SysState.EnergyKinComp[i];
SysState.EnergyPot += SysState.EnergyPotComp[i];
SysState.EnergyInt += SysState.EnergyIntComp[i];
SysState.EnergyTot += SysState.EnergyTotComp[i];
#ifdef COOLING
SysState.EnergyRadSph += SysState.EnergyRadSphComp[i];
#endif
#ifdef AGN_HEATING
SysState.EnergyAGNHeat += SysState.EnergyAGNHeatComp[i];
#endif
#ifdef MULTIPHASE
SysState.EnergyRadSticky += SysState.EnergyRadStickyComp[i];
#endif
#ifdef FEEDBACK_WIND
SysState.EnergyFeedbackWind += SysState.EnergyFeedbackWindComp[i];
#endif
#ifdef BUBBLES
SysState.EnergyBubbles += SysState.EnergyBubblesComp[i];
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
SysState.EnergyThermalFeedback += SysState.EnergyThermalFeedbackComp[i];
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
SysState.EnergyKineticFeedback += SysState.EnergyKineticFeedbackComp[i];
#endif
for(j = 0; j < 3; j++)
{
SysState.Momentum[j] += SysState.MomentumComp[i][j];
SysState.AngMomentum[j] += SysState.AngMomentumComp[i][j];
SysState.CenterOfMass[j] += SysState.CenterOfMassComp[i][j];
}
}
for(i = 0; i < 6; i++)
for(j = 0; j < 3; j++)
if(SysState.MassComp[i] > 0)
SysState.CenterOfMassComp[i][j] /= SysState.MassComp[i];
for(j = 0; j < 3; j++)
if(SysState.Mass > 0)
SysState.CenterOfMass[j] /= SysState.Mass;
for(i = 0; i < 6; i++)
{
SysState.CenterOfMassComp[i][3] = SysState.MomentumComp[i][3] = SysState.AngMomentumComp[i][3] = 0;
for(j = 0; j < 3; j++)
{
SysState.CenterOfMassComp[i][3] +=
SysState.CenterOfMassComp[i][j] * SysState.CenterOfMassComp[i][j];
SysState.MomentumComp[i][3] += SysState.MomentumComp[i][j] * SysState.MomentumComp[i][j];
SysState.AngMomentumComp[i][3] +=
SysState.AngMomentumComp[i][j] * SysState.AngMomentumComp[i][j];
}
SysState.CenterOfMassComp[i][3] = sqrt(SysState.CenterOfMassComp[i][3]);
SysState.MomentumComp[i][3] = sqrt(SysState.MomentumComp[i][3]);
SysState.AngMomentumComp[i][3] = sqrt(SysState.AngMomentumComp[i][3]);
}
SysState.CenterOfMass[3] = SysState.Momentum[3] = SysState.AngMomentum[3] = 0;
for(j = 0; j < 3; j++)
{
SysState.CenterOfMass[3] += SysState.CenterOfMass[j] * SysState.CenterOfMass[j];
SysState.Momentum[3] += SysState.Momentum[j] * SysState.Momentum[j];
SysState.AngMomentum[3] += SysState.AngMomentum[j] * SysState.AngMomentum[j];
}
SysState.CenterOfMass[3] = sqrt(SysState.CenterOfMass[3]);
SysState.Momentum[3] = sqrt(SysState.Momentum[3]);
SysState.AngMomentum[3] = sqrt(SysState.AngMomentum[3]);
}
/* give everyone the result, maybe the want to do something with it */
MPI_Bcast(&SysState, sizeof(struct state_of_system), MPI_BYTE, 0, MPI_COMM_WORLD);
}
diff --git a/src/hydra.c b/src/hydra.c
index 06e2d88..09b8740 100644
--- a/src/hydra.c
+++ b/src/hydra.c
@@ -1,1190 +1,1238 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include <gsl/gsl_math.h>
#include "allvars.h"
#include "proto.h"
/*! \file hydra.c
* \brief Computation of SPH forces and rate of entropy generation
*
* This file contains the "second SPH loop", where the SPH forces are
* computed, and where the rate of change of entropy due to the shock heating
* (via artificial viscosity) is computed.
*/
static double hubble_a, atime, hubble_a2, fac_mu, fac_vsic_fix, a3inv, fac_egy;
#ifdef FEEDBACK
static double fac_pow;
#endif
#ifdef PERIODIC
static double boxSize, boxHalf;
#ifdef LONG_X
static double boxSize_X, boxHalf_X;
#else
#define boxSize_X boxSize
#define boxHalf_X boxHalf
#endif
#ifdef LONG_Y
static double boxSize_Y, boxHalf_Y;
#else
#define boxSize_Y boxSize
#define boxHalf_Y boxHalf
#endif
#ifdef LONG_Z
static double boxSize_Z, boxHalf_Z;
#else
#define boxSize_Z boxSize
#define boxHalf_Z boxHalf
#endif
#endif
/*! This function is the driver routine for the calculation of hydrodynamical
* force and rate of change of entropy due to shock heating for all active
* particles .
*/
void hydro_force(void)
{
long long ntot, ntotleft;
int i, j, k, n, ngrp, maxfill, source, ndone;
int *nbuffer, *noffset, *nsend_local, *nsend, *numlist, *ndonelist;
int level, sendTask, recvTask, nexport, place;
double soundspeed_i;
double tstart, tend, sumt, sumcomm;
double timecomp = 0, timecommsumm = 0, timeimbalance = 0, sumimbalance;
MPI_Status status;
#ifdef ART_VISCO_CD
int ii,jj;
#endif
#ifdef DETAILED_CPU_OUTPUT_IN_HYDRA
double *timecomplist;
double *timecommsummlist;
double *timeimbalancelist;
#endif
#ifdef PERIODIC
boxSize = All.BoxSize;
boxHalf = 0.5 * All.BoxSize;
#ifdef LONG_X
boxHalf_X = boxHalf * LONG_X;
boxSize_X = boxSize * LONG_X;
#endif
#ifdef LONG_Y
boxHalf_Y = boxHalf * LONG_Y;
boxSize_Y = boxSize * LONG_Y;
#endif
#ifdef LONG_Z
boxHalf_Z = boxHalf * LONG_Z;
boxSize_Z = boxSize * LONG_Z;
#endif
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
double v1m,v2m;
#endif
if(All.ComovingIntegrationOn)
{
/* Factors for comoving integration of hydro */
hubble_a = All.Omega0 / (All.Time * All.Time * All.Time)
+ (1 - All.Omega0 - All.OmegaLambda) / (All.Time * All.Time) + All.OmegaLambda;
hubble_a = All.Hubble * sqrt(hubble_a);
hubble_a2 = All.Time * All.Time * hubble_a;
fac_mu = pow(All.Time, 3 * (GAMMA - 1) / 2) / All.Time;
fac_egy = pow(All.Time, 3 * (GAMMA - 1));
fac_vsic_fix = hubble_a * pow(All.Time, 3 * GAMMA_MINUS1);
a3inv = 1 / (All.Time * All.Time * All.Time);
atime = All.Time;
#ifdef FEEDBACK
fac_pow = fac_egy*atime*atime;
#endif
}
else
{
hubble_a = hubble_a2 = atime = fac_mu = fac_vsic_fix = a3inv = fac_egy = 1.0;
#ifdef FEEDBACK
fac_pow = 1.0;
#endif
}
#ifdef OUTPUT_CONDUCTIVITY
for (i=0;i<N_gas;i++)
SphP[i].OptVar1 = sqrt( pow(SphP[i].GradEnergyInt[0],2)+pow(SphP[i].GradEnergyInt[1],2)+pow(SphP[i].GradEnergyInt[2],2))*SphP[i].Hsml/(SphP[i].Pressure/(SphP[i].Density*GAMMA_MINUS1)) ;
#endif
/* `NumSphUpdate' gives the number of particles on this processor that want a force update */
for(n = 0, NumSphUpdate = 0; n < N_gas; n++)
{
#ifdef SFR
if((P[n].Ti_endstep == All.Ti_Current) && (P[n].Type == 0))
#else
if(P[n].Ti_endstep == All.Ti_Current)
#endif
#ifdef MULTIPHASE
if(SphP[n].Phase == GAS_SPH)
#endif
NumSphUpdate++;
}
numlist = malloc(NTask * sizeof(int) * NTask);
MPI_Allgather(&NumSphUpdate, 1, MPI_INT, numlist, 1, MPI_INT, MPI_COMM_WORLD);
for(i = 0, ntot = 0; i < NTask; i++)
ntot += numlist[i];
free(numlist);
noffset = malloc(sizeof(int) * NTask); /* offsets of bunches in common list */
nbuffer = malloc(sizeof(int) * NTask);
nsend_local = malloc(sizeof(int) * NTask);
nsend = malloc(sizeof(int) * NTask * NTask);
ndonelist = malloc(sizeof(int) * NTask);
i = 0; /* first particle for this task */
ntotleft = ntot; /* particles left for all tasks together */
while(ntotleft > 0)
{
for(j = 0; j < NTask; j++)
nsend_local[j] = 0;
/* do local particles and prepare export list */
tstart = second();
for(nexport = 0, ndone = 0; i < N_gas && nexport < All.BunchSizeHydro - NTask; i++)
#ifdef SFR
if((P[i].Ti_endstep == All.Ti_Current) && (P[i].Type == 0))
#else
if(P[i].Ti_endstep == All.Ti_Current)
#endif
{
#ifdef MULTIPHASE
if(SphP[i].Phase == GAS_SPH)
{
#endif
ndone++;
for(j = 0; j < NTask; j++)
Exportflag[j] = 0;
hydro_evaluate(i, 0);
for(j = 0; j < NTask; j++)
{
if(Exportflag[j])
{
for(k = 0; k < 3; k++)
{
HydroDataIn[nexport].Pos[k] = P[i].Pos[k];
HydroDataIn[nexport].Vel[k] = SphP[i].VelPred[k];
}
HydroDataIn[nexport].Hsml = SphP[i].Hsml;
#ifdef FEEDBACK
HydroDataIn[nexport].EnergySN = SphP[i].EnergySN;
#endif
HydroDataIn[nexport].Mass = P[i].Mass;
HydroDataIn[nexport].DhsmlDensityFactor = SphP[i].DhsmlDensityFactor;
HydroDataIn[nexport].Density = SphP[i].Density;
HydroDataIn[nexport].Pressure = SphP[i].Pressure;
HydroDataIn[nexport].Timestep = P[i].Ti_endstep - P[i].Ti_begstep;
#ifdef WITH_ID_IN_HYDRA
HydroDataIn[nexport].ID = P[i].ID;
#endif
#ifdef ART_CONDUCTIVITY
HydroDataIn[nexport].NormGradEnergyInt = sqrt( pow(SphP[i].GradEnergyInt[0],2)+pow(SphP[i].GradEnergyInt[1],2)+pow(SphP[i].GradEnergyInt[2],2));
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
HydroDataIn[nexport].ArtBulkViscConst = SphP[i].ArtBulkViscConst;
#endif
-
+#ifdef DENSITY_INDEPENDENT_SPH
+ HydroDataIn[nexport].EgyRho = SphP[i].EgyWtDensity;
+ HydroDataIn[nexport].EntVarPred = SphP[i].EntVarPred;
+ HydroDataIn[nexport].DhsmlDensityFactor = SphP[i].DhsmlEgyDensityFactor;
+#endif
/* calculation of F1 */
soundspeed_i = sqrt(GAMMA * SphP[i].Pressure / SphP[i].Density);
HydroDataIn[nexport].F1 = fabs(SphP[i].DivVel) /
(fabs(SphP[i].DivVel) + SphP[i].CurlVel +
0.0001 * soundspeed_i / SphP[i].Hsml / fac_mu);
HydroDataIn[nexport].Index = i;
HydroDataIn[nexport].Task = j;
nexport++;
nsend_local[j]++;
}
}
#ifdef MULTIPHASE
}
#endif
}
tend = second();
timecomp += timediff(tstart, tend);
qsort(HydroDataIn, nexport, sizeof(struct hydrodata_in), hydro_compare_key);
for(j = 1, noffset[0] = 0; j < NTask; j++)
noffset[j] = noffset[j - 1] + nsend_local[j - 1];
tstart = second();
MPI_Allgather(nsend_local, NTask, MPI_INT, nsend, NTask, MPI_INT, MPI_COMM_WORLD);
tend = second();
timeimbalance += timediff(tstart, tend);
/* now do the particles that need to be exported */
for(level = 1; level < (1 << PTask); level++)
{
tstart = second();
for(j = 0; j < NTask; j++)
nbuffer[j] = 0;
for(ngrp = level; ngrp < (1 << PTask); ngrp++)
{
maxfill = 0;
for(j = 0; j < NTask; j++)
{
if((j ^ ngrp) < NTask)
if(maxfill < nbuffer[j] + nsend[(j ^ ngrp) * NTask + j])
maxfill = nbuffer[j] + nsend[(j ^ ngrp) * NTask + j];
}
if(maxfill >= All.BunchSizeHydro)
break;
sendTask = ThisTask;
recvTask = ThisTask ^ ngrp;
if(recvTask < NTask)
{
if(nsend[ThisTask * NTask + recvTask] > 0 || nsend[recvTask * NTask + ThisTask] > 0)
{
/* get the particles */
MPI_Sendrecv(&HydroDataIn[noffset[recvTask]],
nsend_local[recvTask] * sizeof(struct hydrodata_in), MPI_BYTE,
recvTask, TAG_HYDRO_A,
&HydroDataGet[nbuffer[ThisTask]],
nsend[recvTask * NTask + ThisTask] * sizeof(struct hydrodata_in), MPI_BYTE,
recvTask, TAG_HYDRO_A, MPI_COMM_WORLD, &status);
}
}
for(j = 0; j < NTask; j++)
if((j ^ ngrp) < NTask)
nbuffer[j] += nsend[(j ^ ngrp) * NTask + j];
}
tend = second();
timecommsumm += timediff(tstart, tend);
/* now do the imported particles */
tstart = second();
for(j = 0; j < nbuffer[ThisTask]; j++)
hydro_evaluate(j, 1);
tend = second();
timecomp += timediff(tstart, tend);
/* do a block to measure imbalance */
tstart = second();
MPI_Barrier(MPI_COMM_WORLD);
tend = second();
timeimbalance += timediff(tstart, tend);
/* get the result */
tstart = second();
for(j = 0; j < NTask; j++)
nbuffer[j] = 0;
for(ngrp = level; ngrp < (1 << PTask); ngrp++)
{
maxfill = 0;
for(j = 0; j < NTask; j++)
{
if((j ^ ngrp) < NTask)
if(maxfill < nbuffer[j] + nsend[(j ^ ngrp) * NTask + j])
maxfill = nbuffer[j] + nsend[(j ^ ngrp) * NTask + j];
}
if(maxfill >= All.BunchSizeHydro)
break;
sendTask = ThisTask;
recvTask = ThisTask ^ ngrp;
if(recvTask < NTask)
{
if(nsend[ThisTask * NTask + recvTask] > 0 || nsend[recvTask * NTask + ThisTask] > 0)
{
/* send the results */
MPI_Sendrecv(&HydroDataResult[nbuffer[ThisTask]],
nsend[recvTask * NTask + ThisTask] * sizeof(struct hydrodata_out),
MPI_BYTE, recvTask, TAG_HYDRO_B,
&HydroDataPartialResult[noffset[recvTask]],
nsend_local[recvTask] * sizeof(struct hydrodata_out),
MPI_BYTE, recvTask, TAG_HYDRO_B, MPI_COMM_WORLD, &status);
/* add the result to the particles */
for(j = 0; j < nsend_local[recvTask]; j++)
{
source = j + noffset[recvTask];
place = HydroDataIn[source].Index;
for(k = 0; k < 3; k++)
SphP[place].HydroAccel[k] += HydroDataPartialResult[source].Acc[k];
SphP[place].DtEntropy += HydroDataPartialResult[source].DtEntropy;
#ifdef FEEDBACK
SphP[place].DtEgySpecFeedback += HydroDataPartialResult[source].DtEgySpecFeedback;
#endif
if(SphP[place].MaxSignalVel < HydroDataPartialResult[source].MaxSignalVel)
SphP[place].MaxSignalVel = HydroDataPartialResult[source].MaxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
SphP[place].VelocityDispersion[k] += HydroDataPartialResult[source].VelocityDispersion[k];
#endif
#ifdef OUTPUT_CONDUCTIVITY
SphP[place].OptVar2 += HydroDataPartialResult[source].OptVar2;
#endif
#ifdef ART_VISCO_CD
/* reduce DmatCD and TmatCD*/
for (ii = 0; ii < 3; ii++)
for (jj = 0; jj < 3; jj++)
{
SphP[place].DmatCD[ii][jj] += HydroDataPartialResult[source].DmatCD[ii][jj];
SphP[place].TmatCD[ii][jj] += HydroDataPartialResult[source].TmatCD[ii][jj];
}
SphP[place].R_CD += HydroDataPartialResult[source].R_CD;
if(SphP[place].MaxSignalVelCD < HydroDataPartialResult[source].MaxSignalVelCD)
SphP[place].MaxSignalVelCD = HydroDataPartialResult[source].MaxSignalVelCD;
#endif
}
}
}
for(j = 0; j < NTask; j++)
if((j ^ ngrp) < NTask)
nbuffer[j] += nsend[(j ^ ngrp) * NTask + j];
}
tend = second();
timecommsumm += timediff(tstart, tend);
level = ngrp - 1;
}
MPI_Allgather(&ndone, 1, MPI_INT, ndonelist, 1, MPI_INT, MPI_COMM_WORLD);
for(j = 0; j < NTask; j++)
ntotleft -= ndonelist[j];
}
free(ndonelist);
free(nsend);
free(nsend_local);
free(nbuffer);
free(noffset);
/* do final operations on results */
tstart = second();
for(i = 0; i < N_gas; i++)
#ifdef SFR
if((P[i].Ti_endstep == All.Ti_Current) && (P[i].Type == 0))
#else
if(P[i].Ti_endstep == All.Ti_Current)
#endif
{
- SphP[i].DtEntropy *= GAMMA_MINUS1 / (hubble_a2 * pow(SphP[i].Density, GAMMA_MINUS1));
-
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ SphP[i].DtEntropy *= GAMMA_MINUS1 / (hubble_a2 * pow(SphP[i].EgyWtDensity, GAMMA_MINUS1));
+#else
+ SphP[i].DtEntropy *= GAMMA_MINUS1 / (hubble_a2 * pow(SphP[i].Density, GAMMA_MINUS1));
+#endif
+
+
#ifdef SPH_BND_PARTICLES
if(P[i].ID == 0)
{
SphP[i].DtEntropy = 0;
for(k = 0; k < 3; k++)
SphP[i].HydroAccel[k] = 0;
}
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
if (SphP[i].VelocityDispersion[0] != 0)
{
/* compute sigma r */
v1m = SphP[i].VelocityDispersion[1]/SphP[i].VelocityDispersion[0];
v2m = SphP[i].VelocityDispersion[2]/SphP[i].VelocityDispersion[0];
if (v2m > v1m*v1m)
SphP[i].OptVar1 = sqrt(v2m - v1m*v1m);
else
SphP[i].OptVar1 = 0.0;
}
else
SphP[i].OptVar1 = 0.0;
#endif
#ifdef OUTPUT_CONDUCTIVITY
SphP[i].OptVar2*= GAMMA_MINUS1 / (hubble_a2 * pow(SphP[i].Density, GAMMA_MINUS1)); /* to dA/dt */
if (SphP[i].OptVar2!=0)
SphP[i].OptVar2=SphP[i].Entropy/fabs(SphP[i].OptVar2); /* to time*/
else
SphP[i].OptVar2=0;
#endif
#ifdef ART_VISCO_CD
compute_art_visc(i);
#endif
}
tend = second();
timecomp += timediff(tstart, tend);
/* collect some timing information */
MPI_Reduce(&timecomp, &sumt, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timecommsumm, &sumcomm, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timeimbalance, &sumimbalance, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if(ThisTask == 0)
{
All.CPU_HydCompWalk += sumt / NTask;
All.CPU_HydCommSumm += sumcomm / NTask;
All.CPU_HydImbalance += sumimbalance / NTask;
}
#ifdef DETAILED_CPU_OUTPUT_IN_HYDRA
numlist = malloc(sizeof(int) * NTask);
timecomplist = malloc(sizeof(double) * NTask);
timecommsummlist = malloc(sizeof(double) * NTask);
timeimbalancelist = malloc(sizeof(double) * NTask);
MPI_Gather(&NumSphUpdate, 1, MPI_INT, numlist, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Gather(&timecomp, 1, MPI_DOUBLE, timecomplist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timecommsumm, 1, MPI_DOUBLE, timecommsummlist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timeimbalance, 1, MPI_DOUBLE, timeimbalancelist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
if(ThisTask == 0)
{
fprintf(FdTimings, "\n hydra\n\n");
fprintf(FdTimings, "Nupdate ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12d ",numlist[i]); /* nombre de part par proc */
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timecomp ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timecomplist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timecommsumm ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timecommsummlist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timeimbalance ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timeimbalancelist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "\n");
}
free(timeimbalancelist);
free(timecommsummlist);
free(timecomplist);
free(numlist);
#endif
}
/*! This function is the 'core' of the SPH force computation. A target
* particle is specified which may either be local, or reside in the
* communication buffer.
