Page MenuHomec4science

No OneTemporary

File Metadata

Created
Tue, Feb 18, 06:40
This file is larger than 256 KB, so syntax highlighting was skipped.
This document is not UTF8. It was detected as ISO-8859-1 (Latin 1) and converted to UTF8 for display.
diff --git a/src/allvars.h b/src/allvars.h
index c42bd88..6869301 100644
--- a/src/allvars.h
+++ b/src/allvars.h
@@ -1,2118 +1,2122 @@
/*! \file allvars.h
* \brief declares global variables.
*
* This file declares all global variables. Further variables should be added here, and declared as
* 'extern'. The actual existence of these variables is provided by the file 'allvars.c'. To produce
* 'allvars.c' from 'allvars.h', do the following:
*
* - Erase all #define's, typedef's, and enum's
* - add #include "allvars.h", delete the #ifndef ALLVARS_H conditional
* - delete all keywords 'extern'
* - delete all struct definitions enclosed in {...}, e.g.
* "extern struct global_data_all_processes {....} All;"
* becomes "struct global_data_all_processes All;"
*/
#ifndef ALLVARS_H
#define ALLVARS_H
#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_spline.h>
#include <gsl/gsl_integration.h>
#include "tags.h"
#define GADGETVERSION "2.0" /*!< code version string */
#define TIMEBASE (1<<28) /*!< The simulated timespan is mapped onto the integer interval [0,TIMESPAN],
* where TIMESPAN needs to be a power of 2. Note that (1<<28) corresponds to 2^29
*/
#define MAXTOPNODES 200000 /*!< Maximum number of nodes in the top-level tree used for domain decomposition */
typedef long long peanokey; /*!< defines the variable type used for Peano-Hilbert keys */
#define BITS_PER_DIMENSION 18 /*!< Bits per dimension available for Peano-Hilbert order.
Note: If peanokey is defined as type int, the allowed maximum is 10.
If 64-bit integers are used, the maximum is 21 */
#define PEANOCELLS (((peanokey)1)<<(3*BITS_PER_DIMENSION)) /*!< The number of different Peano-Hilbert cells */
#define RNDTABLE 3000 /*!< gives the length of a table with random numbers, refreshed at every timestep.
This is used to allow application of random numbers to a specific particle
in a way that is independent of the number of processors used. */
#define MAX_REAL_NUMBER 1e37
#define MIN_REAL_NUMBER 1e-37
#define MAXLEN_FILENAME 100 /*!< Maximum number of characters for filenames (including the full path) */
#ifdef ISOTHERM_EQS
#define GAMMA (1.0) /*!< index for isothermal gas */
#else
#define GAMMA (5.0/3) /*!< adiabatic index of simulated gas */
#endif
#define GAMMA_MINUS1 (GAMMA-1)
#define HYDROGEN_MASSFRAC 0.76 /*!< mass fraction of hydrogen, relevant only for radiative cooling */
/* Some physical constants in cgs units */
#define GRAVITY 6.672e-8 /*!< Gravitational constant (in cgs units) */
#define SOLAR_MASS 1.989e33
#define SOLAR_LUM 3.826e33
#define RAD_CONST 7.565e-15
#define AVOGADRO 6.0222e23
#define BOLTZMANN 1.3806e-16
#define GAS_CONST 8.31425e7
#define C 2.9979e10
#define PLANCK 6.6262e-27
#define CM_PER_MPC 3.085678e24
#define PROTONMASS 1.6726e-24
#define ELECTRONMASS 9.10953e-28
#define THOMPSON 6.65245e-25
#define ELECTRONCHARGE 4.8032e-10
#define HUBBLE 3.2407789e-18 /* in h/sec */
#define YEAR_IN_SECOND 31536000.0 /* year in sec */
#define FEH_SOLAR 0.00181 /* used only if cooling with metal is on and chimie is off */
#define PI 3.1415926535897931
#define TWOPI 6.2831853071795862
/* Some conversion factors */
#define SEC_PER_MEGAYEAR 3.155e13
#define SEC_PER_YEAR 3.155e7
#ifndef ASMTH
#define ASMTH 1.25 /*!< ASMTH gives the scale of the short-range/long-range force split in units of FFT-mesh cells */
#endif
#ifndef RCUT
#define RCUT 4.5 /*!< RCUT gives the maximum distance (in units of the scale used for the force split) out to
which short-range forces are evaluated in the short-range tree walk. */
#endif
#define MAX_NGB 20000 /*!< defines maximum length of neighbour list */
#define MAXLEN_OUTPUTLIST 500 /*!< maxmimum number of entries in list of snapshot output times */
#define DRIFT_TABLE_LENGTH 1000 /*!< length of the lookup table used to hold the drift and kick factors */
#ifdef COSMICTIME
#define COSMICTIME_TABLE_LENGTH 1000 /*!< length of the lookup table used for the cosmic time computation */
#endif
#define MAXITER 1000 /*!< maxmimum number of steps for SPH neighbour iteration */
#ifdef DOUBLEPRECISION /*!< If defined, the variable type FLOAT is set to "double", otherwise to FLOAT */
#define FLOAT double
#else
#define FLOAT float
#endif
#ifndef TWODIMS
#define NUMDIMS 3 /*!< For 3D-normalized kernel */
#define KERNEL_COEFF_1 2.546479089470 /*!< Coefficients for SPH spline kernel and its derivative */
#define KERNEL_COEFF_2 15.278874536822
#define KERNEL_COEFF_3 45.836623610466
#define KERNEL_COEFF_4 30.557749073644
#define KERNEL_COEFF_5 5.092958178941
#define KERNEL_COEFF_6 (-15.278874536822)
#define NORM_COEFF 4.188790204786 /*!< Coefficient for kernel normalization. Note: 4.0/3 * PI = 4.188790204786 */
#else
#define NUMDIMS 2 /*!< For 2D-normalized kernel */
#define KERNEL_COEFF_1 (5.0/7*2.546479089470) /*!< Coefficients for SPH spline kernel and its derivative */
#define KERNEL_COEFF_2 (5.0/7*15.278874536822)
#define KERNEL_COEFF_3 (5.0/7*45.836623610466)
#define KERNEL_COEFF_4 (5.0/7*30.557749073644)
#define KERNEL_COEFF_5 (5.0/7*5.092958178941)
#define KERNEL_COEFF_6 (5.0/7*(-15.278874536822))
#define NORM_COEFF M_PI /*!< Coefficient for kernel normalization. */
#endif
#ifdef MULTIPHASE
#define GAS_SPH 0
#define GAS_STICKY 1
#define GAS_DARK 2
#endif
#if defined(SFR) || defined(STELLAR_PROP)
#define ST 1
#endif
#ifdef CHIMIE
-#define NELEMENTS 5
+#define NELEMENTS 6
#define MAXNELEMENTS 64
#define FIRST_ELEMENT "Fe"
#define FE 0
#endif
#ifdef COOLING
#define COOLING_NMETALICITIES 9
#define COOLING_NTEMPERATURES 171
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
#define VELOCITY_DISPERSION_SIZE 3
#endif
extern int SetMinTimeStepForActives;
extern int ThisTask; /*!< the rank of the local processor */
extern int NTask; /*!< number of processors */
extern int PTask; /*!< smallest integer such that NTask <= 2^PTask */
extern int NumPart; /*!< number of particles on the LOCAL processor */
extern int N_gas; /*!< number of gas particles on the LOCAL processor */
#if defined(SFR) || defined(STELLAR_PROP)
extern int N_stars; /*!< number of stars particle on the LOCAL processor */
#endif
#ifdef MULTIPHASE
extern int N_sph;
extern int N_sticky;
extern int N_stickyflaged;
extern int N_dark;
extern int NumColPotLocal; /*!< local number of potentially collisional particles */
extern int NumColPot; /*!< total number of potentially collisional particles */
extern int NumColLocal; /*!< local number of collisions */
extern int NumCol; /*!< total number of collisions */
extern int NumNoColLocal;
extern int NumNoCol;
#endif
#ifdef GAS_ACCRETION
extern int NumPart_acc;
extern int N_gas_acc;
#ifdef STELLAR_PROP
extern int N_stars_acc;
#endif
#endif
extern long long Ntype[6]; /*!< total number of particles of each type */
extern int NtypeLocal[6]; /*!< local number of particles of each type */
extern int NumForceUpdate; /*!< number of active particles on local processor in current timestep */
extern int NumSphUpdate; /*!< number of active SPH particles on local processor in current timestep */
#ifdef CHIMIE
extern int NumStUpdate;
#endif
#ifdef TESSEL
extern int NumPTUpdate;
#endif
extern double CPUThisRun; /*!< Sums the CPU time for the process (current submission only) */
#ifdef SPLIT_DOMAIN_USING_TIME
extern double CPU_Gravity;
#endif
extern int RestartFlag; /*!< taken from command line used to start code. 0 is normal start-up from
initial conditions, 1 is resuming a run from a set of restart files, while 2
marks a restart from a snapshot file. */
extern char *Exportflag; /*!< Buffer used for flagging whether a particle needs to be exported to another process */
extern int *Ngblist; /*!< Buffer to hold indices of neighbours retrieved by the neighbour search routines */
extern int TreeReconstructFlag; /*!< Signals that a new tree needs to be constructed */
#ifdef SFR
extern int RearrangeParticlesFlag;/*!< Signals that particles must be rearanged */
#endif
extern int Flag_FullStep; /*!< This flag signals that the current step involves all particles */
extern gsl_rng *random_generator; /*!< the employed random number generator of the GSL library */
extern double RndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#ifdef SFR
extern double StarFormationRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef FEEDBACK_WIND
extern double FeedbackWindRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef CHIMIE
extern double ChimieRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
extern double ChimieKineticFeedbackRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef GAS_ACCRETION
extern double gasAccretionRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef AB_TURB
//Ornstein-Uhlenbeck variables
extern double StOUVar;
extern double* StOUPhases;
extern gsl_rng* StRng;
//forcing field in fourie space
extern double* StAmpl;
extern double* StAka; //phases (real part)
extern double* StAkb; //phases (imag part)
extern double* StMode;
extern int StNModes;
//integertime StTPrev; (yr : ask ?)
extern int StTPrev;
extern double StSolWeightNorm;
#endif
#ifdef PY_INTERFACE
extern int NumPartQ;
extern int N_gasQ;
extern long long NtypeQ[6]; /*!< total number of particles of each type */
extern int NtypeLocalQ[6]; /*!< local number of particles of each type */
extern double DomainCornerQ[3]; /*!< gives the lower left corner of simulation volume */
extern double DomainCenterQ[3]; /*!< gives the center of simulation volume */
extern double DomainLenQ; /*!< gives the (maximum) side-length of simulation volume */
extern double DomainFacQ; /*!< factor used for converting particle coordinates to a Peano-Hilbert mesh covering the simulation volume */
extern int DomainMyStartQ; /*!< first domain mesh cell that resides on the local processor */
extern int DomainMyLastQ; /*!< last domain mesh cell that resides on the local processor */
extern int *DomainStartListQ; /*!< a table that lists the first domain mesh cell for all processors */
extern int *DomainEndListQ; /*!< a table that lists the last domain mesh cell for all processors */
extern double *DomainWorkQ; /*!< a table that gives the total "work" due to the particles stored by each processor */
extern int *DomainCountQ; /*!< a table that gives the total number of particles held by each processor */
extern int *DomainCountSphQ; /*!< a table that gives the total number of SPH particles held by each processor */
extern int *DomainTaskQ; /*!< this table gives for each leaf of the top-level tree the processor it was assigned to */
extern peanokey *DomainKeyBufQ; /*!< this points to a buffer used during the exchange of particle data */
extern int NTopnodesQ; /*!< total number of nodes in top-level tree */
extern int NTopleavesQ; /*!< number of leaves in top-level tree. Each leaf can be assigned to a different processor */
extern void *CommBufferQ; /*!< points to communication buffer, which is used in the domain decomposition, the
parallel tree-force computation, the SPH routines, etc. */
#endif
extern double DomainCorner[3]; /*!< gives the lower left corner of simulation volume */
extern double DomainCenter[3]; /*!< gives the center of simulation volume */
extern double DomainLen; /*!< gives the (maximum) side-length of simulation volume */
extern double DomainFac; /*!< factor used for converting particle coordinates to a Peano-Hilbert mesh covering the simulation volume */
extern int DomainMyStart; /*!< first domain mesh cell that resides on the local processor */
extern int DomainMyLast; /*!< last domain mesh cell that resides on the local processor */
extern int *DomainStartList; /*!< a table that lists the first domain mesh cell for all processors */
extern int *DomainEndList; /*!< a table that lists the last domain mesh cell for all processors */
extern double *DomainWork; /*!< a table that gives the total "work" due to the particles stored by each processor */
extern int *DomainCount; /*!< a table that gives the total number of particles held by each processor */
extern int *DomainCountSph; /*!< a table that gives the total number of SPH particles held by each processor */
extern int *DomainTask; /*!< this table gives for each leaf of the top-level tree the processor it was assigned to */
extern int *DomainNodeIndex; /*!< this table gives for each leaf of the top-level tree the corresponding node of the gravitational tree */
extern FLOAT *DomainTreeNodeLen; /*!< this table gives for each leaf of the top-level tree the side-length of the corresponding node of the gravitational tree */
extern FLOAT *DomainHmax; /*!< this table gives for each leaf of the top-level tree the maximum SPH smoothing length among the particles of the corresponding node of the gravitational tree */
extern struct DomainNODE
{
FLOAT s[3]; /*!< center-of-mass coordinates */
FLOAT vs[3]; /*!< center-of-mass velocities */
FLOAT mass; /*!< mass of node */
#ifdef STELLAR_FLUX
FLOAT starlum; /*!< star luminosity of node */
#endif
#ifdef UNEQUALSOFTENINGS
#ifndef ADAPTIVE_GRAVSOFT_FORGAS
int bitflags; /*!< this bit-field encodes the particle type with the largest softening among the particles of the nodes, and whether there are particles with different softening in the node */
#else
FLOAT maxsoft; /*!< hold the maximum gravitational softening of particles in the
node if the ADAPTIVE_GRAVSOFT_FORGAS option is selected */
#endif
#endif
}
*DomainMoment; /*!< this table stores for each node of the top-level tree corresponding node data from the gravitational tree */
extern peanokey *DomainKeyBuf; /*!< this points to a buffer used during the exchange of particle data */
extern peanokey *Key; /*!< a table used for storing Peano-Hilbert keys for particles */
extern peanokey *KeySorted; /*!< holds a sorted table of Peano-Hilbert keys for all particles, used to construct top-level tree */
extern int NTopnodes; /*!< total number of nodes in top-level tree */
extern int NTopleaves; /*!< number of leaves in top-level tree. Each leaf can be assigned to a different processor */
extern struct topnode_data
{
int Daughter; /*!< index of first daughter cell (out of 8) of top-level node */
int Pstart; /*!< for the present top-level node, this gives the index of the first node in the concatenated list of topnodes collected from all processors */
int Blocks; /*!< for the present top-level node, this gives the number of corresponding nodes in the concatenated list of topnodes collected from all processors */
int Leaf; /*!< if the node is a leaf, this gives its number when all leaves are traversed in Peano-Hilbert order */
peanokey Size; /*!< number of Peano-Hilbert mesh-cells represented by top-level node */
peanokey StartKey; /*!< first Peano-Hilbert key in top-level node */
long long Count; /*!< counts the number of particles in this top-level node */
}
#ifdef PY_INTERFACE
*TopNodesQ,
#endif
*TopNodes; /*!< points to the root node of the top-level tree */
extern double TimeOfLastTreeConstruction; /*!< holds what it says, only used in connection with FORCETEST */
/* variables for input/output, usually only used on process 0 */
extern char ParameterFile[MAXLEN_FILENAME]; /*!< file name of parameterfile used for starting the simulation */
extern FILE *FdInfo; /*!< file handle for info.txt log-file. */
extern FILE *FdLog; /*!< file handle for log.txt log-file. */
extern FILE *FdEnergy; /*!< file handle for energy.txt log-file. */
#ifdef SYSTEMSTATISTICS
extern FILE *FdSystem;
#endif
extern FILE *FdTimings; /*!< file handle for timings.txt log-file. */
extern FILE *FdCPU; /*!< file handle for cpu.txt log-file. */
#ifdef FORCETEST
extern FILE *FdForceTest; /*!< file handle for forcetest.txt log-file. */
#endif
#ifdef SFR
extern FILE *FdSfr; /*!< file handle for sfr.txt log-file. */
#endif
#ifdef CHIMIE
extern FILE *FdChimie; /*!< file handle for chimie log-file. */
#endif
#ifdef MULTIPHASE
extern FILE *FdPhase; /*!< file handle for pase.txt log-file. */
extern FILE *FdSticky; /*!< file handle for sticky.txt log-file. */
#endif
#ifdef AGN_ACCRETION
extern FILE *FdAccretion; /*!< file handle for accretion.txt log-file. */
#endif
#ifdef BONDI_ACCRETION
extern FILE *FdBondi; /*!< file handle for bondi.txt log-file. */
#endif
#ifdef BUBBLES
extern FILE *FdBubble; /*!< file handle for bubble.txt log-file. */
#endif
#ifdef GAS_ACCRETION
extern FILE *FdGasAccretion; /*!< file handle for gas_accretion.txt log-file. */
#endif
extern double DriftTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological drift factors */
extern double GravKickTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological kick factor for gravitational forces */
extern double HydroKickTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological kick factor for hydrodynmical forces */
#ifdef COSMICTIME
extern double CosmicTimeTable[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
extern double FullCosmicTimeTable[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
extern double FullCosmicTimeTableInv[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
#endif
extern void *CommBuffer; /*!< points to communication buffer, which is used in the domain decomposition, the
parallel tree-force computation, the SPH routines, etc. */
/*! This structure contains data which is the SAME for all tasks (mostly code parameters read from the
* parameter file). Holding this data in a structure is convenient for writing/reading the restart file, and
* it allows the introduction of new global variables in a simple way. The only thing to do is to introduce
* them into this structure.
*/
extern struct global_data_all_processes
{
long long TotNumPart; /*!< total particle numbers (global value) */
long long TotN_gas; /*!< total gas particle number (global value) */
#ifdef GAS_ACCRETION
long long TotNumPart_acc;
long long TotN_gas_acc;
#endif
#ifdef PY_INTERFACE
long long TotNumPartQ; /*!< total particle numbers (global value) */
long long TotN_gasQ; /*!< total gas particle number (global value) */
int MaxPartQ; /*!< This gives the maxmimum number of particles that can be stored on one processor. */
int MaxPartSphQ; /*!< This gives the maxmimum number of SPH particles that can be stored on one processor. */
int BunchSizeSph;
int BunchSizeDensitySph;
double ForceSofteningQ;
#endif
#if defined(SFR) || defined(STELLAR_PROP)
long long TotN_stars; /*!< total stars particle number (global value) */
#endif
#ifdef MULTIPHASE
long long TotN_sph; /*!< total sph particle number (global value) */
long long TotN_sticky; /*!< total sticky particle number (global value) */
long long TotN_stickyflaged; /*!< total sticky flaged particle number (global value) */
long long TotN_stickyactive; /*!< total sticky active particle number (global value) */
long long TotN_dark; /*!< total dark particle number (global value) */
#endif
int MaxPart; /*!< This gives the maxmimum number of particles that can be stored on one processor. */
int MaxPartSph; /*!< This gives the maxmimum number of SPH particles that can be stored on one processor. */
#ifdef TESSEL
int MaxgPart;
#endif
#ifdef STELLAR_PROP
int MaxPartStars; /*!< This gives the maxmimum number of Star particles that can be stored on one processor. */
#endif
double BoxSize; /*!< Boxsize in case periodic boundary conditions are used */
int ICFormat; /*!< selects different versions of IC file-format */
int SnapFormat; /*!< selects different versions of snapshot file-formats */
int NumFilesPerSnapshot; /*!< number of files in multi-file snapshot dumps */
int NumFilesWrittenInParallel;/*!< maximum number of files that may be written simultaneously when
writing/reading restart-files, or when writing snapshot files */
int BufferSize; /*!< size of communication buffer in MB */
int BunchSizeForce; /*!< number of particles fitting into the buffer in the parallel tree-force algorithm */
int BunchSizeDensity; /*!< number of particles fitting into the communication buffer in the density computation */
int BunchSizeHydro; /*!< number of particles fitting into the communication buffer in the SPH hydrodynamical force computation */
int BunchSizeDomain; /*!< number of particles fitting into the communication buffer in the domain decomposition */
#ifdef MULTIPHASE
int BunchSizeSticky; /*!< number of particles fitting into the communication buffer in the Chimie computation */
#endif
#ifdef CHIMIE
int BunchSizeChimie; /*!< number of particles fitting into the communication buffer in the Chimie computation */
int BunchSizeStarsDensity; /*!< number of particles fitting into the communication buffer in the star density computation */
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
int BunchSizeSynchronizeNgBTimestep;
#endif
#ifdef TESSEL
int BunchSizeGhost;
#endif
double PartAllocFactor; /*!< in order to maintain work-load balance, the particle load will usually
NOT be balanced. Each processor allocates memory for PartAllocFactor times
the average number of particles to allow for that */
double TreeAllocFactor; /*!< Each processor allocates a number of nodes which is TreeAllocFactor times
the maximum(!) number of particles. Note: A typical local tree for N
particles needs usually about ~0.65*N nodes. */
#ifdef SFR
double StarsAllocFactor; /*!< Estimated fraction of gas particles that will form stars during the simulation
This allow to reduce the memory stored for stellar particles */
#endif
/* some SPH parameters */
double DesNumNgb; /*!< Desired number of SPH neighbours */
double MaxNumNgbDeviation; /*!< Maximum allowed deviation neighbour number */
double ArtBulkViscConst; /*!< Sets the parameter \f$\alpha\f$ of the artificial viscosity */
#ifdef ART_CONDUCTIVITY
double ArtCondConst; /*!< Sets the parameter \f$\alpha\f$ of the artificial conductivity */
double ArtCondThreshold;
#endif
double InitGasTemp; /*!< may be used to set the temperature in the IC's */
double MinGasTemp; /*!< may be used to set a floor for the gas temperature */
double MinEgySpec; /*!< the minimum allowed temperature expressed as energy per unit mass */
/* Usefull constants */
double Boltzmann;
double ProtonMass;
double mumh;
#ifdef COOLING
/* Cooling parameters */
double *logT;
double *logL;
gsl_interp_accel *acc_cooling_spline;
gsl_spline *cooling_spline;
double CoolingType;
#ifdef PYCOOL
char * CoolingFile;
#else
char CoolingFile[MAXLEN_FILENAME]; /*!< cooling file */
#endif
double CutofCoolingTemperature;
/*
new metal dependent cooling
*/
double CoolingParameters_zmin;
double CoolingParameters_zmax;
double CoolingParameters_slz;
double CoolingParameters_tmin;
double CoolingParameters_tmax;
double CoolingParameters_slt;
double CoolingParameters_FeHSolar;
double CoolingParameters_cooling_data_max;
double CoolingParameters_cooling_data[COOLING_NMETALICITIES][COOLING_NTEMPERATURES];
int CoolingParameters_p;
int CoolingParameters_q;
-
+
+
+#ifdef COOLING_WIERSMA
+char CoolingDirectory[MAXLEN_FILENAME]; /*!< cooling directory */
+#endif
#ifdef COOLING_FCT_FROM_HDF5
// cooling tables loaded from HDF5 files
// (dimensions depend on the presence of nHe)
float*** COOLING_TABLES_METAL_FREE;
float** COOLING_TABLES_TOTAL_METAL;
float*** ELECTRON_DENSITY_OVER_N_H_TABLES;
float** ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR;
float* HYDROGEN_TABLES;
float* TEMPERATURE_TABLES;
float* HELIUM_ABOUNDANCE_TABLES;
//corresponding sizes
int SIZE_HYDROGEN_TABLES;
int SIZE_TEMPERATURE_TABLES;
int SIZE_HELIUM_ABOUNDANCE_TABLES;
// current redshift value determining the cooling file
// from which the data is interpolated
float CURRENT_TABLE_REDSHIFT;
#endif
#endif
#ifdef CHIMIE
int ChimieNumberOfParameterFiles;
#ifdef PYCHEM
char * ChimieParameterFile;
#else
char ChimieParameterFile[MAXLEN_FILENAME]; /*!< chimie parameter file */
#endif
double ChimieSupernovaEnergy;
double ChimieKineticFeedbackFraction;
double ChimieWindSpeed;
double ChimieWindTime;
double ChimieSNIaThermalTime;
double ChimieSNIIThermalTime;
double ChimieMaxSizeTimestep;
#ifdef CHIMIE_ONE_SN_ONLY /*!< explode only one sn>*/
int ChimieOneSN;
#endif
#endif
#if defined (CHIMIE) || defined (COOLING)
double InitGasMetallicity;
#endif
#if !defined (HEATING_PE)
double HeatingPeElectronFraction;
#endif
#if !defined (HEATING_PE) || defined (STELLAR_FLUX) || defined (EXTERNAL_FLUX)
double HeatingPeSolarEnergyDensity;
#endif
#if !defined (HEATING_PE) || defined (STELLAR_FLUX)
double HeatingPeLMRatioGas;
double HeatingPeLMRatioHalo;
double HeatingPeLMRatioDisk;
double HeatingPeLMRatioBulge;
double HeatingPeLMRatioStars;
double HeatingPeLMRatioBndry;
double HeatingPeLMRatio[6];
#endif
#ifdef EXTERNAL_FLUX
double HeatingExternalFLuxEnergyDensity;
#endif
#ifdef MULTIPHASE
double CriticalTemperature;
double CriticalEgySpec;
double CriticalNonCollisionalTemperature;
double CriticalNonCollisionalEgySpec;
#ifdef COLDGAS_CYCLE
double ColdGasCycleTransitionTime;
double ColdGasCycleTransitionParameter;
#endif
#endif
#ifdef MULTIPHASE
/* some STICKY parameters */
int StickyUseGridForCollisions;
double StickyTime; /*!< Cooling time of sticky particle collision */
double StickyCollisionTime;
double StickyLastCollisionTime;
double StickyIdleTime;
double StickyMinVelocity;
double StickyMaxVelocity;
int StickyGridNx;
int StickyGridNy;
int StickyGridNz;
double StickyGridXmin;
double StickyGridXmax;
double StickyGridYmin;
double StickyGridYmax;
double StickyGridZmin;
double StickyGridZmax;
double StickyLambda;
double StickyDensity;
double StickyDensityPower;
double StickyBetaR;
double StickyBetaT;
double StickyRsphFact; /*!< Fraction of the sph radius used in sticky particle */
#endif
#ifdef OUTERPOTENTIAL
#ifdef NFW
double HaloConcentration;
double HaloMass;
double GasMassFraction;
double NFWPotentialCte;
double Rs;
#endif
#ifdef PLUMMER
double PlummerMass;
double PlummerSoftenning;
double PlummerPotentialCte;
#endif
#ifdef MIYAMOTONAGAI
double MiyamotoNagaiMass;
double MiyamotoNagaiHr;
double MiyamotoNagaiHz;
double MiyamotoNagaiPotentialCte;
#endif
#ifdef PISOTHERM
double Rho0;
double Rc;
double PisothermPotentialCte;
double GasMassFraction;
double PotentialInf;
gsl_function PotentialF;