*/
void hydro_evaluate(int target, int mode)
{
int j, k, n, timestep, startnode, numngb;
FLOAT *pos, *vel;
FLOAT mass, h_i, dhsmlDensityFactor, rho, pressure, f1, f2;
double acc[3], dtEntropy, maxSignalVel;
double dx, dy, dz, dvx, dvy, dvz;
double h_i2, hinv=1, hinv4;
double p_over_rho2_i, p_over_rho2_j, soundspeed_i, soundspeed_j;
double hfc, dwk_i, vdotr, vdotr2, visc, mu_ij, rho_ij=0, vsig;
double h_j, dwk_j, r, r2, u=0, hfc_visc;
int phase=0;
#ifdef FEEDBACK
int EnergySN;
double wk,wk_i,wk_j,uintspec,hinv3;
double dtEgySpecFeedback=0;
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
double VelocityDispersion[VELOCITY_DISPERSION_SIZE];
for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
VelocityDispersion[k]=0.0;
#endif
#ifndef NOVISCOSITYLIMITER
double dt;
#endif
#ifdef ART_CONDUCTIVITY
double hfc_cond,vsig_u,vsig_u_max;
double Arho_i,Arho_j;
double u_i,u_j;
double normGradEnergyInt_i, normGradEnergyInt_j;
double dtEntropy_artcond;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO)|| defined(ART_VISCO_CD)
double alpha_i, alpha_j;
double alpha_ij;
double beta_ij;
double soundspeed_ij;
#ifdef ART_VISCO_CD
double wk,wk_i,wk_j,hinv3;
int ii, jj;
double DmatCD[3][3];
double TmatCD[3][3];
double dv_dot_dx;
double R_CD;
double sign_DiVel;
double maxSignalVelCD;
#endif
#endif
-
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ double egyrho, entvarpred;
+#endif
if(mode == 0)
{
pos = P[target].Pos;
vel = SphP[target].VelPred;
h_i = SphP[target].Hsml;
#ifdef FEEDBACK
EnergySN = SphP[target].EnergySN;
#endif
mass = P[target].Mass;
dhsmlDensityFactor = SphP[target].DhsmlDensityFactor;
rho = SphP[target].Density;
pressure = SphP[target].Pressure;
timestep = P[target].Ti_endstep - P[target].Ti_begstep;
soundspeed_i = sqrt(GAMMA * pressure / rho);
f1 = fabs(SphP[target].DivVel) /
(fabs(SphP[target].DivVel) + SphP[target].CurlVel +
0.0001 * soundspeed_i / SphP[target].Hsml / fac_mu);
#ifdef ART_CONDUCTIVITY
normGradEnergyInt_i = sqrt( pow(SphP[target].GradEnergyInt[0],2)+pow(SphP[target].GradEnergyInt[1],2)+pow(SphP[target].GradEnergyInt[2],2));
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
alpha_i = SphP[target].ArtBulkViscConst;
#endif
+#ifdef DENSITY_INDEPENDENT_SPH
+ egyrho = SphP[target].EgyWtDensity;
+ entvarpred = SphP[target].EntVarPred;
+ dhsmlDensityFactor = SphP[target].DhsmlEgyDensityFactor;
+#endif
}
else
{
pos = HydroDataGet[target].Pos;
vel = HydroDataGet[target].Vel;
h_i = HydroDataGet[target].Hsml;
#ifdef FEEDBACK
EnergySN = HydroDataGet[target].EnergySN;
#endif
mass = HydroDataGet[target].Mass;
dhsmlDensityFactor = HydroDataGet[target].DhsmlDensityFactor;
rho = HydroDataGet[target].Density;
pressure = HydroDataGet[target].Pressure;
timestep = HydroDataGet[target].Timestep;
soundspeed_i = sqrt(GAMMA * pressure / rho);
f1 = HydroDataGet[target].F1;
#ifdef ART_CONDUCTIVITY
normGradEnergyInt_i = HydroDataGet[target].NormGradEnergyInt;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO)|| defined(ART_VISCO_CD)
alpha_i = HydroDataGet[target].ArtBulkViscConst;
#endif
+#ifdef DENSITY_INDEPENDENT_SPH
+ egyrho = HydroDataGet[target].EgyRho;
+ entvarpred = HydroDataGet[target].EntVarPred;
+#endif
}
/* initialize variables before SPH loop is started */
acc[0] = acc[1] = acc[2] = dtEntropy = 0;
maxSignalVel = 0;
#ifdef FEEDBACK
dtEgySpecFeedback=0;
#endif
+#ifdef DENSITY_INDEPENDENT_SPH
+ p_over_rho2_i = pressure / (egyrho * egyrho);
+#else
p_over_rho2_i = pressure / (rho * rho) * dhsmlDensityFactor;
+#endif
+
h_i2 = h_i * h_i;
#ifdef ART_CONDUCTIVITY
Arho_i = pressure/rho;
u_i = pressure/(rho*GAMMA_MINUS1);
dtEntropy_artcond=0;
#endif
#ifdef ART_VISCO_CD
for (ii = 0; ii < 3; ii++)
for (jj = 0; jj < 3; jj++)
{
DmatCD[ii][jj] = 0.;
TmatCD[ii][jj] = 0.;
}
R_CD = 0.;
maxSignalVelCD=0;
#endif
/* Now start the actual SPH computation for this particle */
startnode = All.MaxPart;
do
{
numngb = ngb_treefind_pairs(&pos[0], h_i, phase, &startnode);
for(n = 0; n < numngb; n++)
{
j = Ngblist[n];
dx = pos[0] - P[j].Pos[0];
dy = pos[1] - P[j].Pos[1];
dz = pos[2] - P[j].Pos[2];
#ifdef PERIODIC /* find the closest image in the given box size */
if(dx > boxHalf_X)
dx -= boxSize_X;
if(dx < -boxHalf_X)
dx += boxSize_X;
if(dy > boxHalf_Y)
dy -= boxSize_Y;
if(dy < -boxHalf_Y)
dy += boxSize_Y;
if(dz > boxHalf_Z)
dz -= boxSize_Z;
if(dz < -boxHalf_Z)
dz += boxSize_Z;
#endif
r2 = dx * dx + dy * dy + dz * dz;
h_j = SphP[j].Hsml;
if(r2 < h_i2 || r2 < h_j * h_j)
{
r = sqrt(r2);
if(r > 0)
{
- p_over_rho2_j = SphP[j].Pressure / (SphP[j].Density * SphP[j].Density);
- soundspeed_j = sqrt(GAMMA * p_over_rho2_j * SphP[j].Density);
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ p_over_rho2_j = SphP[j].Pressure / (SphP[j].EgyWtDensity * SphP[j].EgyWtDensity);
+ soundspeed_j = sqrt(GAMMA * SphP[j].Pressure / SphP[j].Density);
+#else
+ p_over_rho2_j = SphP[j].Pressure / (SphP[j].Density * SphP[j].Density);
+ soundspeed_j = sqrt(GAMMA * p_over_rho2_j * SphP[j].Density);
+#endif
+
dvx = vel[0] - SphP[j].VelPred[0];
dvy = vel[1] - SphP[j].VelPred[1];
dvz = vel[2] - SphP[j].VelPred[2];
vdotr = dx * dvx + dy * dvy + dz * dvz;
if(All.ComovingIntegrationOn)
vdotr2 = vdotr + hubble_a2 * r2;
else
vdotr2 = vdotr;
if(r2 < h_i2)
{
hinv = 1.0 / h_i;
#ifndef TWODIMS
hinv4 = hinv * hinv * hinv * hinv;
#else
hinv4 = hinv * hinv * hinv / boxSize_Z;
#endif
u = r * hinv;
if(u < 0.5)
dwk_i = hinv4 * u * (KERNEL_COEFF_3 * u - KERNEL_COEFF_4);
else
dwk_i = hinv4 * KERNEL_COEFF_6 * (1.0 - u) * (1.0 - u);
}
else
{
dwk_i = 0;
}
if(r2 < h_j * h_j)
{
hinv = 1.0 / h_j;
#ifndef TWODIMS
hinv4 = hinv * hinv * hinv * hinv;
#else
hinv4 = hinv * hinv * hinv / boxSize_Z;
#endif
u = r * hinv;
if(u < 0.5)
dwk_j = hinv4 * u * (KERNEL_COEFF_3 * u - KERNEL_COEFF_4);
else
dwk_j = hinv4 * KERNEL_COEFF_6 * (1.0 - u) * (1.0 - u);
}
else
{
dwk_j = 0;
}
if(soundspeed_i + soundspeed_j > maxSignalVel)
maxSignalVel = soundspeed_i + soundspeed_j;
/*********************************/
/* standard form of viscosity */
/*********************************/
#if !defined(ART_VISCO_MM) && !defined(ART_VISCO_RO) && !defined(ART_VISCO_CD)
if(vdotr2 < 0) /* ... artificial viscosity */
{
mu_ij = fac_mu * vdotr2 / r; /* note: this is negative! */
vsig = soundspeed_i + soundspeed_j - 3 * mu_ij;
if(vsig > maxSignalVel)
maxSignalVel = vsig;
rho_ij = 0.5 * (rho + SphP[j].Density);
f2 =
fabs(SphP[j].DivVel) / (fabs(SphP[j].DivVel) + SphP[j].CurlVel +
0.0001 * soundspeed_j / fac_mu / SphP[j].Hsml);
visc = 0.25 * All.ArtBulkViscConst * vsig * (-mu_ij) / rho_ij * (f1 + f2);
/* .... end artificial viscosity evaluation */
#ifndef NOVISCOSITYLIMITER
/* make sure that viscous acceleration is not too large */
dt = imax(timestep, (P[j].Ti_endstep - P[j].Ti_begstep)) * All.Timebase_interval;
if(dt > 0 && (dwk_i + dwk_j) < 0)
{
visc = dmin(visc, 0.5 * fac_vsic_fix * vdotr2 /
(0.5 * (mass + P[j].Mass) * (dwk_i + dwk_j) * r * dt));
}
#endif
}
else
visc = 0;
#endif
/**************************************/
/* alternative form of viscosity RO MM*/
/**************************************/
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO)
if(vdotr2 < 0) /* ... artificial viscosity */
{
alpha_j = SphP[j].ArtBulkViscConst;
alpha_ij = 0.5*(alpha_i + alpha_j);
beta_ij = 3/2. * alpha_ij; /* 3/2 is compatible with Springel 05 */
mu_ij = fac_mu * vdotr2 / r; /* note: this is negative! */
vsig = soundspeed_i + soundspeed_j - 2*beta_ij/alpha_ij * mu_ij;
if(vsig > maxSignalVel)
maxSignalVel = vsig;
soundspeed_ij = 0.5 * (soundspeed_i + soundspeed_j);
f2 =
fabs(SphP[j].DivVel) / (fabs(SphP[j].DivVel) + SphP[j].CurlVel +
0.0001 * soundspeed_j / fac_mu / SphP[j].Hsml);
rho_ij = 0.5 * (rho + SphP[j].Density);
visc = (- alpha_ij * soundspeed_ij * mu_ij + beta_ij * mu_ij * mu_ij) / rho_ij * 0.5*(f1 + f2) ;
#ifndef NOVISCOSITYLIMITER
if(vdotr2 < 0)
{
/* make sure that viscous acceleration is not too large */
dt = imax(timestep, (P[j].Ti_endstep - P[j].Ti_begstep)) * All.Timebase_interval;
if(dt > 0 && (dwk_i + dwk_j) < 0)
{
visc = dmin(visc, 0.5 * fac_vsic_fix * vdotr2 /
(0.5 * (mass + P[j].Mass) * (dwk_i + dwk_j) * r * dt));
}
}
#endif
}
else
visc = 0;
#endif
/**************************************/
/* alternative form of viscosity CD */
/**************************************/
#if defined(ART_VISCO_CD)
alpha_j = SphP[j].ArtBulkViscConst;
alpha_ij = 0.5*(alpha_i + alpha_j);
beta_ij = 3/2. * alpha_ij;
mu_ij = fac_mu * vdotr2 / r; /* note: this is negative! */
vsig = soundspeed_i + soundspeed_j - 2*beta_ij/alpha_ij * mu_ij;
if(vsig > maxSignalVel)
maxSignalVel = vsig;
soundspeed_ij = 0.5 * (soundspeed_i + soundspeed_j);
rho_ij = 0.5 * (rho + SphP[j].Density);
visc = (- alpha_ij * soundspeed_ij * mu_ij + beta_ij * mu_ij * mu_ij) / rho_ij;
#ifndef NOVISCOSITYLIMITER
if(vdotr2 < 0)
{
/* make sure that viscous acceleration is not too large */
dt = imax(timestep, (P[j].Ti_endstep - P[j].Ti_begstep)) * All.Timebase_interval;
if(dt > 0 && (dwk_i + dwk_j) < 0)
{
visc = dmin(visc, 0.5 * fac_vsic_fix * vdotr2 /
(0.5 * (mass + P[j].Mass) * (dwk_i + dwk_j) * r * dt));
}
}
#endif
#endif
-
- p_over_rho2_j *= SphP[j].DhsmlDensityFactor;
+
+#ifndef DENSITY_INDEPENDENT_SPH
+ p_over_rho2_j *= SphP[j].DhsmlDensityFactor;
+#endif
hfc_visc = 0.5 * P[j].Mass * visc * (dwk_i + dwk_j) / r;
- /* default formulation */
- hfc = hfc_visc + P[j].Mass * (p_over_rho2_i * dwk_i + p_over_rho2_j * dwk_j) / r;
-
-
-
+#ifdef DENSITY_INDEPENDENT_SPH
+ hfc = hfc_visc;
+
+ /* leading-order term */
+ hfc += P[j].Mass *
+ (dwk_i*p_over_rho2_i*SphP[j].EntVarPred/entvarpred +
+ dwk_j*p_over_rho2_j*entvarpred/SphP[j].EntVarPred) / r;
+
+ /* grad-h corrections */
+ hfc += P[j].Mass *
+ (dwk_i*p_over_rho2_i*egyrho/rho*dhsmlDensityFactor +
+ dwk_j*p_over_rho2_j*SphP[j].EgyWtDensity/SphP[j].Density*SphP[j].DhsmlEgyDensityFactor) / r;
+
+#else
+ hfc = hfc_visc + P[j].Mass * (p_over_rho2_i * dwk_i + p_over_rho2_j * dwk_j) / r;
+#endif
+
acc[0] -= hfc * dx;
acc[1] -= hfc * dy;
acc[2] -= hfc * dz;
dtEntropy += 0.5 * hfc_visc * vdotr2;
/*********************************/
/* prediction for the next step */
/*********************************/
#ifdef ART_VISCO_CD
/* COMPUTE wk_i, wk_j, wk */
if(r2 < h_i2)
{
hinv = 1.0 / h_i;
hinv3 = hinv * hinv * hinv ;
u = r * hinv;
if(u < 0.5)
wk_i = hinv3 * (KERNEL_COEFF_1 + KERNEL_COEFF_2 * (u - 1) * u * u);
else
wk_i = hinv3 * KERNEL_COEFF_5 * (1.0 - u) * (1.0 - u) * (1.0 - u);
}
else
wk_i = 0;
if(r2 < h_j * h_j)
{
hinv = 1.0 / h_j;
hinv3 = hinv * hinv * hinv ;
u = r * hinv;
if(u < 0.5)
wk_j = hinv3 * (KERNEL_COEFF_1 + KERNEL_COEFF_2 * (u - 1) * u * u);
else
wk_j = hinv3 * KERNEL_COEFF_5 * (1.0 - u) * (1.0 - u) * (1.0 - u);
}
else
wk_j = 0;
/* wk = 0.5*(wk_i+wk_j); */
wk = 0.5*(dwk_i + dwk_j)/r;
/* CHOICE OF THE WEIGHT */
wk = P[j].Mass * wk / SphP[j].Density;
/* COMPUTE the matrix Di, Ti */
DmatCD[0][0] += dvx * dx * wk;
DmatCD[1][0] += dvy * dx * wk;
DmatCD[2][0] += dvz * dx * wk;
DmatCD[0][1] += dvx * dy * wk;
DmatCD[1][1] += dvy * dy * wk;
DmatCD[2][1] += dvz * dy * wk;
DmatCD[0][2] += dvx * dz * wk;
DmatCD[1][2] += dvy * dz * wk;
DmatCD[2][2] += dvz * dz * wk;
TmatCD[0][0] += dx * dx * wk;
TmatCD[1][0] += dy * dx * wk;
TmatCD[2][0] += dz * dx * wk;
TmatCD[0][1] += dx * dy * wk;
TmatCD[1][1] += dy * dy * wk;
TmatCD[2][1] += dz * dy * wk;
TmatCD[0][2] += dx * dz * wk;
TmatCD[1][2] += dy * dz * wk;
TmatCD[2][2] += dz * dz * wk;
/* COMPUTE maxSignalVel */
dv_dot_dx = dvx * dx + dvy * dy + dvz * dz;
vsig = soundspeed_ij - dmin(0., dv_dot_dx);
if(vsig > maxSignalVelCD)
maxSignalVelCD = vsig;
/* compute chock indicator */
if (SphP[j].DiVelAccurate>0.)
sign_DiVel = 1.;
else
sign_DiVel = -1.;
R_CD += 0.5 * sign_DiVel * P[j].Mass * (wk_i + wk_j);
#endif
#ifdef ART_CONDUCTIVITY
mu_ij = fac_mu * vdotr2 / r;
vsig_u = soundspeed_i + soundspeed_j - 3 * mu_ij;
Arho_j = SphP[j].Pressure / SphP[j].Density;
rho_ij = 0.5 * (rho + SphP[j].Density);
/* switch */
normGradEnergyInt_j = sqrt( pow(SphP[j].GradEnergyInt[0],2)+pow(SphP[j].GradEnergyInt[1],2)+pow(SphP[j].GradEnergyInt[2],2));
u_j = SphP[j].Pressure/(SphP[j].Density*GAMMA_MINUS1);
hfc_cond = P[j].Mass * All.ArtCondConst * vsig_u * (Arho_i-Arho_j)/ rho_ij * 0.5*(dwk_i + dwk_j);
dtEntropy_artcond = hfc_cond / GAMMA_MINUS1;
dtEntropy += dtEntropy_artcond ;
#endif
/*****************************************/
/* FEEDBACK INTERACTION */
/*****************************************/
#ifdef FEEDBACK
rho_ij = 0.5 * (rho + SphP[j].Density);
if(P[j].Ti_endstep == All.Ti_Current)
{
/* additional feedback entropy */
if ((EnergySN > 0)||(SphP[j].EnergySN > 0))
{
/* find the thermal specific energy to release */
uintspec = 0.;
if (EnergySN > 0)
{
uintspec = 0;
}
if (SphP[j].EnergySN > 0)
{
uintspec += SphP[j].EnergySN * (1-All.SupernovaFractionInEgyKin)/ mass;
}
if(r2 < h_i2)
{
hinv = 1.0 / h_i;
hinv3 = hinv * hinv * hinv ;
u = r * hinv;
if(u < 0.5)
wk_i = hinv3 * (KERNEL_COEFF_1 + KERNEL_COEFF_2 * (u - 1) * u * u);
else
wk_i = hinv3 * KERNEL_COEFF_5 * (1.0 - u) * (1.0 - u) * (1.0 - u);
}
else
wk_i = 0;
if(r2 < h_j * h_j)
{
hinv = 1.0 / h_j;
hinv3 = hinv * hinv * hinv ;
u = r * hinv;
if(u < 0.5)
wk_j = hinv3 * (KERNEL_COEFF_1 + KERNEL_COEFF_2 * (u - 1) * u * u);
else
wk_j = hinv3 * KERNEL_COEFF_5 * (1.0 - u) * (1.0 - u) * (1.0 - u);
}
else
wk_j = 0;
wk = 0.5*(wk_i+wk_j);
/* dt in physical units */
dt = imax(timestep, (P[j].Ti_endstep - P[j].Ti_begstep)) * All.Timebase_interval/ hubble_a;
if(dt <= 0);
uintspec = 0;
/* thermal feedback */
uintspec = (uintspec/dt) *wk *0.5*(mass + P[j].Mass) /rho_ij *fac_pow ;
dtEntropy += uintspec;
dtEgySpecFeedback += uintspec;
}
}
#endif /* FEEDBACK */
}
}
}
}
while(startnode >= 0);
/* Now collect the result at the right place */
if(mode == 0)
{
for(k = 0; k < 3; k++)
SphP[target].HydroAccel[k] = acc[k];
SphP[target].DtEntropy = dtEntropy;
#ifdef FEEDBACK
SphP[target].DtEgySpecFeedback = dtEgySpecFeedback;
#endif
SphP[target].MaxSignalVel = maxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
SphP[target].VelocityDispersion[k] = VelocityDispersion[k];
#endif
#ifdef OUTPUT_CONDUCTIVITY
SphP[target].OptVar2 = dtEntropy_artcond;
#endif
#ifdef ART_VISCO_CD
/*collect DmatCD, TmatCD*/
for (ii = 0; ii < 3; ii++)
for (jj = 0; jj < 3; jj++)
{
SphP[target].DmatCD[ii][jj] = DmatCD[ii][jj];
SphP[target].TmatCD[ii][jj] = TmatCD[ii][jj];
}
SphP[target].R_CD = R_CD;
SphP[target].MaxSignalVelCD = maxSignalVelCD;
#endif
}
else
{
for(k = 0; k < 3; k++)
HydroDataResult[target].Acc[k] = acc[k];
HydroDataResult[target].DtEntropy = dtEntropy;
#ifdef FEEDBACK
HydroDataResult[target].DtEgySpecFeedback = dtEgySpecFeedback;
#endif
HydroDataResult[target].MaxSignalVel = maxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
HydroDataResult[target].VelocityDispersion[k] = VelocityDispersion[k];
#endif
#ifdef OUTPUT_CONDUCTIVITY
HydroDataResult[target].OptVar2 = dtEntropy_artcond;
#endif
#ifdef ART_VISCO_CD
/*collect DmatCD, TmatCD*/
for (ii = 0; ii < 3; ii++)
for (jj = 0; jj < 3; jj++)
{
HydroDataResult[target].DmatCD[ii][jj] = DmatCD[ii][jj];
HydroDataResult[target].TmatCD[ii][jj] = TmatCD[ii][jj];
}
HydroDataResult[target].R_CD = R_CD;
HydroDataResult[target].MaxSignalVelCD = maxSignalVelCD;
#endif
}
}
/*! This is a comparison kernel for a sort routine, which is used to group
* particles that are going to be exported to the same CPU.
*/
int hydro_compare_key(const void *a, const void *b)
{
if(((struct hydrodata_in *) a)->Task < (((struct hydrodata_in *) b)->Task))
return -1;
if(((struct hydrodata_in *) a)->Task > (((struct hydrodata_in *) b)->Task))
return +1;
return 0;
}
diff --git a/src/init.c b/src/init.c
index 91a76ad..68dd60d 100644
--- a/src/init.c
+++ b/src/init.c
@@ -1,681 +1,715 @@
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include "allvars.h"
#include "proto.h"
/*! \file init.c
* \brief Code for initialisation of a simulation from initial conditions
*/
/*! This function reads the initial conditions, and allocates storage for the
* tree. Various variables of the particle data are initialised and An intial
* domain decomposition is performed. If SPH particles are present, the inial
* SPH smoothing lengths are determined.
*/
void init(void)
{
int i, j;
double a3;
#ifdef SFR
double Mgas=0,sum_Mgas=0;
int nstars=0;
int *numlist;
#endif
All.Time = All.TimeBegin;
switch (All.ICFormat)
{
case 1:
#if (MAKEGLASS > 1)
seed_glass();
#else
read_ic(All.InitCondFile);
#endif
break;
case 2:
case 3:
read_ic(All.InitCondFile);
break;
default:
if(ThisTask == 0)
printf("ICFormat=%d not supported.\n", All.ICFormat);
endrun(0);
}
All.Time = All.TimeBegin;
All.Ti_Current = 0;
if(All.ComovingIntegrationOn)
{
All.Timebase_interval = (log(All.TimeMax) - log(All.TimeBegin)) / TIMEBASE;
a3 = All.Time * All.Time * All.Time;
}
else
{
All.Timebase_interval = (All.TimeMax - All.TimeBegin) / TIMEBASE;
a3 = 1;
}
if (ThisTask==0)
printf("\nMinimum Time Step (Timebase_interval) = %g \n\n", All.Timebase_interval);
set_softenings();
All.NumCurrentTiStep = 0; /* setup some counters */
All.SnapshotFileCount = 0;
if(RestartFlag == 2)
All.SnapshotFileCount = atoi(All.InitCondFile + strlen(All.InitCondFile) - 3) + 1;
All.TotNumOfForces = 0;
All.NumForcesSinceLastDomainDecomp = 0;
if(All.ComovingIntegrationOn)
if(All.PeriodicBoundariesOn == 1)
check_omega();
All.TimeLastStatistics = All.TimeBegin - All.TimeBetStatistics;
#ifdef AGN_ACCRETION
All.TimeLastAccretion = All.TimeBegin - All.TimeBetAccretion;
All.LastMTotInRa = 0;
#endif
#ifdef BONDI_ACCRETION
All.BondiTimeLast = All.TimeBegin - All.BondiTimeBet;
#endif
#ifdef BUBBLES
All.EnergyBubbles=0;
#endif
if(All.ComovingIntegrationOn) /* change to new velocity variable */
{
for(i = 0; i < NumPart; i++)
for(j = 0; j < 3; j++)
P[i].Vel[j] *= sqrt(All.Time) * All.Time;
}
for(i = 0; i < NumPart; i++) /* start-up initialization */
{
for(j = 0; j < 3; j++)
P[i].GravAccel[j] = 0;
#ifdef PMGRID
for(j = 0; j < 3; j++)
P[i].GravPM[j] = 0;
#endif
P[i].Ti_endstep = 0;
P[i].Ti_begstep = 0;
P[i].OldAcc = 0;
P[i].GravCost = 1;
P[i].Potential = 0;
#ifdef PARTICLE_FLAG
P[i].Flag = 0;
#endif
#ifdef TESSEL
P[i].iPref = -1; /* index of the reference particle : -1 for normal particles */
#endif
}
#ifdef PMGRID
All.PM_Ti_endstep = All.PM_Ti_begstep = 0;
#endif
#ifdef FLEXSTEPS
All.PresentMinStep = TIMEBASE;
for(i = 0; i < NumPart; i++) /* start-up initialization */
{
P[i].FlexStepGrp = (int) (TIMEBASE * get_random_number(P[i].ID));
}
#endif
for(i = 0; i < N_gas; i++) /* initialize sph_properties */
{
for(j = 0; j < 3; j++)
{
SphP[i].VelPred[j] = P[i].Vel[j];
SphP[i].HydroAccel[j] = 0;
}
SphP[i].DtEntropy = 0;
#ifdef COOLING
//SphP[i].EntropyRad = 0;
SphP[i].DtEntropyRad = 0;
SphP[i].DtEnergyRad = 0;
#endif
#ifdef STELLAR_FLUX
SphP[i].EnergyFlux = 0.;
#endif
#ifdef AGN_HEATING
SphP[i].EgySpecAGNHeat = 0.;
SphP[i].DtEgySpecAGNHeat = 0.;
#endif
#ifdef MULTIPHASE
#ifdef COUNT_COLLISIONS
SphP[i].StickyCollisionNumber = 0;
#endif
#endif
#ifdef FEEDBACK
SphP[i].EgySpecFeedback = 0.;
SphP[i].DtEgySpecFeedback = 0.;
SphP[i].EnergySN = 0.;
SphP[i].EnergySNrem = 0.;
SphP[i].TimeSN = 0.;
for(j = 0; j < 3; j++)
{
SphP[i].FeedbackVel[j] = 0;
}
#endif
#ifdef FEEDBACK_WIND
for(j = 0; j < 3; j++)
{
SphP[i].FeedbackWindVel[j] = 0;
}
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
SphP[i].ArtBulkViscConst = All.ArtBulkViscConstMin;
#ifdef ART_VISCO_CD
SphP[i].ArtBulkViscConst = 0.;
SphP[i].DiVelAccurate = 0.;
SphP[i].DiVelTemp = 0.;
#endif
#endif
#ifdef OUTPUTOPTVAR1
SphP[i].OptVar1 = 0.;
#endif
#ifdef OUTPUTOPTVAR2
SphP[i].OptVar2 = 0.;
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
for(j = 0; j < VELOCITY_DISPERSION_SIZE; j++)
SphP[i].VelocityDispersion[j] = 0.;
#endif
if(RestartFlag == 0)
{
SphP[i].Hsml = 0;
SphP[i].Density = -1;
}
#ifdef MULTIPHASE
/* here, we set the Phase, according to the SpecificEnergy and not Entropy */
if (SphP[i].Entropy > All.CriticalEgySpec)
SphP[i].Phase = GAS_SPH; /* warmer phase */
else
{
if (SphP[i].Entropy >= All.CriticalNonCollisionalEgySpec)
SphP[i].Phase = GAS_STICKY;
else
SphP[i].Phase = GAS_DARK;
}
SphP[i].StickyFlag = 0;
SphP[i].StickyTime = All.Time;
//SphP[i].StickyTime = All.Time + All.StickyIdleTime*get_random_number(P[i].ID);
#endif
#ifdef SFR
Mgas += P[i].Mass;
#endif
}
#ifdef SFR
RearrangeParticlesFlag=0;
if (All.StarFormationStarMass==0)
{
/* compute the mean gas mass */
MPI_Allreduce(&Mgas, &sum_Mgas, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
All.StarFormationStarMass = (sum_Mgas/All.TotN_gas) / All.StarFormationNStarsFromGas;
}
for(i = 0; i < NumPart; i++) /* initialize st_properties */
{
if (P[i].Type==ST)
nstars++;
#ifdef STELLAR_PROP
if (P[i].Type==ST)
{
if (RestartFlag==0) /* only if starting from scratch */
{
#ifndef CHIMIE_INPUT_ALL
P[i].StPIdx = i-N_gas;
StP[P[i].StPIdx].FormationTime = 0; /* bad */
StP[P[i].StPIdx].InitialMass = P[i].Mass; /* bad */
StP[P[i].StPIdx].IDProj = P[i].ID;
StP[P[i].StPIdx].Hsml = 0;
StP[P[i].StPIdx].Density = -1;
for(j = 0; j < NELEMENTS; j++)
StP[P[i].StPIdx].Metal[j] = 0.;
StP[P[i].StPIdx].Flag = 0; /*obsolete*/
#else /* here, we restart for a file already processed by gadget */
P[i].StPIdx = i-N_gas;
StP[P[i].StPIdx].Flag = 0; /*obsolete*/
#endif
}
if (RestartFlag==2) /* start from snapshot */
{
P[i].StPIdx = i-N_gas;
StP[P[i].StPIdx].Flag = 0; /*obsolete*/
}
StP[P[i].StPIdx].PIdx = i;
#ifdef CHECK_ID_CORRESPONDENCE
StP[P[i].StPIdx].ID = P[i].ID;
#endif
}
//else
// P[i].StPIdx = -1; /* shoud be set, however, may be a problem in domain.c --> must be corrected */
#endif
#ifdef CHIMIE
if (P[i].Type==0)
{
if (RestartFlag==0 && header.flag_metals==0) /* only if starting from scratch and metal block not present */
{
for(j = 0; j < NELEMENTS; j++)
{
SphP[i].Metal[j] = (pow(10,All.InitGasMetallicity)-1e-10)*get_SolarAbundance(j);
//if (j==FE)
// SphP[i].Metal[j] = (pow(10,All.InitGasMetallicity)-1e-10)*All.CoolingParameters_FeHSolar;
//else
// SphP[i].Metal[j] = 0;
}
}
#ifdef CHIMIE_THERMAL_FEEDBACK
SphP[i].DeltaEgySpec = 0;
SphP[i].NumberOfSNIa = 0;
SphP[i].NumberOfSNII = 0;
SphP[i].SNIaThermalTime = -1;
SphP[i].SNIIThermalTime = -1;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
SphP[i].WindTime = All.TimeBegin-2*All.ChimieWindTime;
SphP[i].WindFlag = 0;
#endif
}
#endif /* chimie */
#ifdef TIMESTEP_UPDATE_FOR_FEEDBACK
if (P[i].Type==0)
{
for (j=0;j<3;j++)
SphP[i].FeedbackUpdatedAccel[j] = 0;
}
#endif
}
#ifdef CHECK_ID_CORRESPONDENCE
#ifdef CHIMIE
for(i = N_gas; i < N_gas+N_stars; i++)
{
if( StP[P[i].StPIdx].PIdx != i )
{
printf("\nP/StP correspondance error\n");
printf("(%d) (in domain before) N_stars=%d N_gas=%d i=%d id=%d P[i].StPIdx=%d StP[P[i].StPIdx].PIdx=%d\n\n",ThisTask,N_stars,N_gas,i,P[i].ID,P[i].StPIdx,StP[P[i].StPIdx].PIdx);
endrun(333001);
}
if(StP[P[i].StPIdx].ID != P[i].ID)
{
printf("\nP/StP correspondance error\n");
printf("(%d) (in domain before) N_gas=%d N_stars=%d i=%d Type=%d P.Id=%d P[i].StPIdx=%d StP[P[i].StPIdx].ID=%d \n\n",ThisTask,N_gas,N_stars,i,P[i].Type,P[i].ID, P[i].StPIdx, StP[P[i].StPIdx].ID);
endrun(333002);
}
}
if (ThisTask==0)
printf("Check id correspondence before decomposition done...\n");
#endif
#endif
/* here, we would like to reduce N_stars to TotN_stars */
/* MPI_Allreduce(&N_stars, &All.TotN_stars, 1, MPI_LONG_LONG, MPI_SUM, MPI_COMM_WORLD); does not works */
numlist = malloc(NTask * sizeof(int) * NTask);
MPI_Allgather(&N_stars, 1, MPI_INT, numlist, 1, MPI_INT, MPI_COMM_WORLD);
for(i = 0, All.TotN_stars = 0; i < NTask; i++)
All.TotN_stars += numlist[i];
free(numlist);
if(ThisTask == 0)
{
printf("Total number of star particles : %d%09d\n\n",(int) (All.TotN_stars / 1000000000), (int) (All.TotN_stars % 1000000000));
fflush(stdout);
}
#endif /*SFR*/
ngb_treeallocate(MAX_NGB);
force_treeallocate(All.TreeAllocFactor * All.MaxPart, All.MaxPart);
All.NumForcesSinceLastDomainDecomp = 1 + All.TotNumPart * All.TreeDomainUpdateFrequency;
Flag_FullStep = 1; /* to ensure that Peano-Hilber order is done */
domain_Decomposition(); /* do initial domain decomposition (gives equal numbers of particles) */
ngb_treebuild(); /* will build tree */
setup_smoothinglengths();
#ifdef CHIMIE
#ifndef CHIMIE_INPUT_ALL
stars_setup_smoothinglengths();
#endif
#endif
#ifdef TESSEL
setup_searching_radius();
#endif
TreeReconstructFlag = 1;
/* at this point, the entropy variable normally contains the
* internal energy, read in from the initial conditions file, unless the file
* explicitly signals that the initial conditions contain the entropy directly.
* Once the density has been computed, we can convert thermal energy to entropy.
*/
#ifndef ISOTHERM_EQS
+#ifndef DENSITY_INDEPENDENT_SPH
if(header.flag_entropy_instead_u == 0)
{
for(i = 0; i < N_gas; i++)
#ifdef MULTIPHASE
{
switch(SphP[i].Phase)
{
case GAS_SPH:
SphP[i].Entropy = GAMMA_MINUS1 * SphP[i].Entropy / pow(SphP[i].Density / a3, GAMMA_MINUS1);
break;
case GAS_STICKY:
break;
case GAS_DARK:
SphP[i].Entropy = -SphP[i].Entropy;
break;
}
}
#else
SphP[i].Entropy = GAMMA_MINUS1 * SphP[i].Entropy / pow(SphP[i].Density / a3, GAMMA_MINUS1);
#endif
}
-
+#endif
#endif
#ifdef ENTROPYPRED
for(i = 0; i < N_gas; i++)
SphP[i].EntropyPred = SphP[i].Entropy;
#endif
}
/*! This routine computes the mass content of the box and compares it to the
* specified value of Omega-matter. If discrepant, the run is terminated.
*/
void check_omega(void)
{
double mass = 0, masstot, omega;
int i;
for(i = 0; i < NumPart; i++)
mass += P[i].Mass;
MPI_Allreduce(&mass, &masstot, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
omega =
masstot / (All.BoxSize * All.BoxSize * All.BoxSize) / (3 * All.Hubble * All.Hubble / (8 * M_PI * All.G));
if(fabs(omega - All.Omega0) > 1.0e-3)
{
if(ThisTask == 0)
{
printf("\n\nI've found something odd!\n");
printf
("The mass content accounts only for Omega=%g,\nbut you specified Omega=%g in the parameterfile.\n",
omega, All.Omega0);
printf("\nI better stop.\n");
fflush(stdout);
}
endrun(1);
}
}
/*! This function is used to find an initial smoothing length for each SPH
* particle. It guarantees that the number of neighbours will be between
* desired_ngb-MAXDEV and desired_ngb+MAXDEV. For simplicity, a first guess
* of the smoothing length is provided to the function density(), which will
* then iterate if needed to find the right smoothing length.
*/
void setup_smoothinglengths(void)
{
- int i, no, p;
+ int i, j, no, p;
+ double a3;
+ if(All.ComovingIntegrationOn)
+ {
+ a3 = All.Time * All.Time * All.Time;
+ }
+ else
+ {
+ a3 = 1;
+ }
if(RestartFlag == 0)
{
for(i = 0; i < N_gas; i++)
{
no = Father[i];
while(10 * All.DesNumNgb * P[i].Mass > Nodes[no].u.d.mass)
{
p = Nodes[no].u.d.father;
if(p < 0)
break;
no = p;
}
#ifndef TWODIMS
SphP[i].Hsml =
pow(3.0 / (4 * M_PI) * All.DesNumNgb * P[i].Mass / Nodes[no].u.d.mass, 1.0 / 3) * Nodes[no].len;
#else
SphP[i].Hsml =
pow(1.0 / (M_PI) * All.DesNumNgb * P[i].Mass / Nodes[no].u.d.mass, 1.0 / 2) * Nodes[no].len;
#endif
}
}
+#ifdef DENSITY_INDEPENDENT_SPH
+/* initialization of the entropy variable is a little trickier in this version of SPH,
+ since we need to make sure it 'talks to' the density appropriately */
+ for(i = 0; i < N_gas; i++)
+ SphP[i].EntVarPred = pow(SphP[i].Entropy,1/GAMMA);
+#endif
+
density(0);
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ if(header.flag_entropy_instead_u == 0)
+ {
+ for(j=0;j<5;j++)
+ {/* since ICs give energies, not entropies, need to iterate get this initialized correctly */
+ for(i = 0; i < N_gas; i++)
+ {
+ SphP[i].Entropy = GAMMA_MINUS1 * SphP[i].Entropy / pow(SphP[i].EgyWtDensity/a3 , GAMMA_MINUS1);
+ SphP[i].EntVarPred = pow(SphP[i].Entropy,1/GAMMA);
+ }
+ density(0);
+ }
+ }
+#endif
+
+
}
#ifdef CHIMIE
/*! This function is used to find an initial smoothing length for each SPH
* particle. It guarantees that the number of neighbours will be between
* desired_ngb-MAXDEV and desired_ngb+MAXDEV. For simplicity, a first guess
* of the smoothing length is provided to the function density(), which will
* then iterate if needed to find the right smoothing length.