gsl_integration_workspace *Potentialw;
#endif
#ifdef CORIOLIS
double CoriolisOmegaX;
double CoriolisOmegaY;
double CoriolisOmegaZ;
double CoriolisOmegaX0;
double CoriolisOmegaY0;
double CoriolisOmegaZ0;
#endif
#endif
#ifdef SFR
int StarFormationNStarsFromGas;
double StarFormationStarMass;
double StarFormationMgMsFraction;
int StarFormationType;
double StarFormationCstar;
double StarFormationTime;
double StarFormationDensity;
double StarFormationTemperature;
double ThresholdDensity;
#endif
#ifdef FEEDBACK
double SupernovaTime;
#endif
#ifdef FEEDBACK_WIND
double SupernovaWindEgySpecPerMassUnit;
double SupernovaWindFractionInEgyKin;
double SupernovaWindParameter;
double SupernovaWindSpeed;
double SupernovaWindIntAccuracy;
#endif
#ifdef AGN_ACCRETION
double TimeBetAccretion;
double AccretionRadius;
double AGNFactor;
double MinMTotInRa;
double TimeLastAccretion;
double LastMTotInRa;
double MTotInRa;
double dMTotInRa;
#endif
#ifdef BUBBLES
char BubblesInitFile[MAXLEN_FILENAME]; /*!< bubble file */
double *BubblesTime;
double *BubblesD;
double *BubblesR;
double *BubblesE;
double *BubblesA;
double *BubblesB;
int BubblesIndex;
double BubblesAlpha;
double BubblesBeta;
double BubblesDelta;
double BubblesRadiusFactor;
double EnergyBubbles;
#endif
#ifdef AGN_HEATING
double AGNHeatingPower;
double AGNHeatingRmax;
#endif
#ifdef BONDI_ACCRETION
double BondiEfficiency;
double BondiBlackHoleMass;
double BondiHsmlFactor;
double BondiPower;
double BondiTimeBet;
double BondiTimeLast;
#endif
#if defined (AGN_ACCRETION) || defined (BONDI_ACCRETION)
double LightSpeed;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
double ArtBulkViscConstMin;
double ArtBulkViscConstMax;
double ArtBulkViscConstL;
#endif
#ifdef AB_TURB
double StDecay;
double StEnergy;
double StDtFreq;
double StKmin;
double StKmax;
double StSolWeight;
double StAmplFac;
int StSpectForm;
int StSeed;
#endif
#ifdef GAS_ACCRETION
double AccretionParticleMass[6];
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
int NgbFactorTimestep;
#endif
/* some force counters */
long long TotNumOfForces; /*!< counts total number of force computations */
long long NumForcesSinceLastDomainDecomp; /*!< count particle updates since last domain decomposition */
/* system of units */
double G; /*!< Gravity-constant in internal units */
double UnitTime_in_s; /*!< factor to convert internal time unit to seconds/h */
double UnitMass_in_g; /*!< factor to convert internal mass unit to grams/h */
double UnitVelocity_in_cm_per_s; /*!< factor to convert intqernal velocity unit to cm/sec */
double UnitLength_in_cm; /*!< factor to convert internal length unit to cm/h */
double UnitPressure_in_cgs; /*!< factor to convert internal pressure unit to cgs units (little 'h' still around!) */
double UnitDensity_in_cgs; /*!< factor to convert internal length unit to g/cm^3*h^2 */
double UnitCoolingRate_in_cgs; /*!< factor to convert internal cooling rate to cgs units */
double UnitEnergy_in_cgs; /*!< factor to convert internal energy to cgs units */
double UnitTime_in_Megayears; /*!< factor to convert internal time to megayears/h */
double GravityConstantInternal; /*!< If set to zero in the parameterfile, the internal value of the
gravitational constant is set to the Newtonian value based on the system of
units specified. Otherwise the value provided is taken as internal gravity constant G. */
/* Cosmological parameters */
double Hubble; /*!< Hubble-constant in internal units */
double Omega0; /*!< matter density in units of the critical density (at z=0)*/
double OmegaLambda; /*!< vaccum energy density relative to crictical density (at z=0) */
double OmegaBaryon; /*!< baryon density in units of the critical density (at z=0)*/
double HubbleParam; /*!< little `h', i.e. Hubble constant in units of 100 km/s/Mpc. Only needed to get absolute physical values for cooling physics */
/* Code options */
int ComovingIntegrationOn; /*!< flags that comoving integration is enabled */
int PeriodicBoundariesOn; /*!< flags that periodic boundaries are enabled */
int ResubmitOn; /*!< flags that automatic resubmission of job to queue system is enabled */
int TypeOfOpeningCriterion; /*!< determines tree cell-opening criterion: 0 for Barnes-Hut, 1 for relative criterion */
int TypeOfTimestepCriterion; /*!< gives type of timestep criterion (only 0 supported right now - unlike gadget-1.1) */
int OutputListOn; /*!< flags that output times are listed in a specified file */
/* Parameters determining output frequency */
int SnapshotFileCount; /*!< number of snapshot that is written next */
double TimeBetSnapshot; /*!< simulation time interval between snapshot files */
double TimeOfFirstSnapshot; /*!< simulation time of first snapshot files */
double CpuTimeBetRestartFile; /*!< cpu-time between regularly generated restart files */
double TimeLastRestartFile; /*!< cpu-time when last restart-file was written */
double TimeBetStatistics; /*!< simulation time interval between computations of energy statistics */
double TimeLastStatistics; /*!< simulation time when the energy statistics was computed the last time */
int NumCurrentTiStep; /*!< counts the number of system steps taken up to this point */
/* Current time of the simulation, global step, and end of simulation */
double Time; /*!< current time of the simulation */
double TimeBegin; /*!< time of initial conditions of the simulation */
double TimeStep; /*!< difference between current times of previous and current timestep */
double TimeMax; /*!< marks the point of time until the simulation is to be evolved */
/* variables for organizing discrete timeline */
double Timebase_interval; /*!< factor to convert from floating point time interval to integer timeline */
int Ti_Current; /*!< current time on integer timeline */
int Ti_nextoutput; /*!< next output time on integer timeline */
#ifdef FLEXSTEPS
int PresentMinStep; /*!< If FLEXSTEPS is used, particle timesteps are chosen as multiples of the present minimum timestep. */
int PresentMaxStep; /*!< If FLEXSTEPS is used, this is the maximum timestep in timeline units, rounded down to the next power 2 division */
#endif
#ifdef PMGRID
int PM_Ti_endstep; /*!< begin of present long-range timestep */
int PM_Ti_begstep; /*!< end of present long-range timestep */
#endif
/* Placement of PM grids */
#ifdef PMGRID
double Asmth[2]; /*!< Gives the scale of the long-range/short-range split (in mesh-cells), both for the coarse and the high-res mesh */
double Rcut[2]; /*!< Gives the maximum radius for which the short-range force is evaluated with the tree (in mesh-cells), both for the coarse and the high-res mesh */
double Corner[2][3]; /*!< lower left corner of coarse and high-res PM-mesh */
double UpperCorner[2][3]; /*!< upper right corner of coarse and high-res PM-mesh */
double Xmintot[2][3]; /*!< minimum particle coordinates both for coarse and high-res PM-mesh */
double Xmaxtot[2][3]; /*!< maximum particle coordinates both for coarse and high-res PM-mesh */
double TotalMeshSize[2]; /*!< total extension of coarse and high-res PM-mesh */
#endif
/* Variables that keep track of cumulative CPU consumption */
double TimeLimitCPU; /*!< CPU time limit as defined in parameterfile */
double CPU_TreeConstruction; /*!< time spent for constructing the gravitational tree */
double CPU_TreeWalk; /*!< actual time spent for pure tree-walks */
double CPU_Gravity; /*!< cumulative time used for gravity computation (tree-algorithm only) */
double CPU_Potential; /*!< time used for computing gravitational potentials */
double CPU_Domain; /*!< cumulative time spent for domain decomposition */
double CPU_Snapshot; /*!< time used for writing snapshot files */
double CPU_Total; /*!< cumulative time spent for domain decomposition */
double CPU_CommSum; /*!< accumulated time used for communication, and for collecting partial results, in tree-gravity */
double CPU_Imbalance; /*!< cumulative time lost accross all processors as work-load imbalance in gravitational tree */
double CPU_HydCompWalk; /*!< time used for actual SPH computations, including neighbour search */
double CPU_HydCommSumm; /*!< cumulative time used for communication in SPH, and for collecting partial results */
double CPU_HydImbalance; /*!< cumulative time lost due to work-load imbalance in SPH */
double CPU_Hydro; /*!< cumulative time spent for SPH related computations */
#ifdef SFR
double CPU_StarFormation; /*!< cumulative time spent for star formation computations */
#endif
#ifdef CHIMIE
double CPU_Chimie; /*!< cumulative time spent for chimie computations */
double CPU_ChimieDensCompWalk;
double CPU_ChimieDensCommSumm;
double CPU_ChimieDensImbalance;
double CPU_ChimieDensEnsureNgb;
double CPU_ChimieCompWalk;
double CPU_ChimieCommSumm;
double CPU_ChimieImbalance;
#endif
#ifdef MULTIPHASE
double CPU_Sticky; /*!< cumulative time spent for sticky computations */
#endif
double CPU_EnsureNgb; /*!< time needed to iterate on correct neighbour numbers */
double CPU_Predict; /*!< cumulative time to drift the system forward in time, including dynamic tree updates */
double CPU_TimeLine; /*!< time used for determining new timesteps, and for organizing the timestepping, including kicks of active particles */
double CPU_PM; /*!< time used for long-range gravitational force */
double CPU_Peano; /*!< time required to establish Peano-Hilbert order */
#ifdef DETAILED_CPU_DOMAIN
double CPU_Domain_findExtend;
double CPU_Domain_determineTopTree;
double CPU_Domain_sumCost;
double CPU_Domain_findSplit;
double CPU_Domain_shiftSplit;
double CPU_Domain_countToGo;
double CPU_Domain_exchange;
#endif
#ifdef DETAILED_CPU_GRAVITY
double CPU_Gravity_TreeWalk1;
double CPU_Gravity_TreeWalk2;
double CPU_Gravity_CommSum1;
double CPU_Gravity_CommSum2;
double CPU_Gravity_Imbalance1;
double CPU_Gravity_Imbalance2;
#endif
#ifdef COOLING
double CPU_Cooling;
#endif
#ifdef DETAILED_CPU
double CPU_Leapfrog;
double CPU_Physics;
double CPU_Residual;
double CPU_Accel;
double CPU_Begrun;
#endif
/* tree code opening criterion */
double ErrTolTheta; /*!< BH tree opening angle */
double ErrTolForceAcc; /*!< parameter for relative opening criterion in tree walk */
/* adjusts accuracy of time-integration */
double ErrTolIntAccuracy; /*!< accuracy tolerance parameter \f$ \eta \f$ for timestep criterion. The
timestep is \f$ \Delta t = \sqrt{\frac{2 \eta eps}{a}} \f$ */
double MinSizeTimestep; /*!< minimum allowed timestep. Normally, the simulation terminates if the
timestep determined by the timestep criteria falls below this limit. */
double MaxSizeTimestep; /*!< maximum allowed timestep */
double MaxRMSDisplacementFac; /*!< this determines a global timestep criterion for cosmological simulations
in comoving coordinates. To this end, the code computes the rms velocity
of all particles, and limits the timestep such that the rms displacement
is a fraction of the mean particle separation (determined from the
particle mass and the cosmological parameters). This parameter specifies
this fraction. */
double CourantFac; /*!< SPH-Courant factor */
/* frequency of tree reconstruction/domain decomposition */
double TreeDomainUpdateFrequency; /*!< controls frequency of domain decompositions */
/* Gravitational and hydrodynamical softening lengths (given in terms of an `equivalent' Plummer softening length).
* Five groups of particles are supported 0="gas", 1="halo", 2="disk", 3="bulge", 4="stars", 5="bndry"
*/
double MinGasHsmlFractional; /*!< minimum allowed SPH smoothing length in units of SPH gravitational softening length */
double MinGasHsml; /*!< minimum allowed SPH smoothing length */
double SofteningGas; /*!< comoving gravitational softening lengths for type 0 */
double SofteningHalo; /*!< comoving gravitational softening lengths for type 1 */
double SofteningDisk; /*!< comoving gravitational softening lengths for type 2 */
double SofteningBulge; /*!< comoving gravitational softening lengths for type 3 */
double SofteningStars; /*!< comoving gravitational softening lengths for type 4 */
double SofteningBndry; /*!< comoving gravitational softening lengths for type 5 */
double SofteningGasMaxPhys; /*!< maximum physical softening length for type 0 */
double SofteningHaloMaxPhys; /*!< maximum physical softening length for type 1 */
double SofteningDiskMaxPhys; /*!< maximum physical softening length for type 2 */
double SofteningBulgeMaxPhys; /*!< maximum physical softening length for type 3 */
double SofteningStarsMaxPhys; /*!< maximum physical softening length for type 4 */
double SofteningBndryMaxPhys; /*!< maximum physical softening length for type 5 */
double SofteningTable[6]; /*!< current (comoving) gravitational softening lengths for each particle type */
double ForceSoftening[6]; /*!< the same, but multiplied by a factor 2.8 - at that scale the force is Newtonian */
double MassTable[6]; /*!< Table with particle masses for particle types with equal mass.
If particle masses are all equal for one type, the corresponding entry in MassTable
is set to this value, allowing the size of the snapshot files to be reduced. */
/* some filenames */
char InitCondFile[MAXLEN_FILENAME]; /*!< filename of initial conditions */
char OutputDir[MAXLEN_FILENAME]; /*!< output directory of the code */
char SnapshotFileBase[MAXLEN_FILENAME]; /*!< basename to construct the names of snapshotf files */
char EnergyFile[MAXLEN_FILENAME]; /*!< name of file with energy statistics */
#ifdef SYSTEMSTATISTICS
char SystemFile[MAXLEN_FILENAME];
#endif
char CpuFile[MAXLEN_FILENAME]; /*!< name of file with cpu-time statistics */
char InfoFile[MAXLEN_FILENAME]; /*!< name of log-file with a list of the timesteps taken */
char LogFile[MAXLEN_FILENAME]; /*!< name of log-file with varied info */
#ifdef SFR
char SfrFile[MAXLEN_FILENAME]; /*!< name of file with sfr records */
#endif
#ifdef CHIMIE
char ChimieFile[MAXLEN_FILENAME]; /*!< name of file with chimie records */
#endif
#ifdef MULTIPHASE
char PhaseFile[MAXLEN_FILENAME]; /*!< name of file with phase records */
char StickyFile[MAXLEN_FILENAME]; /*!< name of file with sticky records */
#endif
#ifdef AGN_ACCRETION
char AccretionFile[MAXLEN_FILENAME]; /*!< name of file with accretion records */
#endif
#ifdef BONDI_ACCRETION
char BondiFile[MAXLEN_FILENAME]; /*!< name of file with bondi records */
#endif
#ifdef BUBBLES
char BubbleFile[MAXLEN_FILENAME]; /*!< name of file with bubble records */
#endif
#ifdef GAS_ACCRETION
char GasAccretionFile[MAXLEN_FILENAME]; /*!< name of file with sfr records */
#endif
char TimingsFile[MAXLEN_FILENAME]; /*!< name of file with performance metrics of gravitational tree algorithm */
char RestartFile[MAXLEN_FILENAME]; /*!< basename of restart-files */
char ResubmitCommand[MAXLEN_FILENAME]; /*!< name of script-file that will be executed for automatic restart */
char OutputListFilename[MAXLEN_FILENAME]; /*!< name of file with list of desired output times */
double OutputListTimes[MAXLEN_OUTPUTLIST]; /*!< table with desired output times */
int OutputListLength; /*!< number of output times stored in the table of desired output times */
#ifdef RANDOMSEED_AS_PARAMETER
int RandomSeed; /*!< initial random seed >*/
#endif
}
All; /*!< a container variable for global variables that are equal on all processors */
/*! This structure holds all the information that is
* stored for each particle of the simulation.
*/
extern struct particle_data
{
FLOAT Pos[3]; /*!< particle position at its current time */
FLOAT Mass; /*!< particle mass */
FLOAT Vel[3]; /*!< particle velocity at its current time */
FLOAT GravAccel[3]; /*!< particle acceleration due to gravity */
#ifdef PMGRID
FLOAT GravPM[3]; /*!< particle acceleration due to long-range PM gravity force*/
#endif
#ifdef FORCETEST
FLOAT GravAccelDirect[3]; /*!< particle acceleration when computed with direct summation */
#endif
FLOAT Potential; /*!< gravitational potential */
FLOAT OldAcc; /*!< magnitude of old gravitational force. Used in relative opening criterion */
#ifndef LONGIDS
unsigned int ID; /*!< particle identifier */
#else
unsigned long long ID; /*!< particle identifier */
#endif
int Type; /*!< flags particle type. 0=gas, 1=halo, 2=disk, 3=bulge, 4=stars, 5=bndry */
int Ti_endstep; /*!< marks start of current timestep of particle on integer timeline */
int Ti_begstep; /*!< marks end of current timestep of particle on integer timeline */
#ifdef SYNCHRONIZE_NGB_TIMESTEP
int Old_Ti_endstep; /*!< marks start of old current timestep of particle on integer timeline */
int Old_Ti_begstep; /*!< marks end of old current timestep of particle on integer timeline */
#endif
#ifdef FLEXSTEPS
int FlexStepGrp; /*!< a random 'offset' on the timeline to create a smooth groouping of particles */
#endif
float GravCost; /*!< weight factor used for balancing the work-load */
#ifdef PSEUDOSYMMETRIC
float AphysOld; /*!< magnitude of acceleration in last timestep. Used to make a first order
prediction of the change of acceleration expected in the future, thereby
allowing to guess whether a decrease/increase of the timestep should occur
in the timestep that is started. */
#endif
#ifdef PARTICLE_FLAG
float Flag;
#endif
#ifdef STELLAR_PROP
unsigned int StPIdx; /*!< index to the corresponding StP particle */
#endif
#ifdef TESSEL
int iT; /*!< index of a triangle to which the point belong to */
int IsDone;
int IsAdded; /*!< if the point has already be added in the tesselation */
int ivPoint; /*!< index of first voronoi point */
int nvPoints; /*!< number of voronoi points */
int iMedian;
int nMedians;
double Volume;
double Density;
double Pressure;
double Entropy;
double rSearch; /*!< radius in which particles must search for ngbs */
int iPref; /*!< for a ghost point, index of the reference point */
FLOAT tesselAccel[3];
#endif
# ifdef SYNCHRONIZE_NGB_TIMESTEP
int Ti_step;
#endif
#ifdef VANISHING_PARTICLES
int VanishingFlag;
#endif
}
*P, /*!< holds particle data on local processor */
#ifdef PY_INTERFACE
*Q,
*DomainPartBufQ, /*!< buffer for particle data used in domain decomposition */
#endif
*DomainPartBuf; /*!< buffer for particle data used in domain decomposition */
/* the following struture holds data that is stored for each SPH particle in addition to the collisionless
* variables.
*/
extern struct sph_particle_data
{
FLOAT Entropy; /*!< current value of entropy (actually entropic function) of particle */
FLOAT Density; /*!< current baryonic mass density of particle */
FLOAT Hsml; /*!< current smoothing length */
FLOAT Left; /*!< lower bound in iterative smoothing length search */
FLOAT Right; /*!< upper bound in iterative smoothing length search */
FLOAT NumNgb; /*!< weighted number of neighbours found */
#ifdef AVOIDNUMNGBPROBLEM
FLOAT OldNumNgb;
#endif
FLOAT Pressure; /*!< current pressure */
FLOAT DtEntropy; /*!< rate of change of entropy */
#ifdef COOLING
//FLOAT EntropyRad; /*!< current value of entropy resulting from the cooling */
FLOAT DtEntropyRad; /*!< rate of change of entropy due to cooling */
FLOAT DtEnergyRad;
#endif
#ifdef STELLAR_FLUX
FLOAT EnergyFlux; /*!< current value of local energy flux - Sph particles */
#endif
#ifdef AGN_HEATING
FLOAT EgySpecAGNHeat; /*!< current value of specific energy radiated of particle - Sph particles */
FLOAT DtEgySpecAGNHeat; /*!< rate of change of specific radiated energy - Sph particles */
FLOAT DtEntropyAGNHeat;
#endif
#ifdef MULTIPHASE
FLOAT StickyTime;
int StickyFlag;
#ifdef COUNT_COLLISIONS
float StickyCollisionNumber;
#endif
#endif
#ifdef FEEDBACK
FLOAT EgySpecFeedback;
FLOAT DtEgySpecFeedback;
FLOAT EnergySN;
FLOAT EnergySNrem;
FLOAT TimeSN;
FLOAT FeedbackVel[3]; /*!< kick due to feedback force */
#endif
#ifdef FEEDBACK_WIND
FLOAT FeedbackWindVel[3]; /*!< kick due to feedback force */
#endif
FLOAT HydroAccel[3]; /*!< acceleration due to hydrodynamical force */
FLOAT VelPred[3]; /*!< predicted SPH particle velocity at the current time */
FLOAT DivVel; /*!< local velocity divergence */
FLOAT CurlVel; /*!< local velocity curl */
FLOAT Rot[3]; /*!< local velocity curl */
FLOAT DhsmlDensityFactor; /*!< correction factor needed in the equation of motion of the conservative entropy formulation of SPH */
FLOAT MaxSignalVel; /*!< maximum "signal velocity" occuring for this particle */
#ifdef MULTIPHASE
int Phase;
int StickyIndex;
int StickyNgb;
int StickyMaxID;
float StickyMaxFs;
FLOAT StickyNewVel[3];
#endif
#ifdef OUTPUTOPTVAR1
FLOAT OptVar1; /*!< optional variable 1 */
#endif
#ifdef OUTPUTOPTVAR2
FLOAT OptVar2; /*!< optional variable 2 */
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
FLOAT VelocityDispersion[VELOCITY_DISPERSION_SIZE]; /*!< velocity dispersion */
#endif
#ifdef CHIMIE
FLOAT Metal[NELEMENTS];
FLOAT dMass; /*!< mass variation due to mass transfere */
#ifdef CHIMIE_THERMAL_FEEDBACK
FLOAT DeltaEgySpec;
FLOAT SNIaThermalTime; /*!< flag particles that got energy from SNIa */
FLOAT SNIIThermalTime; /*!< flag particles that got energy from SNII */
double NumberOfSNIa;
double NumberOfSNII;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
FLOAT WindTime; /*!< flag particles that belongs to the wind */
unsigned int WindFlag; /*!< flag particles that will be part of the wind */
#endif
#endif /*CHIMIE*/
#ifdef ENTROPYPRED
FLOAT EntropyPred; /*!< predicted entropy at the current time */
#endif
#ifdef ART_CONDUCTIVITY
FLOAT EnergyIntPred;
FLOAT GradEnergyInt[3];
#endif
#ifdef AB_TURB
FLOAT TurbAccel[3];
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
double ArtBulkViscConst;
#ifdef ART_VISCO_CD
double DmatCD[3][3];
double TmatCD[3][3];
double DiVelAccurate;
double DiVelTemp;
double ArtBulkViscConstOld;
double R_CD;
FLOAT MaxSignalVelCD;
#endif
#endif
#ifdef GAS_ACCRETION
int ActiveFlag;
#endif
#if PY_INTERFACE
FLOAT Observable;
FLOAT ObsMoment0;
FLOAT ObsMoment1;
FLOAT GradObservable[3];
#endif
# ifdef SYNCHRONIZE_NGB_TIMESTEP
int Ti_minNgbStep;
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
FLOAT FeedbackUpdatedAccel[3]; /*!< acceleration after feedback injection */
FLOAT MaxSignalVelFeedbackUpdated;
#endif
#ifdef DENSITY_INDEPENDENT_SPH
FLOAT EgyWtDensity; /*!< 'effective' rho to use in hydro equations */
FLOAT EntVarPred; /*!< predicted entropy variable */
FLOAT DhsmlEgyDensityFactor; /*!< correction factor for density-independent entropy formulation */
#endif
}
*SphP, /*!< holds SPH particle data on local processor */
#ifdef PY_INTERFACE
*SphQ,
*DomainSphBufQ, /*!< buffer for SPH particle data in domain decomposition */
#endif
*DomainSphBuf; /*!< buffer for SPH particle data in domain decomposition */
#ifdef GAS_ACCRETION
extern struct acc_particle_data
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Mass;
FLOAT Time;
int Type;
int ID;
}
*Acc;
extern struct gas_acc_particle_data
{
FLOAT Entropy;
#ifdef CHIMIE
FLOAT Metal[NELEMENTS];
#endif
}
*SphAcc;
#endif
#ifdef STELLAR_PROP
/* the following struture holds data that is stored for each SPH particle in addition to the collisionless
* variables.
*/
extern struct st_particle_data
{
#ifdef CHECK_ID_CORRESPONDENCE
unsigned int ID; /*!< particle identifier (must be the same as P[].ID) only used to check ID correspondance */
#endif
FLOAT FormationTime; /*!< star formation time of particle */
FLOAT InitialMass; /*!< initial stellar mass */
#ifndef LONGIDS
unsigned int IDProj; /*!< id of projenitor particle */
#else
unsigned long long IDProj; /*!< id of projenitor particle */
#endif
FLOAT Metal[NELEMENTS];
FLOAT Density; /*!< current baryonic mass density of particle */
FLOAT Volume; /*!< current volume of particle */
FLOAT Hsml; /*!< current smoothing length */
FLOAT Left; /*!< lower bound in iterative smoothing length search */
FLOAT Right; /*!< upper bound in iterative smoothing length search */
FLOAT NumNgb; /*!< weighted number of neighbours found */
unsigned int PIdx; /*!< index to the corresponding particle */
#ifdef AVOIDNUMNGBPROBLEM
FLOAT OldNumNgb;
#endif
FLOAT DhsmlDensityFactor; /*!< correction factor needed in the equation of motion of the conservative entropy formulation of SPH */
double TotalEjectedGasMass;
double TotalEjectedEltMass[NELEMENTS];
double TotalEjectedEgySpec;
double NumberOfSNIa;
double NumberOfSNII;
#ifdef CHIMIE_KINETIC_FEEDBACK
double NgbMass; /*!< mass of neighbours */
#endif
#ifdef CHIMIE
unsigned int Flag;
#endif
}
*StP, /*!< holds ST particle data on local processor */
*DomainStBuf; /*!< buffer for ST particle data in domain decomposition */
#endif
/* Variables for Tree
*/
extern int MaxNodes; /*!< maximum allowed number of internal nodes */
extern int Numnodestree; /*!< number of (internal) nodes in each tree */
extern struct NODE
{
FLOAT len; /*!< sidelength of treenode */
FLOAT center[3]; /*!< geometrical center of node */
#ifdef ADAPTIVE_GRAVSOFT_FORGAS
FLOAT maxsoft; /*!< hold the maximum gravitational softening of particles in the
node if the ADAPTIVE_GRAVSOFT_FORGAS option is selected */
#endif
#ifdef STELLAR_FLUX
FLOAT starlum ; /*!< star luminosity of node */
#endif
union
{
int suns[8]; /*!< temporary pointers to daughter nodes */
struct
{
FLOAT s[3]; /*!< center of mass of node */
FLOAT mass; /*!< mass of node */
int bitflags; /*!< a bit-field with various information on the node */
int sibling; /*!< this gives the next node in the walk in case the current node can be used */
int nextnode; /*!< this gives the next node in case the current node needs to be opened */
int father; /*!< this gives the parent node of each node (or -1 if we have the root node) */
}
d;
}
u;
}
*Nodes_base, /*!< points to the actual memory allocted for the nodes */
*Nodes; /*!< this is a pointer used to access the nodes which is shifted such that Nodes[All.MaxPart]
gives the first allocated node */
extern int *Nextnode; /*!< gives next node in tree walk */
extern int *Father; /*!< gives parent node in tree */
extern struct extNODE /*!< this structure holds additional tree-node information which is not needed in the actual gravity computation */
{
FLOAT hmax; /*!< maximum SPH smoothing length in node. Only used for gas particles */
FLOAT vs[3]; /*!< center-of-mass velocity */
}
*Extnodes_base, /*!< points to the actual memory allocted for the extended node information */
*Extnodes; /*!< provides shifted access to extended node information, parallel to Nodes/Nodes_base */
/*! Header for the standard file format.