*/
void stars_setup_smoothinglengths(void)
{
int i, no, p;
if(RestartFlag == 0)
{
for(i = 0; i < NumPart; i++)
{
if(P[i].Type == ST)
{
no = Father[i];
while(10 * All.DesNumNgb * P[i].Mass > Nodes[no].u.d.mass)
{
p = Nodes[no].u.d.father;
if(p < 0)
break;
no = p;
}
#ifndef TWODIMS
StP[P[i].StPIdx].Hsml =
pow(3.0 / (4 * M_PI) * All.DesNumNgb * P[i].Mass / Nodes[no].u.d.mass, 1.0 / 3) * Nodes[no].len;
#else
StP[P[i].StPIdx].Hsml =
pow(1.0 / (M_PI) * All.DesNumNgb * P[i].Mass / Nodes[no].u.d.mass, 1.0 / 2) * Nodes[no].len;
#endif
}
}
}
stars_density();
}
#endif
/*! If the code is run in glass-making mode, this function populates the
* simulation box with a Poisson sample of particles.
*/
#if (MAKEGLASS > 1)
void seed_glass(void)
{
int i, k, n_for_this_task;
double Range[3], LowerBound[3];
double drandom, partmass;
long long IDstart;
All.TotNumPart = MAKEGLASS;
partmass = All.Omega0 * (3 * All.Hubble * All.Hubble / (8 * M_PI * All.G))
* (All.BoxSize * All.BoxSize * All.BoxSize) / All.TotNumPart;
All.MaxPart = All.PartAllocFactor * (All.TotNumPart / NTask); /* sets the maximum number of particles that may */
allocate_memory();
header.npartTotal[1] = All.TotNumPart;
header.mass[1] = partmass;
if(ThisTask == 0)
{
printf("\nGlass initialising\nPartMass= %g\n", partmass);
printf("TotNumPart= %d%09d\n\n",
(int) (All.TotNumPart / 1000000000), (int) (All.TotNumPart % 1000000000));
}
/* set the number of particles assigned locally to this task */
n_for_this_task = All.TotNumPart / NTask;
if(ThisTask == NTask - 1)
n_for_this_task = All.TotNumPart - (NTask - 1) * n_for_this_task;
NumPart = 0;
IDstart = 1 + (All.TotNumPart / NTask) * ThisTask;
/* split the temporal domain into Ntask slabs in z-direction */
Range[0] = Range[1] = All.BoxSize;
Range[2] = All.BoxSize / NTask;
LowerBound[0] = LowerBound[1] = 0;
LowerBound[2] = ThisTask * Range[2];
srand48(ThisTask);
for(i = 0; i < n_for_this_task; i++)
{
for(k = 0; k < 3; k++)
{
drandom = drand48();
P[i].Pos[k] = LowerBound[k] + Range[k] * drandom;
P[i].Vel[k] = 0;
}
P[i].Mass = partmass;
P[i].Type = 1;
P[i].ID = IDstart + i;
NumPart++;
}
}
#endif
diff --git a/src/io.c b/src/io.c
index 3060464..d48a6b7 100644
--- a/src/io.c
+++ b/src/io.c
@@ -1,1645 +1,1661 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include <errno.h>
#ifdef HAVE_HDF5
#include <hdf5.h>
#endif
#include "allvars.h"
#include "proto.h"
/*! \file io.c
* \brief Routines for producing a snapshot file on disk.
*/
static int n_type[6];
static long long ntot_type_all[6];
/*! This function writes a snapshot of the particle distribution to one or
* several files using the selected file format. If NumFilesPerSnapshot>1,
* the snapshot is distributed onto several files, several of them can be
* written simultaneously (up to NumFilesWrittenInParallel). Each file
* contains data from a group of processors.
*/
void savepositions(int num)
{
double t0, t1;
char buf[500];
int i, j, *temp, n, filenr, gr, ngroups, masterTask, lastTask;
t0 = second();
if(ThisTask == 0)
printf("\nwriting snapshot file... \n");
#if defined(SFR) || defined(BLACK_HOLES)
rearrange_particle_sequence();
/* ensures that new tree will be constructed */
All.NumForcesSinceLastDomainDecomp = 1 + All.TreeDomainUpdateFrequency * All.TotNumPart;
#endif
if(NTask < All.NumFilesPerSnapshot)
{
if(ThisTask == 0)
printf("Fatal error.\nNumber of processors must be larger or equal than All.NumFilesPerSnapshot.\n");
endrun(0);
}
if(All.SnapFormat < 1 || All.SnapFormat > 3)
{
if(ThisTask == 0)
printf("Unsupported File-Format\n");
endrun(0);
}
#ifndef HAVE_HDF5
if(All.SnapFormat == 3)
{
if(ThisTask == 0)
printf("Code wasn't compiled with HDF5 support enabled!\n");
endrun(0);
}
#endif
/* determine global and local particle numbers */
for(n = 0; n < 6; n++)
n_type[n] = 0;
for(n = 0; n < NumPart; n++)
n_type[P[n].Type]++;
#ifdef CHECK_TYPE_DURING_IO
if (n_type[0]!=N_gas)
{
printf("(%d) n_type[0]=%d N_gas=%d !!!\n\n",ThisTask,n_type[0],N_gas);
endrun(111000);
}
#ifdef SFR
if (n_type[ST]!=N_stars)
{
printf("(%d) n_type[ST]=%d N_gas=%d !!!\n\n",ThisTask,n_type[ST],N_stars);
endrun(111001);
}
#endif
#endif
/* because ntot_type_all[] is of type `long long', we cannot do a simple
* MPI_Allreduce() to sum the total particle numbers
*/
temp = malloc(NTask * 6 * sizeof(int));
MPI_Allgather(n_type, 6, MPI_INT, temp, 6, MPI_INT, MPI_COMM_WORLD);
for(i = 0; i < 6; i++)
{
ntot_type_all[i] = 0;
for(j = 0; j < NTask; j++)
ntot_type_all[i] += temp[j * 6 + i];
}
free(temp);
/* assign processors to output files */
distribute_file(All.NumFilesPerSnapshot, 0, 0, NTask - 1, &filenr, &masterTask, &lastTask);
fill_Tab_IO_Labels();
if(All.NumFilesPerSnapshot > 1)
sprintf(buf, "%s%s_%04d.%d", All.OutputDir, All.SnapshotFileBase, num, filenr);
else
sprintf(buf, "%s%s_%04d", All.OutputDir, All.SnapshotFileBase, num);
ngroups = All.NumFilesPerSnapshot / All.NumFilesWrittenInParallel;
if((All.NumFilesPerSnapshot % All.NumFilesWrittenInParallel))
ngroups++;
for(gr = 0; gr < ngroups; gr++)
{
if((filenr / All.NumFilesWrittenInParallel) == gr) /* ok, it's this processor's turn */
write_file(buf, masterTask, lastTask);
MPI_Barrier(MPI_COMM_WORLD);
}
if(ThisTask == 0)
printf("done with snapshot.\n");
t1 = second();
All.CPU_Snapshot += timediff(t0, t1);
}
/*! This function fills the write buffer with particle data. New output blocks
* can in principle be added here.
*/
void fill_write_buffer(enum iofields blocknr, int *startindex, int pc, int type)
{
int n, k, pindex;
float *fp;
#ifdef LONGIDS
long long *ip;
#else
int *ip;
#endif
#ifdef PERIODIC
FLOAT boxSize;
#endif
#ifdef PMGRID
double dt_gravkick_pm = 0;
#endif
double dt_gravkick, dt_hydrokick, a3inv = 1, fac1, fac2;
if(All.ComovingIntegrationOn)
{
a3inv = 1 / (All.Time * All.Time * All.Time);
fac1 = 1 / (All.Time * All.Time);
fac2 = 1 / pow(All.Time, 3 * GAMMA - 2);
}
else
a3inv = fac1 = fac2 = 1;
#ifdef PMGRID
if(All.ComovingIntegrationOn)
dt_gravkick_pm =
get_gravkick_factor(All.PM_Ti_begstep,
All.Ti_Current) -
get_gravkick_factor(All.PM_Ti_begstep, (All.PM_Ti_begstep + All.PM_Ti_endstep) / 2);
else
dt_gravkick_pm = (All.Ti_Current - (All.PM_Ti_begstep + All.PM_Ti_endstep) / 2) * All.Timebase_interval;
#endif
fp = CommBuffer;
ip = CommBuffer;
pindex = *startindex;
switch (blocknr)
{
case IO_POS: /* positions */
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
for(k = 0; k < 3; k++)
{
fp[k] = P[pindex].Pos[k];
#ifdef PERIODIC
boxSize = All.BoxSize;
#ifdef LONG_X
if(k == 0)
boxSize = All.BoxSize * LONG_X;
#endif
#ifdef LONG_Y
if(k == 1)
boxSize = All.BoxSize * LONG_Y;
#endif
#ifdef LONG_Z
if(k == 2)
boxSize = All.BoxSize * LONG_Z;
#endif
while(fp[k] < 0)
fp[k] += boxSize;
while(fp[k] >= boxSize)
fp[k] -= boxSize;
#endif
}
n++;
fp += 3;
}
break;
case IO_VEL: /* velocities */
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
if(All.ComovingIntegrationOn)
{
dt_gravkick =
get_gravkick_factor(P[pindex].Ti_begstep,
All.Ti_Current) -
get_gravkick_factor(P[pindex].Ti_begstep,
(P[pindex].Ti_begstep + P[pindex].Ti_endstep) / 2);
dt_hydrokick =
get_hydrokick_factor(P[pindex].Ti_begstep,
All.Ti_Current) -
get_hydrokick_factor(P[pindex].Ti_begstep,
(P[pindex].Ti_begstep + P[pindex].Ti_endstep) / 2);
}
else
dt_gravkick = dt_hydrokick =
(All.Ti_Current - (P[pindex].Ti_begstep + P[pindex].Ti_endstep) / 2) * All.Timebase_interval;
for(k = 0; k < 3; k++)
{
fp[k] = P[pindex].Vel[k] + P[pindex].GravAccel[k] * dt_gravkick;
if(P[pindex].Type == 0)
{
fp[k] += SphP[pindex].HydroAccel[k] * dt_hydrokick;
}
}
#ifdef PMGRID
for(k = 0; k < 3; k++)
fp[k] += P[pindex].GravPM[k] * dt_gravkick_pm;
#endif
for(k = 0; k < 3; k++)
fp[k] *= sqrt(a3inv);
n++;
fp += 3;
}
break;
case IO_ID: /* particle ID */
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*ip++ = P[pindex].ID;
n++;
}
break;
case IO_MASS: /* particle mass */
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = P[pindex].Mass;
n++;
}
break;
case IO_U: /* internal energy */
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
#ifdef ISOTHERM_EQS
*fp++ = SphP[pindex].Entropy;
#else
#ifdef MULTIPHASE
switch(SphP[pindex].Phase)
{
case GAS_SPH:
- *fp++ = dmax(All.MinEgySpec,SphP[pindex].Entropy / GAMMA_MINUS1 * pow(SphP[pindex].Density * a3inv, GAMMA_MINUS1));
- break;
+
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ *fp++ = dmax(All.MinEgySpec,SphP[pindex].Entropy / GAMMA_MINUS1 * pow(SphP[pindex].EgyWtDensity * a3inv, GAMMA_MINUS1));
+#else
+ *fp++ = dmax(All.MinEgySpec,SphP[pindex].Entropy / GAMMA_MINUS1 * pow(SphP[pindex].Density * a3inv, GAMMA_MINUS1));
+#endif
+ break;
case GAS_STICKY:
*fp++ = SphP[pindex].Entropy;
break;
case GAS_DARK:
*fp++ = -SphP[pindex].Entropy;
break;
}
#else
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ *fp++ =
+ dmax(All.MinEgySpec,
+ SphP[pindex].Entropy / GAMMA_MINUS1 * pow(SphP[pindex].EgyWtDensity * a3inv, GAMMA_MINUS1));
+#else
+
*fp++ =
dmax(All.MinEgySpec,
SphP[pindex].Entropy / GAMMA_MINUS1 * pow(SphP[pindex].Density * a3inv, GAMMA_MINUS1));
+#endif
+
+
#endif
#endif
n++;
}
break;
case IO_RHO: /* density */
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = SphP[pindex].Density;
n++;
}
break;
case IO_HSML: /* SPH smoothing length */
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = SphP[pindex].Hsml;
n++;
}
break;
/*********************************************/
/* here it is the end of the minimal output */
/*********************************************/
case IO_STAR_FORMATIONTIME: /* stellar formation time */
#ifdef OUTPUTSTELLAR_PROP
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = StP[P[pindex].StPIdx].FormationTime;
n++;
}
#endif
break;
case IO_INITIAL_MASS: /* stellar formation time */
#ifdef OUTPUTSTELLAR_PROP
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = StP[P[pindex].StPIdx].InitialMass;
n++;
}
#endif
break;
case IO_STAR_IDPROJ: /* stellar projenitor */
#ifdef OUTPUTSTELLAR_PROP
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*ip++ = StP[P[pindex].StPIdx].IDProj;
n++;
}
#endif
break;
case IO_STAR_RHO: /* gas density around a star */
#ifdef OUTPUTSTELLAR_PROP
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = StP[P[pindex].StPIdx].Density;
n++;
}
#endif
break;
case IO_STAR_HSML: /* SPH smoothing length of a star */
#ifdef OUTPUTSTELLAR_PROP
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = StP[P[pindex].StPIdx].Hsml;
n++;
}
#endif
break;
case IO_STAR_METALS: /* stars metal */
#ifdef OUTPUTSTELLAR_PROP
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
for(k = 0; k < NELEMENTS; k++)
{
fp[k] = StP[P[pindex].StPIdx].Metal[k];
}
n++;
fp += NELEMENTS;
}
#endif
break;
case IO_METALS: /* gas metal */
#ifdef OUTPUTSTELLAR_PROP
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
for(k = 0; k < NELEMENTS; k++)
{
fp[k] = SphP[pindex].Metal[k];
}
n++;
fp += NELEMENTS;
}
#endif
break;
case IO_POT: /* gravitational potential */
#ifdef OUTPUTPOTENTIAL
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = P[pindex].Potential;
n++;
}
#endif
break;
case IO_ACCEL: /* acceleration */
#ifdef OUTPUTACCELERATION
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
for(k = 0; k < 3; k++)
fp[k] = fac1 * P[pindex].GravAccel[k];
#ifdef PMGRID
for(k = 0; k < 3; k++)
fp[k] += fac1 * P[pindex].GravPM[k];
#endif
if(P[pindex].Type == 0)
for(k = 0; k < 3; k++)
{
fp[k] += fac2 * SphP[pindex].HydroAccel[k];
}
fp += 3;
n++;
}
#endif
break;
case IO_DTENTR: /* rate of change of entropy */
#ifdef OUTPUTCHANGEOFENTROPY
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = SphP[pindex].DtEntropy;
n++;
}
#endif
break;
case IO_TSTP: /* timestep */
#ifdef OUTPUTTIMESTEP
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = (P[pindex].Ti_endstep - P[pindex].Ti_begstep) * All.Timebase_interval;
n++;
}
#endif
break;
case IO_ERADSTICKY: /* sticky radiated energy */
#ifdef OUTPUTERADSTICKY
/* obsolete */
#endif
break;
case IO_ERADFEEDBACK: /* feedback injected energy */
#ifdef OUTPUTERADFEEDBACK
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = SphP[pindex].EgySpecFeedback;
n++;
}
#endif
break;
case IO_ENERGYFLUX: /* energyflux */
#ifdef OUTPUTENERGYFLUX
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = SphP[pindex].EnergyFlux;
n++;
}
#endif
break;
case IO_OPTVAR1: /* optional variable 1 */
#ifdef OUTPUTOPTVAR1
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = SphP[pindex].OptVar1;
n++;
}
#endif
break;
case IO_OPTVAR2: /* optional variable 2 */
#ifdef OUTPUTOPTVAR2
for(n = 0; n < pc; pindex++)
if(P[pindex].Type == type)
{
*fp++ = SphP[pindex].OptVar2;
n++;
}
#endif
break;
}
*startindex = pindex;
}
/*! This function tells the size of one data entry in each of the blocks
* defined for the output file. If one wants to add a new output-block, this
* function should be augmented accordingly.
*/
int get_bytes_per_blockelement(enum iofields blocknr)
{
int bytes_per_blockelement = 0;
switch (blocknr)
{
case IO_POS:
case IO_VEL:
case IO_ACCEL:
bytes_per_blockelement = 3 * sizeof(float);
break;
case IO_ID:
#ifdef LONGIDS
bytes_per_blockelement = sizeof(long long);
#else
bytes_per_blockelement = sizeof(int);
#endif
break;
case IO_MASS:
case IO_U:
case IO_RHO:
case IO_HSML:
case IO_POT:
case IO_DTENTR:
case IO_TSTP:
case IO_ERADSPH:
case IO_ERADSTICKY:
case IO_ERADFEEDBACK:
case IO_ENERGYFLUX:
case IO_OPTVAR1:
case IO_OPTVAR2:
bytes_per_blockelement = sizeof(float);
break;
case IO_STAR_FORMATIONTIME:
case IO_INITIAL_MASS:
case IO_STAR_RHO:
case IO_STAR_HSML:
bytes_per_blockelement = sizeof(float);
break;
case IO_METALS:
#ifdef CHIMIE
case IO_STAR_METALS:
bytes_per_blockelement = NELEMENTS*sizeof(float);
#endif
break;
case IO_STAR_IDPROJ:
#ifdef LONGIDS
bytes_per_blockelement = sizeof(long long);
#else
bytes_per_blockelement = sizeof(int);
#endif
break;
}
return bytes_per_blockelement;
}
/*! This function returns the type of the data contained in a given block of
* the output file. If one wants to add a new output-block, this function
* should be augmented accordingly.
*/
int get_datatype_in_block(enum iofields blocknr)
{
int typekey;
switch (blocknr)
{
case IO_ID:
case IO_STAR_IDPROJ:
#ifdef LONGIDS
typekey = 2; /* native long long */
#else
typekey = 0; /* native int */
#endif
break;
default:
typekey = 1; /* native float */
break;
}
return typekey;
}
/*! This function informs about the number of elements stored per particle for
* the given block of the output file. If one wants to add a new
* output-block, this function should be augmented accordingly.
*/
int get_values_per_blockelement(enum iofields blocknr)
{
int values = 0;
switch (blocknr)
{
case IO_POS:
case IO_VEL:
case IO_ACCEL:
values = 3;
break;
case IO_ID:
case IO_MASS:
case IO_U:
case IO_RHO:
case IO_HSML:
case IO_POT:
case IO_DTENTR:
case IO_TSTP:
case IO_ERADSPH:
case IO_ERADSTICKY:
case IO_ERADFEEDBACK:
case IO_ENERGYFLUX:
case IO_OPTVAR1:
case IO_OPTVAR2:
case IO_STAR_FORMATIONTIME:
case IO_INITIAL_MASS:
case IO_STAR_IDPROJ:
case IO_STAR_RHO:
case IO_STAR_HSML:
values = 1;
break;
case IO_METALS:
#ifdef CHIMIE
case IO_STAR_METALS:
values = NELEMENTS;
#endif
break;
}
return values;
}
/*! This function determines how many particles there are in a given block,
* based on the information in the header-structure. It also flags particle
* types that are present in the block in the typelist array. If one wants to
* add a new output-block, this function should be augmented accordingly.
*/
int get_particles_in_block(enum iofields blocknr, int *typelist)
{
int i, nall, ntot_withmasses, ngas, nstars;
nall = 0;
ntot_withmasses = 0;
for(i = 0; i < 6; i++)
{
typelist[i] = 0;
if(header.npart[i] > 0)
{
nall += header.npart[i];
typelist[i] = 1;
}
if(All.MassTable[i] == 0)
ntot_withmasses += header.npart[i];
}
ngas = header.npart[0];
#if defined(SFR) || defined(STELLAR_PROP)
nstars = header.npart[ST];
#else
nstars = header.npart[4];
#endif
switch (blocknr)
{
case IO_POS:
case IO_VEL:
case IO_ACCEL:
case IO_TSTP:
case IO_ID:
case IO_POT:
return nall;
break;
case IO_MASS:
for(i = 0; i < 6; i++)
{
typelist[i] = 0;
if(All.MassTable[i] == 0 && header.npart[i] > 0)
typelist[i] = 1;
}
return ntot_withmasses;
break;
case IO_U:
case IO_RHO:
case IO_HSML:
case IO_DTENTR:
case IO_ERADSPH:
case IO_ERADSTICKY:
case IO_ERADFEEDBACK:
case IO_ENERGYFLUX:
case IO_OPTVAR1:
case IO_OPTVAR2:
case IO_METALS:
for(i = 1; i < 6; i++)
typelist[i] = 0;
return ngas;
break;
case IO_STAR_FORMATIONTIME:
case IO_INITIAL_MASS:
case IO_STAR_IDPROJ:
case IO_STAR_RHO:
case IO_STAR_HSML:
#if defined(STELLAR_PROP)
case IO_STAR_METALS:
for(i = 0; i < 6; i++)
{
typelist[i] = 0;
if(i == ST)
typelist[i] = 1;
}
return nstars;
#endif
break;
}
endrun(212);
return 0;
}
/*! This function tells whether or not a given block in the output file is
* present, depending on the type of simulation run and the compile-time
* options. If one wants to add a new output-block, this function should be
* augmented accordingly.
*/
int blockpresent(enum iofields blocknr)
{
#ifndef OUTPUTPOTENTIAL
if(blocknr == IO_POT)
return 0;
#endif
#ifndef OUTPUTACCELERATION
if(blocknr == IO_ACCEL)
return 0;
#endif
#ifndef OUTPUTCHANGEOFENTROPY
if(blocknr == IO_DTENTR)
return 0;
#endif
#ifndef OUTPUTTIMESTEP
if(blocknr == IO_TSTP)
return 0;
#endif
#ifndef OUTPUTERADSPH
if(blocknr == IO_ERADSPH)
return 0;
#endif
#ifndef OUTPUTERADSTICKY
if(blocknr == IO_ERADSTICKY)
return 0;
#endif
#ifndef OUTPUTERADFEEDBACK
if(blocknr == IO_ERADFEEDBACK)
return 0;
#endif
#ifndef OUTPUTENERGYFLUX
if(blocknr == IO_ENERGYFLUX)
return 0;
#endif
#ifndef OUTPUTOPTVAR1
if(blocknr == IO_OPTVAR1)
return 0;
#endif
#ifndef OUTPUTOPTVAR2
if(blocknr == IO_OPTVAR2)
return 0;
#endif
#ifndef OUTPUTSTELLAR_PROP
if(blocknr == IO_STAR_FORMATIONTIME)
return 0;
#endif
#ifndef OUTPUTSTELLAR_PROP
if(blocknr == IO_INITIAL_MASS)
return 0;
#endif
#ifndef OUTPUTSTELLAR_PROP
if(blocknr == IO_STAR_IDPROJ)
return 0;
#endif
#ifndef OUTPUTSTELLAR_PROP
if(blocknr == IO_STAR_RHO)
return 0;
#endif
#ifndef OUTPUTSTELLAR_PROP
if(blocknr == IO_STAR_HSML)
return 0;
#endif
#ifndef OUTPUTSTELLAR_PROP
if(blocknr == IO_STAR_METALS)
return 0;
#endif
#ifndef OUTPUTSTELLAR_PROP
if(blocknr == IO_METALS)
return 0;
#endif
return 1; /* default: present */
}
#ifdef BLOCK_SKIPPING
/*! This function tells whether or not a given block in the input file is
* present, depending on the type of simulation run and the compile-time
* options. If one wants to add a new input-block, this function should be
* augmented accordingly.
*/
int blockabsent(enum iofields blocknr)
{
/* here we will for exampe read the gas initial metallicity if needed */
#ifdef CHIMIE
#ifdef CHIMIE_INPUT_ALL
/* here, we restart from a file that contains all block*/
if(RestartFlag == 0 && header.flag_metals)
if(blocknr > IO_STAR_METALS) /* read all blocks */
return 1;
else
return 0;
#else
/* here, we restart from a file that contains only the gas metals */
if(RestartFlag == 0 && header.flag_metals)
if(blocknr > IO_METALS) /* read in addition IO_RHO,IO_HSML and IO_METALS */
return 1;
else
return 0;
#endif
#endif
if(RestartFlag == 0 && blocknr > IO_U)
return 1; /* ignore all other blocks in initial conditions */
return 0; /* default: absent */
}
#endif
/*! This function associates a short 4-character block name with each block
* number. This is stored in front of each block for snapshot
* FileFormat=2. If one wants to add a new output-block, this function should
* be augmented accordingly.
*/
void fill_Tab_IO_Labels(void)
{
enum iofields i;
for(i = 0; i < IO_NBLOCKS; i++)
switch (i)
{
case IO_POS:
strncpy(Tab_IO_Labels[IO_POS], "POS ", 4);
break;
case IO_VEL:
strncpy(Tab_IO_Labels[IO_VEL], "VEL ", 4);
break;
case IO_ID:
strncpy(Tab_IO_Labels[IO_ID], "ID ", 4);
break;
case IO_MASS:
strncpy(Tab_IO_Labels[IO_MASS], "MASS", 4);
break;
case IO_U:
strncpy(Tab_IO_Labels[IO_U], "U ", 4);
break;
case IO_RHO:
strncpy(Tab_IO_Labels[IO_RHO], "RHO ", 4);
break;
case IO_HSML:
strncpy(Tab_IO_Labels[IO_HSML], "HSML", 4);
break;
case IO_POT:
strncpy(Tab_IO_Labels[IO_POT], "POT ", 4);
break;
case IO_ACCEL:
strncpy(Tab_IO_Labels[IO_ACCEL], "ACCE", 4);
break;
case IO_DTENTR:
strncpy(Tab_IO_Labels[IO_DTENTR], "ENDT", 4);
break;
case IO_TSTP:
strncpy(Tab_IO_Labels[IO_TSTP], "TSTP", 4);
break;
case IO_ERADSPH:
strncpy(Tab_IO_Labels[IO_ERADSPH], "ERADSPH", 4);
break;
case IO_ERADSTICKY:
strncpy(Tab_IO_Labels[IO_ERADSTICKY], "ERADSTICKY", 4);
break;
case IO_ERADFEEDBACK:
strncpy(Tab_IO_Labels[IO_ERADFEEDBACK], "ERADFEEDBACK", 4);
break;
case IO_ENERGYFLUX:
strncpy(Tab_IO_Labels[IO_ENERGYFLUX], "ENERGYFLUX", 4);
break;
case IO_OPTVAR1:
strncpy(Tab_IO_Labels[IO_OPTVAR1], "OPTVAR1", 4);
break;
case IO_OPTVAR2:
strncpy(Tab_IO_Labels[IO_OPTVAR2], "OPTVAR2", 4);
break;
case IO_STAR_FORMATIONTIME:
strncpy(Tab_IO_Labels[IO_STAR_FORMATIONTIME], "STAR_FORMATIONTIME", 4);
break;
case IO_INITIAL_MASS:
strncpy(Tab_IO_Labels[IO_INITIAL_MASS], "INITIAL_MASS", 4);
break;
case IO_STAR_IDPROJ:
strncpy(Tab_IO_Labels[IO_STAR_IDPROJ], "STAR_IDPROJ", 4);
break;
case IO_STAR_RHO:
strncpy(Tab_IO_Labels[IO_STAR_RHO], "STAR_RHO", 4);
break;
case IO_STAR_HSML:
strncpy(Tab_IO_Labels[IO_STAR_HSML], "STAR_HSML", 4);
break;
case IO_STAR_METALS:
strncpy(Tab_IO_Labels[IO_STAR_METALS], "STAR_METALS", 4);
break;
case IO_METALS:
strncpy(Tab_IO_Labels[IO_METALS], "METALS", 4);
break;
}
}
/*! This function returns a descriptive character string that describes the
* name of the block when the HDF5 file format is used. If one wants to add
* a new output-block, this function should be augmented accordingly.
*/
void get_dataset_name(enum iofields blocknr, char *buf)
{
strcpy(buf, "default");
switch (blocknr)
{
case IO_POS:
strcpy(buf, "Coordinates");
break;
case IO_VEL:
strcpy(buf, "Velocities");
break;
case IO_ID:
strcpy(buf, "ParticleIDs");
break;
case IO_MASS:
strcpy(buf, "Masses");
break;
case IO_U:
strcpy(buf, "InternalEnergy");
break;
case IO_RHO:
strcpy(buf, "Density");
break;
case IO_HSML:
strcpy(buf, "SmoothingLength");
break;
case IO_POT:
strcpy(buf, "Potential");
break;
case IO_ACCEL:
strcpy(buf, "Acceleration");
break;
case IO_DTENTR:
strcpy(buf, "RateOfChangeOfEntropy");
break;
case IO_TSTP:
strcpy(buf, "TimeStep");
break;
case IO_ERADSPH:
strcpy(buf, "EnergyRadiatedSph");
break;
case IO_ERADSTICKY:
strcpy(buf, "EnergyRadiatedSticky");
break;
case IO_ERADFEEDBACK:
strcpy(buf, "EnergyRadiatedFeedback");
break;
case IO_ENERGYFLUX:
strcpy(buf, "EnergyFlux");
break;
case IO_OPTVAR1:
strcpy(buf, "OptVar1");
break;
case IO_OPTVAR2:
strcpy(buf, "OptVar2");
break;
case IO_STAR_FORMATIONTIME:
strcpy(buf, "StarFormationTime");
break;
case IO_INITIAL_MASS:
strcpy(buf, "InitialMass");
break;
case IO_STAR_IDPROJ:
strcpy(buf, "StarIDProj");
break;
case IO_STAR_RHO:
strcpy(buf, "StarRho");
break;
case IO_STAR_HSML:
strcpy(buf, "StarHsml");
break;
case IO_STAR_METALS:
strcpy(buf, "StarMetals");
break;
case IO_METALS:
strcpy(buf, "Metals");
break;
}
}
/*! This function writes an actual snapshot file containing the data from
* processors 'writeTask' to 'lastTask'. 'writeTask' is the one that actually
* writes. Each snapshot file contains a header first, then particle
* positions, velocities and ID's. Particle masses are written only for
* those particle types with zero entry in MassTable. After that, first the
* internal energies u, and then the density is written for the SPH
* particles. If cooling is enabled, mean molecular weight and neutral
* hydrogen abundance are written for the gas particles. This is followed by
* the SPH smoothing length and further blocks of information, depending on
* included physics and compile-time flags. If HDF5 is used, the header is
* stored in a group called "/Header", and the particle data is stored
* separately for each particle type in groups calles "/PartType0",
* "/PartType1", etc. The sequence of the blocks is unimportant in this case.
*/
void write_file(char *fname, int writeTask, int lastTask)
{
int type, bytes_per_blockelement, npart, nextblock, typelist[6];
int n_for_this_task, ntask, n, p, pc, offset = 0, task;
int blockmaxlen, ntot_type[6], nn[6];
enum iofields blocknr;
int blksize;
int i;
MPI_Status status;
FILE *fd = 0;
#ifdef HAVE_HDF5
hid_t hdf5_file = 0, hdf5_grp[6], hdf5_headergrp = 0, hdf5_dataspace_memory;
hid_t hdf5_datatype = 0, hdf5_dataspace_in_file = 0, hdf5_dataset = 0;
herr_t hdf5_status;
hsize_t dims[2], count[2], start[2];
int rank, pcsum = 0;
char buf[500];
#endif
#define SKIP {my_fwrite(&blksize,sizeof(int),1,fd);}
/* determine particle numbers of each type in file */
if(ThisTask == writeTask)
{
for(n = 0; n < 6; n++)
ntot_type[n] = n_type[n];
for(task = writeTask + 1; task <= lastTask; task++)
{
MPI_Recv(&nn[0], 6, MPI_INT, task, TAG_LOCALN, MPI_COMM_WORLD, &status);
for(n = 0; n < 6; n++)
ntot_type[n] += nn[n];
}
for(task = writeTask + 1; task <= lastTask; task++)
MPI_Send(&ntot_type[0], 6, MPI_INT, task, TAG_N, MPI_COMM_WORLD);
}
else
{
MPI_Send(&n_type[0], 6, MPI_INT, writeTask, TAG_LOCALN, MPI_COMM_WORLD);
MPI_Recv(&ntot_type[0], 6, MPI_INT, writeTask, TAG_N, MPI_COMM_WORLD, &status);
}
/* fill file header */
for(n = 0; n < 6; n++)
{
header.npart[n] = ntot_type[n];
header.npartTotal[n] = (unsigned int) ntot_type_all[n];
header.npartTotalHighWord[n] = (unsigned int) (ntot_type_all[n] >> 32);
}
for(n = 0; n < 6; n++)
header.mass[n] = All.MassTable[n];
header.time = All.Time;
if(All.ComovingIntegrationOn)
header.redshift = 1.0 / All.Time - 1;
else
header.redshift = 0;
header.flag_sfr = 0;
header.flag_feedback = 0;
header.flag_cooling = 0;
header.flag_stellarage = 0;
header.flag_metals = 0;
#ifdef MULTIPHASE
header.critical_energy_spec = All.CriticalEgySpec;
#endif
#ifdef COOLING
header.flag_cooling = 1;
#endif
#ifdef SFR
header.flag_sfr = 1;
#ifdef OUTPUTSTELLAR_PROP
header.flag_stellarage = 1;
header.flag_metals = NELEMENTS;
#endif
#ifdef FEEDBACK
header.flag_feedback = 1;
#endif
#endif
header.num_files = All.NumFilesPerSnapshot;
header.BoxSize = All.BoxSize;
header.Omega0 = All.Omega0;
header.OmegaLambda = All.OmegaLambda;
header.HubbleParam = All.HubbleParam;
/* set fill to " " : yr Thu Aug 13 17:34:07 CEST 2009*/
memset(header.fill,' ',sizeof(header.fill));
/* fill file chimie-header */
header.flag_chimie_extraheader = 0;
#ifdef CHIMIE_EXTRAHEADER
header.flag_chimie_extraheader = 1;
chimie_extraheader.nelts = get_nelts();
for (i=0;i<get_nelts();i++)
{
chimie_extraheader.SolarAbundances[i]=get_SolarAbundance(i);
}
memset(chimie_extraheader.labels,' ',sizeof(chimie_extraheader.labels));
for (i=0,n=0;i<get_nelts();i++)
{
strcpy(&chimie_extraheader.labels[n],get_Element(i));
n+= strlen(get_Element(i));
strncpy(&chimie_extraheader.labels[n++],",",1);
}
#endif
/* open file and write header */
if(ThisTask == writeTask)
{
if(All.SnapFormat == 3)
{
#ifdef HAVE_HDF5
sprintf(buf, "%s.hdf5", fname);
hdf5_file = H5Fcreate(buf, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
hdf5_headergrp = H5Gcreate(hdf5_file, "/Header", 0);
for(type = 0; type < 6; type++)
{
if(header.npart[type] > 0)
{
sprintf(buf, "/PartType%d", type);
hdf5_grp[type] = H5Gcreate(hdf5_file, buf, 0);
}
}
write_header_attributes_in_hdf5(hdf5_headergrp);
#endif
}
else
{
if(!(fd = fopen(fname, "w")))
{
printf("can't open file `%s' for writing snapshot.\n", fname);
endrun(123);
}
if(All.SnapFormat == 2)
{
blksize = sizeof(int) + 4 * sizeof(char);
SKIP;
my_fwrite("HEAD", sizeof(char), 4, fd);
nextblock = sizeof(header) + 2 * sizeof(int);
my_fwrite(&nextblock, sizeof(int), 1, fd);
SKIP;
}
blksize = sizeof(header);
SKIP;
my_fwrite(&header, sizeof(header), 1, fd);
SKIP;
#ifdef CHIMIE_EXTRAHEADER
blksize = sizeof(chimie_extraheader);
SKIP;
my_fwrite(&chimie_extraheader, sizeof(chimie_extraheader), 1, fd);
SKIP;
#endif
}
}
ntask = lastTask - writeTask + 1;
for(blocknr = 0; blocknr < IO_NBLOCKS; blocknr++)
{
if(blockpresent(blocknr))
{
bytes_per_blockelement = get_bytes_per_blockelement(blocknr);
blockmaxlen = ((int) (All.BufferSize * 1024 * 1024)) / bytes_per_blockelement;
npart = get_particles_in_block(blocknr, &typelist[0]);
if(npart > 0)
{
if(ThisTask == writeTask)
{
if(All.SnapFormat == 1 || All.SnapFormat == 2)
{
if(All.SnapFormat == 2)
{
blksize = sizeof(int) + 4 * sizeof(char);
SKIP;
my_fwrite(Tab_IO_Labels[blocknr], sizeof(char), 4, fd);
nextblock = npart * bytes_per_blockelement + 2 * sizeof(int);
my_fwrite(&nextblock, sizeof(int), 1, fd);
SKIP;
}
blksize = npart * bytes_per_blockelement;
SKIP;
}
}
for(type = 0; type < 6; type++)
{
if(typelist[type])
{
#ifdef HAVE_HDF5
if(ThisTask == writeTask && All.SnapFormat == 3 && header.npart[type] > 0)
{
switch (get_datatype_in_block(blocknr))
{
case 0:
hdf5_datatype = H5Tcopy(H5T_NATIVE_UINT);
break;
case 1:
hdf5_datatype = H5Tcopy(H5T_NATIVE_FLOAT);
break;
case 2:
hdf5_datatype = H5Tcopy(H5T_NATIVE_UINT64);
break;
}
dims[0] = header.npart[type];
dims[1] = get_values_per_blockelement(blocknr);
if(dims[1] == 1)
rank = 1;
else
rank = 2;
get_dataset_name(blocknr, buf);
hdf5_dataspace_in_file = H5Screate_simple(rank, dims, NULL);
hdf5_dataset =
H5Dcreate(hdf5_grp[type], buf, hdf5_datatype, hdf5_dataspace_in_file,
H5P_DEFAULT);
pcsum = 0;
}
#endif
for(task = writeTask, offset = 0; task <= lastTask; task++)
{
if(task == ThisTask)
{
n_for_this_task = n_type[type];
for(p = writeTask; p <= lastTask; p++)
if(p != ThisTask)
MPI_Send(&n_for_this_task, 1, MPI_INT, p, TAG_NFORTHISTASK, MPI_COMM_WORLD);
}
else
MPI_Recv(&n_for_this_task, 1, MPI_INT, task, TAG_NFORTHISTASK, MPI_COMM_WORLD,
&status);
while(n_for_this_task > 0)
{
pc = n_for_this_task;
if(pc > blockmaxlen)
pc = blockmaxlen;
if(ThisTask == task)
fill_write_buffer(blocknr, &offset, pc, type);
if(ThisTask == writeTask && task != writeTask)
MPI_Recv(CommBuffer, bytes_per_blockelement * pc, MPI_BYTE, task,
TAG_PDATA, MPI_COMM_WORLD, &status);
if(ThisTask != writeTask && task == ThisTask)
MPI_Ssend(CommBuffer, bytes_per_blockelement * pc, MPI_BYTE, writeTask,
TAG_PDATA, MPI_COMM_WORLD);
if(ThisTask == writeTask)
{
if(All.SnapFormat == 3)
{
#ifdef HAVE_HDF5
start[0] = pcsum;
start[1] = 0;
count[0] = pc;
count[1] = get_values_per_blockelement(blocknr);
pcsum += pc;
H5Sselect_hyperslab(hdf5_dataspace_in_file, H5S_SELECT_SET,
start, NULL, count, NULL);
dims[0] = pc;
dims[1] = get_values_per_blockelement(blocknr);
hdf5_dataspace_memory = H5Screate_simple(rank, dims, NULL);
hdf5_status =
H5Dwrite(hdf5_dataset, hdf5_datatype, hdf5_dataspace_memory,
hdf5_dataspace_in_file, H5P_DEFAULT, CommBuffer);
H5Sclose(hdf5_dataspace_memory);
#endif
}
else
my_fwrite(CommBuffer, bytes_per_blockelement, pc, fd);
}
n_for_this_task -= pc;
}
}
#ifdef HAVE_HDF5
if(ThisTask == writeTask && All.SnapFormat == 3 && header.npart[type] > 0)
{
if(All.SnapFormat == 3)
{
H5Dclose(hdf5_dataset);
H5Sclose(hdf5_dataspace_in_file);
H5Tclose(hdf5_datatype);
}
}
#endif
}
}
if(ThisTask == writeTask)
{
if(All.SnapFormat == 1 || All.SnapFormat == 2)
SKIP;
}
}
}
}
if(ThisTask == writeTask)
{
if(All.SnapFormat == 3)
{
#ifdef HAVE_HDF5
for(type = 5; type >= 0; type--)
if(header.npart[type] > 0)
H5Gclose(hdf5_grp[type]);
H5Gclose(hdf5_headergrp);
H5Fclose(hdf5_file);
#endif
}
else
fclose(fd);
}
}
/*! This function writes the header information in case HDF5 is selected as
* file format.