*/
extern struct io_header
{
int npart[6]; /*!< number of particles of each type in this file */
double mass[6]; /*!< mass of particles of each type. If 0, then the masses are explicitly
stored in the mass-block of the snapshot file, otherwise they are omitted */
double time; /*!< time of snapshot file */
double redshift; /*!< redshift of snapshot file */
int flag_sfr; /*!< flags whether the simulation was including star formation */
int flag_feedback; /*!< flags whether feedback was included (obsolete) */
unsigned int npartTotal[6]; /*!< total number of particles of each type in this snapshot. This can be
different from npart if one is dealing with a multi-file snapshot. */
int flag_cooling; /*!< flags whether cooling was included */
int num_files; /*!< number of files in multi-file snapshot */
double BoxSize; /*!< box-size of simulation in case periodic boundaries were used */
double Omega0; /*!< matter density in units of critical density */
double OmegaLambda; /*!< cosmological constant parameter */
double HubbleParam; /*!< Hubble parameter in units of 100 km/sec/Mpc */
int flag_stellarage; /*!< flags whether the file contains formation times of star particles */
int flag_metals; /*!< flags whether the file contains metallicity values for gas and star particles */
unsigned int npartTotalHighWord[6]; /*!< High word of the total number of particles of each type */
int flag_entropy_instead_u; /*!< flags that IC-file contains entropy instead of u */
int flag_chimie_extraheader; /*!< flags that IC-file contains extra-header for chimie */
#ifdef MULTIPHASE
double critical_energy_spec;
#ifdef MESOMACHINE
char fill[38];
#else
char fill[48]; /* use 42 with regor... */
#endif
#else
char fill[56]; /*!< fills to 256 Bytes */
#endif
}
header; /*!< holds header for snapshot files */
#ifdef CHIMIE_EXTRAHEADER
/*! Header for the chimie part.
*/
extern struct io_chimie_extraheader
{
int nelts; /*!< number of chemical element followed */
float SolarMassAbundances[NELEMENTS];
char labels[256-4-4*(NELEMENTS)];
}
chimie_extraheader;
#endif
#define IO_NBLOCKS 24 /*!< total number of defined information blocks for snapshot files.
Must be equal to the number of entries in "enum iofields" */
enum iofields /*!< this enumeration lists the defined output blocks in snapshot files. Not all of them need to be present. */
{
IO_POS,
IO_VEL,
IO_ID,
IO_MASS,
IO_U,
IO_RHO,
IO_HSML,
IO_POT,
IO_ACCEL,
IO_DTENTR,
IO_TSTP,
IO_ERADSPH,
IO_ERADSTICKY,
IO_ERADFEEDBACK,
IO_ENERGYFLUX,
IO_METALS,
IO_STAR_FORMATIONTIME,
IO_INITIAL_MASS,
IO_STAR_IDPROJ,
IO_STAR_RHO,
IO_STAR_HSML,
IO_STAR_METALS,
IO_OPTVAR1,
IO_OPTVAR2
};
extern char Tab_IO_Labels[IO_NBLOCKS][4]; /*<! This table holds four-byte character tags used for fileformat 2 */
/* global state of system, used for global statistics
*/
extern struct state_of_system
{
double Mass;
double EnergyKin;
double EnergyPot;
double EnergyInt;
#ifdef COOLING
double EnergyRadSph;
#endif
#ifdef AGN_HEATING
double EnergyAGNHeat;
#endif
#ifdef MULTIPHASE
double EnergyRadSticky;
#endif
#ifdef FEEDBACK_WIND
double EnergyFeedbackWind;
#endif
#ifdef BUBBLES
double EnergyBubbles;
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
double EnergyThermalFeedback;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double EnergyKineticFeedback;
#endif
double EnergyTot;
double Momentum[4];
double AngMomentum[4];
double CenterOfMass[4];
double MassComp[6];
double EnergyKinComp[6];
double EnergyPotComp[6];
double EnergyIntComp[6];
#ifdef COOLING
double EnergyRadSphComp[6];
#endif
#ifdef AGN_HEATING
double EnergyAGNHeatComp[6];
#endif
#ifdef MULTIPHASE
double EnergyRadStickyComp[6];
#endif
#ifdef FEEDBACK_WIND
double EnergyFeedbackWindComp[6];
#endif
#ifdef BUBBLES
double EnergyBubblesComp[6];
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
double EnergyThermalFeedbackComp[6];
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double EnergyKineticFeedbackComp[6];
#endif
double EnergyTotComp[6];
double MomentumComp[6][4];
double AngMomentumComp[6][4];
double CenterOfMassComp[6][4];
}
SysState; /*<! Structure for storing some global statistics about the simulation. */
/*! This structure contains data related to the energy budget.
These values are different for each task. It need to be stored
in the restart flag.
*/
extern struct local_state_of_system
{
double EnergyTest;
double EnergyInt1;
double EnergyInt2;
double EnergyKin1;
double EnergyKin2;
#ifdef COOLING
double RadiatedEnergy;
#endif
#ifdef SFR
double StarEnergyInt;
#ifdef FEEDBACK
double StarEnergyFeedback;
#endif
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
double EnergyThermalFeedback;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double EnergyKineticFeedback;
#endif
#ifdef MULTIPHASE
double EnergyRadSticky;
#endif
#ifdef FEEDBACK_WIND
double EnergyFeedbackWind;
#endif
}
LocalSysState; /*<! Structure for storing some local statistics about the simulation. */
/* Various structures for communication
*/
extern struct gravdata_in
{
union
{
FLOAT Pos[3];
FLOAT Acc[3];
FLOAT Potential;
}
u;
#if defined(UNEQUALSOFTENINGS) || defined(STELLAR_FLUX)
int Type;
#ifdef ADAPTIVE_GRAVSOFT_FORGAS
FLOAT Soft;
#endif
#endif
#ifdef STELLAR_FLUX
FLOAT EnergyFlux;
#endif
union
{
FLOAT OldAcc;
int Ninteractions;
}
w;
}
*GravDataIn, /*!< holds particle data to be exported to other processors */
*GravDataGet, /*!< holds particle data imported from other processors */
*GravDataResult, /*!< holds the partial results computed for imported particles. Note: We use GravDataResult = GravDataGet, such that the result replaces the imported data */
*GravDataOut; /*!< holds partial results received from other processors. This will overwrite the GravDataIn array */
extern struct gravdata_index
{
int Task;
int Index;
int SortIndex;
}
*GravDataIndexTable; /*!< the particles to be exported are grouped by task-number. This table allows the results to be disentangled again and to be assigned to the correct particle */
extern struct densdata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
#ifdef MULTIPHASE
int Phase;
#endif
int Index;
int Task;
#ifdef ART_CONDUCTIVITY
FLOAT EnergyIntPred;
#endif
}
*DensDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*DensDataGet; /*!< holds imported particle data for SPH density computation */
extern struct densdata_out
{
FLOAT Rho;
FLOAT Div, Rot[3];
FLOAT DhsmlDensity;
FLOAT Ngb;
#ifdef ART_CONDUCTIVITY
FLOAT GradEnergyInt[3];
#endif
#ifdef DENSITY_INDEPENDENT_SPH
FLOAT EgyRho;
FLOAT DhsmlEgyDensity;
#endif
}
*DensDataResult, /*!< stores the locally computed SPH density results for imported particles */
*DensDataPartialResult; /*!< imported partial SPH density results from other processors */
extern struct hydrodata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
#ifdef FEEDBACK
FLOAT EnergySN;
#endif
#ifdef MULTIPHASE
int Phase;
FLOAT Entropy;
int StickyFlag;
#endif
FLOAT Mass;
FLOAT Density;
FLOAT Pressure;
FLOAT F1;
FLOAT DhsmlDensityFactor;
int Timestep;
int Task;
int Index;
#ifdef WITH_ID_IN_HYDRA
int ID;
#endif
#ifdef ART_CONDUCTIVITY
FLOAT NormGradEnergyInt;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
double ArtBulkViscConst;
#endif
#ifdef DENSITY_INDEPENDENT_SPH
FLOAT EgyRho;
FLOAT EntVarPred;
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
FLOAT PressureFeedbackUpdated;
FLOAT F1FeedbackUpdated;
#endif
}
*HydroDataIn, /*!< holds particle data for SPH hydro-force computation to be exported to other processors */
*HydroDataGet; /*!< holds imported particle data for SPH hydro-force computation */
extern struct hydrodata_out
{
FLOAT Acc[3];
FLOAT DtEntropy;
#ifdef FEEDBACK
FLOAT DtEgySpecFeedback;
FLOAT FeedbackAccel[3]; /*!< acceleration due to feedback force */
#endif
FLOAT MaxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
FLOAT VelocityDispersion[VELOCITY_DISPERSION_SIZE];
#endif
#ifdef MULTIPHASE
FLOAT StickyDVel[3]; /*!< differences in velocities induced by sticky collisions */
#endif
#ifdef OUTPUT_CONDUCTIVITY
FLOAT OptVar2;
#endif
#ifdef ART_VISCO_CD
double DmatCD[3][3];
double TmatCD[3][3];
double R_CD;
FLOAT MaxSignalVelCD;
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
FLOAT AccFeedbackUpdated[3];
FLOAT maxSignalVelFeedbackUpdated;
#endif
}
*HydroDataResult, /*!< stores the locally computed SPH hydro results for imported particles */
*HydroDataPartialResult; /*!< imported partial SPH hydro-force results from other processors */
#ifdef MULTIPHASE
extern struct stickydata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Mass;
FLOAT Hsml;
int ID;
int StickyMaxID;
int StickyNgb;
float StickyMaxFs;
int Task;
int Index;
}
*StickyDataIn, /*!< holds particle data for sticky computation to be exported to other processors */
*StickyDataGet; /*!< holds imported particle data for sticky computation */
extern struct stickydata_out
{
int StickyMaxID;
int StickyNgb;
float StickyMaxFs;
FLOAT StickyNewVel[3];
}
*StickyDataResult, /*!< stores the locally computed sticky results for imported particles */
*StickyDataPartialResult; /*!< imported partial sticky results from other processors */
extern struct Sticky_index
{
int Index;
int CellIndex;
int Flag;
}
*StickyIndex;
#endif
#ifdef CHIMIE
extern struct chimiedata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
#ifndef LONGIDS
unsigned int ID; /*!< particle identifier */
#else
unsigned long long ID; /*!< particle identifier */
#endif
FLOAT Hsml;
#ifdef FEEDBACK
FLOAT EnergySN;
#endif
#ifdef MULTIPHASE
int Phase;
FLOAT Entropy;
int StickyFlag;
#endif
FLOAT Density;
FLOAT Volume;
FLOAT Pressure;
FLOAT F1;
FLOAT DhsmlDensityFactor;
int Timestep;
int Task;
int Index;
double TotalEjectedGasMass;
double TotalEjectedEltMass[NELEMENTS];
double TotalEjectedEgySpec;
double NumberOfSNIa;
double NumberOfSNII;
#ifdef CHIMIE_KINETIC_FEEDBACK
FLOAT NgbMass;
#endif
}
*ChimieDataIn, /*!< holds particle data for Chimie computation to be exported to other processors */
*ChimieDataGet; /*!< holds imported particle data for Chimie computation */
extern struct chimiedata_out
{
FLOAT Acc[3];
FLOAT DtEntropy;
#ifdef FEEDBACK
FLOAT DtEgySpecFeedback;
FLOAT FeedbackAccel[3]; /*!< acceleration due to feedback force */
#endif
FLOAT MaxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
FLOAT VelocityDispersion[VELOCITY_DISPERSION_SIZE];
#endif
#ifdef MULTIPHASE
FLOAT StickyDVel[3]; /*!< differences in velocities induced by sticky collisions */
#endif
}
*ChimieDataResult, /*!< stores the locally computed Chimie results for imported particles */
*ChimieDataPartialResult; /*!< imported partial Chimie results from other processors */
extern struct starsdensdata_in
{
FLOAT Pos[3];
FLOAT Hsml;
int Index;
int Task;
}
*StarsDensDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*StarsDensDataGet; /*!< holds imported particle data for SPH density computation */
extern struct starsdensdata_out
{
FLOAT Rho;
FLOAT Volume;
FLOAT DhsmlDensity;
FLOAT Ngb;
#ifdef CHIMIE_KINETIC_FEEDBACK
FLOAT NgbMass;
#endif
}
*StarsDensDataResult, /*!< stores the locally computed SPH density results for imported particles */
*StarsDensDataPartialResult; /*!< imported partial SPH density results from other processors */
#endif /*CHIMIE*/
#ifdef TESSEL
extern struct ghostdata_in
{
FLOAT Pos[3];
FLOAT rSearch;
int Index;
int Task;
}
*GhostDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*GhostDataGet; /*!< holds imported particle data for SPH density computation */
extern struct ghostdata_out
{
FLOAT Value;
}
*GhostDataResult, /*!< stores the locally computed SPH density results for imported particles */
*GhostDataPartialResult; /*!< imported partial SPH density results from other processors */
/* ghost particles */
//extern struct ghost_particle_data
//{
// FLOAT Pos[3]; /*!< particle position at its current time */
// FLOAT Mass; /*!< particle mass */
//}
// *gP;
extern int NumgPart;
#endif /* TESSEL */
#ifdef SYNCHRONIZE_NGB_TIMESTEP
extern struct SynchroinzeNgbTimestepdata_in
{
FLOAT Pos[3];
FLOAT Hsml;
int Ti_step;
int Ti_endstep;
int Index;
int Task;
#ifdef MULTIPHASE
int Phase;
#endif
}
*SynchroinzeNgbTimestepDataIn,
*SynchroinzeNgbTimestepDataGet;
#endif
#ifdef PY_INTERFACE
extern struct denssphdata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
FLOAT Density;
FLOAT DhsmlDensityFactor;
int Index;
int Task;
FLOAT Observable;
}
*DensSphDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*DensSphDataGet; /*!< holds imported particle data for SPH density computation */
extern struct denssphdata_out
{
FLOAT Rho;
FLOAT Div, Rot[3];
FLOAT DhsmlDensity;
FLOAT Ngb;
FLOAT GradObservable[3];
}
*DensSphDataResult, /*!< stores the locally computed SPH density results for imported particles */
*DensSphDataPartialResult; /*!< imported partial SPH density results from other processors */
extern struct sphdata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
FLOAT Density;
FLOAT DhsmlDensityFactor;
FLOAT ObsMoment0;
FLOAT ObsMoment1;
FLOAT Observable;
int Task;
int Index;
}
*SphDataIn, /*!< holds particle data for SPH hydro-force computation to be exported to other processors */
*SphDataGet; /*!< holds imported particle data for SPH hydro-force computation */
extern struct sphdata_out
{
FLOAT ObsMoment0;
FLOAT ObsMoment1;
FLOAT GradObservable[3];
}
*SphDataResult, /*!< stores the locally computed SPH hydro results for imported particles */
*SphDataPartialResult; /*!< imported partial SPH hydro-force results from other processors */
#endif /*PY_INTERFACE*/
#endif
diff --git a/src/begrun.c b/src/begrun.c
index ff47125..f0bc50f 100644
--- a/src/begrun.c
+++ b/src/begrun.c
@@ -1,2207 +1,2247 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include <sys/types.h>
#include <unistd.h>
#include <gsl/gsl_rng.h>
#include "allvars.h"
#include "proto.h"
/*! \file begrun.c
* \brief initial set-up of a simulation run
*
* This file contains various functions to initialize a simulation run. In
* particular, the parameterfile is read in and parsed, the initial
* conditions or restart files are read, and global variables are
* initialized to their proper values.
*/
/*! This function performs the initial set-up of the simulation. First, the
* parameterfile is set, then routines for setting units, reading
* ICs/restart-files are called, auxialiary memory is allocated, etc.
*/
void begrun(void)
{
struct global_data_all_processes all;
#ifdef DETAILED_CPU
double tstart,tend;
tstart = second();
#endif
if(ThisTask == 0)
{
printf("\nThis is Gadget, version `%s'.\n", GADGETVERSION);
printf("\nRunning on %d processors.\n", NTask);
}
read_parameter_file(ParameterFile); /* ... read in parameters for this run */
allocate_commbuffers(); /* ... allocate buffer-memory for particle
exchange during force computation */
set_units();
#if defined(PERIODIC) && (!defined(PMGRID) || defined(FORCETEST))
ewald_init();
#endif
open_outputfiles();
random_generator = gsl_rng_alloc(gsl_rng_ranlxd1);
#ifdef RANDOMSEED_AS_PARAMETER
if(ThisTask == 0)
printf("Using %d as initial random seed\n",All.RandomSeed);
gsl_rng_set(random_generator, All.RandomSeed); /* start-up seed */
#else
if(ThisTask == 0)
printf("Using %d as initial random seed\n",42);
gsl_rng_set(random_generator, 42); /* start-up seed */
#endif
#ifdef PMGRID
long_range_init();
#endif
All.TimeLastRestartFile = CPUThisRun;
#ifdef MULTIPHASE
All.StickyLastCollisionTime = All.TimeBegin;
#endif
+
+#ifdef COSMICTIME
+ if(All.ComovingIntegrationOn)
+ {
+ if (ThisTask==0)
+ printf("Initialize cosmic table\n");
+ init_cosmictime_table();
+ if (ThisTask==0)
+ printf("Initialize cosmic table done.\n");
+ }
+
+ if (ThisTask==0)
+ printf("Initialize full cosmic table\n");
+ init_full_cosmictime_table();
+
+ if (ThisTask==0)
+ printf("Initialize full cosmic table done.\n");
+#endif
+
+
+
+
+
/* other physics initialization */
#ifdef COOLING
if (All.CoolingType==0) /* sutherland */
{
if(ThisTask == 0) printf("Initialize cooling function...\n");
init_cooling(0);
if(ThisTask == 0) printf("Initialize cooling function done.\n");
}
if (All.CoolingType==2) /* cooling with metals */
{
if(ThisTask == 0) printf("Initialize cooling function...\n");
+
+#ifdef COOLING_WIERSMA
+ //InitWiersmaCooling("/home/epfl/revaz/code/gear/PyCool/tables_wiersma/coolingtables/");
+ InitWiersmaCooling(All.CoolingDirectory);
+ //SetRedshiftInterpolationOff();
+#else
init_cooling_with_metals();
+#endif
if(ThisTask == 0) printf("Initialize cooling function done.\n");
+
+
+
}
#endif
#ifdef CHIMIE
int i;
if(ThisTask == 0) printf("Initialize chimie...\n");
init_chimie();
check_chimie();
if(ThisTask == 0)
{
for (i=0;i<get_nelts();i++)
printf("solar mass abundance %s\t= %g\n",get_Element(i),get_SolarMassAbundance(i));
}
if(ThisTask == 0) printf("Initialize chimie done...\n");
#endif
#ifdef COOLING
#ifdef CHIMIE
All.CoolingParameters_FeHSolar = get_SolarMassAbundance(FE); /* for consitency, use the value defined in chimie file */
#else
All.CoolingParameters_FeHSolar = FEH_SOLAR; /* use a default value */
#endif
#endif
#ifdef AB_TURB
init_turb();
#endif
#ifdef ART_VISCO_CD
art_visc_allocate();
#endif
#ifdef CHIMIE_ONE_SN_ONLY
All.ChimieOneSN=0;
#endif
if(RestartFlag == 0 || RestartFlag == 2)
{
set_random_numbers();
init(); /* ... read in initial model */
init_local_sys_state();
}
else
{
all = All; /* save global variables. (will be read from restart file) */
restart(RestartFlag); /* ... read restart file. Note: This also resets
all variables in the struct `All'.
However, during the run, some variables in the parameter
file are allowed to be changed, if desired. These need to
copied in the way below.
Note: All.PartAllocFactor is treated in restart() separately.
*/
/* yr
if we want a parameter to be taken as the one written in the parameter file,
we have to save it below,
instead, the value of the restart file will be taken.
This is usefull, for example, if stop a run and want it to be restarted with
different parameters.