*/
#ifdef HAVE_HDF5
void write_header_attributes_in_hdf5(hid_t handle)
{
hsize_t adim[1] = { 6 };
hid_t hdf5_dataspace, hdf5_attribute;
hdf5_dataspace = H5Screate(H5S_SIMPLE);
H5Sset_extent_simple(hdf5_dataspace, 1, adim, NULL);
hdf5_attribute = H5Acreate(handle, "NumPart_ThisFile", H5T_NATIVE_INT, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_UINT, header.npart);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SIMPLE);
H5Sset_extent_simple(hdf5_dataspace, 1, adim, NULL);
hdf5_attribute = H5Acreate(handle, "NumPart_Total", H5T_NATIVE_UINT, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_UINT, header.npartTotal);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SIMPLE);
H5Sset_extent_simple(hdf5_dataspace, 1, adim, NULL);
hdf5_attribute = H5Acreate(handle, "NumPart_Total_HW", H5T_NATIVE_UINT, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_UINT, header.npartTotalHighWord);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SIMPLE);
H5Sset_extent_simple(hdf5_dataspace, 1, adim, NULL);
hdf5_attribute = H5Acreate(handle, "MassTable", H5T_NATIVE_DOUBLE, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_DOUBLE, header.mass);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SCALAR);
hdf5_attribute = H5Acreate(handle, "Time", H5T_NATIVE_DOUBLE, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_DOUBLE, &header.time);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SCALAR);
hdf5_attribute = H5Acreate(handle, "Redshift", H5T_NATIVE_DOUBLE, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_DOUBLE, &header.redshift);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SCALAR);
hdf5_attribute = H5Acreate(handle, "BoxSize", H5T_NATIVE_DOUBLE, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_DOUBLE, &header.BoxSize);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SCALAR);
hdf5_attribute = H5Acreate(handle, "NumFilesPerSnapshot", H5T_NATIVE_INT, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_INT, &header.num_files);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SCALAR);
hdf5_attribute = H5Acreate(handle, "Omega0", H5T_NATIVE_DOUBLE, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_DOUBLE, &header.Omega0);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SCALAR);
hdf5_attribute = H5Acreate(handle, "OmegaLambda", H5T_NATIVE_DOUBLE, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_DOUBLE, &header.OmegaLambda);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SCALAR);
hdf5_attribute = H5Acreate(handle, "HubbleParam", H5T_NATIVE_DOUBLE, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_DOUBLE, &header.HubbleParam);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SCALAR);
hdf5_attribute = H5Acreate(handle, "Flag_Sfr", H5T_NATIVE_INT, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_INT, &header.flag_sfr);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SCALAR);
hdf5_attribute = H5Acreate(handle, "Flag_Cooling", H5T_NATIVE_INT, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_INT, &header.flag_cooling);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SCALAR);
hdf5_attribute = H5Acreate(handle, "Flag_StellarAge", H5T_NATIVE_INT, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_INT, &header.flag_stellarage);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SCALAR);
hdf5_attribute = H5Acreate(handle, "Flag_Metals", H5T_NATIVE_INT, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_INT, &header.flag_metals);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
hdf5_dataspace = H5Screate(H5S_SCALAR);
hdf5_attribute = H5Acreate(handle, "Flag_Feedback", H5T_NATIVE_INT, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_INT, &header.flag_feedback);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
header.flag_entropy_instead_u = 0;
hdf5_dataspace = H5Screate(H5S_SIMPLE);
H5Sset_extent_simple(hdf5_dataspace, 1, adim, NULL);
hdf5_attribute = H5Acreate(handle, "Flag_Entropy_ICs", H5T_NATIVE_UINT, hdf5_dataspace, H5P_DEFAULT);
H5Awrite(hdf5_attribute, H5T_NATIVE_UINT, header.flag_entropy_instead_u);
H5Aclose(hdf5_attribute);
H5Sclose(hdf5_dataspace);
}
#endif
/*! This catches I/O errors occuring for my_fwrite(). In this case we
* better stop.
*/
size_t my_fwrite(void *ptr, size_t size, size_t nmemb, FILE * stream)
{
size_t nwritten;
if((nwritten = fwrite(ptr, size, nmemb, stream)) != nmemb)
{
printf("I/O error (fwrite) on task=%d has occured: %s\n", ThisTask, strerror(errno));
fflush(stdout);
endrun(777);
}
return nwritten;
}
/*! This catches I/O errors occuring for fread(). In this case we
* better stop.
*/
size_t my_fread(void *ptr, size_t size, size_t nmemb, FILE * stream)
{
size_t nread;
if((nread = fread(ptr, size, nmemb, stream)) != nmemb)
{
printf("I/O error (fread) on task=%d has occured: %s\n", ThisTask, strerror(errno));
fflush(stdout);
endrun(778);
}
return nread;
}
diff --git a/src/predict.c b/src/predict.c
index 80fbd95..d2570d6 100644
--- a/src/predict.c
+++ b/src/predict.c
@@ -1,177 +1,183 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include <gsl/gsl_math.h>
#include "allvars.h"
#include "proto.h"
/*! \file predict.c
* \brief drift particles by a small time interval
*
* This function contains code to implement a drift operation on all the
* particles, which represents one part of the leapfrog integration scheme.
*/
/*! This function drifts all particles from the current time to the future:
* time0 - > time1
*
* If there is no explicit tree construction in the following timestep, the
* tree nodes are also drifted and updated accordingly. Note: For periodic
* boundary conditions, the mapping of coordinates onto the interval
* [0,All.BoxSize] is only done before the domain decomposition, or for
* outputs to snapshot files. This simplifies dynamic tree updates, and
* allows the domain decomposition to be carried out only every once in a
* while.
*/
void move_particles(int time0, int time1)
{
int i, j;
double dt_drift, dt_gravkick, dt_hydrokick, dt_entr;
double t0, t1;
t0 = second();
if(All.ComovingIntegrationOn)
{
dt_drift = get_drift_factor(time0, time1);
dt_gravkick = get_gravkick_factor(time0, time1);
dt_hydrokick = get_hydrokick_factor(time0, time1);
}
else
{
dt_drift = dt_gravkick = dt_hydrokick = (time1 - time0) * All.Timebase_interval;
}
for(i = 0; i < NumPart; i++)
{
for(j = 0; j < 3; j++)
P[i].Pos[j] += P[i].Vel[j] * dt_drift;
if(P[i].Type == 0)
{
#ifdef PMGRID
for(j = 0; j < 3; j++)
{
SphP[i].VelPred[j] += (P[i].GravAccel[j] + P[i].GravPM[j]) * dt_gravkick + SphP[i].HydroAccel[j] * dt_hydrokick;
}
#else
for(j = 0; j < 3; j++)
{
SphP[i].VelPred[j] += P[i].GravAccel[j] * dt_gravkick + SphP[i].HydroAccel[j] * dt_hydrokick;
}
#endif
SphP[i].Density *= exp(-SphP[i].DivVel * dt_drift);
SphP[i].Hsml *= exp(0.333333333333 * SphP[i].DivVel * dt_drift);
if(SphP[i].Hsml < All.MinGasHsml)
SphP[i].Hsml = All.MinGasHsml;
dt_entr = (time1 - (P[i].Ti_begstep + P[i].Ti_endstep) / 2) * All.Timebase_interval;
- SphP[i].Pressure = (SphP[i].Entropy + SphP[i].DtEntropy * dt_entr) * pow(SphP[i].Density, GAMMA);
+#ifdef DENSITY_INDEPENDENT_SPH
+ SphP[i].EgyWtDensity *= exp(-SphP[i].DivVel * dt_drift);
+ SphP[i].EntVarPred = pow(SphP[i].Entropy + SphP[i].DtEntropy * dt_entr, 1/GAMMA);
+ SphP[i].Pressure = (SphP[i].Entropy + SphP[i].DtEntropy * dt_entr) * pow(SphP[i].EgyWtDensity, GAMMA);
+#else
+ SphP[i].Pressure = (SphP[i].Entropy + SphP[i].DtEntropy * dt_entr) * pow(SphP[i].Density, GAMMA);
+#endif
#ifdef ENTROPYPRED
SphP[i].EntropyPred = (SphP[i].Entropy + SphP[i].DtEntropy * dt_entr);
#endif
#ifdef CHECK_ENTROPY_SIGN
if ((SphP[i].EntropyPred < 0)||(SphP[i].Entropy < 0))
{
printf("\ntask=%d: EntropyPred less than zero in move_particles !\n", ThisTask);
printf("ID=%d Entropy=%g EntropyPred=%g DtEntropy=%g dt_entr=%g\n",P[i].ID,SphP[i].Entropy,SphP[i].EntropyPred,SphP[i].DtEntropy,dt_entr);
fflush(stdout);
endrun(333021);
}
#endif
#ifdef NO_NEGATIVE_PRESSURE
if (SphP[i].Pressure<0)
{
printf("\ntask=%d: pressure less than zero in move_particles !\n", ThisTask);
printf("ID=%d Entropy=%g DtEntropy*dt=%g Density=%g DtEntropy=%g dt=%g\n",P[i].ID,SphP[i].Entropy,SphP[i].DtEntropy*dt_entr,SphP[i].Density,SphP[i].DtEntropy,dt_entr);
fflush(stdout);
endrun(333022);
}
#endif
/***********************************************************/
/* compute art visc coeff */
/***********************************************************/
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
move_art_visc(i,dt_drift);
#endif
}
}
/* if domain-decomp and tree are not going to be reconstructed, update dynamically. */
if(All.NumForcesSinceLastDomainDecomp < All.TotNumPart * All.TreeDomainUpdateFrequency)
{
for(i = 0; i < Numnodestree; i++)
for(j = 0; j < 3; j++)
Nodes[All.MaxPart + i].u.d.s[j] += Extnodes[All.MaxPart + i].vs[j] * dt_drift;
force_update_len();
force_update_pseudoparticles();
}
t1 = second();
All.CPU_Predict += timediff(t0, t1);
}
/*! This function makes sure that all particle coordinates (Pos) are
* periodically mapped onto the interval [0, BoxSize]. After this function
* has been called, a new domain decomposition should be done, which will
* also force a new tree construction.
*/
#ifdef PERIODIC
void do_box_wrapping(void)
{
int i, j;
double boxsize[3];
for(j = 0; j < 3; j++)
boxsize[j] = All.BoxSize;
#ifdef LONG_X
boxsize[0] *= LONG_X;
#endif
#ifdef LONG_Y
boxsize[1] *= LONG_Y;
#endif
#ifdef LONG_Z
boxsize[2] *= LONG_Z;
#endif
for(i = 0; i < NumPart; i++)
for(j = 0; j < 3; j++)
{
while(P[i].Pos[j] < 0)
P[i].Pos[j] += boxsize[j];
while(P[i].Pos[j] >= boxsize[j])
P[i].Pos[j] -= boxsize[j];
}
}
#endif
diff --git a/src/timestep.c b/src/timestep.c
index ad97d76..0cc5855 100644
--- a/src/timestep.c
+++ b/src/timestep.c
@@ -1,1456 +1,1461 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include "allvars.h"
#include "proto.h"
/*! \file timestep.c
* \brief routines for 'kicking' particles in momentum space and assigning new timesteps
*/
static double fac1, fac2, fac3, hubble_a, atime, a3inv;
static double dt_displacement = 0;
/*! This function advances the system in momentum space, i.e. it does apply
* the 'kick' operation after the forces have been computed. Additionally, it
* assigns new timesteps to particles. At start-up, a half-timestep is
* carried out, as well as at the end of the simulation. In between, the
* half-step kick that ends the previous timestep and the half-step kick for
* the new timestep are combined into one operation.
*/
void advance_and_find_timesteps(void)
{
int i, j, no, ti_step, ti_min, tend, tstart;
double dt_entr, dt_entr2, dt_gravkick, dt_hydrokick, dt_gravkick2, dt_hydrokick2, t0, t1;
double minentropy, aphys;
FLOAT dv[3];
#ifdef COOLING
double t2,t3;
#endif
#ifdef FLEXSTEPS
int ti_grp;
#endif
#if defined(PSEUDOSYMMETRIC) && !defined(FLEXSTEPS)
double apred, prob;
int ti_step2;
#endif
#ifdef PMGRID
double dt_gravkickA, dt_gravkickB;
#endif
#ifdef MAKEGLASS
double disp, dispmax, globmax, dmean, fac, disp2sum, globdisp2sum;
#endif
t0 = second();
if(All.ComovingIntegrationOn)
{
fac1 = 1 / (All.Time * All.Time);
fac2 = 1 / pow(All.Time, 3 * GAMMA - 2);
fac3 = pow(All.Time, 3 * (1 - GAMMA) / 2.0);
hubble_a = All.Omega0 / (All.Time * All.Time * All.Time)
+ (1 - All.Omega0 - All.OmegaLambda) / (All.Time * All.Time) + All.OmegaLambda;
hubble_a = All.Hubble * sqrt(hubble_a);
a3inv = 1 / (All.Time * All.Time * All.Time);
atime = All.Time;
}
else
fac1 = fac2 = fac3 = hubble_a = a3inv = atime = 1;
#ifdef NOPMSTEPADJUSTMENT
dt_displacement = All.MaxSizeTimestep;
#else
if(Flag_FullStep || dt_displacement == 0)
find_dt_displacement_constraint(hubble_a * atime * atime);
#endif
#ifdef PMGRID
if(All.ComovingIntegrationOn)
dt_gravkickB = get_gravkick_factor(All.PM_Ti_begstep, All.Ti_Current) -
get_gravkick_factor(All.PM_Ti_begstep, (All.PM_Ti_begstep + All.PM_Ti_endstep) / 2);
else
dt_gravkickB = (All.Ti_Current - (All.PM_Ti_begstep + All.PM_Ti_endstep) / 2) * All.Timebase_interval;
if(All.PM_Ti_endstep == All.Ti_Current) /* need to do long-range kick */
{
/* make sure that we reconstruct the domain/tree next time because we don't kick the tree nodes in this case */
All.NumForcesSinceLastDomainDecomp = 1 + All.TotNumPart * All.TreeDomainUpdateFrequency;
}
#endif
#ifdef MAKEGLASS
for(i = 0, dispmax = 0, disp2sum = 0; i < NumPart; i++)
{
for(j = 0; j < 3; j++)
{
P[i].GravPM[j] *= -1;
P[i].GravAccel[j] *= -1;
P[i].GravAccel[j] += P[i].GravPM[j];
P[i].GravPM[j] = 0;
}
disp = sqrt(P[i].GravAccel[0] * P[i].GravAccel[0] +
P[i].GravAccel[1] * P[i].GravAccel[1] + P[i].GravAccel[2] * P[i].GravAccel[2]);
disp *= 2.0 / (3 * All.Hubble * All.Hubble);
disp2sum += disp * disp;
if(disp > dispmax)
dispmax = disp;
}
MPI_Allreduce(&dispmax, &globmax, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
MPI_Allreduce(&disp2sum, &globdisp2sum, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
dmean = pow(P[0].Mass / (All.Omega0 * 3 * All.Hubble * All.Hubble / (8 * M_PI * All.G)), 1.0 / 3);
if(globmax > dmean)
fac = dmean / globmax;
else
fac = 1.0;
if(ThisTask == 0)
{
printf("\nglass-making: dmean= %g global disp-maximum= %g rms= %g\n\n",
dmean, globmax, sqrt(globdisp2sum / All.TotNumPart));
fflush(stdout);
}
for(i = 0, dispmax = 0; i < NumPart; i++)
{
for(j = 0; j < 3; j++)
{
P[i].Vel[j] = 0;
P[i].Pos[j] += fac * P[i].GravAccel[j] * 2.0 / (3 * All.Hubble * All.Hubble);
P[i].GravAccel[j] = 0;
}
}
#endif
/* Now assign new timesteps and kick */
#ifdef FLEXSTEPS
if((All.Ti_Current % (4 * All.PresentMinStep)) == 0)
if(All.PresentMinStep < TIMEBASE)
All.PresentMinStep *= 2;
for(i = 0; i < NumPart; i++)
{
if(P[i].Ti_endstep == All.Ti_Current)
{
ti_step = get_timestep(i, &aphys, 0);
/* make it a power 2 subdivision */
ti_min = TIMEBASE;
while(ti_min > ti_step)
ti_min >>= 1;
ti_step = ti_min;
if(ti_step < All.PresentMinStep)
All.PresentMinStep = ti_step;
}
}
ti_step = All.PresentMinStep;
MPI_Allreduce(&ti_step, &All.PresentMinStep, 1, MPI_INT, MPI_MIN, MPI_COMM_WORLD);
if(dt_displacement < All.MaxSizeTimestep)
ti_step = (int) (dt_displacement / All.Timebase_interval);
else
ti_step = (int) (All.MaxSizeTimestep / All.Timebase_interval);
/* make it a power 2 subdivision */
ti_min = TIMEBASE;
while(ti_min > ti_step)
ti_min >>= 1;
All.PresentMaxStep = ti_min;
if(ThisTask == 0)
printf("Syn Range = %g PresentMinStep = %d PresentMaxStep = %d \n",
(double) All.PresentMaxStep / All.PresentMinStep, All.PresentMinStep, All.PresentMaxStep);
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
for(i = 0; i < NumPart; i++)
{
P[i].Old_Ti_begstep = P[i].Ti_begstep;
P[i].Old_Ti_endstep = P[i].Ti_endstep;
}
#endif
for(i = 0; i < NumPart; i++)
{
if(P[i].Ti_endstep == All.Ti_Current)
{
ti_step = get_timestep(i, &aphys, 0);
/* make it a power 2 subdivision */
ti_min = TIMEBASE;
while(ti_min > ti_step)
ti_min >>= 1;
ti_step = ti_min;
#ifdef FLEXSTEPS
ti_grp = P[i].FlexStepGrp % All.PresentMaxStep;
ti_grp = (ti_grp / All.PresentMinStep) * All.PresentMinStep;
ti_step = ((P[i].Ti_endstep + ti_grp + ti_step) / ti_step) * ti_step - (P[i].Ti_endstep + ti_grp);
#else
#ifdef PSEUDOSYMMETRIC
if(P[i].Type != 0)
{
if(P[i].Ti_endstep > P[i].Ti_begstep)
{
apred = aphys + ((aphys - P[i].AphysOld) / (P[i].Ti_endstep - P[i].Ti_begstep)) * ti_step;
if(fabs(apred - aphys) < 0.5 * aphys)
{
ti_step2 = get_timestep(i, &apred, -1);
ti_min = TIMEBASE;
while(ti_min > ti_step2)
ti_min >>= 1;
ti_step2 = ti_min;
if(ti_step2 < ti_step)
{
get_timestep(i, &apred, ti_step);
prob =
((apred - aphys) / (aphys - P[i].AphysOld) * (P[i].Ti_endstep -
P[i].Ti_begstep)) / ti_step;
if(prob < get_random_number(P[i].ID))
ti_step /= 2;
}
else if(ti_step2 > ti_step)
{
get_timestep(i, &apred, 2 * ti_step);
prob =
((apred - aphys) / (aphys - P[i].AphysOld) * (P[i].Ti_endstep -
P[i].Ti_begstep)) / ti_step;
if(prob < get_random_number(P[i].ID + 1))
ti_step *= 2;
}
}
}
P[i].AphysOld = aphys;
}
#endif
#ifdef SYNCHRONIZATION
if(ti_step > (P[i].Ti_endstep - P[i].Ti_begstep)) /* timestep wants to increase */
{
//if(((TIMEBASE - P[i].Ti_endstep) % ti_step) > 0)
// ti_step = P[i].Ti_endstep - P[i].Ti_begstep; /* leave at old step */
while(((TIMEBASE - P[i].Ti_endstep) % ti_step) > 0) /* yr : allow to increase */
ti_step = ti_step/2;
}
#endif
#endif /* end of FLEXSTEPS */
if(All.Ti_Current == TIMEBASE) /* we here finish the last timestep. */
ti_step = 0;
if((TIMEBASE - All.Ti_Current) < ti_step) /* check that we don't run beyond the end */
ti_step = TIMEBASE - All.Ti_Current;
#ifdef SYNCHRONIZE_NGB_TIMESTEP
/* Here, in order to performe the synchronization of the time steps
* for neighbor particles, we need to interupt the loop.
*/
P[i].Ti_step = ti_step; /* save estimated time step */
}
}
synchronize_ngb_timestep();
for(i = 0; i < NumPart; i++)
{
if(P[i].Old_Ti_endstep == All.Ti_Current) // here we use the old value, avoid problem due to the update of the timesteps
{
ti_step = P[i].Ti_step; /* recover from the estimated time step */
#endif
tstart = (P[i].Ti_begstep + P[i].Ti_endstep) / 2; /* midpoint of old step */
tend = P[i].Ti_endstep + ti_step / 2; /* midpoint of new step */
if(All.ComovingIntegrationOn)
{
dt_entr = (tend - tstart) * All.Timebase_interval;
dt_entr2 = (tend - P[i].Ti_endstep) * All.Timebase_interval;
dt_gravkick = get_gravkick_factor(tstart, tend);
dt_hydrokick = get_hydrokick_factor(tstart, tend);
dt_gravkick2 = get_gravkick_factor(P[i].Ti_endstep, tend);
dt_hydrokick2 = get_hydrokick_factor(P[i].Ti_endstep, tend);
}
else
{
dt_entr = dt_gravkick = dt_hydrokick = (tend - tstart) * All.Timebase_interval;
dt_gravkick2 = dt_hydrokick2 = dt_entr2 = (tend - P[i].Ti_endstep) * All.Timebase_interval;
}
P[i].Ti_begstep = P[i].Ti_endstep;
P[i].Ti_endstep = P[i].Ti_begstep + ti_step;
#ifdef CYLINDRICAL_SYMMETRY
double r,factor;
r = sqrt( P[i].Pos[0]*P[i].Pos[0] + P[i].Pos[1]*P[i].Pos[1] + P[i].Pos[2]*P[i].Pos[2] );
factor = 1/(r*r) * (P[i].Pos[0]*P[i].GravAccel[0] + P[i].Pos[1]*P[i].GravAccel[1]);
P[i].GravAccel[0] = factor * P[i].Pos[0];
P[i].GravAccel[1] = factor * P[i].Pos[1];
#endif
/* do the kick */
for(j = 0; j < 3; j++)
{
dv[j] = 0.0;
#ifdef LIMIT_DVEL
if (fabs(P[i].GravAccel[j] * dt_gravkick)>LIMIT_DVEL)
{
#ifdef MULTIPHASE
printf("Warning(LIMIT_DVEL): ID=%d j=%d dv[j]=%g Phase=%d(setting GravAccel[j] to 0.0)\n",P[i].ID,j,P[i].GravAccel[j]*dt_hydrokick,SphP[i].Phase);
#else
printf("Warning(LIMIT_DVEL): ID=%d j=%d dv[j]=%g Phase=-(setting GravAccel[j] to 0.0)\n",P[i].ID,j,P[i].GravAccel[j]*dt_hydrokick);
#endif
P[i].GravAccel[j] = 0.0;
}
#endif
dv[j] += P[i].GravAccel[j] * dt_gravkick;
P[i].Vel[j] += P[i].GravAccel[j] * dt_gravkick;
}
if(P[i].Type == 0) /* SPH stuff */
{
for(j = 0; j < 3; j++)
{
#ifdef LIMIT_DVEL /* begin LIMIT_DVEL */
if (fabs(SphP[i].HydroAccel[j] * dt_hydrokick)>LIMIT_DVEL)
{
#ifdef MULTIPHASE
printf("Warning(LIMIT_DVEL): ID=%d j=%d dv[j]=%g Phase=%d(setting HydroAccel[j] to 0.0)\n",P[i].ID,j,SphP[i].HydroAccel[j] *dt_hydrokick,SphP[i].Phase);
#else
printf("Warning(LIMIT_DVEL): ID=%d j=%d dv[j]=%g Phase=-(setting HydroAccel[j] to 0.0)\n",P[i].ID,j,SphP[i].HydroAccel[j] *dt_hydrokick);
#endif
SphP[i].HydroAccel[j] = 0.0;
}
#endif /* end LIMIT_DVEL */
dv[j] += SphP[i].HydroAccel[j] * dt_hydrokick;
P[i].Vel[j] += SphP[i].HydroAccel[j] * dt_hydrokick;
SphP[i].VelPred[j] =
P[i].Vel[j] - dt_gravkick2 * P[i].GravAccel[j] - dt_hydrokick2 * SphP[i].HydroAccel[j];
#ifdef PMGRID
SphP[i].VelPred[j] += P[i].GravPM[j] * dt_gravkickB;
#endif
#ifdef AB_TURB
dv[j] += SphP[i].TurbAccel[j] * dt_hydrokick;
P[i].Vel[j] += SphP[i].TurbAccel[j] * dt_hydrokick;
SphP[i].VelPred[j] += - dt_hydrokick2 * SphP[i].TurbAccel[j];
#endif
}
/***********************************************************/
/* compute spec energy lost/win by different other process */
/***********************************************************/
/***********************************************************/
/* compute entropy variation */
/***********************************************************/
/*******************************/
/* compute cooling */
/*******************************/
#ifdef COOLING
t2 = second();
CoolingForOne(i,tstart,tend,ti_step,dt_entr2,a3inv,hubble_a);
t3 = second();
All.CPU_Cooling += timediff(t2, t3);
#else
/* In case of cooling, we prevent that the entropy (and
hence temperature decreases by more than a factor 0.5 */
if(SphP[i].DtEntropy * dt_entr > -0.5 * SphP[i].Entropy)
SphP[i].Entropy += SphP[i].DtEntropy * dt_entr;
else
SphP[i].Entropy *= 0.5;
#ifdef MULTIPHASE
if (SphP[i].Phase==GAS_SPH)
{
#endif
if(All.MinEgySpec)
{
- minentropy = All.MinEgySpec * GAMMA_MINUS1 / pow(SphP[i].Density * a3inv, GAMMA_MINUS1);
+
+#ifdef DENSITY_INDEPENDENT_SPH
+ minentropy = All.MinEgySpec * GAMMA_MINUS1 / pow(SphP[i].EgyWtDensity * a3inv, GAMMA_MINUS1);
+#else
+ minentropy = All.MinEgySpec * GAMMA_MINUS1 / pow(SphP[i].Density * a3inv, GAMMA_MINUS1);
+#endif
if(SphP[i].Entropy < minentropy)
{
SphP[i].Entropy = minentropy;
SphP[i].DtEntropy = 0;
}
}
#ifdef MULTIPHASE
}
#endif
#endif /* COOLING */
#ifndef COOLING
/* In case the timestep increases in the new step, we
make sure that we do not 'overcool' when deriving
predicted temperatures. The maximum timespan over
which prediction can occur is ti_step/2, i.e. from
the middle to the end of the current step */
//dt_entr = ti_step / 2 * All.Timebase_interval;
dt_entr = imax(ti_step / 2,1) * All.Timebase_interval; /* yr : prevent dt_entr to be zero if ti_step=1 */
if(SphP[i].Entropy + SphP[i].DtEntropy * dt_entr < 0.5 * SphP[i].Entropy)
SphP[i].DtEntropy = -0.5 * SphP[i].Entropy / dt_entr;
#ifdef ENTROPYPRED
/* now, we correct the predicted Entropy */
SphP[i].EntropyPred = SphP[i].Entropy - dt_entr2 * SphP[i].DtEntropy ;
#ifdef COOLING
// if(All.MinEgySpec)
// minentropy = All.MinEgySpec * GAMMA_MINUS1 / pow(SphP[i].Density * a3inv, GAMMA_MINUS1);
// else
// minentropy=0;
//
// //dt_entr = imax(ti_step,1) * All.Timebase_interval;
// //if (SphP[i].EntropyPred + SphP[i].DtEntropy * dt_entr < minentropy) /* if during the next step prediction entropy may be less than zero */
// // SphP[i].DtEntropy = -(SphP[i].EntropyPred-minentropy) / dt_entr; /* modify SphP[i].DtEntropy in order to avoid problems */
//
// dt_entr = imax(ti_step / 2,1) * All.Timebase_interval;
// if(SphP[i].Entropy + SphP[i].DtEntropy * dt_entr < 0.5 * SphP[i].Entropy)
// {
// printf("(%d) particle id=%d reduces its DtEntropy (Entropy=%g DtEntropy * dt_entr=%g)\n",NTask,P[i].ID,SphP[i].Entropy,SphP[i].DtEntropy * dt_entr);
// SphP[i].DtEntropy = -0.5 * SphP[i].Entropy / dt_entr;
// }
#endif /* COOLING */
#ifdef CHECK_ENTROPY_SIGN
if ((SphP[i].EntropyPred < 0))
{
printf("\ntask=%d: EntropyPred less than zero in advance_and_find_timesteps !\n", ThisTask);
printf("ID=%d Entropy=%g EntropyPred=%g DtEntropy=%g dt_entr=%g\n",P[i].ID,SphP[i].Entropy,SphP[i].EntropyPred,SphP[i].DtEntropy,dt_entr);
fflush(stdout);
endrun(1010101000);
}
#endif
#endif /* ENTROPYPRED */
#endif /* no COOLING */
}
/* if tree is not going to be reconstructed, kick parent nodes dynamically.
*/
if(All.NumForcesSinceLastDomainDecomp < All.TotNumPart * All.TreeDomainUpdateFrequency)
{
no = Father[i];
while(no >= 0)
{
for(j = 0; j < 3; j++)
Extnodes[no].vs[j] += dv[j] * P[i].Mass / Nodes[no].u.d.mass;
no = Nodes[no].u.d.father;
}
}
}
}
#ifdef PMGRID
if(All.PM_Ti_endstep == All.Ti_Current) /* need to do long-range kick */
{
ti_step = TIMEBASE;
while(ti_step > (dt_displacement / All.Timebase_interval))
ti_step >>= 1;
if(ti_step > (All.PM_Ti_endstep - All.PM_Ti_begstep)) /* PM-timestep wants to increase */
{
/* we only increase if an integer number of steps will bring us to the end */
if(((TIMEBASE - All.PM_Ti_endstep) % ti_step) > 0)
ti_step = All.PM_Ti_endstep - All.PM_Ti_begstep; /* leave at old step */
}
if(All.Ti_Current == TIMEBASE) /* we here finish the last timestep. */
ti_step = 0;
tstart = (All.PM_Ti_begstep + All.PM_Ti_endstep) / 2;
tend = All.PM_Ti_endstep + ti_step / 2;
if(All.ComovingIntegrationOn)
dt_gravkick = get_gravkick_factor(tstart, tend);
else
dt_gravkick = (tend - tstart) * All.Timebase_interval;
All.PM_Ti_begstep = All.PM_Ti_endstep;
All.PM_Ti_endstep = All.PM_Ti_begstep + ti_step;
if(All.ComovingIntegrationOn)
dt_gravkickB = -get_gravkick_factor(All.PM_Ti_begstep, (All.PM_Ti_begstep + All.PM_Ti_endstep) / 2);
else
dt_gravkickB =
-((All.PM_Ti_begstep + All.PM_Ti_endstep) / 2 - All.PM_Ti_begstep) * All.Timebase_interval;
for(i = 0; i < NumPart; i++)
{
for(j = 0; j < 3; j++) /* do the kick */
P[i].Vel[j] += P[i].GravPM[j] * dt_gravkick;
if(P[i].Type == 0)
{
if(All.ComovingIntegrationOn)
{
dt_gravkickA = get_gravkick_factor(P[i].Ti_begstep, All.Ti_Current) -
get_gravkick_factor(P[i].Ti_begstep, (P[i].Ti_begstep + P[i].Ti_endstep) / 2);
dt_hydrokick = get_hydrokick_factor(P[i].Ti_begstep, All.Ti_Current) -
get_hydrokick_factor(P[i].Ti_begstep, (P[i].Ti_begstep + P[i].Ti_endstep) / 2);
}
else
dt_gravkickA = dt_hydrokick =
(All.Ti_Current - (P[i].Ti_begstep + P[i].Ti_endstep) / 2) * All.Timebase_interval;
for(j = 0; j < 3; j++)
SphP[i].VelPred[j] = P[i].Vel[j]
+ P[i].GravAccel[j] * dt_gravkickA
+ SphP[i].HydroAccel[j] * dt_hydrokick
+ P[i].GravPM[j] * dt_gravkickB;
}
}
}
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
chimie_apply_thermal_feedback();
#endif
t1 = second();
All.CPU_TimeLine += timediff(t0, t1);
#ifdef DETAILED_CPU
All.CPU_Leapfrog += timediff(t0, t1);
#endif
#ifdef COOLING
//All.CPU_TimeLine -= All.CPU_Cooling;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
if(SetMinTimeStepForActives)
SetMinTimeStepForActives=0;
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
#ifdef OUTPUTOPTVAR1
for(i = 0; i < N_gas; i++)
SphP[i].OptVar1 = (float) (P[i].Ti_endstep - P[i].Ti_begstep);
#endif
#endif
}
/*! This function normally (for flag==0) returns the maximum allowed timestep
* of a particle, expressed in terms of the integer mapping that is used to
* represent the total simulated timespan. The physical acceleration is
* returned in `aphys'. The latter is used in conjunction with the
* PSEUDOSYMMETRIC integration option, which also makes of the second
* function of get_timestep. When it is called with a finite timestep for
* flag, it returns the physical acceleration that would lead to this
* timestep, assuming timestep criterion 0.
*/
int get_timestep(int p, /*!< particle index */
double *aphys, /*!< acceleration (physical units) */
int flag /*!< either 0 for normal operation, or finite timestep to get corresponding
aphys */ )
{
double ax, ay, az, ac, csnd;
double dt = 0, dt_courant = 0, dt_accel;
int ti_step;
#ifdef CONDUCTION
double dt_cond;
#endif
if(flag == 0)
{
ax = fac1 * P[p].GravAccel[0];
ay = fac1 * P[p].GravAccel[1];
az = fac1 * P[p].GravAccel[2];
#ifdef PMGRID
ax += fac1 * P[p].GravPM[0];
ay += fac1 * P[p].GravPM[1];
az += fac1 * P[p].GravPM[2];
#endif
if(P[p].Type == 0)
{
#ifndef TIMESTEP_UPDATE_FOR_FEEDBACK
ax += fac2 * SphP[p].HydroAccel[0];
ay += fac2 * SphP[p].HydroAccel[1];
az += fac2 * SphP[p].HydroAccel[2];
#else
if((SphP[p].DeltaEgySpec==-1) || (SphP[p].DeltaEgySpec>0))
{
ax += fac2 * SphP[p].FeedbackUpdatedAccel[0];
ay += fac2 * SphP[p].FeedbackUpdatedAccel[1];
az += fac2 * SphP[p].FeedbackUpdatedAccel[2];
if(SphP[p].DeltaEgySpec==-1)
SphP[p].DeltaEgySpec=0; /* unflag */
}
else
{
ax += fac2 * SphP[p].HydroAccel[0];
ay += fac2 * SphP[p].HydroAccel[1];
az += fac2 * SphP[p].HydroAccel[2];
}
#endif
#ifdef AB_TURB
ax += fac2 * SphP[p].TurbAccel[0];
ay += fac2 * SphP[p].TurbAccel[1];
az += fac2 * SphP[p].TurbAccel[2];
#endif
}
ac = sqrt(ax * ax + ay * ay + az * az); /* this is now the physical acceleration */
*aphys = ac;
}
else
ac = *aphys;
if(ac == 0)
ac = 1.0e-30;
switch (All.TypeOfTimestepCriterion)
{
case 0:
if(flag > 0)
{
dt = flag * All.Timebase_interval;
dt /= hubble_a; /* convert dloga to physical timestep */
ac = 2 * All.ErrTolIntAccuracy * atime * All.SofteningTable[P[p].Type] / (dt * dt);
*aphys = ac;
return flag;
}
#ifdef IMPROVED_TIMESTEP_CRITERION_FORGAS
if(P[p].Type == 0)
dt = dt_accel = sqrt(2 * All.ErrTolIntAccuracy * atime * dmin(SphP[p].Hsml, All.SofteningTable[P[p].Type]) / ac);
else
dt = dt_accel = sqrt(2 * All.ErrTolIntAccuracy * atime * All.SofteningTable[P[p].Type] / ac);
#else
dt = dt_accel = sqrt(2 * All.ErrTolIntAccuracy * atime * All.SofteningTable[P[p].Type] / ac);
#endif
#ifdef ADAPTIVE_GRAVSOFT_FORGAS
if(P[p].Type == 0)
dt = dt_accel = sqrt(2 * All.ErrTolIntAccuracy * atime * SphP[p].Hsml / 2.8 / ac);
#endif
break;
default:
endrun(888);
break;
}
if(P[p].Type == 0)
{
csnd = sqrt(GAMMA * SphP[p].Pressure / SphP[p].Density);
if(All.ComovingIntegrationOn)
dt_courant = 2 * All.CourantFac * All.Time * SphP[p].Hsml / (fac3 * SphP[p].MaxSignalVel);
else
dt_courant = 2 * All.CourantFac * SphP[p].Hsml / SphP[p].MaxSignalVel;
if(dt_courant < dt)
#ifndef MULTIPHASE
dt = dt_courant;
#else
{
if (SphP[p].MaxSignalVel != 0);
dt = dt_courant;
}
#endif
// #ifdef CHIMIE_THERMAL_FEEDBACK
//
// float f;
// double EgySpec,NewEgySpec;
//
// if (SphP[p].DeltaEgySpec > 0)
// {
//
// /* spec energy at current step */
// EgySpec = SphP[p].EntropyPred / GAMMA_MINUS1 * pow(SphP[p].Density*a3inv, GAMMA_MINUS1);
//
// /* new egyspec */
// NewEgySpec = EgySpec + SphP[p].DeltaEgySpec;
//
// f = NewEgySpec/EgySpec;
//
// //if (f>1)
// // dt = dt / f;
// }
//
// #endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double dt_kinetic_feedback;
double SupernovaKieticFeedbackIntAccuracy=0.1;
dt_kinetic_feedback = SupernovaKieticFeedbackIntAccuracy * All.SofteningTable[P[p].Type] / All.ChimieWindSpeed;
if(dt_kinetic_feedback < dt)
dt = dt_kinetic_feedback;
#endif
#ifdef FEEDBACK_WIND
double dt_feedback_wind;
double vwind;
vwind = sqrt( SphP[p].FeedbackWindVel[0]*SphP[p].FeedbackWindVel[0] + SphP[p].FeedbackWindVel[1]*SphP[p].FeedbackWindVel[1] + SphP[p].FeedbackWindVel[2]*SphP[p].FeedbackWindVel[2] );
if (vwind > 0)
{
dt_feedback_wind = All.SupernovaWindIntAccuracy * All.SofteningTable[P[p].Type] / vwind;
SphP[p].FeedbackWindVel[0]=0;
SphP[p].FeedbackWindVel[1]=0;
SphP[p].FeedbackWindVel[2]=0;
if(dt_feedback_wind < dt)
dt = dt_feedback_wind;
}
#endif
}
#ifdef CHIMIE
int m;
double dt_chimie;
if(P[p].Type == ST)
{
//m = P[p].StPIdx;
//if (StP[m].Flag)
{
dt_chimie = All.ChimieMaxSizeTimestep;
}
if(dt_chimie < dt)
dt = dt_chimie;
}
#endif
/* convert the physical timestep to dloga if needed. Note: If comoving integration has not been selected,
hubble_a=1.