*/
All.MinSizeTimestep = all.MinSizeTimestep;
All.MaxSizeTimestep = all.MaxSizeTimestep;
All.BufferSize = all.BufferSize;
All.BunchSizeForce = all.BunchSizeForce;
All.BunchSizeDensity = all.BunchSizeDensity;
All.BunchSizeHydro = all.BunchSizeHydro;
All.BunchSizeDomain = all.BunchSizeDomain;
#ifdef MULTIPHASE
All.BunchSizeSticky = all.BunchSizeSticky;
#endif
#ifdef CHIMIE
All.BunchSizeChimie = all.BunchSizeChimie;
#endif
All.TimeLimitCPU = all.TimeLimitCPU;
All.ResubmitOn = all.ResubmitOn;
All.TimeBetSnapshot = all.TimeBetSnapshot;
All.TimeBetStatistics = all.TimeBetStatistics;
All.CpuTimeBetRestartFile = all.CpuTimeBetRestartFile;
All.ErrTolIntAccuracy = all.ErrTolIntAccuracy;
All.MaxRMSDisplacementFac = all.MaxRMSDisplacementFac;
All.ErrTolForceAcc = all.ErrTolForceAcc;
All.TypeOfTimestepCriterion = all.TypeOfTimestepCriterion;
All.TypeOfOpeningCriterion = all.TypeOfOpeningCriterion;
All.NumFilesWrittenInParallel = all.NumFilesWrittenInParallel;
All.TreeDomainUpdateFrequency = all.TreeDomainUpdateFrequency;
All.SnapFormat = all.SnapFormat;
All.NumFilesPerSnapshot = all.NumFilesPerSnapshot;
All.MaxNumNgbDeviation = all.MaxNumNgbDeviation;
All.ArtBulkViscConst = all.ArtBulkViscConst;
#ifdef ART_CONDUCTIVITY
All.ArtCondConst = all.ArtCondConst;
All.ArtCondThreshold = all.ArtCondThreshold;
#endif
All.OutputListOn = all.OutputListOn;
All.CourantFac = all.CourantFac;
All.OutputListLength = all.OutputListLength;
memcpy(All.OutputListTimes, all.OutputListTimes, sizeof(double) * All.OutputListLength);
#ifdef RANDOMSEED_AS_PARAMETER
All.RandomSeed = all.RandomSeed;
#endif
#ifdef MULTIPHASE
All.CriticalTemperature = all.CriticalTemperature;
All.CriticalNonCollisionalTemperature = all.CriticalNonCollisionalTemperature;
All.StickyUseGridForCollisions = all.StickyUseGridForCollisions;
All.StickyTime = all.StickyTime;
All.StickyCollisionTime = all.StickyCollisionTime;
All.StickyIdleTime = all.StickyIdleTime;
All.StickyMinVelocity = all.StickyMinVelocity;
All.StickyMaxVelocity = all.StickyMaxVelocity;
All.StickyLambda = all.StickyLambda;
All.StickyDensity = all.StickyDensity;
All.StickyDensityPower = all.StickyDensityPower;
All.StickyRsphFact = all.StickyRsphFact;
All.StickyBetaR = all.StickyBetaR;
All.StickyBetaT = all.StickyBetaT;
All.StickyGridNx = all.StickyGridNx;
All.StickyGridNy = all.StickyGridNy;
All.StickyGridNz = all.StickyGridNz;
All.StickyGridXmin = all.StickyGridXmin;
All.StickyGridXmax = all.StickyGridXmax;
All.StickyGridYmin = all.StickyGridYmin;
All.StickyGridYmax = all.StickyGridYmax;
All.StickyGridZmin = all.StickyGridZmin;
All.StickyGridZmax = all.StickyGridZmax;
#ifdef COLDGAS_CYCLE
All.ColdGasCycleTransitionTime = all.ColdGasCycleTransitionTime;
All.ColdGasCycleTransitionParameter = all.ColdGasCycleTransitionParameter;
#endif
#endif
#ifdef OUTERPOTENTIAL
#ifdef NFW
All.HaloConcentration = all.HaloConcentration;
All.HaloMass = all.HaloMass;
All.GasMassFraction = all.GasMassFraction;
#endif
#ifdef PLUMMER
All.PlummerMass = all.PlummerMass;
All.PlummerSoftenning = all.PlummerSoftenning;
#endif
#ifdef MIYAMOTONAGAI
All.MiyamotoNagaiMass = all.MiyamotoNagaiMass;
All.MiyamotoNagaiHr = all.MiyamotoNagaiHr;
All.MiyamotoNagaiHz = all.MiyamotoNagaiHz;
#endif
#ifdef PISOTHERM
All.Rho0 = all.Rho0;
All.Rc = all.Rc;
All.GasMassFraction = all.GasMassFraction;
#endif
#ifdef CORIOLIS
All.CoriolisOmegaX0 = all.CoriolisOmegaX0;
All.CoriolisOmegaY0 = all.CoriolisOmegaY0;
All.CoriolisOmegaZ0 = all.CoriolisOmegaZ0;
#endif
#endif
#ifdef SFR
//All.StarFormationNStarsFromGas = all.StarFormationNStarsFromGas; /* do not change the param. if restarting, else, StarFormationStarMass will be wrong */
//All.StarFormationStarMass = all.StarFormationStarMass;
All.StarFormationMgMsFraction = all.StarFormationMgMsFraction;
All.StarFormationType = all.StarFormationType;
All.StarFormationCstar = all.StarFormationCstar;
All.StarFormationTime = all.StarFormationTime;
All.StarFormationDensity = all.StarFormationDensity;
All.StarFormationTemperature = all.StarFormationTemperature;
All.ThresholdDensity = all.ThresholdDensity;
#endif
#ifdef COOLING
All.CoolingType = all.CoolingType;
All.CutofCoolingTemperature = all.CutofCoolingTemperature;
All.InitGasMetallicity = all.InitGasMetallicity;
#endif
#ifdef CHIMIE
All.ChimieSupernovaEnergy = all.ChimieSupernovaEnergy; /* do not use this value, use the restartfile one */
All.ChimieKineticFeedbackFraction = all.ChimieKineticFeedbackFraction;
All.ChimieWindSpeed = all.ChimieWindSpeed;
All.ChimieWindTime = all.ChimieWindTime;
All.ChimieSNIaThermalTime = all.ChimieSNIaThermalTime;
All.ChimieSNIIThermalTime = all.ChimieSNIIThermalTime;
All.ChimieMaxSizeTimestep = all.ChimieMaxSizeTimestep;
#endif
#if defined (HEATING_PE)
All.HeatingPeElectronFraction = all.HeatingPeElectronFraction;
#endif
#if defined (HEATING_PE) || defined (STELLAR_FLUX) || defined (EXTERNAL_FLUX)
All.HeatingPeSolarEnergyDensity = all.HeatingPeSolarEnergyDensity;
#endif
#if defined (HEATING_PE) || defined (STELLAR_FLUX)
All.HeatingPeLMRatioGas = all.HeatingPeLMRatioGas;
All.HeatingPeLMRatioHalo = all.HeatingPeLMRatioHalo;
All.HeatingPeLMRatioDisk = all.HeatingPeLMRatioDisk;
All.HeatingPeLMRatioBulge = all.HeatingPeLMRatioBulge;
All.HeatingPeLMRatioStars = all.HeatingPeLMRatioStars;
All.HeatingPeLMRatioBndry = all.HeatingPeLMRatioBndry;
All.HeatingPeLMRatio[0] = all.HeatingPeLMRatio[0];
All.HeatingPeLMRatio[1] = all.HeatingPeLMRatio[1];
All.HeatingPeLMRatio[2] = all.HeatingPeLMRatio[2];
All.HeatingPeLMRatio[3] = all.HeatingPeLMRatio[3];
All.HeatingPeLMRatio[4] = all.HeatingPeLMRatio[4];
All.HeatingPeLMRatio[5] = all.HeatingPeLMRatio[5];
#endif
#ifdef EXTERNAL_FLUX
All.HeatingExternalFLuxEnergyDensity = all.HeatingExternalFLuxEnergyDensity;
#endif
#ifdef FEEDBACK
All.SupernovaEgySpecPerMassUnit = all.SupernovaEgySpecPerMassUnit;
All.SupernovaFractionInEgyKin = all.SupernovaFractionInEgyKin;
All.SupernovaTime = all.SupernovaTime;
#endif
#ifdef FEEDBACK_WIND
All.SupernovaWindEgySpecPerMassUnit = all.SupernovaWindEgySpecPerMassUnit;
All.SupernovaWindFractionInEgyKin = all.SupernovaWindFractionInEgyKin;
All.SupernovaWindParameter = all.SupernovaWindParameter;
All.SupernovaWindIntAccuracy = all.SupernovaWindIntAccuracy;
#endif
#ifdef BUBBLES
All.BubblesDelta = all.BubblesDelta;
All.BubblesAlpha = all.BubblesAlpha;
All.BubblesRadiusFactor = all.BubblesRadiusFactor;
All.BubblesR = all.BubblesR;
#endif
#ifdef AGN_HEATING
All.AGNHeatingPower = all.AGNHeatingPower;
All.AGNHeatingRmax = all.AGNHeatingRmax;
#endif
#ifdef AGN_ACCRETION
All.TimeBetAccretion = all.TimeBetAccretion;
All.AccretionRadius = all.AccretionRadius;
All.AGNFactor = all.AGNFactor;
All.MinMTotInRa = all.MinMTotInRa;
#endif
#ifdef BONDI_ACCRETION
All.BondiEfficiency = all.BondiEfficiency;
All.BondiBlackHoleMass = all.BondiBlackHoleMass;
All.BondiHsmlFactor = all.BondiHsmlFactor;
All.BondiPower = all.BondiPower;
All.BondiTimeBet = all.BondiTimeBet;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
All.ArtBulkViscConstMin = all.ArtBulkViscConstMin;
All.ArtBulkViscConstMax = all.ArtBulkViscConstMax;
All.ArtBulkViscConstL = all.ArtBulkViscConstL;
#endif
#ifdef AB_TURB
All.StDecay = all.StDecay;
All.StEnergy = all.StEnergy;
All.StDtFreq = all.StDtFreq;
All.StKmin = all.StKmin;
All.StKmax = all.StKmax;
All.StSolWeight = all.StSolWeight;
All.StAmplFac = all.StAmplFac;
All.StSpectForm = all.StSpectForm;
All.StSeed = all.StSeed;
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
All.NgbFactorTimestep = all.NgbFactorTimestep;
#endif
strcpy(All.ResubmitCommand, all.ResubmitCommand);
strcpy(All.OutputListFilename, all.OutputListFilename);
strcpy(All.OutputDir, all.OutputDir);
strcpy(All.RestartFile, all.RestartFile);
strcpy(All.EnergyFile, all.EnergyFile);
#ifdef SYSTEMSTATISTICS
strcpy(All.SystemFile, all.SystemFile);
#endif
strcpy(All.InfoFile, all.InfoFile);
strcpy(All.CpuFile, all.CpuFile);
strcpy(All.LogFile, all.LogFile);
#ifdef SFR
strcpy(All.SfrFile, all.SfrFile);
#endif
#ifdef CHIMIE
strcpy(All.ChimieFile, all.ChimieFile);
#endif
#ifdef MULTIPHASE
strcpy(All.PhaseFile, all.PhaseFile);
strcpy(All.StickyFile, all.StickyFile);
#endif
#ifdef AGN_ACCRETION
strcpy(All.AccretionFile, all.AccretionFile);
#endif
#ifdef BONDI_ACCRETION
strcpy(All.BondiFile, all.BondiFile);
#endif
#ifdef BUBBLES
strcpy(All.BubbleFile, all.BubbleFile);
#endif
strcpy(All.TimingsFile, all.TimingsFile);
strcpy(All.SnapshotFileBase, all.SnapshotFileBase);
if(All.TimeMax != all.TimeMax)
readjust_timebase(All.TimeMax, all.TimeMax);
}
#ifdef PMGRID
long_range_init_regionsize();
#endif
if(All.ComovingIntegrationOn)
init_drift_table();
#ifdef COSMICTIME
if(All.ComovingIntegrationOn)
{
if (ThisTask==0)
printf("Initialize cosmic table\n");
init_cosmictime_table();
if (ThisTask==0)
printf("Initialize cosmic table done.\n");
}
if (ThisTask==0)
printf("Initialize full cosmic table\n");
init_full_cosmictime_table();
if (ThisTask==0)
printf("Initialize full cosmic table done.\n");
#endif
if(RestartFlag == 2)
All.Ti_nextoutput = find_next_outputtime(All.Ti_Current + 1);
else
All.Ti_nextoutput = find_next_outputtime(All.Ti_Current);
All.TimeLastRestartFile = CPUThisRun;
/* other initialization for special behavior */
#ifdef SFR
if (ThisTask == 0)
printf("StarFormationStarMass = %g\n\n",All.StarFormationStarMass);
#endif
#ifdef OUTERPOTENTIAL
if(ThisTask == 0) printf("Initialize outer potential...\n");
init_outer_potential();
if(ThisTask == 0) printf("Initialize outer potential done.\n");
#endif
#ifdef BUBBLES
if(ThisTask == 0) printf("Initialize bubble function...\n");
init_bubble();
if(ThisTask == 0) printf("Initialize bubble function done.\n");
#endif
#ifdef MULTIPHASE
if(ThisTask == 0) printf("Initialize sticky...\n");
header.critical_energy_spec = All.CriticalEgySpec;
init_sticky();
if(ThisTask == 0) printf("Initialize sticky done.\n");
#endif
#ifdef PNBODY
if(ThisTask == 0) printf("Initialize pnbody...\n");
init_pnbody();
if(ThisTask == 0) printf("Initialize pnbody done.\n");
#endif
#ifdef DETAILED_CPU
tend = second();
All.CPU_Begrun += timediff(tstart, tend);
All.CPU_Begrun -= All.CPU_Leapfrog;
All.CPU_Begrun -= All.CPU_Domain;
All.CPU_Begrun -= All.CPU_Snapshot;
#endif
}
/*! Computes conversion factors between internal code units and the
* cgs-system.
*/
void set_units(void)
{
double meanweight;
All.UnitTime_in_s = All.UnitLength_in_cm / All.UnitVelocity_in_cm_per_s;
All.UnitTime_in_Megayears = All.UnitTime_in_s / SEC_PER_MEGAYEAR;
if(All.GravityConstantInternal == 0)
All.G = GRAVITY / pow(All.UnitLength_in_cm, 3) * All.UnitMass_in_g * pow(All.UnitTime_in_s, 2);
else
All.G = All.GravityConstantInternal;
All.UnitDensity_in_cgs = All.UnitMass_in_g / pow(All.UnitLength_in_cm, 3);
All.UnitPressure_in_cgs = All.UnitMass_in_g / All.UnitLength_in_cm / pow(All.UnitTime_in_s, 2);
All.UnitCoolingRate_in_cgs = All.UnitPressure_in_cgs / All.UnitTime_in_s;
All.UnitEnergy_in_cgs = All.UnitMass_in_g * pow(All.UnitLength_in_cm, 2) / pow(All.UnitTime_in_s, 2);
/* convert some physical input parameters to internal units */
All.Hubble = HUBBLE * All.UnitTime_in_s;
meanweight = 4.0 / (1 + 3 * HYDROGEN_MASSFRAC); /* note: we assume neutral gas here */
/*meanweight = 4 / (8 - 5 * (1 - HYDROGEN_MASSFRAC));*/ /* note: we assume FULL ionized gas here */
All.Boltzmann = BOLTZMANN /All.UnitEnergy_in_cgs;
All.ProtonMass = PROTONMASS/All.UnitMass_in_g;
All.mumh = All.ProtonMass*meanweight;
#ifdef MULTIPHASE
All.StickyTime *= 3.1536e+13*All.HubbleParam/All.UnitTime_in_s; /* Myr to code unit */
All.StickyCollisionTime *= 3.1536e+13*All.HubbleParam/All.UnitTime_in_s; /* Myr to code unit */
All.StickyIdleTime *= 3.1536e+13*All.HubbleParam/All.UnitTime_in_s; /* Myr to code unit */
All.StickyMinVelocity *=1e5/All.UnitVelocity_in_cm_per_s; /* km/s to code unit */
All.StickyMaxVelocity *=1e5/All.UnitVelocity_in_cm_per_s; /* km/s to code unit */
if (All.StickyTime==0)
All.StickyLambda = 0;
else
All.StickyLambda = 1./All.StickyTime;
All.CriticalEgySpec = 1./GAMMA_MINUS1 * All.Boltzmann/All.mumh * All.CriticalTemperature;
All.CriticalNonCollisionalEgySpec = 1./GAMMA_MINUS1 * All.Boltzmann/All.mumh * All.CriticalNonCollisionalTemperature;
All.StickyDensity = All.StickyDensity/All.UnitDensity_in_cgs/(All.HubbleParam*All.HubbleParam);
//if((All.StickyLambda > 0.1/All.MaxSizeTimestep)&&(ThisTask==0))
// {
// printf("\nStickyLambda is to big and you may experiment numerical problems !\n");
// printf("You should either decrease StickyLambda or decrease MaxSizeTimestep.\n");
// printf("(StickyLambda=%g,maxStickyLambda=%g)\n",All.StickyLambda,0.01/All.MaxSizeTimestep);
// printf("try \n");
// printf("StickyLambda <= %g or MaxSizeTimestep <= %g \n",(0.01/All.MaxSizeTimestep),(0.01/All.StickyLambda));
// fflush(stdout);
// endrun(121212);
// }
#ifdef COLDGAS_CYCLE
All.ColdGasCycleTransitionTime *= 3.1536e+13*All.HubbleParam/All.UnitTime_in_s; /* Myr to code unit */
#endif
#endif
#ifdef SFR
All.StarFormationTime = All.StarFormationTime/All.UnitTime_in_s * 3.1536e16*All.HubbleParam;
All.StarFormationDensity = All.StarFormationDensity/All.UnitDensity_in_cgs/(All.HubbleParam*All.HubbleParam);
#endif
#if defined (HEATING_PE) || defined (STELLAR_FLUX)
All.HeatingPeLMRatio[0] = All.HeatingPeLMRatioGas;
All.HeatingPeLMRatio[1] = All.HeatingPeLMRatioHalo;
All.HeatingPeLMRatio[2] = All.HeatingPeLMRatioDisk;
All.HeatingPeLMRatio[3] = All.HeatingPeLMRatioBulge;
All.HeatingPeLMRatio[4] = All.HeatingPeLMRatioStars;
All.HeatingPeLMRatio[5] = All.HeatingPeLMRatioBndry;
int k;
for (k=0;k<6;k++)
{
All.HeatingPeLMRatio[k] *= 1./SOLAR_MASS; /* erg/s/Msol to erg/s/g */
All.HeatingPeLMRatio[k] *= All.UnitMass_in_g*All.UnitTime_in_s / All.UnitEnergy_in_cgs / All.HubbleParam; /* erg/s/g to code unit */
}
#endif
#ifdef FEEDBACK
All.SupernovaEgySpecPerMassUnit *= All.UnitMass_in_g / All.UnitEnergy_in_cgs;
All.SupernovaTime *= 3.1536e+13*All.HubbleParam/All.UnitTime_in_s; /* Myr to code unit */
#endif
#ifdef FEEDBACK_WIND
All.SupernovaWindEgySpecPerMassUnit *= All.UnitMass_in_g / All.UnitEnergy_in_cgs;
All.SupernovaWindSpeed = sqrt( 2*All.SupernovaWindFractionInEgyKin * All.SupernovaWindEgySpecPerMassUnit / All.SupernovaWindParameter );
#endif
#if defined (AGN_ACCRETION) || defined (BONDI_ACCRETION)
All.LightSpeed = C/All.UnitVelocity_in_cm_per_s;
#endif
#ifdef CHIMIE
All.ChimieSupernovaEnergy = All.ChimieSupernovaEnergy/All.UnitMass_in_g/pow(All.UnitVelocity_in_cm_per_s,2)*All.HubbleParam;
All.ChimieWindSpeed = All.ChimieWindSpeed*1e5/All.UnitVelocity_in_cm_per_s;
All.ChimieWindTime = All.ChimieWindTime*3.1536e13/All.UnitTime_in_s*All.HubbleParam;
All.ChimieSNIaThermalTime = All.ChimieSNIaThermalTime*3.1536e13/All.UnitTime_in_s*All.HubbleParam;
All.ChimieSNIIThermalTime = All.ChimieSNIIThermalTime*3.1536e13/All.UnitTime_in_s*All.HubbleParam;
All.ChimieMaxSizeTimestep = All.ChimieMaxSizeTimestep*3.1536e13/All.UnitTime_in_s*All.HubbleParam;
#endif
if(ThisTask == 0)
{
printf("\nHubble (internal units) = %g\n", All.Hubble);
printf("G (internal units) = %g\n", All.G);
printf("Boltzmann = %g \n", All.Boltzmann);
printf("ProtonMass = %g \n", All.ProtonMass);
printf("mumh = %g \n", All.mumh);
printf("UnitMass_in_g = %g \n", All.UnitMass_in_g);
printf("UnitTime_in_s = %g \n", All.UnitTime_in_s);
printf("UnitVelocity_in_cm_per_s = %g \n", All.UnitVelocity_in_cm_per_s);
printf("UnitDensity_in_cgs = %g \n", All.UnitDensity_in_cgs);
printf("UnitEnergy_in_cgs = %g \n", All.UnitEnergy_in_cgs);
printf("\n");
#ifdef SFR
printf("StarFormationDensity (internal units) = %g \n", All.StarFormationDensity);
printf("StarFormationTime (internal units) = %g \n", All.StarFormationTime);
#endif
#ifdef FEEDBACK
printf("SupernovaTime (internal units) = %g \n", All.SupernovaTime);
printf("SupernovaEgySpecPerMassUnit (internal units) = %g \n", All.SupernovaEgySpecPerMassUnit);
#endif
#ifdef FEEDBACK_WIND
printf("SupernovaWindEgySpecPerMassUnit (internal units) = %g \n", All.SupernovaWindEgySpecPerMassUnit);
printf("SupernovaWindSpeed (internal units) = %g \n", All.SupernovaWindSpeed);
#endif
#ifdef MULTIPHASE
printf("CriticalEgySpec (internal units) = %g \n", All.CriticalEgySpec);
printf("CriticalNonCollisionalEgySpec (internal units) = %g \n", All.CriticalNonCollisionalEgySpec);
printf("StickyCollisionTime (internal units) = %g \n", All.StickyCollisionTime);
printf("StickyIdleTime (internal units) = %g \n", All.StickyIdleTime);
printf("StickyDensity (internal units) = %g \n", All.StickyDensity);
printf("StickyTime (internal units) = %g \n", All.StickyTime);
printf("StickyMinVelocity (internal units) = %g \n", All.StickyMinVelocity);
printf("StickyMaxVelocity (internal units) = %g \n", All.StickyMaxVelocity);
#endif
#ifdef COLDGAS_CYCLE
printf("ColdGasCycleTransitionTime (internal units) = %g \n", All.ColdGasCycleTransitionTime);
#endif
#ifdef CHIMIE
printf("ChimieSupernovaEnergy (internal units) = %g \n", All.ChimieSupernovaEnergy);
printf("ChimieWindSpeed (internal units) = %g \n", All.ChimieWindSpeed);
printf("ChimieWindTime (internal units) = %g \n", All.ChimieWindTime);
printf("ChimieSNIaThermalTime (internal units) = %g \n", All.ChimieSNIaThermalTime);
printf("ChimieSNIIThermalTime (internal units) = %g \n", All.ChimieSNIIThermalTime);
printf("ChimieMaxSizeTimestep (internal units) = %g \n", All.ChimieMaxSizeTimestep);
#endif
printf("\n");
}
#ifdef ISOTHERM_EQS
All.MinEgySpec = 0;
#else
All.MinEgySpec = 1 / meanweight * (1.0 / GAMMA_MINUS1) * (BOLTZMANN / PROTONMASS) * All.MinGasTemp;
All.MinEgySpec *= All.UnitMass_in_g / All.UnitEnergy_in_cgs;
#endif
}
/*! Initialize local system state variables
*/
void init_local_sys_state(void)
{
#ifdef SFR
LocalSysState.StarEnergyInt = 0.;
#ifdef COOLING
LocalSysState.RadiatedEnergy = 0.;
#endif
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
LocalSysState.EnergyThermalFeedback = 0.;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
LocalSysState.EnergyKineticFeedback = 0.;
#endif
#ifdef MULTIPHASE
LocalSysState.EnergyRadSticky = 0.;
#endif
#ifdef FEEDBACK_WIND
LocalSysState.EnergyFeedbackWind = 0.;
#endif
}
/*! This function opens various log-files that report on the status and
* performance of the simulstion. On restart from restart-files
* (start-option 1), the code will append to these files.
*/
void open_outputfiles(void)
{
char mode[2], buf[200];
#ifdef ADVANCEDSTATISTICS
int i=0;
#endif
if(ThisTask != 0) /* only the root processor writes to the log files */
return;
if(RestartFlag == 0)
strcpy(mode, "w");
else
strcpy(mode, "a");
sprintf(buf, "%s%s", All.OutputDir, All.CpuFile);
if(!(FdCPU = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
#ifdef ADVANCEDCPUSTATISTICS
else
{
if(RestartFlag == 0) /* write the header */
{
fprintf(FdCPU,"# Step ");
fprintf(FdCPU,"Time ");
fprintf(FdCPU,"nCPUs ");
fprintf(FdCPU,"CPU_Total ");
#ifdef DETAILED_CPU
fprintf(FdCPU,"CPU_Leapfrog ");
fprintf(FdCPU,"CPU_Physics ");
fprintf(FdCPU,"CPU_Residual ");
fprintf(FdCPU,"CPU_Accel ");
fprintf(FdCPU,"CPU_Begrun ");
#endif
fprintf(FdCPU,"CPU_Gravity ");
fprintf(FdCPU,"CPU_Hydro ");
#ifdef COOLING
fprintf(FdCPU,"CPU_Cooling ");
#endif
#ifdef SFR
fprintf(FdCPU,"CPU_StarFormation ");
#endif
#ifdef CHIMIE
fprintf(FdCPU,"CPU_Chimie ");
#endif
#ifdef MULTIPHASE
fprintf(FdCPU,"CPU_Sticky ");
#endif
fprintf(FdCPU,"CPU_Domain ");
fprintf(FdCPU,"CPU_Potential ");
fprintf(FdCPU,"CPU_Predict ");
fprintf(FdCPU,"CPU_TimeLine ");
fprintf(FdCPU,"CPU_Snapshot ");
fprintf(FdCPU,"CPU_TreeWalk ");
fprintf(FdCPU,"CPU_TreeConstruction ");
fprintf(FdCPU,"CPU_CommSum ");
fprintf(FdCPU,"CPU_Imbalance ");
fprintf(FdCPU,"CPU_HydCompWalk ");
fprintf(FdCPU,"CPU_HydCommSumm ");
fprintf(FdCPU,"CPU_HydImbalance ");
fprintf(FdCPU,"CPU_EnsureNgb ");
fprintf(FdCPU,"CPU_PM ");
fprintf(FdCPU,"CPU_Peano ");
#ifdef DETAILED_CPU_DOMAIN
fprintf(FdCPU,"CPU_Domain_findExtend ");
fprintf(FdCPU,"CPU_Domain_determineTopTree ");
fprintf(FdCPU,"CPU_Domain_sumCost ");
fprintf(FdCPU,"CPU_Domain_findSplit ");
fprintf(FdCPU,"CPU_Domain_shiftSplit ");
fprintf(FdCPU,"CPU_Domain_countToGo ");
fprintf(FdCPU,"CPU_Domain_exchange ");
#endif
#ifdef DETAILED_CPU_GRAVITY
fprintf(FdCPU,"CPU_Gravity_TreeWalk1 ");
fprintf(FdCPU,"CPU_Gravity_TreeWalk2 ");
fprintf(FdCPU,"CPU_Gravity_CommSum1 ");
fprintf(FdCPU,"CPU_Gravity_CommSum2 ");
fprintf(FdCPU,"CPU_Gravity_Imbalance1 ");
fprintf(FdCPU,"CPU_Gravity_Imbalance2 ");
#endif
/* return */
fprintf(FdCPU,"\n");
fflush(FdCPU);
}
}
#endif
sprintf(buf, "%s%s", All.OutputDir, All.InfoFile);
if(!(FdInfo = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
sprintf(buf, "%s%s", All.OutputDir, All.LogFile);
if(!(FdLog = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
sprintf(buf, "%s%s", All.OutputDir, All.EnergyFile);
if(!(FdEnergy = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
#ifdef ADVANCEDSTATISTICS
else
{
if(RestartFlag == 0) /* write the header */
{
fprintf(FdEnergy,"# Time EnergyInt EnergyPot EnergyKin ");
#ifdef COOLING
fprintf(FdEnergy,"EnergyRadSph ");
#endif
#ifdef AGN_HEATING
fprintf(FdEnergy,"EnergyAGNHeat ");
#endif
#ifdef MULTIPHASE
fprintf(FdEnergy,"EnergyRadSticky ");
#endif
#ifdef FEEDBACK_WIND
fprintf(FdEnergy,"EnergyFeedbackWind ");
#endif
#ifdef BUBBLES
fprintf(FdEnergy,"EnergyBubbles ");
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
fprintf(FdEnergy,"EnergyThermalFeedback ");
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
fprintf(FdEnergy,"EnergyKineticFeedback ");
#endif
for (i=0;i<6;i++)
{
fprintf(FdEnergy,"EnergyIntComp%d EnergyPotComp%d EnergyKinComp%d ",i+1,i+1,i+1);
#ifdef COOLING
fprintf(FdEnergy,"EnergyRadSphComp%d ",i+1);
#endif
#ifdef MULTIPHASE
fprintf(FdEnergy,"EnergyRadStickyComp%d ",i+1);
#endif
#ifdef FEEDBACK_WIND
fprintf(FdEnergy,"EnergyFeedbackWindComp%d ",i+1);
#endif
#ifdef BUBBLES
fprintf(FdEnergy,"EnergyBubblesComp%d ",i+1);
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
fprintf(FdEnergy,"EnergyThermalFeedbackComp%d ",i+1);
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
fprintf(FdEnergy,"EnergyKineticFeedbackComp%d ",i+1);
#endif
}
for (i=0;i<6;i++)
fprintf(FdEnergy,"MassComp%d ",i+1);
/* return */
fprintf(FdEnergy,"\n");
fflush(FdEnergy);
}
}
#endif
#ifdef SYSTEMSTATISTICS
sprintf(buf, "%s%s", All.OutputDir, All.SystemFile);
if(!(FdSystem = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
#endif
sprintf(buf, "%s%s", All.OutputDir, All.TimingsFile);
if(!(FdTimings = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
#ifdef FORCETEST
if(RestartFlag == 0)
{
sprintf(buf, "%s%s", All.OutputDir, "forcetest.txt");
if(!(FdForceTest = fopen(buf, "w")))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
fclose(FdForceTest);
}
#endif
#ifdef SFR
sprintf(buf, "%s%s", All.OutputDir, All.SfrFile);
if(!(FdSfr = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
#endif
#ifdef CHIMIE
sprintf(buf, "%s%s", All.OutputDir, All.ChimieFile);
if(!(FdChimie = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
#endif
#ifdef MULTIPHASE
sprintf(buf, "%s%s", All.OutputDir, All.PhaseFile);
if(!(FdPhase = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
sprintf(buf, "%s%s", All.OutputDir, All.StickyFile);
if(!(FdSticky = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
#endif
#ifdef AGN_ACCRETION
sprintf(buf, "%s%s", All.OutputDir, All.AccretionFile);
if(!(FdAccretion = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
#endif
#ifdef BONDI_ACCRETION
sprintf(buf, "%s%s", All.OutputDir, All.BondiFile);
if(!(FdBondi = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
#endif
#ifdef BUBBLES
sprintf(buf, "%s%s", All.OutputDir, All.BubbleFile);
if(!(FdBubble = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
#endif
#ifdef GAS_ACCRETION
sprintf(buf, "%s%s", All.OutputDir, All.GasAccretionFile);
if(!(FdGasAccretion = fopen(buf, mode)))
{
printf("error in opening file '%s'\n", buf);
endrun(1);
}
#endif
}
/*! This function closes the global log-files.
*/
void close_outputfiles(void)
{
if(ThisTask != 0) /* only the root processor writes to the log files */
return;
fclose(FdCPU);
fclose(FdInfo);
fclose(FdLog);
fclose(FdEnergy);
#ifdef SYSTEMSTATISTICS
fclose(FdSystem);
#endif
fclose(FdTimings);
#ifdef FORCETEST
fclose(FdForceTest);
#endif
#ifdef SFR
fclose(FdSfr);
#endif
#ifdef MULTIPHASE
fclose(FdPhase);
fclose(FdSticky);
#endif
#ifdef AGN_ACCRETION
fclose(FdAccretion);
#endif
#ifdef BONDI_ACCRETION
fclose(FdBondi);
#endif
#ifdef BUBBLES
fclose(FdBubble);
#endif
#ifdef GAS_ACCRETION
fclose(FdGasAccretion);
#endif
}
/*! This function parses the parameterfile in a simple way. Each paramater
* is defined by a keyword (`tag'), and can be either of type double, int,
* or character string. The routine makes sure that each parameter
* appears exactly once in the parameterfile, otherwise error messages are
* produced that complain about the missing parameters.
*/
void read_parameter_file(char *fname)
{
#define DOUBLE 1
#define STRING 2
#define INT 3
#define MAXTAGS 300
FILE *fd, *fdout;
char buf[200], buf1[200], buf2[200], buf3[400];
int i, j, nt;
int id[MAXTAGS];
void *addr[MAXTAGS];
char tag[MAXTAGS][50];
int errorFlag = 0;
if(sizeof(long long) != 8)
{
if(ThisTask == 0)
printf("\nType `long long' is not 64 bit on this platform. Stopping.\n\n");
endrun(0);
}
if(sizeof(int) != 4)
{
if(ThisTask == 0)
printf("\nType `int' is not 32 bit on this platform. Stopping.\n\n");
endrun(0);
}
if(sizeof(float) != 4)
{
if(ThisTask == 0)
printf("\nType `float' is not 32 bit on this platform. Stopping.\n\n");
endrun(0);
}
if(sizeof(double) != 8)
{
if(ThisTask == 0)
printf("\nType `double' is not 64 bit on this platform. Stopping.\n\n");
endrun(0);
}
if(ThisTask == 0) /* read parameter file on process 0 */
{
nt = 0;
strcpy(tag[nt], "InitCondFile");
addr[nt] = All.InitCondFile;
id[nt++] = STRING;
strcpy(tag[nt], "OutputDir");
addr[nt] = All.OutputDir;
id[nt++] = STRING;
strcpy(tag[nt], "SnapshotFileBase");
addr[nt] = All.SnapshotFileBase;
id[nt++] = STRING;
strcpy(tag[nt], "EnergyFile");
addr[nt] = All.EnergyFile;
id[nt++] = STRING;
#ifdef SYSTEMSTATISTICS
strcpy(tag[nt], "SystemFile");
addr[nt] = All.SystemFile;
id[nt++] = STRING;
#endif
strcpy(tag[nt], "CpuFile");
addr[nt] = All.CpuFile;
id[nt++] = STRING;
#ifdef SFR
strcpy(tag[nt], "SfrFile");
addr[nt] = All.SfrFile;
id[nt++] = STRING;
#endif
#ifdef CHIMIE
strcpy(tag[nt], "ChimieFile");
addr[nt] = All.ChimieFile;
id[nt++] = STRING;
#endif
#ifdef MULTIPHASE
strcpy(tag[nt], "PhaseFile");
addr[nt] = All.PhaseFile;
id[nt++] = STRING;
strcpy(tag[nt], "StickyFile");
addr[nt] = All.StickyFile;
id[nt++] = STRING;
#endif
#ifdef AGN_ACCRETION
strcpy(tag[nt], "AccretionFile");
addr[nt] = All.AccretionFile;
id[nt++] = STRING;
#endif
#ifdef BONDI_ACCRETION
strcpy(tag[nt], "BondiFile");
addr[nt] = All.BondiFile;
id[nt++] = STRING;
#endif
#ifdef BUBBLES
strcpy(tag[nt], "BubbleFile");
addr[nt] = All.BubbleFile;
id[nt++] = STRING;
#endif
#ifdef GAS_ACCRETION
strcpy(tag[nt], "GasAccretionFile");
addr[nt] = All.GasAccretionFile;
id[nt++] = STRING;
#endif
strcpy(tag[nt], "InfoFile");
addr[nt] = All.InfoFile;
id[nt++] = STRING;
strcpy(tag[nt], "LogFile");
addr[nt] = All.LogFile;
id[nt++] = STRING;
strcpy(tag[nt], "TimingsFile");
addr[nt] = All.TimingsFile;
id[nt++] = STRING;
strcpy(tag[nt], "RestartFile");
addr[nt] = All.RestartFile;
id[nt++] = STRING;
strcpy(tag[nt], "ResubmitCommand");
addr[nt] = All.ResubmitCommand;
id[nt++] = STRING;
strcpy(tag[nt], "OutputListFilename");
addr[nt] = All.OutputListFilename;
id[nt++] = STRING;
strcpy(tag[nt], "OutputListOn");
addr[nt] = &All.OutputListOn;
id[nt++] = INT;
strcpy(tag[nt], "Omega0");
addr[nt] = &All.Omega0;
id[nt++] = DOUBLE;
strcpy(tag[nt], "OmegaBaryon");
addr[nt] = &All.OmegaBaryon;
id[nt++] = DOUBLE;
strcpy(tag[nt], "OmegaLambda");
addr[nt] = &All.OmegaLambda;
id[nt++] = DOUBLE;
strcpy(tag[nt], "HubbleParam");
addr[nt] = &All.HubbleParam;
id[nt++] = DOUBLE;
strcpy(tag[nt], "BoxSize");
addr[nt] = &All.BoxSize;
id[nt++] = DOUBLE;
strcpy(tag[nt], "PeriodicBoundariesOn");
addr[nt] = &All.PeriodicBoundariesOn;
id[nt++] = INT;
strcpy(tag[nt], "TimeOfFirstSnapshot");
addr[nt] = &All.TimeOfFirstSnapshot;
id[nt++] = DOUBLE;
strcpy(tag[nt], "CpuTimeBetRestartFile");
addr[nt] = &All.CpuTimeBetRestartFile;
id[nt++] = DOUBLE;
strcpy(tag[nt], "TimeBetStatistics");
addr[nt] = &All.TimeBetStatistics;
id[nt++] = DOUBLE;
strcpy(tag[nt], "TimeBegin");
addr[nt] = &All.TimeBegin;
id[nt++] = DOUBLE;
strcpy(tag[nt], "TimeMax");
addr[nt] = &All.TimeMax;
id[nt++] = DOUBLE;
strcpy(tag[nt], "TimeBetSnapshot");
addr[nt] = &All.TimeBetSnapshot;
id[nt++] = DOUBLE;
strcpy(tag[nt], "UnitVelocity_in_cm_per_s");
addr[nt] = &All.UnitVelocity_in_cm_per_s;
id[nt++] = DOUBLE;
strcpy(tag[nt], "UnitLength_in_cm");
addr[nt] = &All.UnitLength_in_cm;
id[nt++] = DOUBLE;
strcpy(tag[nt], "UnitMass_in_g");
addr[nt] = &All.UnitMass_in_g;
id[nt++] = DOUBLE;
strcpy(tag[nt], "TreeDomainUpdateFrequency");
addr[nt] = &All.TreeDomainUpdateFrequency;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ErrTolIntAccuracy");
addr[nt] = &All.ErrTolIntAccuracy;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ErrTolTheta");
addr[nt] = &All.ErrTolTheta;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ErrTolForceAcc");
addr[nt] = &All.ErrTolForceAcc;
id[nt++] = DOUBLE;
strcpy(tag[nt], "MinGasHsmlFractional");
addr[nt] = &All.MinGasHsmlFractional;
id[nt++] = DOUBLE;
strcpy(tag[nt], "MaxSizeTimestep");
addr[nt] = &All.MaxSizeTimestep;
id[nt++] = DOUBLE;
strcpy(tag[nt], "MinSizeTimestep");
addr[nt] = &All.MinSizeTimestep;
id[nt++] = DOUBLE;
strcpy(tag[nt], "MaxRMSDisplacementFac");
addr[nt] = &All.MaxRMSDisplacementFac;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ArtBulkViscConst");
addr[nt] = &All.ArtBulkViscConst;
id[nt++] = DOUBLE;
#ifdef ART_CONDUCTIVITY
strcpy(tag[nt], "ArtCondConst");
addr[nt] = &All.ArtCondConst;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ArtCondThreshold");
addr[nt] = &All.ArtCondThreshold;
id[nt++] = DOUBLE;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
strcpy(tag[nt], "ArtBulkViscConstMin");
addr[nt] = &All.ArtBulkViscConstMin;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ArtBulkViscConstMax");
addr[nt] = &All.ArtBulkViscConstMax;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ArtBulkViscConstL");
addr[nt] = &All.ArtBulkViscConstL;
id[nt++] = DOUBLE;
#endif
#ifdef AB_TURB
strcpy(tag[nt], "ST_decay");
addr[nt] = &All.StDecay;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ST_energy");
addr[nt] = &All.StEnergy;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ST_DtFreq");
addr[nt] = &All.StDtFreq;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ST_Kmin");
addr[nt] = &All.StKmin;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ST_Kmax");
addr[nt] = &All.StKmax;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ST_SolWeight");
addr[nt] = &All.StSolWeight;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ST_AmplFac");
addr[nt] = &All.StAmplFac;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ST_SpectForm");
addr[nt] = &All.StSpectForm;
id[nt++] = INT;
strcpy(tag[nt], "ST_Seed");
addr[nt] = &All.StSeed;
id[nt++] = INT;
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
strcpy(tag[nt], "NgbFactorTimestep");
addr[nt] = &All.NgbFactorTimestep;
id[nt++] = INT;
#endif
strcpy(tag[nt], "CourantFac");
addr[nt] = &All.CourantFac;
id[nt++] = DOUBLE;
strcpy(tag[nt], "DesNumNgb");
addr[nt] = &All.DesNumNgb;
id[nt++] = DOUBLE;
strcpy(tag[nt], "MaxNumNgbDeviation");
addr[nt] = &All.MaxNumNgbDeviation;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ComovingIntegrationOn");
addr[nt] = &All.ComovingIntegrationOn;
id[nt++] = INT;
strcpy(tag[nt], "ICFormat");
addr[nt] = &All.ICFormat;
id[nt++] = INT;
strcpy(tag[nt], "SnapFormat");
addr[nt] = &All.SnapFormat;
id[nt++] = INT;
strcpy(tag[nt], "NumFilesPerSnapshot");
addr[nt] = &All.NumFilesPerSnapshot;
id[nt++] = INT;
strcpy(tag[nt], "NumFilesWrittenInParallel");
addr[nt] = &All.NumFilesWrittenInParallel;
id[nt++] = INT;
strcpy(tag[nt], "ResubmitOn");
addr[nt] = &All.ResubmitOn;
id[nt++] = INT;
strcpy(tag[nt], "TypeOfTimestepCriterion");
addr[nt] = &All.TypeOfTimestepCriterion;
id[nt++] = INT;
strcpy(tag[nt], "TypeOfOpeningCriterion");
addr[nt] = &All.TypeOfOpeningCriterion;
id[nt++] = INT;
strcpy(tag[nt], "TimeLimitCPU");
addr[nt] = &All.TimeLimitCPU;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SofteningHalo");
addr[nt] = &All.SofteningHalo;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SofteningDisk");
addr[nt] = &All.SofteningDisk;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SofteningBulge");
addr[nt] = &All.SofteningBulge;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SofteningGas");
addr[nt] = &All.SofteningGas;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SofteningStars");
addr[nt] = &All.SofteningStars;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SofteningBndry");
addr[nt] = &All.SofteningBndry;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SofteningHaloMaxPhys");
addr[nt] = &All.SofteningHaloMaxPhys;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SofteningDiskMaxPhys");
addr[nt] = &All.SofteningDiskMaxPhys;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SofteningBulgeMaxPhys");
addr[nt] = &All.SofteningBulgeMaxPhys;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SofteningGasMaxPhys");
addr[nt] = &All.SofteningGasMaxPhys;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SofteningStarsMaxPhys");
addr[nt] = &All.SofteningStarsMaxPhys;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SofteningBndryMaxPhys");
addr[nt] = &All.SofteningBndryMaxPhys;
id[nt++] = DOUBLE;
strcpy(tag[nt], "BufferSize");
addr[nt] = &All.BufferSize;
id[nt++] = INT;
strcpy(tag[nt], "PartAllocFactor");
addr[nt] = &All.PartAllocFactor;
id[nt++] = DOUBLE;
strcpy(tag[nt], "TreeAllocFactor");
addr[nt] = &All.TreeAllocFactor;
id[nt++] = DOUBLE;
#ifdef SFR
strcpy(tag[nt], "StarsAllocFactor");
addr[nt] = &All.StarsAllocFactor;
id[nt++] = DOUBLE;
#endif
strcpy(tag[nt], "GravityConstantInternal");
addr[nt] = &All.GravityConstantInternal;
id[nt++] = DOUBLE;
strcpy(tag[nt], "InitGasTemp");
addr[nt] = &All.InitGasTemp;
id[nt++] = DOUBLE;
strcpy(tag[nt], "MinGasTemp");
addr[nt] = &All.MinGasTemp;
id[nt++] = DOUBLE;
#ifdef RANDOMSEED_AS_PARAMETER
strcpy(tag[nt], "RandomSeed");
addr[nt] = &All.RandomSeed;
id[nt++] = INT;
#endif
#ifdef COOLING
strcpy(tag[nt], "CoolingFile");
addr[nt] = All.CoolingFile;
id[nt++] = STRING;
+
+#ifdef COOLING_WIERSMA
+ strcpy(tag[nt], "CoolingDirectory");
+ addr[nt] = All.CoolingDirectory;
+ id[nt++] = STRING;
+#endif
+
strcpy(tag[nt], "CutofCoolingTemperature");
addr[nt] = &All.CutofCoolingTemperature;
id[nt++] = DOUBLE;
strcpy(tag[nt], "InitGasMetallicity");
addr[nt] = &All.InitGasMetallicity;
id[nt++] = DOUBLE;
strcpy(tag[nt], "CoolingType");
addr[nt] = &All.CoolingType;
id[nt++] = DOUBLE;
#endif
#ifdef CHIMIE
strcpy(tag[nt], "ChimieNumberOfParameterFiles");
addr[nt] = &All.ChimieNumberOfParameterFiles;
id[nt++] = INT;
strcpy(tag[nt], "ChimieParameterFile");
addr[nt] = All.ChimieParameterFile;
id[nt++] = STRING;
strcpy(tag[nt], "ChimieSupernovaEnergy");
addr[nt] = &All.ChimieSupernovaEnergy;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ChimieKineticFeedbackFraction");
addr[nt] = &All.ChimieKineticFeedbackFraction;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ChimieWindSpeed");
addr[nt] = &All.ChimieWindSpeed;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ChimieWindTime");
addr[nt] = &All.ChimieWindTime;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ChimieSNIaThermalTime");
addr[nt] = &All.ChimieSNIaThermalTime;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ChimieSNIIThermalTime");
addr[nt] = &All.ChimieSNIIThermalTime;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ChimieMaxSizeTimestep");
addr[nt] = &All.ChimieMaxSizeTimestep;
id[nt++] = DOUBLE;
#endif
#if defined (HEATING_PE)
strcpy(tag[nt], "HeatingPeElectronFraction");
addr[nt] = &All.HeatingPeElectronFraction;
id[nt++] = DOUBLE;
#endif
#if defined (HEATING_PE) || defined (STELLAR_FLUX) || defined (EXTERNAL_FLUX)
strcpy(tag[nt], "HeatingPeSolarEnergyDensity");
addr[nt] = &All.HeatingPeSolarEnergyDensity;
id[nt++] = DOUBLE;
#endif
#if defined (HEATING_PE) || defined (STELLAR_FLUX)
strcpy(tag[nt], "HeatingPeLMRatioGas");
addr[nt] = &All.HeatingPeLMRatioGas;
id[nt++] = DOUBLE;
strcpy(tag[nt], "HeatingPeLMRatioHalo");
addr[nt] = &All.HeatingPeLMRatioHalo;
id[nt++] = DOUBLE;
strcpy(tag[nt], "HeatingPeLMRatioDisk");
addr[nt] = &All.HeatingPeLMRatioDisk;
id[nt++] = DOUBLE;
strcpy(tag[nt], "HeatingPeLMRatioBulge");
addr[nt] = &All.HeatingPeLMRatioBulge;
id[nt++] = DOUBLE;
strcpy(tag[nt], "HeatingPeLMRatioStars");
addr[nt] = &All.HeatingPeLMRatioStars;
id[nt++] = DOUBLE;
strcpy(tag[nt], "HeatingPeLMRatioBndry");
addr[nt] = &All.HeatingPeLMRatioBndry;
id[nt++] = DOUBLE;
#endif
#ifdef EXTERNAL_FLUX
strcpy(tag[nt], "HeatingExternalFLuxEnergyDensity");
addr[nt] = &All.HeatingExternalFLuxEnergyDensity;
id[nt++] = DOUBLE;
#endif
#ifdef MULTIPHASE
strcpy(tag[nt], "CriticalTemperature");
addr[nt] = &All.CriticalTemperature;
id[nt++] = DOUBLE;
strcpy(tag[nt], "CriticalNonCollisionalTemperature");
addr[nt] = &All.CriticalNonCollisionalTemperature;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyUseGridForCollisions");
addr[nt] = &All.StickyUseGridForCollisions;
id[nt++] = INT;
strcpy(tag[nt], "StickyTime");
addr[nt] = &All.StickyTime;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyCollisionTime");
addr[nt] = &All.StickyCollisionTime;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyIdleTime");
addr[nt] = &All.StickyIdleTime;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyMinVelocity");
addr[nt] = &All.StickyMinVelocity;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyMaxVelocity");
addr[nt] = &All.StickyMaxVelocity;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyBetaR");
addr[nt] = &All.StickyBetaR;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyBetaT");
addr[nt] = &All.StickyBetaT;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyGridNx");
addr[nt] = &All.StickyGridNx;
id[nt++] = INT;
strcpy(tag[nt], "StickyGridNy");
addr[nt] = &All.StickyGridNy;
id[nt++] = INT;
strcpy(tag[nt], "StickyGridNz");
addr[nt] = &All.StickyGridNz;
id[nt++] = INT;
strcpy(tag[nt], "StickyGridXmin");
addr[nt] = &All.StickyGridXmin;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyGridXmax");
addr[nt] = &All.StickyGridXmax;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyGridYmin");
addr[nt] = &All.StickyGridYmin;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyGridYmax");
addr[nt] = &All.StickyGridYmax;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyGridZmin");
addr[nt] = &All.StickyGridZmin;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyGridZmax");
addr[nt] = &All.StickyGridZmax;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyDensity");
addr[nt] = &All.StickyDensity;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyDensityPower");
addr[nt] = &All.StickyDensityPower;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StickyRsphFact");
addr[nt] = &All.StickyRsphFact;
id[nt++] = DOUBLE;
#ifdef COLDGAS_CYCLE
strcpy(tag[nt], "ColdGasCycleTransitionTime");
addr[nt] = &All.ColdGasCycleTransitionTime;
id[nt++] = DOUBLE;
strcpy(tag[nt], "ColdGasCycleTransitionParameter");
addr[nt] = &All.ColdGasCycleTransitionParameter;
id[nt++] = DOUBLE;
#endif
#endif
#ifdef OUTERPOTENTIAL
#ifdef NFW
strcpy(tag[nt], "HaloConcentration");
addr[nt] = &All.HaloConcentration;
id[nt++] = DOUBLE;
strcpy(tag[nt], "HaloMass");
addr[nt] = &All.HaloMass;
id[nt++] = DOUBLE;
strcpy(tag[nt], "GasMassFraction");
addr[nt] = &All.GasMassFraction;
id[nt++] = DOUBLE;
#endif
#ifdef PLUMMER
strcpy(tag[nt], "PlummerMass");
addr[nt] = &All.PlummerMass;
id[nt++] = DOUBLE;
strcpy(tag[nt], "PlummerSoftenning");
addr[nt] = &All.PlummerSoftenning;
id[nt++] = DOUBLE;
#endif
#ifdef MIYAMOTONAGAI
strcpy(tag[nt], "MiyamotoNagaiMass");
addr[nt] = &All.MiyamotoNagaiMass;
id[nt++] = DOUBLE;
strcpy(tag[nt], "MiyamotoNagaiHr");
addr[nt] = &All.MiyamotoNagaiHr;
id[nt++] = DOUBLE;
strcpy(tag[nt], "MiyamotoNagaiHz");
addr[nt] = &All.MiyamotoNagaiHz;
id[nt++] = DOUBLE;
#endif
#ifdef PISOTHERM
strcpy(tag[nt], "Rho0");
addr[nt] = &All.Rho0;
id[nt++] = DOUBLE;
strcpy(tag[nt], "Rc");
addr[nt] = &All.Rc;
id[nt++] = DOUBLE;
strcpy(tag[nt], "GasMassFraction");
addr[nt] = &All.GasMassFraction;
id[nt++] = DOUBLE;
#endif
#ifdef CORIOLIS
strcpy(tag[nt], "CoriolisOmegaX0");
addr[nt] = &All.CoriolisOmegaX0;
id[nt++] = DOUBLE;
strcpy(tag[nt], "CoriolisOmegaY0");
addr[nt] = &All.CoriolisOmegaY0;
id[nt++] = DOUBLE;
strcpy(tag[nt], "CoriolisOmegaZ0");
addr[nt] = &All.CoriolisOmegaZ0;
id[nt++] = DOUBLE;
#endif
#endif
#ifdef SFR
strcpy(tag[nt], "StarFormationNStarsFromGas");
addr[nt] = &All.StarFormationNStarsFromGas;
id[nt++] = INT;
strcpy(tag[nt], "StarFormationMgMsFraction");
addr[nt] = &All.StarFormationMgMsFraction;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StarFormationStarMass");
addr[nt] = &All.StarFormationStarMass;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StarFormationType");
addr[nt] = &All.StarFormationType;
id[nt++] = INT;
strcpy(tag[nt], "StarFormationCstar");
addr[nt] = &All.StarFormationCstar;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StarFormationTime");
addr[nt] = &All.StarFormationTime;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StarFormationDensity");
addr[nt] = &All.StarFormationDensity;
id[nt++] = DOUBLE;
strcpy(tag[nt], "StarFormationTemperature");
addr[nt] = &All.StarFormationTemperature;
id[nt++] = DOUBLE;
#endif
#ifdef FEEDBACK
strcpy(tag[nt], "SupernovaEgySpecPerMassUnit");
addr[nt] = &All.SupernovaEgySpecPerMassUnit;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SupernovaFractionInEgyKin");
addr[nt] = &All.SupernovaFractionInEgyKin;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SupernovaTime");
addr[nt] = &All.SupernovaTime;
id[nt++] = DOUBLE;
#endif
#ifdef FEEDBACK_WIND
strcpy(tag[nt], "SupernovaWindEgySpecPerMassUnit");
addr[nt] = &All.SupernovaWindEgySpecPerMassUnit;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SupernovaWindFractionInEgyKin");
addr[nt] = &All.SupernovaWindFractionInEgyKin;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SupernovaWindParameter");
addr[nt] = &All.SupernovaWindParameter;
id[nt++] = DOUBLE;
strcpy(tag[nt], "SupernovaWindIntAccuracy");
addr[nt] = &All.SupernovaWindIntAccuracy;
id[nt++] = DOUBLE;
#endif
#ifdef AGN_ACCRETION
strcpy(tag[nt], "TimeBetAccretion");
addr[nt] = &All.TimeBetAccretion;
id[nt++] = DOUBLE;
strcpy(tag[nt], "AccretionRadius");
addr[nt] = &All.AccretionRadius;
id[nt++] = DOUBLE;
strcpy(tag[nt], "AGNFactor");
addr[nt] = &All.AGNFactor;
id[nt++] = DOUBLE;
strcpy(tag[nt], "MinMTotInRa");
addr[nt] = &All.MinMTotInRa;
id[nt++] = DOUBLE;
#endif
#ifdef BUBBLES
strcpy(tag[nt], "BubblesDelta");
addr[nt] = &All.BubblesDelta;
id[nt++] = DOUBLE;
strcpy(tag[nt], "BubblesAlpha");
addr[nt] = &All.BubblesAlpha;
id[nt++] = DOUBLE;
strcpy(tag[nt], "BubblesRadiusFactor");
addr[nt] = &All.BubblesRadiusFactor;
id[nt++] = DOUBLE;
strcpy(tag[nt], "BubblesInitFile");
addr[nt] = All.BubblesInitFile;
id[nt++] = STRING;
#endif
#ifdef AGN_HEATING
strcpy(tag[nt], "AGNHeatingPower");
addr[nt] = &All.AGNHeatingPower;
id[nt++] = DOUBLE;
strcpy(tag[nt], "AGNHeatingRmax");
addr[nt] = &All.AGNHeatingRmax;
id[nt++] = DOUBLE;
#endif
#ifdef BONDI_ACCRETION
strcpy(tag[nt], "BondiEfficiency");
addr[nt] = &All.BondiEfficiency;
id[nt++] = DOUBLE;
strcpy(tag[nt], "BondiBlackHoleMass");
addr[nt] = &All.BondiBlackHoleMass;
id[nt++] = DOUBLE;
strcpy(tag[nt], "BondiHsmlFactor");
addr[nt] = &All.BondiHsmlFactor;
id[nt++] = DOUBLE;
strcpy(tag[nt], "BondiTimeBet");
addr[nt] = &All.BondiTimeBet;
id[nt++] = DOUBLE;
#endif
if((fd = fopen(fname, "r")))
{
sprintf(buf, "%s%s", fname, "-usedvalues");
if(!(fdout = fopen(buf, "w")))
{
printf("error opening file '%s' \n", buf);
errorFlag = 1;
}
else
{
while(!feof(fd))
{
*buf = 0;
fgets(buf, 200, fd);
if(sscanf(buf, "%s%s%s", buf1, buf2, buf3) < 2)
continue;
if(buf1[0] == '%')
continue;
for(i = 0, j = -1; i < nt; i++)
if(strcmp(buf1, tag[i]) == 0)
{
j = i;
tag[i][0] = 0;
break;
}
if(j >= 0)
{
switch (id[j])
{
case DOUBLE:
*((double *) addr[j]) = atof(buf2);
fprintf(fdout, "%-35s%g\n", buf1, *((double *) addr[j]));
break;
case STRING:
strcpy(addr[j], buf2);
fprintf(fdout, "%-35s%s\n", buf1, buf2);
break;
case INT:
*((int *) addr[j]) = atoi(buf2);
fprintf(fdout, "%-35s%d\n", buf1, *((int *) addr[j]));
break;
}
}
else
{
fprintf(stdout, "Error in file %s: Tag '%s' not allowed or multiple defined.\n",
fname, buf1);
errorFlag = 1;
}
}
fclose(fd);
fclose(fdout);
i = strlen(All.OutputDir);
if(i > 0)
if(All.OutputDir[i - 1] != '/')
strcat(All.OutputDir, "/");
/* copy parameters-usedvalues file*/
sprintf(buf1, "%s%s", fname, "-usedvalues");
sprintf(buf2, "%s%s", All.OutputDir, "parameters-usedvalues");
fd = fopen(buf1,"r");
fdout = fopen(buf2,"w");
while(1)
{
fgets(buf, 200, fd);
if (feof(fd)) break;
fprintf(fdout, buf, 200);
}
fclose(fd);
fclose(fdout);
}
}
else
{
printf("\nParameter file %s not found.\n\n", fname);
errorFlag = 2;
}
if(errorFlag != 2)
for(i = 0; i < nt; i++)
{
if(*tag[i])
{
printf("Error. I miss a value for tag '%s' in parameter file '%s'.\n", tag[i], fname);
errorFlag = 1;
}
}
if(All.OutputListOn && errorFlag == 0)
errorFlag += read_outputlist(All.OutputListFilename);
else
All.OutputListLength = 0;
}
MPI_Bcast(&errorFlag, 1, MPI_INT, 0, MPI_COMM_WORLD);
if(errorFlag)
{
MPI_Finalize();
exit(0);
}
/* now communicate the relevant parameters to the other processes */
MPI_Bcast(&All, sizeof(struct global_data_all_processes), MPI_BYTE, 0, MPI_COMM_WORLD);
if(All.NumFilesWrittenInParallel < 1)
{
if(ThisTask == 0)
printf("NumFilesWrittenInParallel MUST be at least 1\n");
endrun(0);
}
if(All.NumFilesWrittenInParallel > NTask)
{
if(ThisTask == 0)
printf("NumFilesWrittenInParallel MUST be smaller than number of processors\n");
endrun(0);
}
#ifdef PERIODIC
if(All.PeriodicBoundariesOn == 0)
{
if(ThisTask == 0)
{
printf("Code was compiled with periodic boundary conditions switched on.\n");
printf("You must set `PeriodicBoundariesOn=1', or recompile the code.\n");
}
endrun(0);
}
#else
if(All.PeriodicBoundariesOn == 1)
{
if(ThisTask == 0)
{
printf("Code was compiled with periodic boundary conditions switched off.\n");
printf("You must set `PeriodicBoundariesOn=0', or recompile the code.\n");
}
endrun(0);
}
#endif
if(All.TypeOfTimestepCriterion >= 1)
{
if(ThisTask == 0)
{
printf("The specified timestep criterion\n");
printf("is not valid\n");
}
endrun(0);
}
#if defined(LONG_X) || defined(LONG_Y) || defined(LONG_Z)
#ifndef NOGRAVITY
if(ThisTask == 0)
{
printf("Code was compiled with LONG_X/Y/Z, but not with NOGRAVITY.\n");
printf("Stretched periodic boxes are not implemented for gravity yet.\n");
}
endrun(0);
#endif
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
int ti = 1;
while((ti != All.NgbFactorTimestep) && (ti!=TIMEBASE))
ti <<= 1;
if (ti==TIMEBASE)
{
if(ThisTask == 0)
{
printf("\nThe parameter NgbFactorTimestep must be a power of two\n");
printf("NgbFactorTimestep=%d is not valid\n\n",All.NgbFactorTimestep);
endrun(7);
}
}
#endif
#undef DOUBLE
#undef STRING
#undef INT
#undef MAXTAGS
}
/*! this function reads a table with a list of desired output times. The
* table does not have to be ordered in any way, but may not contain more
* than MAXLEN_OUTPUTLIST entries.