*/
dt *= hubble_a;
if(dt >= All.MaxSizeTimestep)
dt = All.MaxSizeTimestep;
if(dt >= dt_displacement)
dt = dt_displacement;
if(dt < All.MinSizeTimestep)
{
#ifndef NOSTOP_WHEN_BELOW_MINTIMESTEP
printf("warning: Timestep wants to be below the limit `MinSizeTimestep'\n");
if(P[p].Type == 0)
{
printf
("Part-ID=%d dt=%g dtc=%g ac=%g xyz=(%g|%g|%g) hsml=%g maxsignalvel=%g dt0=%g eps=%g\n",
(int) P[p].ID, dt, dt_courant * hubble_a, ac, P[p].Pos[0], P[p].Pos[1], P[p].Pos[2],
SphP[p].Hsml, SphP[p].MaxSignalVel,
sqrt(2 * All.ErrTolIntAccuracy * atime * All.SofteningTable[P[p].Type] / ac) * hubble_a,
All.SofteningTable[P[p].Type]);
}
else
{
printf("Part-ID=%d dt=%g ac=%g xyz=(%g|%g|%g)\n", (int) P[p].ID, dt, ac, P[p].Pos[0], P[p].Pos[1],
P[p].Pos[2]);
}
fflush(stdout);
endrun(888);
#endif
dt = All.MinSizeTimestep;
}
ti_step = dt / All.Timebase_interval;
#ifdef CHIMIE_KINETIC_FEEDBACK
//if(SetMinTimeStepForActives)
// ti_step=1;
#endif
if(!(ti_step > 0 && ti_step < TIMEBASE))
{
printf("\nError: A timestep of size zero was assigned on the integer timeline!\n"
"We better stop.\n"
"Task=%d Part-ID=%d dt=%g tibase=%g ti_step=%d ac=%g xyz=(%g|%g|%g) tree=(%g|%g%g)\n\n",
ThisTask, (int) P[p].ID, dt, All.Timebase_interval, ti_step, ac,
P[p].Pos[0], P[p].Pos[1], P[p].Pos[2], P[p].GravAccel[0], P[p].GravAccel[1], P[p].GravAccel[2]);
#ifdef PMGRID
printf("pm_force=(%g|%g|%g)\n", P[p].GravPM[0], P[p].GravPM[1], P[p].GravPM[2]);
#endif
if(P[p].Type == 0)
printf("hydro-frc=(%g|%g|%g)\n", SphP[p].HydroAccel[0], SphP[p].HydroAccel[1], SphP[p].HydroAccel[2]);
#ifdef FEEDBACK_WIND
if(P[p].Type == 0)
printf("feedback-vel=(%g|%g|%g)\n", SphP[p].FeedbackWindVel[0], SphP[p].FeedbackWindVel[1], SphP[p].FeedbackWindVel[2]);
#endif
fflush(stdout);
endrun(818);
}
return ti_step;
}
/*! This function computes an upper limit ('dt_displacement') to the global
* timestep of the system based on the rms velocities of particles. For
* cosmological simulations, the criterion used is that the rms displacement
* should be at most a fraction MaxRMSDisplacementFac of the mean particle
* separation. Note that the latter is estimated using the assigned particle
* masses, separately for each particle type. If comoving integration is not
* used, the function imposes no constraint on the timestep.
*/
void find_dt_displacement_constraint(double hfac /*!< should be a^2*H(a) */ )
{
int i, j, type, *temp;
int count[6];
long long count_sum[6];
double v[6], v_sum[6], mim[6], min_mass[6];
double dt, dmean, asmth = 0;
dt_displacement = All.MaxSizeTimestep;
if(All.ComovingIntegrationOn)
{
for(type = 0; type < 6; type++)
{
count[type] = 0;
v[type] = 0;
mim[type] = 1.0e30;
}
for(i = 0; i < NumPart; i++)
{
v[P[i].Type] += P[i].Vel[0] * P[i].Vel[0] + P[i].Vel[1] * P[i].Vel[1] + P[i].Vel[2] * P[i].Vel[2];
if(mim[P[i].Type] > P[i].Mass)
mim[P[i].Type] = P[i].Mass;
count[P[i].Type]++;
}
MPI_Allreduce(v, v_sum, 6, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
MPI_Allreduce(mim, min_mass, 6, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD);
temp = malloc(NTask * 6 * sizeof(int));
MPI_Allgather(count, 6, MPI_INT, temp, 6, MPI_INT, MPI_COMM_WORLD);
for(i = 0; i < 6; i++)
{
count_sum[i] = 0;
for(j = 0; j < NTask; j++)
count_sum[i] += temp[j * 6 + i];
}
free(temp);
for(type = 0; type < 6; type++)
{
if(count_sum[type] > 0)
{
if(type == 0)
dmean =
pow(min_mass[type] / (All.OmegaBaryon * 3 * All.Hubble * All.Hubble / (8 * M_PI * All.G)),
1.0 / 3);
else
dmean =
pow(min_mass[type] /
((All.Omega0 - All.OmegaBaryon) * 3 * All.Hubble * All.Hubble / (8 * M_PI * All.G)),
1.0 / 3);
dt = All.MaxRMSDisplacementFac * hfac * dmean / sqrt(v_sum[type] / count_sum[type]);
#ifdef PMGRID
asmth = All.Asmth[0];
#ifdef PLACEHIGHRESREGION
if(((1 << type) & (PLACEHIGHRESREGION)))
asmth = All.Asmth[1];
#endif
if(asmth < dmean)
dt = All.MaxRMSDisplacementFac * hfac * asmth / sqrt(v_sum[type] / count_sum[type]);
#endif
if(ThisTask == 0)
printf("type=%d dmean=%g asmth=%g minmass=%g a=%g sqrt(<p^2>)=%g dlogmax=%g\n",
type, dmean, asmth, min_mass[type], All.Time, sqrt(v_sum[type] / count_sum[type]), dt);
if(dt < dt_displacement)
dt_displacement = dt;
}
}
if(ThisTask == 0)
printf("displacement time constraint: %g (%g)\n", dt_displacement, All.MaxSizeTimestep);
}
}
#ifdef SYNCHRONIZE_NGB_TIMESTEP
#ifdef PERIODIC
static double boxSize, boxHalf;
#ifdef LONG_X
static double boxSize_X, boxHalf_X;
#else
#define boxSize_X boxSize
#define boxHalf_X boxHalf
#endif
#ifdef LONG_Y
static double boxSize_Y, boxHalf_Y;
#else
#define boxSize_Y boxSize
#define boxHalf_Y boxHalf
#endif
#ifdef LONG_Z
static double boxSize_Z, boxHalf_Z;
#else
#define boxSize_Z boxSize
#define boxHalf_Z boxHalf
#endif
#endif
static int NDone;
static long long NTotDone;
/*! This function share the timesteps between particles
* according the the Saitoh and Makino rule.
*/
void synchronize_ngb_timestep()
{
long long ntot, ntotleft;
int i, j, k, n, ngrp, maxfill, source, ndone;
int *nbuffer, *noffset, *nsend_local, *nsend, *numlist, *ndonelist;
int level, sendTask, recvTask, nexport, place;
double t0, t1;
double timecomp = 0, timeimbalance = 0, timecommsumm = 0;
MPI_Status status;
int CptLimit = 0;
int shrinkcount = 0, shrinktot = 0;
int tstart,tend;
double dt_entr;
double dt_gravkick;
double dt_hydrokick;
int counter;
#ifdef PERIODIC
boxSize = All.BoxSize;
boxHalf = 0.5 * All.BoxSize;
#ifdef LONG_X
boxHalf_X = boxHalf * LONG_X;
boxSize_X = boxSize * LONG_X;
#endif
#ifdef LONG_Y
boxHalf_Y = boxHalf * LONG_Y;
boxSize_Y = boxSize * LONG_Y;
#endif
#ifdef LONG_Z
boxHalf_Z = boxHalf * LONG_Z;
boxSize_Z = boxSize * LONG_Z;
#endif
#endif
/* `NumSphUpdate' gives the number of particles on this processor that want a force update */
for(n = 0, NumSphUpdate = 0; n < N_gas; n++)
{
#ifdef SFR
if((P[n].Ti_endstep == All.Ti_Current) && (P[n].Type == 0))
#else
if(P[n].Ti_endstep == All.Ti_Current)
#endif
#ifdef MULTIPHASE
if(SphP[n].Phase == GAS_SPH)
#endif
NumSphUpdate++;
}
numlist = malloc(NTask * sizeof(int) * NTask);
MPI_Allgather(&NumSphUpdate, 1, MPI_INT, numlist, 1, MPI_INT, MPI_COMM_WORLD);
for(i = 0, ntot = 0; i < NTask; i++)
ntot += numlist[i];
free(numlist);
noffset = malloc(sizeof(int) * NTask); /* offsets of bunches in common list */
nbuffer = malloc(sizeof(int) * NTask);
nsend_local = malloc(sizeof(int) * NTask);
nsend = malloc(sizeof(int) * NTask * NTask);
ndonelist = malloc(sizeof(int) * NTask);
if (ThisTask==0)
printf("start synchronize ngb timestep\n");
NTotDone=1;
//NTotDone=0; /* if we want to disable the multi loop */
/* loop for time-step limiter */
while(NTotDone > 0)
{
NDone = 0;
i = 0; /* first particle for this task */
ntotleft = ntot; /* particles left for all tasks together */
while(ntotleft > 0)
{
for(j = 0; j < NTask; j++)
nsend_local[j] = 0;
/* do local particles and prepare export list */
t0 = second();
for(nexport = 0, ndone = 0; i < N_gas && nexport < All.BunchSizeSynchronizeNgBTimestep - NTask; i++)
#ifdef SFR
if((P[i].Ti_endstep == All.Ti_Current) && (P[i].Type == 0))
#else
if(P[i].Ti_endstep == All.Ti_Current)
#endif
{
{
ndone++;
for(j = 0; j < NTask; j++)
Exportflag[j] = 0;
NDone += synchronize_ngb_timestep_evaluate(i, 0);
for(j = 0; j < NTask; j++)
{
if(Exportflag[j])
{
SynchroinzeNgbTimestepDataIn[nexport].Pos[0] = P[i].Pos[0];
SynchroinzeNgbTimestepDataIn[nexport].Pos[1] = P[i].Pos[1];
SynchroinzeNgbTimestepDataIn[nexport].Pos[2] = P[i].Pos[2];
SynchroinzeNgbTimestepDataIn[nexport].Hsml = SphP[i].Hsml;
SynchroinzeNgbTimestepDataIn[nexport].Ti_step = P[i].Ti_step;
SynchroinzeNgbTimestepDataIn[nexport].Ti_endstep = P[i].Ti_endstep;
SynchroinzeNgbTimestepDataIn[nexport].Index = i;
SynchroinzeNgbTimestepDataIn[nexport].Task = j;
#ifdef MULTIPHASE
SynchroinzeNgbTimestepDataIn[nexport].Phase = SphP[i].Phase;
#endif
nexport++;
nsend_local[j]++;
}
}
}
}
t1 = second();
timecomp += timediff(t0, t1);
qsort(SynchroinzeNgbTimestepDataIn, nexport, sizeof(struct SynchroinzeNgbTimestepdata_in), synchronize_ngb_timestep_compare_key);
for(j = 1, noffset[0] = 0; j < NTask; j++)
noffset[j] = noffset[j - 1] + nsend_local[j - 1];
t0 = second();
MPI_Allgather(nsend_local, NTask, MPI_INT, nsend, NTask, MPI_INT, MPI_COMM_WORLD);
t1 = second();
timeimbalance += timediff(t0, t1);
/* now do the particles that need to be exported */
for(level = 1; level < (1 << PTask); level++)
{
t0 = second();
for(j = 0; j < NTask; j++)
nbuffer[j] = 0;
for(ngrp = level; ngrp < (1 << PTask); ngrp++)
{
maxfill = 0;
for(j = 0; j < NTask; j++)
{
if((j ^ ngrp) < NTask)
if(maxfill < nbuffer[j] + nsend[(j ^ ngrp) * NTask + j])
maxfill = nbuffer[j] + nsend[(j ^ ngrp) * NTask + j];
}
if(maxfill >= All.BunchSizeSynchronizeNgBTimestep)
break;
sendTask = ThisTask;
recvTask = ThisTask ^ ngrp;
if(recvTask < NTask)
{
if(nsend[ThisTask * NTask + recvTask] > 0 || nsend[recvTask * NTask + ThisTask] > 0)
{
/* get the particles */
MPI_Sendrecv(&SynchroinzeNgbTimestepDataIn[noffset[recvTask]],
nsend_local[recvTask] * sizeof(struct SynchroinzeNgbTimestepdata_in), MPI_BYTE,
recvTask, 0,
&SynchroinzeNgbTimestepDataGet[nbuffer[ThisTask]],
nsend[recvTask * NTask + ThisTask] * sizeof(struct SynchroinzeNgbTimestepdata_in),
MPI_BYTE, recvTask, 0, MPI_COMM_WORLD, &status);
}
}
for(j = 0; j < NTask; j++)
if((j ^ ngrp) < NTask)
nbuffer[j] += nsend[(j ^ ngrp) * NTask + j];
}
t1 = second();
timecommsumm += timediff(t0, t1);
t0 = second();
for(j = 0; j < nbuffer[ThisTask]; j++)
NDone += synchronize_ngb_timestep_evaluate(j, 1);
t1 = second();
timecomp += timediff(t0, t1);
/* do a block to explicitly measure imbalance */
t0 = second();
MPI_Barrier(MPI_COMM_WORLD);
t1 = second();
timeimbalance += timediff(t0, t1);
level = ngrp - 1;
}
t0 = second();
MPI_Allgather(&ndone, 1, MPI_INT, ndonelist, 1, MPI_INT, MPI_COMM_WORLD);
for(j = 0; j < NTask; j++)
ntotleft -= ndonelist[j];
t1 = second();
timeimbalance += timediff(t0, t1);
}
t0 = second();
numlist = (int*)malloc(NTask * sizeof(int) * NTask);
MPI_Allgather(&NDone, 1, MPI_INT, numlist, 1, MPI_INT, MPI_COMM_WORLD);
for(i = 0, NTotDone = 0; i < NTask; i++)
NTotDone += numlist[i];
free(numlist);
t1 = second();
timeimbalance += timediff(t0, t1);
if(ThisTask == 0)
{
fprintf(stdout," %3d) ---> number of timestep shrinked gas neighbors: %6lld \n", CptLimit++, NTotDone);
fflush(stdout);
}
}
//
/* do final operations on results */
counter=0;
for(i = 0; i < N_gas; i++)
#ifdef SFR
if((P[i].Type == 0))
#endif
{
if (P[i].Old_Ti_endstep != All.Ti_Current) /* the particle is inactive */
{
if ( (P[i].Old_Ti_endstep != P[i].Ti_endstep) || (P[i].Old_Ti_begstep != P[i].Ti_begstep) ) /* its timestep has been updated */
{
//printf("---------> %d %d %d %d\n",P[i].Old_Ti_endstep,P[i].Ti_endstep,P[i].Old_Ti_begstep,P[i].Ti_begstep);
/* need to extrapolate mid-step quantities */
counter++;
/* old mid step */
tstart = (P[i].Old_Ti_begstep + P[i].Old_Ti_endstep) / 2; /* midpoint of old step */
tend = (P[i].Ti_begstep + P[i].Ti_endstep) / 2; /* midpoint of new step */
/* now, do the kick */
kickback(i,tstart,tend);
}
}
}
if (counter!=0)
printf("(%d) %d passive particles have been updated \n",ThisTask,counter);
if (ThisTask==0)
printf("synchronize ngb timestep done.\n");
}
int synchronize_ngb_timestep_evaluate(int target, int mode)
{
int j, k, n, startnode, numngb_inbox;
double h, h2;
double r2, dx, dy, dz;
int phase=0;
FLOAT *pos;
int ti_step_i;
int endstep_i;
int CptShrink = 0;
if(mode == 0)
{
pos = P[target].Pos;
h = SphP[target].Hsml;
ti_step_i = P[target].Ti_step;
endstep_i = P[target].Ti_endstep; /* !!! */
#ifdef MULTIPHASE
phase = SphP[target].Phase;
#endif
}
else
{
pos = SynchroinzeNgbTimestepDataGet[target].Pos;
h = SynchroinzeNgbTimestepDataGet[target].Hsml;
ti_step_i = SynchroinzeNgbTimestepDataGet[target].Ti_step;
endstep_i = SynchroinzeNgbTimestepDataGet[target].Ti_endstep; /* !!! */
#ifdef MULTIPHASE
phase = SynchroinzeNgbTimestepDataGet[target].Phase;
#endif
}
h2 = h * h;
startnode = All.MaxPart;
do
{
numngb_inbox = ngb_treefind_variable(&pos[0], h, phase, &startnode);
for(n = 0; n < numngb_inbox; n++)
{
j = Ngblist[n];
dx = P[j].Pos[0] - pos[0];
dy = P[j].Pos[1] - pos[1];
dz = P[j].Pos[2] - pos[2];
#ifdef PERIODIC /* now find the closest image in the given box size */
if(dx > boxHalf_X)
dx -= boxSize_X;
if(dx < -boxHalf_X)
dx += boxSize_X;
if(dy > boxHalf_Y)
dy -= boxSize_Y;
if(dy < -boxHalf_Y)
dy += boxSize_Y;
if(dz > boxHalf_Z)
dz -= boxSize_Z;
if(dz < -boxHalf_Z)
dz += boxSize_Z;
#endif
r2 = dx * dx + dy * dy + dz * dz;
if(r2 < h2)
{
if( P[j].Ti_endstep == All.Ti_Current ) /* the particle is active */
{
if(P[j].Ti_step > All.NgbFactorTimestep*ti_step_i )
{
CptShrink++;
P[j].Ti_step = All.NgbFactorTimestep*ti_step_i;
}
}
else /* the particle is not active */
{
if( P[j].Ti_endstep > All.Ti_Current + All.NgbFactorTimestep*ti_step_i )
{
CptShrink++;
P[j].Old_Ti_begstep = P[j].Ti_begstep;
P[j].Old_Ti_endstep = P[j].Ti_endstep;
P[j].Ti_step = All.NgbFactorTimestep*ti_step_i;
#ifdef SYNCHRONIZATION
/* find Ti_endstep*/
for(k = 0; P[j].Ti_begstep + k * P[j].Ti_step <= All.Ti_Current; k++);
P[j].Ti_endstep = P[j].Ti_begstep + k * P[j].Ti_step ;
P[j].Ti_begstep = P[j].Ti_endstep - P[j].Ti_step;
#else
P[j].Ti_endstep = All.Ti_Current + P[j].Ti_step;
P[j].Ti_begstep = P[j].Ti_endstep - P[j].Ti_step;
#endif
}
}
}
}
}
while(startnode >= 0);
return CptShrink;
}
/*! This is a comparison kernel for a sort routine, which is used to group
* particles that are going to be exported to the same CPU.
*/
int synchronize_ngb_timestep_compare_key(const void *a, const void *b)
{
if(((struct SynchroinzeNgbTimestepdata_in *) a)->Task < (((struct SynchroinzeNgbTimestepdata_in *) b)->Task))
return -1;
if(((struct SynchroinzeNgbTimestepdata_in *) a)->Task > (((struct SynchroinzeNgbTimestepdata_in *) b)->Task))
return +1;
return 0;
}
#endif

Event Timeline