*/
int read_outputlist(char *fname)
{
FILE *fd;
if(!(fd = fopen(fname, "r")))
{
printf("can't read output list in file '%s'\n", fname);
return 1;
}
All.OutputListLength = 0;
do
{
if(fscanf(fd, " %lg ", &All.OutputListTimes[All.OutputListLength]) == 1)
All.OutputListLength++;
else
break;
}
while(All.OutputListLength < MAXLEN_OUTPUTLIST);
fclose(fd);
printf("\nfound %d times in output-list.\n", All.OutputListLength);
return 0;
}
/*! If a restart from restart-files is carried out where the TimeMax
* variable is increased, then the integer timeline needs to be
* adjusted. The approach taken here is to reduce the resolution of the
* integer timeline by factors of 2 until the new final time can be
* reached within TIMEBASE.
*/
void readjust_timebase(double TimeMax_old, double TimeMax_new)
{
int i;
long long ti_end;
if(ThisTask == 0)
{
printf("\nAll.TimeMax has been changed in the parameterfile\n");
printf("Need to adjust integer timeline\n\n\n");
}
if(TimeMax_new < TimeMax_old)
{
if(ThisTask == 0)
printf("\nIt is not allowed to reduce All.TimeMax\n\n");
endrun(556);
}
if(All.ComovingIntegrationOn)
ti_end = log(TimeMax_new / All.TimeBegin) / All.Timebase_interval;
else
ti_end = (TimeMax_new - All.TimeBegin) / All.Timebase_interval;
while(ti_end > TIMEBASE)
{
All.Timebase_interval *= 2.0;
ti_end /= 2;
All.Ti_Current /= 2;
#ifdef PMGRID
All.PM_Ti_begstep /= 2;
All.PM_Ti_endstep /= 2;
#endif
for(i = 0; i < NumPart; i++)
{
P[i].Ti_begstep /= 2;
P[i].Ti_endstep /= 2;
}
}
All.TimeMax = TimeMax_new;
}
diff --git a/src/chimie.c b/src/chimie.c
index 5c2f6b5..a0e4f8e 100644
--- a/src/chimie.c
+++ b/src/chimie.c
@@ -1,6423 +1,6080 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include <gsl/gsl_math.h>
#include "allvars.h"
#include "proto.h"
#ifdef CHIMIE
+
+
+#ifdef CHIMIE_FROM_HDF5
+#include <hdf5.h>
+#include "hdf5io.h"
+#endif
+
+
#ifdef PYCHEM
#include <Python.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <numpy/arrayobject.h>
-#ifdef CHIMIE_FROM_HDF5
-#include <hdf5.h>
-#endif
/*
****************************************************
these variables are already defined in Gadget (or not needed)
****************************************************
*/
#define TO_DOUBLE(a) ( (PyArrayObject*) PyArray_CastToType(a, PyArray_DescrFromType(NPY_DOUBLE) ,0) )
#endif /* PYCHEM */
const char *get_filename_ext(const char *filename) {
const char *dot = strrchr(filename, '.');
if(!dot || dot == filename) return "";
return dot + 1;
}
/****************************************************************************************/
/*
/*
/*
/* COMMON CHIMIE PART
/*
/*
/*
/****************************************************************************************/
#define MAXPTS 10
#define MAXDATASIZE 200
#define KPC_IN_CM 3.085e+21
/********************************************************
hdf5 reading routines
*********************************************************/
+#ifdef CHIMIE_FROM_HDF5
#define HEADER_GRP "/Header"
#define DATA_GRP "/Data"
-
-struct ElementsDataStruct
-{
- int nelts;
- char ** elts;
- double * data;
-};
-
-
-
-char * readAttributeAsString(hid_t group,char *name)
-{
-
- hid_t attr;
- hid_t memtype;
- herr_t status;
- char **string;
- char *output;
-
- int l;
-
-
- attr = H5Aopen( group , name, H5P_DEFAULT);
- string = (char **) malloc (1 * sizeof (char *));
-
- memtype = H5Tcopy (H5T_C_S1);
- status = H5Tset_size(memtype, H5T_VARIABLE);
- status = H5Aread (attr, memtype,string);
- //printf ("%s = %s\n",name, string[0]);
-
- /* copy to output */
- l = strlen(string[0])+1;
- output = (char *) malloc(l*sizeof(char));
- memcpy(output, string[0], l);
-
- free(string);
- status = H5Aclose(attr);
-
- return output;
-
-}
-
-int readAttributeAsInt(hid_t group,char *name)
-{
-
- hid_t attr;
- herr_t status;
-
- long output;
-
- attr = H5Aopen( group , name, H5P_DEFAULT);
- status = H5Aread(attr,H5T_STD_I64LE,&output);
- status = H5Aclose(attr);
-
- return (int)output;
-
-}
-
-
-double readAttributeAsDouble(hid_t group,char *name)
-{
-
- hid_t attr;
- herr_t status;
-
- double output;
-
- attr = H5Aopen( group , name, H5P_DEFAULT);
- status = H5Aread(attr,H5T_IEEE_F64LE,&output);
- status = H5Aclose(attr);
-
- return output;
-
-}
-
-
-
-char ** readAttributeAsArrayString(hid_t group,char *name)
-{
-
- hid_t attr;
- hid_t filetype;
- hid_t space;
- hid_t memtype;
- herr_t status;
- size_t sdim;
- hsize_t dims[1];
- int ndims;
- int i;
-
- char **rdata;
- char **output;
-
-
- attr = H5Aopen( group , name, H5P_DEFAULT);
-
-
- filetype = H5Aget_type (attr);
- sdim = H5Tget_size (filetype);
- sdim++; /* Make room for null terminator */
-
- space = H5Aget_space (attr);
- ndims = H5Sget_simple_extent_dims (space, dims, NULL);
-
-
- rdata = (char **) malloc (dims[0] * sizeof (char *));
- rdata[0] = (char *) malloc (dims[0] * sdim * sizeof (char));
- for (i=1; i<dims[0]; i++)
- rdata[i] = rdata[0] + i * sdim;
-
- memtype = H5Tcopy (H5T_C_S1);
- status = H5Tset_size (memtype, sdim);
-
- status = H5Aread (attr, memtype, rdata[0]);
-
- //for (i=0; i<dims[0]; i++)
- // printf (">>[%d]: %s<<\n", i, rdata[i]);
-
-
- /* copy to output */
- output = (char **) malloc (dims[0] * sizeof (char *));
- output[0] = (char *) malloc (dims[0] * sdim * sizeof (char));
- for (i=1; i<dims[0]; i++)
- output[i] = output[0] + i * sdim;
-
- for (i=0; i<dims[0]; i++)
- memcpy(output[i], rdata[i], sdim);
-
- free (rdata[0]);
- free (rdata);
- status = H5Aclose (attr);
- status = H5Sclose (space);
-
- return output;
-
-}
-
-
-double * readAttributeAsArrayDouble(hid_t group,char *name)
-{
-
- hid_t attr;
- hid_t space;
- herr_t status;
- hsize_t dims[1];
- int ndims;
- int i;
-
- double *rdata;
- double *output;
-
-
- attr = H5Aopen( group , name, H5P_DEFAULT);
-
- space = H5Aget_space (attr);
- ndims = H5Sget_simple_extent_dims (space, dims, NULL);
-
-
- rdata = (double *) malloc (dims[0] * sizeof (double *));
-
- status = H5Aread (attr, H5T_NATIVE_DOUBLE, rdata);
-
- //for (i=0; i<dims[0]; i++)
- // printf (">>[%d]: %g<<\n", i, rdata[i]);
-
-
-
- /* copy to output */
- output = (double *) malloc (dims[0] * sizeof (double *));
- memcpy(output, rdata, dims[0]* sizeof (double));
-
- free (rdata);
- status = H5Aclose (attr);
- status = H5Sclose (space);
-
- return output;
-
-}
-
-
-double * readDatasetAsArrayDouble(hid_t group,char *name)
-{
-
- hid_t dset;
- hid_t space;
- herr_t status;
- hsize_t dims[1];
- int ndims;
- int i;
-
- double *rdata;
- double *output;
-
-
- dset = H5Dopen( group , name, H5P_DEFAULT);
-
- space = H5Dget_space (dset);
- ndims = H5Sget_simple_extent_dims (space, dims, NULL);
-
-
- rdata = (double *) malloc (dims[0] * sizeof (double *));
-
- status = H5Dread (dset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT,rdata);
-
- //for (i=0; i<dims[0]; i++)
- // printf (">>[%d]: %g<<\n", i, rdata[i]);
-
-
- /* copy to output */
- output = (double *) malloc (dims[0] * sizeof (double *));
- memcpy(output, rdata, dims[0]* sizeof (double));
-
- free (rdata);
- status = H5Dclose (dset);
- status = H5Sclose (space);
-
- return output;
-
-}
-
-
-
-double ** readAttributeAsArray2DDouble(hid_t group,char *name)
-{
-
- hid_t attr;
- hid_t space;
- herr_t status;
- hsize_t dims[2];
- int ndims;
- int i;
-
- double **rdata;
- double **output;
-
-
- attr = H5Aopen( group , name, H5P_DEFAULT);
-
- space = H5Aget_space (attr);
- ndims = H5Sget_simple_extent_dims (space, dims, NULL);
-
-
- rdata = (double **) malloc (dims[0] * sizeof (double *));
- rdata[0] = (double *) malloc (dims[0] * dims[1] * sizeof (double));
- for (i=1; i<dims[0]; i++)
- rdata[i] = rdata[0] + i * dims[1];
-
- status = H5Aread (attr, H5T_NATIVE_DOUBLE, rdata[0]);
-
- for (i=0; i<dims[0]; i++)
- printf (">>[%d]: %g<<\n", i, rdata[i]);
-
-
- /* copy to output */
- output = (double **) malloc (dims[0] * sizeof (double *));
- output[0] = (double *) malloc (dims[0] * dims[1] * sizeof (double));
- for (i=1; i<dims[0]; i++)
- output[i] = output[0] + i * dims[1];
-
- for (i=0; i<dims[0]; i++)
- memcpy(output[i], rdata[i], dims[1]);
-
- free (rdata[0]);
- free (rdata);
- status = H5Aclose (attr);
- status = H5Sclose (space);
-
- return output;
-
-}
-
-
-double ** readDatasetAsArray2DDouble(hid_t group,char *name)
-{
-
- hid_t dset;
- hid_t space;
- herr_t status;
- hsize_t dims[2];
- int ndims;
- int i,j;
-
- double **rdata;
- double **output;
-
-
- dset = H5Dopen( group , name, H5P_DEFAULT);
-
- space = H5Dget_space (dset);
- ndims = H5Sget_simple_extent_dims (space, dims, NULL);
-
-
- rdata = (double **) malloc (dims[0] * sizeof (double *));
- rdata[0] = (double *) malloc (dims[0] * dims[1] * sizeof (double));
- for (i=1; i<dims[0]; i++)
- rdata[i] = rdata[0] + i * dims[1];
-
-
- status = H5Dread (dset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata[0]);
-
- //for (i=0; i<dims[0]; i++) {
- // printf (" [");
- // for (j=0; j<dims[1]; j++)
- // printf (" %6.4f", rdata[i][j]);
- // printf ("]\n");
- //}
-
-
- /* copy to output */
- output = (double **) malloc (dims[0] * sizeof (double *));
- output[0] = (double *) malloc (dims[0] * dims[1] * sizeof (double));
- for (i=1; i<dims[0]; i++)
- output[i] = output[0] + i * dims[1];
-
-
-
- memcpy(output[0], rdata[0], dims[0] * dims[1] * sizeof (double));
-
- free (rdata[0]);
- free (rdata);
- status = H5Dclose (dset);
- status = H5Sclose (space);
-
-
-
- return output;
-
-}
-
-
-
-struct ElementsDataStruct readGroupAsElementsData(hid_t parent,char *name)
-{
- struct ElementsDataStruct Edata;
- hid_t group;
- herr_t status;
-
- group = H5Gopen( parent , name, H5P_DEFAULT);
-
-
- Edata.nelts = readAttributeAsInt(group,"nelts");
- Edata.elts = readAttributeAsArrayString(group,"elts");
- Edata.data = readAttributeAsArrayDouble(group,"data");
-
-
- status = H5Gclose (group);
-
-
- return Edata;
-}
-
-
-
/********************************************************
Chemistry functions
*********************************************************/
struct ChemistryHeaderStruct
{
char * version;
char * author;
char * date;
};
struct ChemistryDataAttributesStruct
{
int nelts;
char **elts;
double *SolarMassAbundances;
double MeanWDMass;
};
struct ChemistryYieldsTableStruct
{
int nbins;
double min;
double step;
char *label;
double *data;
};
struct ChemistryLiveTimesStruct
{
int nx;
int ny;
double **coeff_z;
};
struct ChemistryIMFStruct
{
int n;
double *ms;
double *as;
char *bs;
double Mmin;
double Mmax;
};
struct ChemistrySNIaStruct
{
double Mpl;
double Mpu;
double a;
double Mdl1;
double Mdu1;
double bb1;
double Mdl2;
double Mdu2;
double bb2;
struct ElementsDataStruct Metals;
};
struct ChemistrySNIIStruct
{
double Mmin;
int npts;
int nelts;
char **elts;
struct ChemistryYieldsTableStruct *table;
};
/*! Read a table containing yields
* stored in the dataset named "name"
*/
struct ChemistryYieldsTableStruct readYieldsTable(hid_t group,char *name)
{
struct ChemistryYieldsTableStruct table;
hid_t dset;
herr_t status;
table.data = readDatasetAsArrayDouble(group,name);
/* read attributes */
dset = H5Dopen( group , name, H5P_DEFAULT);
table.nbins = readAttributeAsInt(dset,"nbins");
table.min = readAttributeAsDouble(dset,"min");
table.step = readAttributeAsDouble(dset,"step");
table.label = readAttributeAsString(dset,"label");
//printYieldsTable(table);
status = H5Dclose(dset);
return table;
}
/*! Read the attributes linked to the data group
*/
int readDataAttributes(hid_t table,struct ChemistryDataAttributesStruct *Param)
{
hid_t group;
herr_t status;
group = H5Gopen(table, DATA_GRP,H5P_DEFAULT);
Param->nelts = readAttributeAsInt(group,"nelts");
Param->elts = readAttributeAsArrayString(group,"elts");
Param->SolarMassAbundances = readAttributeAsArrayDouble(group,"SolarMassAbundances");
Param->MeanWDMass = readAttributeAsDouble(group,"MeanWDMass");
status = H5Gclose (group);
return 0;
}
/*! Print the attributes linked to the data group
*/
int printDataAttributes(struct ChemistryDataAttributesStruct Parameters)
{
int i;
printf("\n");
printf("Data attribute content:\n\n");
printf("\t nelts = %d\n",Parameters.nelts);
printf("\t elts = ");
for (i=0; i<Parameters.nelts; i++)
printf ("%s ",Parameters.elts[i]);
printf ("\n");
printf("\t SolarMassAbundances = ");
for (i=0; i<Parameters.nelts; i++)
printf ("%g ",Parameters.SolarMassAbundances[i]);
printf ("\n");
printf("\t MeanWDMass = %g\n",Parameters.MeanWDMass);
printf("\n");
return 0;
}
/*! Read the attributes linked to the header group
*/
int readHeader(hid_t table,struct ChemistryHeaderStruct *Header)
{
hid_t group;
herr_t status;
group = H5Gopen(table, HEADER_GRP,H5P_DEFAULT);
/* read attribute */
Header->version = readAttributeAsString(group,"version");
Header->author = readAttributeAsString(group,"author");
Header->date = readAttributeAsString(group,"date");
status = H5Gclose (group);
return 0;
}
/*! Print the attributes linked to the header group
*/
int printHeader(struct ChemistryHeaderStruct Header)
{
printf("\n");
printf("Header content:\n\n");
printf("\t version = %s\n",Header.version);
printf("\t author = %s\n",Header.author);
printf("\t date = %s\n",Header.date);
printf("\n");
return 0;
}
/*! Print the content of a yield table
*/
int printYieldsTable(struct ChemistryYieldsTableStruct table,char * space)
{
int i;
printf("%s%s:\n\n",space,table.label);
printf("%s\t nbins = %d\n",space,table.nbins);
printf("%s\t min = %g\n",space,table.min);
printf("%s\t step = %g\n",space,table.step);
printf("%s\t label = %s\n",space,table.label);
printf("\n");
for(i=0;i<3;i++)
printf("%s\t [%d] %g\n",space,i,table.data[i]);
printf("%s\t ...\n",space);
for(i=table.nbins-3;i<table.nbins;i++)
printf("%s\t [%d] %g\n",space,i,table.data[i]);
printf("\n");
return 0;
}
int readLiveTimes(hid_t table,struct ChemistryLiveTimesStruct *livetimes)
{
hid_t group;
hid_t subgroup;
hid_t dset;
herr_t status;
group = H5Gopen(table, DATA_GRP,H5P_DEFAULT);
subgroup = H5Gopen(group,"LiveTimes",H5P_DEFAULT);
- livetimes->coeff_z = readDatasetAsArray2DDouble(subgroup,"coeff_z");
+ livetimes->coeff_z = readDatasetAsArray2DDouble_v0(subgroup,"coeff_z");
dset = H5Dopen( subgroup , "coeff_z", H5P_DEFAULT);
livetimes->nx = readAttributeAsInt(dset,"nx");
livetimes->ny = readAttributeAsInt(dset,"ny");
status = H5Dclose (dset);
status = H5Gclose (subgroup);
status = H5Gclose (group);
return 0;
}
/*! Print the content of an LiveTimes struct
*/
int printLiveTimes(struct ChemistryLiveTimesStruct livetimes)
{
int i,j;
printf("Output from LiveTimes:\n\n");
printf("\t coeff_z = \n");
for (i=0; i<livetimes.nx; i++) {
printf ("\t\t [");
for (j=0; j<livetimes.ny; j++)
printf (" %6.4f", livetimes.coeff_z[i][j]);
printf ("]\n");
}
printf("\n");
}
int readIMF(hid_t table,struct ChemistryIMFStruct *imf)
{
hid_t group;
hid_t subgroup;
herr_t status;
group = H5Gopen(table, DATA_GRP,H5P_DEFAULT);
subgroup = H5Gopen(group,"IMF",H5P_DEFAULT);
imf->Mmin = readAttributeAsDouble(subgroup,"Mmin");
imf->Mmax = readAttributeAsDouble(subgroup,"Mmax");
imf->n = readAttributeAsInt(subgroup,"n");
imf->ms = readAttributeAsArrayDouble(subgroup,"ms");
imf->as = readAttributeAsArrayDouble(subgroup,"as");
status = H5Gclose (subgroup);
status = H5Gclose (group);
return 0;
}
/*! Print the content of an IMF
*/
int printIMF(struct ChemistryIMFStruct imf)
{
int i;
printf("Output from IMF:\n\n");
printf("\t n = %d\n",imf.n);
printf("\t Mmin = %g\n",imf.Mmin);
printf("\t Mmax = %g\n",imf.Mmax);
printf("\t as = ");
for (i=0; i<imf.n+1; i++)
printf ("%g ",imf.as[i]);
printf ("\n");
//printf("\t bs = ");
//for (i=0; i<imf.n+1; i++)
// printf ("%g ",imf.bs[i]);
//printf ("\n");
printf("\t ms = ");
for (i=0; i<imf.n; i++)
printf ("%g ",imf.ms[i]);
printf ("\n");
printf("\n");
}
int readSNIa(hid_t table,struct ChemistrySNIaStruct *snia)
{
hid_t group;
hid_t subgroup;
herr_t status;
group = H5Gopen(table, DATA_GRP,H5P_DEFAULT);
subgroup = H5Gopen(group,"SNIa",H5P_DEFAULT);
snia->Mpl = readAttributeAsDouble(subgroup,"Mpl");
snia->Mpu = readAttributeAsDouble(subgroup,"Mpu");
snia->a = readAttributeAsDouble(subgroup,"a");
snia->Mdl1 = readAttributeAsDouble(subgroup,"Mdl1");
snia->Mdu1 = readAttributeAsDouble(subgroup,"Mdu1");
snia->bb1 = readAttributeAsDouble(subgroup,"bb1");
snia->Mdl2 = readAttributeAsDouble(subgroup,"Mdl2");
snia->Mdu2 = readAttributeAsDouble(subgroup,"Mdu2");
snia->bb2 = readAttributeAsDouble(subgroup,"bb2");
snia->Metals = readGroupAsElementsData(subgroup,"Metals");
status = H5Gclose (subgroup);
status = H5Gclose (group);
return 0;
}
/*! Print the content of an SNIa struct
*/
int printSNIa(struct ChemistrySNIaStruct snia)
{
int i;
printf("Output from SNIa:\n\n");
printf("\t Mpl = %g\n",snia.Mpl );
printf("\t Mpu = %g\n",snia.Mpu );
printf("\t a = %g\n",snia.a );
printf("\t Mdl1 = %g\n",snia.Mdl1);
printf("\t Mdu1 = %g\n",snia.Mdu1);
printf("\t bb1 = %g\n",snia.bb1 );
printf("\t Mdl2 = %g\n",snia.Mdl2);
printf("\t Mdu2 = %g\n",snia.Mdu2);
printf("\t bb2 = %g\n",snia.bb2 );
printf("\n");
printf("\t Metals:\n\n");
for (i=0; i<snia.Metals.nelts; i++)
printf ("\t\t %s\t= %g\n",snia.Metals.elts[i],snia.Metals.data[i]);
printf("\n");
}
int readSNII(hid_t table,struct ChemistrySNIIStruct *snii)
{
hid_t group;
hid_t subgroup;
herr_t status;
int i;
group = H5Gopen(table, DATA_GRP,H5P_DEFAULT);
subgroup = H5Gopen(group,"SNII",H5P_DEFAULT);
snii->Mmin = readAttributeAsDouble(subgroup,"Mmin");
snii->npts = readAttributeAsInt(subgroup,"npts");
snii->nelts = readAttributeAsInt(subgroup,"nelts");
snii->elts = readAttributeAsArrayString(subgroup,"elts");
snii->table = malloc( snii->nelts * sizeof(struct ChemistryYieldsTableStruct) );
/* read the yields */
for(i=0;i<snii->nelts;i++)
snii->table[i]=readYieldsTable(subgroup,snii->elts[i]);
status = H5Gclose (subgroup);
status = H5Gclose (group);
return 0;
}
/*! Print the content of an SNII struct
*/
int printSNII(struct ChemistrySNIIStruct snii)
{
int i;
printf("Output from SNII:\n\n");
printf("\t Mmin = %g\n",snii.Mmin);
printf("\t npts = %d\n",snii.npts);
printf("\t nelts = %d\n",snii.nelts);
printf("\t elts = ");
for (i=0; i<snii.nelts; i++)
printf ("%s ",snii.elts[i]);
printf ("\n");
printf("\n");
printf("\t Metals:\n\n");
for(i=0;i<snii.nelts;i++)
printYieldsTable(snii.table[i],"\t\t");
}
+#endif // CHIMIE_FROM_HDF5
/********************************************************
endof hdf5 reading routines
*********************************************************/
static int verbose=0;
static double *MassFracSNII;
static double *MassFracSNIa;
static double *MassFracDYIN;
static double *SingleMassFracSNII;
static double *SingleMassFracSNIa;
static double *SingleMassFracDYIN;
static double *EjectedMass;
static double *SingleEjectedMass;
static double **MassFracSNIIs;
static double **MassFracSNIas;
static double **MassFracDYINs;
static double **SingleMassFracSNIIs;
static double **SingleMassFracSNIas;
static double **SingleMassFracDYINs;
static double **EjectedMasss;
static double **SingleEjectedMasss;
/* intern global variables */
static struct local_params_chimie
{
float coeff_z[3][3];
float Mmin,Mmax;
int n;
float ms[MAXPTS];
float as[MAXPTS+1];
float bs[MAXPTS+1];
float fs[MAXPTS];
double imf_Ntot;
float SNII_Mmin;
float SNII_Mmax;
float SNII_cte;
float SNII_a;
float SNIa_Mpl;
float SNIa_Mpu;
float SNIa_a;
float SNIa_cte;
float SNIa_Mdl1;
float SNIa_Mdu1;
float SNIa_a1;
float SNIa_b1;
float SNIa_cte1;
float SNIa_bb1;
float SNIa_Mdl2;
float SNIa_Mdu2;
float SNIa_a2;
float SNIa_b2;
float SNIa_cte2;
float SNIa_bb2;
float Mco;
int npts;
int nelts;
}
*Cps,*Cp;
static struct local_elts_chimie
{
float Mmin; /* minimal mass */
float Step; /* log of mass step */
float Array[MAXDATASIZE]; /* data */
float Metal[MAXDATASIZE]; /* data */
float MSNIa;
float SolarMassAbundance;
char label[72];
}
**Elts,*Elt;
/*! This function allocate all varaiables related to the chemistry
*/
void allocate_chimie()
{
int j;
/* allocate Cp */
Cps = malloc((All.ChimieNumberOfParameterFiles) * sizeof(struct local_params_chimie));
/* allocate elts */
Elts = malloc((All.ChimieNumberOfParameterFiles) * sizeof(struct local_elts_chimie));
//for (j=0;j<All.ChimieNumberOfParameterFiles;j++)
// Elt[j] = malloc((nelts) * sizeof(struct local_elts_chimie));
MassFracSNIIs = malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
MassFracSNIas = malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
MassFracDYINs = malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
EjectedMasss = malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
SingleMassFracSNIIs= malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
SingleMassFracSNIas= malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
SingleMassFracDYINs= malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
SingleEjectedMasss = malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
}
/*! Set the chemistry table to use
*/
void set_table(int i)
{
if (i>=All.ChimieNumberOfParameterFiles)
{
printf("\n set_table : i>= %d !!!\n\n",All.ChimieNumberOfParameterFiles);
endrun(88809);
}
else
{
Cp = &Cps[i];
Elt = Elts[i];
MassFracSNII = MassFracSNIIs[i]; /* all this is useless, no ?*/
MassFracSNIa = MassFracSNIas[i];
MassFracDYIN = MassFracDYINs[i];
SingleMassFracSNII = SingleMassFracSNIIs[i];
SingleMassFracSNIa = SingleMassFracSNIas[i];
SingleMassFracDYIN = SingleMassFracDYINs[i];
EjectedMass = EjectedMasss[i];
SingleEjectedMass = SingleEjectedMasss[i];
}
}
/*! Read the chemistry table (hdf5 format)
*/
+#ifdef CHIMIE_FROM_HDF5
void read_chimie_h5(char * filename,int it)
{
hid_t table;
herr_t status;
struct ChemistryHeaderStruct ChemistryHeader;
struct ChemistryDataAttributesStruct ChemistryBasicParameters;
struct ChemistryLiveTimesStruct ChemistryLiveTimes;
struct ChemistryIMFStruct ChemistryIMF;
struct ChemistrySNIaStruct ChemistrySNIa;
struct ChemistrySNIIStruct ChemistrySNII;
table = H5Fopen(filename, H5F_ACC_RDONLY, H5P_DEFAULT);
readHeader(table,&ChemistryHeader);
if (verbose && ThisTask==0)
printHeader(ChemistryHeader);
readDataAttributes(table,&ChemistryBasicParameters);
if (verbose && ThisTask==0)
printDataAttributes(ChemistryBasicParameters);
readLiveTimes(table,&ChemistryLiveTimes);
if (verbose && ThisTask==0)
printLiveTimes(ChemistryLiveTimes);
readIMF(table,&ChemistryIMF);
if (verbose && ThisTask==0)
printIMF(ChemistryIMF);
readSNII(table,&ChemistrySNII);
if (verbose && ThisTask==0)
printSNII(ChemistrySNII);
readSNIa(table,&ChemistrySNIa);
if (verbose && ThisTask==0)
printSNIa(ChemistrySNIa);
status = H5Fclose(table);
/* convert to chimie struct */
int i,j;
/* Livetimes */
for(i=0;i<3;i++)
for(j=0;j<3;j++)
Cps[it].coeff_z[i][j] = ChemistryLiveTimes.coeff_z[i][j];
/* IMF Parameters */
Cps[it].Mmin = ChemistryIMF.Mmin;
Cps[it].Mmax = ChemistryIMF.Mmax;
Cps[it].n = ChemistryIMF.n;
if (Cps[it].n>0)
for (i=0;i<Cps[it].n;i++)
Cps[it].ms[i] = ChemistryIMF.ms[i];
for (i=0;i<Cps[it].n+1;i++)
Cps[it].as[i]= ChemistryIMF.as[i];
/* Parameters for SNII Rates */
Cps[it].SNII_Mmin = ChemistrySNII.Mmin;
/* Parameters for SNIa Rates */
Cps[it].SNIa_Mpl = ChemistrySNIa.Mpl;
Cps[it].SNIa_Mpu = ChemistrySNIa.Mpu;
Cps[it].SNIa_a = ChemistrySNIa.a;
Cps[it].SNIa_Mdl1 = ChemistrySNIa.Mdl1;
Cps[it].SNIa_Mdu1 = ChemistrySNIa.Mdu1;
Cps[it].SNIa_bb1 = ChemistrySNIa.bb1;
Cps[it].SNIa_Mdl2 = ChemistrySNIa.Mdl2;
Cps[it].SNIa_Mdu2 = ChemistrySNIa.Mdu2;
Cps[it].SNIa_bb2 = ChemistrySNIa.bb2;
/* Metal injection SNII */
Cps[it].npts = ChemistrySNII.npts;
Cps[it].nelts = ChemistryBasicParameters.nelts;
/* allocate memory for elts */
if (Cps[it].npts<=MAXDATASIZE)
{
Elts[it] = malloc((Cps[it].nelts+2) * sizeof(struct local_elts_chimie));
}
else
{
printf("\n Cps[it].npts = %d > MAXDATASIZE = %d !!!\n\n",Cps[it].npts,MAXDATASIZE);
endrun(88800);
}
/* allocate memory */
MassFracSNIIs[it] = malloc((Cps[it].nelts+2) * sizeof(double)); /* really needed ? */
MassFracSNIas[it] = malloc((Cps[it].nelts+2) * sizeof(double));
MassFracDYINs[it] = malloc((Cps[it].nelts+2) * sizeof(double));
EjectedMasss[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleMassFracSNIIs[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleMassFracSNIas[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleMassFracDYINs[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleEjectedMasss[it] = malloc((Cps[it].nelts+2) * sizeof(double));
/* injected metals */
for (i=0;i<Cps[it].nelts+2;i++)
{
//printf("%s\n",ChemistrySNII.table[i].label);
strcpy(Elts[it][i].label,ChemistrySNII.table[i].label);
Elts[it][i].Mmin = ChemistrySNII.table[i].min;
Elts[it][i].Step = ChemistrySNII.table[i].step;
for (j=0;j<Cps[it].npts;j++)
Elts[it][i].Metal[j] = ChemistrySNII.table[i].data[j];
}
/* integral of injected metals */
for (i=0;i<Cps[it].nelts+2;i++)
{
//printf("%s\n",ChemistrySNII.table[i+Cps[it].nelts+2].label);
for (j=0;j<Cps[it].npts;j++)
Elts[it][i].Array[j] = ChemistrySNII.table[i+Cps[it].nelts+2].data[j];
}
/* Metal injection SNIa */
Cps[it].Mco = ChemistryBasicParameters.MeanWDMass;
/* for each elt in */
for (i=0;i<Cps[it].nelts+2;i++)
{
if (strcmp(Elts[it][i].label,ChemistrySNIa.Metals.elts[i])!=0)
{
printf("%s != %s\n",Elts[it][i].label,ChemistrySNIa.Metals.elts[i]);
endrun(888012);
}
Elts[it][i].MSNIa = ChemistrySNIa.Metals.data[i];
}
/* Solar Mass Abundances */
for (i=0;i<Cps[it].nelts;i++)
{
if (strcmp(Elts[it][i+2].label,ChemistryBasicParameters.elts[i])!=0)
{
printf("%s != %s\n",Elts[it][i+2].label,ChemistryBasicParameters.elts[i]);
endrun(888013);
}
Elts[it][i+2].SolarMassAbundance = ChemistryBasicParameters.SolarMassAbundances[i];
}
if (verbose && ThisTask==0)
info(it);
}
-
+#endif // CHIMIE_FROM_HDF5
/*! Read the chemistry table
*/
void read_chimie(char * filename,int it)
{
char line[72],buffer[72];
FILE *fd;
int i,j;
if (verbose && ThisTask==0)
printf("reading %s ...\n",filename);
fd = fopen(filename,"r");
/* read Lifetime */
/* #### Livetime #### */
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%g %g %g\n", &Cps[it].coeff_z[0][0],&Cps[it].coeff_z[0][1],&Cps[it].coeff_z[0][2]);
fscanf(fd, "%g %g %g\n", &Cps[it].coeff_z[1][0],&Cps[it].coeff_z[1][1],&Cps[it].coeff_z[1][2]);
fscanf(fd, "%g %g %g\n", &Cps[it].coeff_z[2][0],&Cps[it].coeff_z[2][1],&Cps[it].coeff_z[2][2]);
fgets(line, sizeof(line), fd);
/* IMF Parameters */
/* #### IMF Parameters #### */
fgets(line, sizeof(line), fd);
fscanf(fd, "%g %g\n",&Cps[it].Mmin,&Cps[it].Mmax);
fscanf(fd, "%d\n",&Cps[it].n);
if (Cps[it].n>0)
for (i=0;i<Cps[it].n;i++)
fscanf(fd,"%g",&Cps[it].ms[i]);
else
fgets(line, sizeof(line), fd);
for (i=0;i<Cps[it].n+1;i++)
fscanf(fd,"%g",&Cps[it].as[i]);
fgets(line, sizeof(line), fd);
/* Parameters for SNII Rates */
/* #### SNII Parameters #### */
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%g \n",&Cps[it].SNII_Mmin);
fgets(line, sizeof(line), fd);
/* Parameters for SNIa Rates */
/* #### SNIa Parameters #### */
fgets(line, sizeof(line), fd);
fscanf(fd, "%g %g\n",&Cps[it].SNIa_Mpl,&Cps[it].SNIa_Mpu);
fscanf(fd, "%g \n",&Cps[it].SNIa_a);
fscanf(fd, "%g %g %g\n",&Cps[it].SNIa_Mdl1,&Cps[it].SNIa_Mdu1,&Cps[it].SNIa_bb1);
fscanf(fd, "%g %g %g\n",&Cps[it].SNIa_Mdl2,&Cps[it].SNIa_Mdu2,&Cps[it].SNIa_bb2);
fgets(line, sizeof(line), fd);
/* Metal injection SNII */
/* #### Metal Parameters ####*/
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%d %d\n",&Cps[it].npts,&Cps[it].nelts);
/* allocate memory for elts */
if (Cps[it].npts<=MAXDATASIZE)
{
Elts[it] = malloc((Cps[it].nelts+2) * sizeof(struct local_elts_chimie));
}
else
{
printf("\n Cps[it].npts = %d > MAXDATASIZE = %d !!!\n\n",Cps[it].npts,MAXDATASIZE);
endrun(88800);
}
/* allocate memory */
MassFracSNIIs[it] = malloc((Cps[it].nelts+2) * sizeof(double)); /* really needed ? */
MassFracSNIas[it] = malloc((Cps[it].nelts+2) * sizeof(double));
MassFracDYINs[it] = malloc((Cps[it].nelts+2) * sizeof(double));
EjectedMasss[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleMassFracSNIIs[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleMassFracSNIas[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleMassFracDYINs[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleEjectedMasss[it] = malloc((Cps[it].nelts+2) * sizeof(double));
/* injected metals */
for (i=0;i<Cps[it].nelts+2;i++)
{
fgets(line, sizeof(line), fd);
/* strip trailing line */
for (j = 0; j < strlen(line); j++)
if ( line[j] == '\n' || line[j] == '\r' )
line[j] = '\0';
/* copy labels */
strcpy(Elts[it][i].label,line);
/* probleme */
strcpy(buffer,&Elts[it][i].label[2]);
strcpy(Elts[it][i].label,buffer);
fgets(line, sizeof(line), fd);
fscanf(fd, "%g %g\n",&Elts[it][i].Mmin,&Elts[it][i].Step);
for (j=0;j<Cps[it].npts;j++)
{
fscanf(fd, "%g\n",&Elts[it][i].Metal[j]);
}
}
/* integrals of injected metals */
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%d %d\n",&Cps[it].npts,&Cps[it].nelts);
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
/* integrals of injected metals */
for (i=0;i<Cps[it].nelts+2;i++)
{
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%g %g\n",&Elts[it][i].Mmin,&Elts[it][i].Step);
for (j=0;j<Cps[it].npts;j++)
{
fscanf(fd, "%g\n",&Elts[it][i].Array[j]);
}
}
/* Metal injection SNIa */
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%g\n",&Cps[it].Mco);
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
int nelts;
char label[72];
fscanf(fd, "%d\n",&nelts);
/* check */
if (nelts != Cps[it].nelts)
{
printf("\nThe number of elements in SNII (=%d) is not identical to the on of SNIa (=%d) !!!\n\n",Cps[it].nelts,nelts);
printf("This is not supported by the current implementation !!!\n");
endrun(88805);
}
for (i=0;i<Cps[it].nelts+2;i++)
{
fgets(line, sizeof(line), fd); /* label */
/* check label */
/* strip trailing line */
for (j = 0; j < strlen(line); j++)
if ( line[j] == '\n' || line[j] == '\r' )
line[j] = '\0';
strcpy(label,line);
strcpy(buffer,&label[2]);
strcpy(label,buffer);
if (strcmp(label,Elts[it][i].label)!=0)
{
printf("\nLabel of SNII element %d (=%s) is different from the SNIa one (=%s) !!!\n\n",i,Elts[it][i].label,label);
endrun(88806);
}
//fgets(line, sizeof(line), fd);
fscanf(fd, "%g\n",&Elts[it][i].MSNIa);
}
/* Solar Mass Abundances */
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%d\n",&nelts);
/* check */
if (nelts != Cps[it].nelts)
{
printf("\nThe number of elements in SolarMassAbundances (=%d) is not identical to the on of SNIa (=%d) !!!\n\n",Cps[it].nelts,nelts);
printf("This is not supported by the current implementation !!!\n");
endrun(88805);
}
for (i=0;i<Cps[it].nelts;i++)
{
fgets(line, sizeof(line), fd); /* label */
/* check label */
/* strip trailing line */
for (j = 0; j < strlen(line); j++)
if ( line[j] == '\n' || line[j] == '\r' )
line[j] = '\0';
strcpy(label,line);
strcpy(buffer,&label[2]);
strcpy(label,buffer);
if (strcmp(label,Elts[it][i+2].label)!=0)
{
printf("\nLabel of SNII element %d (=%s) is different from the SNIa one (=%s) !!!\n\n",i,Elts[it][i+2].label,label);
endrun(88806);
}
//fgets(line, sizeof(line), fd);
fscanf(fd, "%g\n",&Elts[it][i+2].SolarMassAbundance);
}
fclose(fd);
if (verbose && ThisTask==0)
info(it);
}
/*! This function returns the mass fraction of a star of mass m
* using the current IMF
*/
static double get_imf(double m)
{
int i;
int n;
n = Cp->n;
/* convert m in msol */
m = m*All.UnitMass_in_g / SOLAR_MASS;
if (n==0)
return Cp->bs[0]* pow(m,Cp->as[0]);
else
{
for (i=0;i<n;i++)
if (m < Cp->ms[i])
return Cp->bs[i]* pow(m,Cp->as[i]);
return Cp->bs[n]* pow(m,Cp->as[n]);
}
}
/*! This function returns the mass fraction between m1 and m2
* per mass unit, using the current IMF
*/
static double get_imf_M(double m1, double m2)
{
int i;
int n;
double p;
double integral=0;
double mmin,mmax;
n = Cp->n;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
if (n==0)
{
p = Cp->as[0]+1;
integral = (Cp->bs[0]/p) * ( pow(m2,p) - pow(m1,p) );
//printf("--> %g %g %g %g int=%g\n",m1,m2,pow(m2,p), pow(m1,p),integral);
}
else
{
integral = 0;
/* first */
if (m1<Cp->ms[0])
{
mmin = m1;
mmax = dmin(Cp->ms[0],m2);
p = Cp->as[0] + 1;
integral += (Cp->bs[0]/p) * ( pow(mmax,p) - pow(mmin,p) );
}
/* last */
if (m2>Cp->ms[n-1])
{
mmin = dmax(Cp->ms[n-1],m1);
mmax = m2;
p = Cp->as[n] + 1;
integral += (Cp->bs[n]/p) * ( pow(mmax,p) - pow(mmin,p) );
}
/* loop over other segments */
for (i=0;i<n-1;i++)
{
mmin = dmax(Cp->ms[i ],m1);
mmax = dmin(Cp->ms[i+1],m2);
if (mmin<mmax)
{
p = Cp->as[i+1] + 1;
integral += (Cp->bs[i+1]/p) * ( pow(mmax,p) - pow(mmin,p) );
}
}
}
/* convert into mass unit mass unit */
/* integral = integral * SOLAR_MASS/All.UnitMass_in_g;*/
return integral;
}
/*! This function returns the number fraction between m1 and m2
* per mass unit, using the current IMF
*/
static double get_imf_N(double m1, double m2)
{
int i;
int n;
double p;
double integral=0;
double mmin,mmax;
n = Cp->n;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
if (n==0)
{
p = Cp->as[0];
integral = (Cp->bs[0]/p) * ( pow(m2,p) - pow(m1,p) );
}
else
{
integral = 0;
/* first */
if (m1<Cp->ms[0])
{
mmin = m1;
mmax = dmin(Cp->ms[0],m2);
p = Cp->as[0];
integral += (Cp->bs[0]/p) * ( pow(mmax,p) - pow(mmin,p) );
}
/* last */
if (m2>Cp->ms[n-1])
{
mmin = dmax(Cp->ms[n-1],m1);
mmax = m2;
p = Cp->as[n];
integral += (Cp->bs[n]/p) * ( pow(mmax,p) - pow(mmin,p) );
}
/* loop over other segments */
for (i=0;i<n-1;i++)
{
mmin = dmax(Cp->ms[i ],m1);
mmax = dmin(Cp->ms[i+1],m2);
if (mmin<mmax)
{
p = Cp->as[i+1];
integral += (Cp->bs[i+1]/p) * ( pow(mmax,p) - pow(mmin,p) );
}
}
}
/* convert into mass unit mass unit */
integral = integral / SOLAR_MASS*All.UnitMass_in_g;
return integral;
}
/*! Sample the imf using monte carlo approach
*/
static double imf_sampling()
{
int i;
int n;
double m;
double f;
double pmin,pmax;
n = Cp->n;
/* init random */
//srandom(irand);
f = (double)random()/(double)RAND_MAX;
if (n==0)
{
pmin = pow(Cp->Mmin,Cp->as[0]);
pmax = pow(Cp->Mmax,Cp->as[0]);
m = pow(f*(pmax - pmin) + pmin ,1./Cp->as[0]);
return m* SOLAR_MASS/All.UnitMass_in_g;
}
else
{
if (f<Cp->fs[0])
{
pmin = pow(Cp->Mmin ,Cp->as[0]);
m = pow(Cp->imf_Ntot*Cp->as[0]/Cp->bs[0]* (f-0) + pmin ,1./Cp->as[0]);
return m* SOLAR_MASS/All.UnitMass_in_g;
}
for (i=0;i<n-1;i++)
{
if (f<Cp->fs[i+1])
{
pmin = pow(Cp->ms[i] ,Cp->as[i+1]);
m = pow(Cp->imf_Ntot*Cp->as[i+1]/Cp->bs[i+1]* (f-Cp->fs[i]) + pmin ,1./Cp->as[i+1]);
return m* SOLAR_MASS/All.UnitMass_in_g;
}
}
/* last portion */
pmin = pow(Cp->ms[n-1] ,Cp->as[n]);
m = pow(Cp->imf_Ntot*Cp->as[n]/Cp->bs[n]* (f-Cp->fs[n-1]) + pmin ,1./Cp->as[n]);
return m* SOLAR_MASS/All.UnitMass_in_g;
}
}
/*! This function initializes the imf parameters
defined in the chemistry file
*/
void init_imf(void)
{
float integral = 0;
float p;
float cte;
int i,n;
double mmin,mmax;
n = Cp->n;
if (n==0)
{
p = Cp->as[0]+1;
integral = integral + ( pow(Cp->Mmax,p)-pow(Cp->Mmin,p))/(p) ;
Cp->bs[0] = 1./integral ;
}
else
{
cte = 1.0;
if (Cp->Mmin < Cp->ms[0])
{
p = Cp->as[0]+1;
integral = integral + (pow(Cp->ms[0],p) - pow(Cp->Mmin,p))/p;
}
for (i=0;i<n-1;i++)
{
cte = cte* pow( Cp->ms[i],( Cp->as[i] - Cp->as[i+1] ));
p = Cp->as[i+1]+1;
integral = integral + cte*(pow(Cp->ms[i+1],p) - pow(Cp->ms[i],p))/p;
}
if (Cp->Mmax > Cp->ms[-1])
{
cte = cte* pow( Cp->ms[n-1] , ( Cp->as[n-1] - Cp->as[n] ) );
p = Cp->as[n]+1;
integral = integral + cte*(pow(Cp->Mmax,p) - pow(Cp->ms[n-1],p))/p;
}
/* compute all b */
Cp->bs[0] = 1./integral;
for (i=0;i<n;i++)
{
Cp->bs[i+1] = Cp->bs[i] * pow( Cp->ms[i],( Cp->as[i] - Cp->as[i+1] ));
}
}
if (verbose && ThisTask==0)
{
printf("-- bs -- \n");
for (i=0;i<n+1;i++)
printf("%g ",Cp->bs[i]);
printf("\n");
}
mmin = Cp->Mmin / All.UnitMass_in_g * SOLAR_MASS; /* in mass unit */
mmax = Cp->Mmax / All.UnitMass_in_g * SOLAR_MASS; /* in mass unit */
Cp->imf_Ntot = get_imf_N(mmin,mmax) *SOLAR_MASS/All.UnitMass_in_g;
/* init fs : mass fraction at ms */
if (n>0)
{
for (i=0;i<n+1;i++)
{
mmax = Cp->ms[i] / All.UnitMass_in_g * SOLAR_MASS; /* in mass unit */
Cp->fs[i] = SOLAR_MASS/All.UnitMass_in_g*get_imf_N(mmin,mmax)/Cp->imf_Ntot;
}
}
}
/*! This function initializes the chemistry parameters
*/
void init_chimie(void)
{
int i,nf;
double u_lt;
double UnitLength_in_kpc;
double UnitMass_in_Msol;
char filename[500];
char ext[100];
/* check some flags */
#ifndef COSMICTIME
if (All.ComovingIntegrationOn)
{
if(ThisTask == 0)
printf("Code wasn't compiled with COSMICTIME support enabled!\n");
endrun(-88800);
}
#endif
UnitLength_in_kpc = All.UnitLength_in_cm / KPC_IN_CM;
UnitMass_in_Msol = All.UnitMass_in_g / SOLAR_MASS;
//u_lt = -log10( 4.7287e11*sqrt(pow(UnitLength_in_kpc,3)/UnitMass_in_Msol));
/*Sat Dec 25 23:27:10 CET 2010 */
u_lt = -log10(All.UnitTime_in_Megayears*1e6);
allocate_chimie();
for (nf=0;nf<All.ChimieNumberOfParameterFiles;nf++)
{
if (All.ChimieNumberOfParameterFiles==1)
sprintf(filename,"%s",All.ChimieParameterFile);
else
sprintf(filename,"%s.%d",All.ChimieParameterFile,nf);
/* check the file extension and read */
+#ifdef CHIMIE_FROM_HDF5
if ( (strcmp("h5",get_filename_ext(filename))==0) || (strcmp("hdf5",get_filename_ext(filename))==0))
read_chimie_h5(filename,nf);
else
+#endif //CHIMIE_FROM_HDF5
read_chimie(filename,nf);
/* set the table */
set_table(nf);
/* Conversion into program time unit */
Cp->coeff_z[2][2] = Cp->coeff_z[2][2] + u_lt;
for (i=0;i<3;i++)
Cp->coeff_z[1][i] = Cp->coeff_z[1][i]/2.0;
/* init imf parameters */
init_imf();
/* init SNII parameters */
if (Cp->n==0)
{
//Cp->SNII_cte[0] = Cp->bs[0]/Cp->as[0];
Cp->SNII_cte = Cp->bs[0]/Cp->as[0];
Cp->SNII_a = Cp->as[0];
}
else
{
//for (i=0;i<Cp->n+1;i++) /* if multiple power law in the SNII mass range */
// Cp->SNII_cte[i] = Cp->bs[i]/Cp->as[i];
Cp->SNII_cte = Cp->bs[Cp->n]/Cp->as[Cp->n];
Cp->SNII_a = Cp->as[Cp->n];
}
/* init SNIa parameters */
Cp->SNIa_a1 = Cp->SNIa_a;
Cp->SNIa_b1 = (Cp->SNIa_a1+1)/(pow(Cp->SNIa_Mdu1,Cp->SNIa_a1+1)-pow(Cp->SNIa_Mdl1,Cp->SNIa_a1+1));
Cp->SNIa_cte1 = Cp->SNIa_b1/Cp->SNIa_a1;
Cp->SNIa_a2 = Cp->SNIa_a;
Cp->SNIa_b2 = (Cp->SNIa_a2+1)/(pow(Cp->SNIa_Mdu2,Cp->SNIa_a2+1)-pow(Cp->SNIa_Mdl2,Cp->SNIa_a2+1));
Cp->SNIa_cte2 = Cp->SNIa_b2/Cp->SNIa_a2;
/* init SNII parameters */
if (Cp->n==0)
{
Cp->SNIa_cte = Cp->bs[0]/Cp->as[0];
Cp->SNIa_a = Cp->as[0];
}
else
{
Cp->SNIa_cte = Cp->bs[Cp->n]/Cp->as[Cp->n];
Cp->SNIa_a = Cp->as[Cp->n];
}
Cp->SNII_Mmax = Cp->Mmax;
for (i=0;i<Cp->nelts+2;i++)
Elt[i].Mmin = log10(Elt[i].Mmin);
/* output info */
if (verbose && ThisTask==0)
{
printf("-- SNII_cte -- \n");
//for (i=0;i<Cp->n+1;i++)
// printf("%g ",Cp->SNII_cte[i]);
printf("%g ",Cp->SNII_cte);
printf("\n");
}
/* check that the masses are higher than the last IMF elbow */
if (Cp->n>0)
{
if (Cp->SNIa_Mpl < Cp->ms[Cp->n-1])
{
printf("\nSNIa_Mpl = %g < ms[n-1] = %g !!!\n\n",Cp->SNIa_Mpl,Cp->ms[Cp->n-1]);
printf("This is not supported by the current implementation !!!\n");
endrun(88801);
}
if (Cp->SNIa_Mpu < Cp->ms[Cp->n-1])
{
printf("\nSNIa_Mpu = %g < ms[n-1] = %g !!!\n\n",Cp->SNIa_Mpu,Cp->ms[Cp->n-1]);
printf("This is not supported by the current implementation !!!\n");
endrun(88802);
}
if (Cp->SNII_Mmin < Cp->ms[Cp->n-1])
{
printf("\nSNII_Mmin = %g < ms[n-1] = %g !!!\n\n",Cp->SNII_Mmin,Cp->ms[Cp->n-1]);
printf("This is not supported by the current implementation !!!\n");
endrun(88803);
}
if (Cp->SNII_Mmax < Cp->ms[Cp->n-1])
{
printf("\nSNII_Mmax = %g < ms[n-1] = %g !!!\n\n",Cp->SNII_Mmax,Cp->ms[Cp->n-1]);
printf("This is not supported by the current implementation !!!\n");
endrun(88804);
}
}
}
}
/*! This function performe simple checks
* to validate the chemistry initialization
*/
void check_chimie(void)
{
int i;
printf("(Taks=%d) Number of elts : %d\n",ThisTask,Cp->nelts);
for(i=2;i<Cp->nelts+2;i++)
printf("%s ",&Elt[i].label);
printf("\n");
/* check number of elements */
if (NELEMENTS != Cp->nelts)
{
printf("(Taks=%d) NELEMENTS (=%d) != Cp->nelts (=%d) : please check !!!\n\n",ThisTask,NELEMENTS,Cp->nelts);
endrun(88807);
}
/* check that iron is the first element */
if ((strcmp("Fe",Elt[2].label))!=0)
{
printf("(Taks=%d) first element (=%s) is not %s !!!\n\n",ThisTask,Elt[2].label,FIRST_ELEMENT);
endrun(88808);
}
}
/*! This function print some info on the chimie parameters
*/
void info(int it)
{
int i,j;
printf("\nTable %d\n\n",it);
printf("%g %g %g\n", Cps[it].coeff_z[0][0],Cps[it].coeff_z[0][1],Cps[it].coeff_z[0][2]);
printf("%g %g %g\n", Cps[it].coeff_z[1][0],Cps[it].coeff_z[1][1],Cps[it].coeff_z[1][2]);
printf("%g %g %g\n", Cps[it].coeff_z[2][0],Cps[it].coeff_z[2][1],Cps[it].coeff_z[2][2]);
printf("\n");
printf("\nIMF\n");
printf("%g %g\n",Cps[it].Mmin,Cps[it].Mmax);
printf("%d\n",Cps[it].n);
for (i=0;i<Cps[it].n;i++)
printf( "ms : %g ",Cps[it].ms[i]);
printf("\n");
for (i=0;i<Cps[it].n+1;i++)
printf( "as : %g ",Cps[it].as[i]);
printf("\n");
printf("\nRate SNII\n");
printf("%g ",Cps[it].SNII_Mmin);
printf("\n");
printf("\nRate SNIa\n");
printf("%g %g\n",Cps[it].SNIa_Mpl,Cps[it].SNIa_Mpu);
printf("%g \n",Cps[it].SNIa_a);
printf("%g %g %g\n",Cps[it].SNIa_Mdl1,Cps[it].SNIa_Mdu1,Cps[it].SNIa_b1);
printf("%g %g %g\n",Cps[it].SNIa_Mdl2,Cps[it].SNIa_Mdu2,Cps[it].SNIa_b2);
printf("\n");
for (i=0;i<Cps[it].nelts+2;i++)
{
printf("> %g %g\n",Elts[it][i].Mmin,Elts[it][i].Step);
for (j=0;j<Cps[it].npts;j++)
{
printf(" %g\n",Elts[it][i].Array[j]);
}
}
printf("\n");
printf("%g\n",Cps[it].Mco);
for (i=0;i<Cps[it].nelts+2;i++)
printf("%g\n",Elts[it][i].MSNIa);
printf("\n");
}
/*! Return the number of elements considered
*/
int get_nelts()
{
return Cp->nelts;
}
/*! Return the solar mass abundance of elt i
*/
float get_SolarMassAbundance(i)
{
return Elt[i+2].SolarMassAbundance;
}
/*! Return the label of element i
*/
char* get_Element(i)
{
return Elt[i+2].label;
}
/*! Return the lifetime of a star of mass m and metallicity z
*/
double star_lifetime(double z,double m)
{
/* z is the mass fraction of metals, ie, the metallicity */
/* m is the stellar mass in code unit */
/* Return t in code time unit */
int i;
double a,b,c;
double coeff[3];
double logm,twologm,logm2,time;
/* convert m in msol */
m = m*All.UnitMass_in_g / SOLAR_MASS;
for (i=0;i<3;i++)
coeff[i] = ( Cp->coeff_z[i][0]*z+Cp->coeff_z[i][1] )*z+Cp->coeff_z[i][2];
a = coeff[0];
b = coeff[1];
c = coeff[2];
logm = log10(m);
twologm = 2.0 * logm;
logm2 = logm*logm;
time = pow(10.,(a*logm2+b*twologm+c));
return time;
}
/*! Return the mass of a star having a livetime t and a metallicity z
*/
double star_mass_from_age(double z,double t)
{
/* z is the mass fraction of metals, ie, the metallicity */
/* t is the star life time */
/* return the stellar mass (in code unit) that has a lifetime equal to t */
/* this is the inverse of star_lifetime */
int i;
double a,b,c;
double coeff[3];
double m;
for (i=0;i<3;i++)
coeff[i] = ( Cp->coeff_z[i][0]*z+Cp->coeff_z[i][1] )*z+Cp->coeff_z[i][2];
a = coeff[0];
b = coeff[1];
c = coeff[2];
m = -(b+sqrt(b*b-a*(c-log10(t))))/a;
m = pow(10,m); /* here, m is in solar mass */
m = m*SOLAR_MASS/All.UnitMass_in_g; /* Msol to mass unit */
return m;
}
/****************************************************************************************/
/*
/* Supernova rate : number of supernova per mass unit
/*
/****************************************************************************************/
double DYIN_rate(double m1,double m2)
{
/*
compute the number of stars between m1 and m2
masses in code unit
*/
double RDYIN;
double md,mu;
/* find md, mu */
md = dmin(m1,Cp->SNII_Mmin/All.UnitMass_in_g * SOLAR_MASS);
mu = dmin(m2,Cp->SNII_Mmin/All.UnitMass_in_g * SOLAR_MASS);
if (mu<=md) /* no dying stars in that mass range */
return 0.0;
RDYIN = get_imf_N(md,mu);
return RDYIN;
}
double SNII_rate(double m1,double m2)
{
/*
compute the number of SNII between m1 and m2
masses in code unit
*/
double RSNII;
double md,mu;
RSNII = 0.0;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
/* (1) find md, mu */
md = dmax(m1,Cp->SNII_Mmin);
mu = dmin(m2,Cp->SNII_Mmax);
if (mu<=md) /* no SNII in that mass range */
return 0.0;
/* !!!!! here we should use get_imf_N !!!! */
/* to ensure the full imf */
RSNII = Cp->SNII_cte * (pow(mu,Cp->SNII_a)-pow(md,Cp->SNII_a)); /* number per solar mass */
/* convert in number per solar mass to number per mass unit */
RSNII = RSNII *All.UnitMass_in_g / SOLAR_MASS;
return RSNII;
}
double SNIa_rate(double m1,double m2)
{
/*
compute the number of SNIa between m1 and m2
masses in code unit
*/
double RSNIa;
double md,mu;
RSNIa = 0.0;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
/* RG contribution */
md = dmax(m1,Cp->SNIa_Mdl1);
mu = dmin(m2,Cp->SNIa_Mdu1);
if (md<mu)
RSNIa = RSNIa + Cp->SNIa_bb1 * Cp->SNIa_cte1 * (pow(mu,Cp->SNIa_a1)-pow(md,Cp->SNIa_a1));
/* MS contribution */
md = dmax(m1,Cp->SNIa_Mdl2);
mu = dmin(m2,Cp->SNIa_Mdu2);
if (md<mu)
RSNIa = RSNIa + Cp->SNIa_bb2 * Cp->SNIa_cte2 * (pow(mu,Cp->SNIa_a2)-pow(md,Cp->SNIa_a2));
/* WD contribution */
md = dmax(m1,Cp->SNIa_Mpl); /* select stars that have finished their life -> WD */
mu = Cp->SNIa_Mpu; /* no upper bond */
if (mu<=md) /* no SNIa in that mass range */
return 0.0;
RSNIa = RSNIa * Cp->SNIa_cte * (pow(mu,Cp->SNIa_a)-pow(md,Cp->SNIa_a)); /* number per solar mass */
/* convert in number per solar mass to number per mass unit */
RSNIa = RSNIa *All.UnitMass_in_g / SOLAR_MASS;
return RSNIa;
}
void DYIN_mass_ejection(double m1,double m2)
{
/*
Compute the mass fraction and yields of dying stars with masses between m1 and m2.
Store the result in the global variable`` MassFracDYIN``::
MassFracDYIN[0] = total gas
MassFracDYIN[1] = helium core (i.e. alpha(m))
MassFracDYIN[i] = frac mass elt i.
*/
double l1,l2;
int i1,i2,i1p,i2p,j;
double f1,f2;
double v1,v2;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
/* this was not in Poirier... */
m1 = dmin(m1,Cp->SNII_Mmin);
m2 = dmin(m2,Cp->SNII_Mmin);
if (m1>=m2)
{
for (j=0;j<Cp->nelts+2;j++)
MassFracDYIN[j] = 0;
return;
}
j = 0;
l1 = ( log10(m1) - Elt[j].Mmin) / Elt[j].Step ;
l2 = ( log10(m2) - Elt[j].Mmin) / Elt[j].Step ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<0) i1=0;
if (i2<0) i2=0;
/* --------- TOTAL GAS ---------- */
j = 0;
v1 = f1 * ( Elt[j].Array[i1p] - Elt[j].Array[i1] ) + Elt[j].Array[i1];
v2 = f2 * ( Elt[j].Array[i2p] - Elt[j].Array[i2] ) + Elt[j].Array[i2];
MassFracDYIN[j] = v2-v1;
/* --------- He core therm ---------- */
j = 1;
v1 = f1 * ( Elt[j].Array[i1p] - Elt[j].Array[i1] ) + Elt[j].Array[i1];
v2 = f2 * ( Elt[j].Array[i2p] - Elt[j].Array[i2] ) + Elt[j].Array[i2];
MassFracDYIN[j] = v2-v1;
/* ---------------------------- */
/* --------- Metals ---------- */
/* ---------------------------- */
j = 2;
l1 = ( log10(m1) - Elt[j].Mmin) / Elt[j].Step ;
l2 = ( log10(m2) - Elt[j].Mmin) / Elt[j].Step ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<0) i1=0;
if (i2<0) i2=0;
for (j=2;j<Cp->nelts+2;j++)
{
v1 = f1 * ( Elt[j].Array[i1p] - Elt[j].Array[i1] ) + Elt[j].Array[i1];
v2 = f2 * ( Elt[j].Array[i2p] - Elt[j].Array[i2] ) + Elt[j].Array[i2];
MassFracDYIN[j] = v2-v1;
}
}
void DYIN_single_mass_ejection(double m1)
{
/*
Compute the mass fraction and yields of a dying stars of masse m1.
Store the result in the global variable ``SingleMassFracDYIN``::
SingleMassFracDYIN[0] = total gas
SingleMassFracDYIN[1] = helium core (i.e. alpha(m))
SingleMassFracDYIN[i] = frac mass elt i.
*/
double l1;
int i1,i1p,j;
double f1;
double v1;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
/* this was not in Poirier... */
if ( (m1>=Cp->SNII_Mmin) )
{
for (j=0;j<Cp->nelts+2;j++)
SingleMassFracDYIN[j] = 0;
return;
}
j = 0;
l1 = ( log10(m1) - Elt[j].Mmin) / Elt[j].Step ;
if (l1 < 0.0) l1 = 0.0;
i1 = (int)l1;
i1p = i1 + 1;
f1 = l1 - i1;
/* check (yr) */
if (i1<0) i1=0;
/* --------- TOTAL GAS ---------- */
j = 0;
v1 = f1 * ( Elt[j].Metal[i1p] - Elt[j].Metal[i1] ) + Elt[j].Metal[i1];
SingleMassFracDYIN[j] = v1;
/* --------- He core therm ---------- */
j = 1;
v1 = f1 * ( Elt[j].Metal[i1p] - Elt[j].Metal[i1] ) + Elt[j].Metal[i1];
SingleMassFracDYIN[j] = v1;
/* ---------------------------- */
/* --------- Metals ---------- */
/* ---------------------------- */
j = 2;
l1 = ( log10(m1) - Elt[j].Mmin) / Elt[j].Step ;
if (l1 < 0.0) l1 = 0.0;
i1 = (int)l1;
i1p = i1 + 1;
f1 = l1 - i1;
/* check (yr) */
if (i1<0) i1=0;
for (j=2;j<Cp->nelts+2;j++)
{
v1 = f1 * ( Elt[j].Metal[i1p] - Elt[j].Metal[i1] ) + Elt[j].Metal[i1];
SingleMassFracDYIN[j] = v1;
}
}
void SNII_mass_ejection(double m1,double m2)
{
/*
.. warning:: here, we we do not limit the computation to SNII !!!
Compute the mass fraction and yields of SNII stars with masses between m1 and m2.
Store the result in the global variable ``MassFracSNII``::
MassFracSNII[0] = total gas
MassFracSNII[1] = 1-helium core (i.e. non processed elts)
MassFracSNII[i] = frac mass elt i.
*/
double l1,l2;
int i1,i2,i1p,i2p,j;
double f1,f2;
double v1,v2;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
/* this was not in Poirier... */
m1 = dmax(m1,Cp->SNII_Mmin);
m2 = dmin(m2,Cp->SNII_Mmax);
if ( m2<=m1 )
{
for (j=0;j<Cp->nelts+2;j++)
MassFracSNII[j] = 0;
return;
}
j = 0;
l1 = ( log10(m1) - Elt[j].Mmin) / Elt[j].Step ;
l2 = ( log10(m2) - Elt[j].Mmin) / Elt[j].Step ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<0) i1=0;
if (i2<0) i2=0;
/* --------- TOTAL GAS ---------- */
j = 0;
v1 = f1 * ( Elt[j].Array[i1p] - Elt[j].Array[i1] ) + Elt[j].Array[i1];
v2 = f2 * ( Elt[j].Array[i2p] - Elt[j].Array[i2] ) + Elt[j].Array[i2];
MassFracSNII[j] = v2-v1;
/* --------- He core therm ---------- */
j = 1;
v1 = f1 * ( Elt[j].Array[i1p] - Elt[j].Array[i1] ) + Elt[j].Array[i1];
v2 = f2 * ( Elt[j].Array[i2p] - Elt[j].Array[i2] ) + Elt[j].Array[i2];
MassFracSNII[j] = v2-v1;
/* ---------------------------- */
/* --------- Metals ---------- */
/* ---------------------------- */
j = 2;
l1 = ( log10(m1) - Elt[j].Mmin) / Elt[j].Step ;
l2 = ( log10(m2) - Elt[j].Mmin) / Elt[j].Step ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<0) i1=0;
if (i2<0) i2=0;
for (j=2;j<Cp->nelts+2;j++)
{
v1 = f1 * ( Elt[j].Array[i1p] - Elt[j].Array[i1] ) + Elt[j].Array[i1];
v2 = f2 * ( Elt[j].Array[i2p] - Elt[j].Array[i2] ) + Elt[j].Array[i2];
MassFracSNII[j] = v2-v1;
}
}
void SNII_single_mass_ejection(double m1)
{
/*
.. warning:: here, we we do not limit the computation to SNII !!!
Compute the mass fraction and yields of a SNII stars of masse m1.
Store the result in the global variable ``SingleMassFracSNII``::
SingleMassFracSNII[0] = total gas
SingleMassFracSNII[1] = 1-helium core (i.e. non processed elts)
SingleMassFracSNII[i] = frac mass elt i.
*/
double l1;
int i1,i1p,j;
double f1;
double v1;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
/* this was not in Poirier... */
if ( m1<= Cp->SNII_Mmin)
{
for (j=0;j<Cp->nelts+2;j++)
SingleMassFracSNII[j] = 0;
return;
}
j = 0;
l1 = ( log10(m1) - Elt[j].Mmin) / Elt[j].Step ;
if (l1 < 0.0) l1 = 0.0;
i1 = (int)l1;
i1p = i1 + 1;
f1 = l1 - i1;
/* check (yr) */
if (i1<0) i1=0;
/* --------- TOTAL GAS ---------- */
j = 0;
v1 = f1 * ( Elt[j].Metal[i1p] - Elt[j].Metal[i1] ) + Elt[j].Metal[i1];
SingleMassFracSNII[j] = v1;
/* --------- He core therm ---------- */
j = 1;
v1 = f1 * ( Elt[j].Metal[i1p] - Elt[j].Metal[i1] ) + Elt[j].Metal[i1];
SingleMassFracSNII[j] = v1;
/* ---------------------------- */
/* --------- Metals ---------- */
/* ---------------------------- */
j = 2;
l1 = ( log10(m1) - Elt[j].Mmin) / Elt[j].Step ;
if (l1 < 0.0) l1 = 0.0;
i1 = (int)l1;
i1p = i1 + 1;
f1 = l1 - i1;
/* check (yr) */
if (i1<0) i1=0;
for (j=2;j<Cp->nelts+2;j++)
{
v1 = f1 * ( Elt[j].Metal[i1p] - Elt[j].Metal[i1] ) + Elt[j].Metal[i1];
SingleMassFracSNII[j] = v1;
}
}
void SNIa_mass_ejection(double m1,double m2)
{
/*
Compute the total mass and element mass per mass unit of SNIa stars with masses between m1 and m2.
Store the result in the global variable ``MassFracSNIa``::
MassFracSNIa[0] = total gas
MassFracSNIa[1] = unused
MassFracSNIa[i] = frac mass elt i.
*/
int j;
double NSNIa;
/* number of SNIa per mass unit between time and time+dt */
NSNIa = SNIa_rate(m1,m2);
/* ejected mass in gas per mass unit */
MassFracSNIa[0] = Cp->Mco/All.UnitMass_in_g*SOLAR_MASS * NSNIa;
/* ejected elements in gas per mass unit */
for (j=2;j<Cp->nelts+2;j++)
MassFracSNIa[j] = NSNIa* Elt[j].MSNIa/All.UnitMass_in_g*SOLAR_MASS;
/* unused */
MassFracSNIa[1]=-1;
}
void SNIa_single_mass_ejection(double m1)
{
/*
Compute the total mass mass of element of a SNIa stars of masse m1.
Store the result in the global variable ``SingleMassFracSNIa``::
SingleMassFracSNIa[0] = total gas
SingleMassFracSNIa[1] = unused
SingleMassFracSNIa[i] = frac mass elt i.
*/
int j;
/* total ejected gas mass */
SingleMassFracSNIa[0] = Cp->Mco/All.UnitMass_in_g*SOLAR_MASS;
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
SingleMassFracSNIa[j] = Elt[j].MSNIa/All.UnitMass_in_g*SOLAR_MASS;
/* unused */
SingleMassFracSNIa[1] = -1;
}
void Total_mass_ejection(double m1,double m2,double M0,double *z)
{
/*
Sum the contribution in mass and yields of all stars in the mass range m1,m2.
Store the result in the global variable EjectedMass::
EjectedMass[0] = total gas
EjectedMass[1] = UNUSED
EjectedMass[i+2] = frac mass elt i.
FOR THE MOMENT::
- contrib of SNII (= all stars)
- contrib of SNIa
EjectedMass[0] = ejected Mass from SNII + Mco * number of SNIa
EjectedMass[i] = (SNII elts created ) + (SNII elts existing) + (SNIa elts)
*/
int j;
/* compute SNII mass ejection -> MassFracSNII */
SNII_mass_ejection(m1,m2);
/* compute SNIa mass ejection -> MassFracSNIa */ /* not really a mass fraction */
SNIa_mass_ejection(m1,m2);
/* compute DYIN mass ejection -> MassFracDYIN */ /* not really a mass fraction */
DYIN_mass_ejection(m1,m2);
/* total ejected gas mass */
EjectedMass[0] = M0 * ( MassFracDYIN[0] + MassFracSNII[0] + MassFracSNIa[0] );
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
EjectedMass[j] = M0*( MassFracDYIN[j] +z[j-2]*MassFracDYIN[1] + MassFracSNII[j] +z[j-2]*MassFracSNII[1] + MassFracSNIa[j] );
/* not used */
EjectedMass[1] = -1;
}
void DYIN_Total_single_mass_ejection(double m1,double *z)
{
/*
Mass and element ejected by a single dying stars of mass m1.
This takes into account processed and non processed gas
The results are stored in::
SingleEjectedMass[0] = gas mass
SingleEjectedMass[1] = unsued
SingleEjectedMass[i+2] = frac mass elt i
*/
int j;
float M0;
M0 = m1;
/* compute dying stars mass ejection -> SingleMassFracDYIN */
DYIN_single_mass_ejection(m1);
/* total ejected gas mass */
SingleEjectedMass[0] = M0 * SingleMassFracDYIN[0];
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
SingleEjectedMass[j] = M0*(SingleMassFracDYIN[j] +z[j-2]*SingleMassFracDYIN[1]);
/* not used */
SingleEjectedMass[1] = -1;
}
void SNII_Total_single_mass_ejection(double m1,double *z)
{
/*
Mass and element ejected by a single SNII of mass m1.
This takes into account processed and non processed gas
The results are stored in::
SingleEjectedMass[0] = gas mass
SingleEjectedMass[1] = unsued
SingleEjectedMass[i+2] = frac mass elt i
*/
int j;
float M0;
M0 = m1;
/* compute SNII mass ejection -> SingleMassFracSNII */
SNII_single_mass_ejection(m1);
/* total ejected gas mass */
SingleEjectedMass[0] = M0 * SingleMassFracSNII[0];
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
SingleEjectedMass[j] = M0*(SingleMassFracSNII[j] +z[j-2]*SingleMassFracSNII[1]);
/* not used */
SingleEjectedMass[1] = -1;
}
void SNIa_Total_single_mass_ejection(double m1, double *z)
{
int j;
/*
Mass and element ejected by a single SNIa of mass m1.
The results are stored in::
SingleEjectedMass[0] = gas mass
SingleEjectedMass[1] = unsued
SingleEjectedMass[i+2] = frac mass elt i
*/
/* compute SNIa mass ejection -> SingleMassFracSNIa */
SNIa_single_mass_ejection(m1);
/* total ejected gas mass */
SingleEjectedMass[0] = SingleMassFracSNIa[0];
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
SingleEjectedMass[j] = SingleMassFracSNIa[j];
}
void Total_single_mass_ejection(double m1,double *z,double NSNII,double NSNIa,double NDYIN)
{
/*
Sum the contribution in mass and yields of one star for mass m1.
Store the result in the global variable EjectedMass::
SingleEjectedMass[0] = total gas
SingleEjectedMass[1] = UNUSED
SingleEjectedMass[i+2] = frac mass elt i.
FOR THE MOMENT::
- contrib of SNII (= all stars)
- contrib of SNIa
SingleEjectedMass[0] = ejected Mass from SNII + Mco * number of SNIa
SingleEjectedMass[i] = (SNII elts created ) + (SNII elts existing) + (SNIa elts)
*/
int j;
float M0;
M0 = m1;
/* compute SNII mass ejection -> SingleMassFracSNII */
SNII_single_mass_ejection(m1);
/* compute SNII mass ejection -> SingleMassFracSNIa */
SNIa_single_mass_ejection(m1);
/* compute DYIN mass ejection -> SingleMassFracDYIN */
DYIN_single_mass_ejection(m1);
/* total ejected gas mass */
SingleEjectedMass[0] = M0 * ( SingleMassFracDYIN[0]*NDYIN + SingleMassFracSNII[0]*NSNII ) + SingleMassFracSNIa[0]*NSNIa;
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
SingleEjectedMass[j] = M0*( SingleMassFracDYIN[j]*NDYIN +z[j-2]*SingleMassFracDYIN[1]*NDYIN + SingleMassFracSNII[j]*NSNII +z[j-2]*SingleMassFracSNII[1]*NSNII ) + SingleMassFracSNIa[j]*NSNIa;
/* not used */
SingleEjectedMass[1] = -1;
}
/****************************************************************************************/
/*
/*
/*
/* GADGET ONLY PART
/*
/*
/*
/****************************************************************************************/
static double hubble_a, atime, hubble_a2, fac_mu, fac_vsic_fix, a3inv, fac_egy;
#ifdef FEEDBACK
static double fac_pow;
#endif
#ifdef PERIODIC
static double boxSize, boxHalf;
#ifdef LONG_X
static double boxSize_X, boxHalf_X;
#else
#define boxSize_X boxSize
#define boxHalf_X boxHalf
#endif
#ifdef LONG_Y
static double boxSize_Y, boxHalf_Y;
#else
#define boxSize_Y boxSize
#define boxHalf_Y boxHalf
#endif
#ifdef LONG_Z
static double boxSize_Z, boxHalf_Z;
#else
#define boxSize_Z boxSize
#define boxHalf_Z boxHalf
#endif
#endif
#if defined(CHIMIE_THERMAL_FEEDBACK) && defined(CHIMIE_COMPUTE_THERMAL_FEEDBACK_ENERGY)
void chimie_compute_energy_int(int mode)
{
int i;
double DeltaEgyInt;
double Tot_DeltaEgyInt;
DeltaEgyInt = 0;
Tot_DeltaEgyInt = 0;
if (mode==1)
{
LocalSysState.EnergyInt1 = 0;
LocalSysState.EnergyInt2 = 0;
}
for(i = 0; i < N_gas; i++)
{
if (P[i].Type==0)
{
if (mode==1)
#ifdef DENSITY_INDEPENDENT_SPH
LocalSysState.EnergyInt1 += P[i].Mass * SphP[i].EntropyPred / (GAMMA_MINUS1) * pow(SphP[i].EgyWtDensity*a3inv, GAMMA_MINUS1);
#else
LocalSysState.EnergyInt1 += P[i].Mass * SphP[i].EntropyPred / (GAMMA_MINUS1) * pow(SphP[i].Density*a3inv, GAMMA_MINUS1);
#endif
else
#ifdef DENSITY_INDEPENDENT_SPH
LocalSysState.EnergyInt2 += P[i].Mass * SphP[i].EntropyPred / (GAMMA_MINUS1) * pow(SphP[i].EgyWtDensity*a3inv, GAMMA_MINUS1);
#else
LocalSysState.EnergyInt2 += P[i].Mass * SphP[i].EntropyPred / (GAMMA_MINUS1) * pow(SphP[i].Density*a3inv, GAMMA_MINUS1);
#endif
}
}
if (mode==2)
{
DeltaEgyInt = LocalSysState.EnergyInt2 - LocalSysState.EnergyInt1;
MPI_Reduce(&DeltaEgyInt, &Tot_DeltaEgyInt, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
LocalSysState.EnergyThermalFeedback -= DeltaEgyInt;
}
}
#endif
#if defined(CHIMIE_KINETIC_FEEDBACK) && defined(CHIMIE_COMPUTE_KINETIC_FEEDBACK_ENERGY)
void chimie_compute_energy_kin(int mode)
{
int i;
double DeltaEgyKin;
double Tot_DeltaEgyKin;
DeltaEgyKin = 0;
Tot_DeltaEgyKin = 0;
if (mode==1)
{
LocalSysState.EnergyKin1 = 0;
LocalSysState.EnergyKin2 = 0;
}
for(i = 0; i < N_gas; i++)
{
if (P[i].Type==0)
{
if (mode==1)
LocalSysState.EnergyKin1 += 0.5 * P[i].Mass * (P[i].Vel[0]*P[i].Vel[0]+P[i].Vel[1]*P[i].Vel[1]+P[i].Vel[2]*P[i].Vel[2]);
else
LocalSysState.EnergyKin2 += 0.5 * P[i].Mass * (P[i].Vel[0]*P[i].Vel[0]+P[i].Vel[1]*P[i].Vel[1]+P[i].Vel[2]*P[i].Vel[2]);
}
}
if (mode==2)
{
DeltaEgyKin = LocalSysState.EnergyKin2 - LocalSysState.EnergyKin1;
MPI_Reduce(&DeltaEgyKin, &Tot_DeltaEgyKin, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
LocalSysState.EnergyKineticFeedback -= DeltaEgyKin;
}
}
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
void chimie_apply_thermal_feedback(void)
{
int i;
double EgySpec,NewEgySpec,DeltaEntropy;
for(i = 0; i < N_gas; i++)
{
if (P[i].Type==0)
{
if (SphP[i].DeltaEgySpec > 0)
{
//printf("(%d) Step=%d i=%08d particle receive feedback\n",ThisTask,All.NumCurrentTiStep,i);
/* spec energy at current step (allways compute energy budget based on predicted entropy) */
#ifdef DENSITY_INDEPENDENT_SPH
EgySpec = SphP[i].EntropyPred / GAMMA_MINUS1 * pow(SphP[i].Density*a3inv, GAMMA_MINUS1);
#else
EgySpec = SphP[i].EntropyPred / GAMMA_MINUS1 * pow(SphP[i].Density*a3inv, GAMMA_MINUS1);
#endif
/* new egyspec */
NewEgySpec = EgySpec + SphP[i].DeltaEgySpec;
LocalSysState.EnergyThermalFeedback -= SphP[i].DeltaEgySpec*P[i].Mass;
/* new entropy */
#ifdef DENSITY_INDEPENDENT_SPH
DeltaEntropy = GAMMA_MINUS1*NewEgySpec/pow(SphP[i].Density*a3inv, GAMMA_MINUS1) - SphP[i].EntropyPred;
#else
DeltaEntropy = GAMMA_MINUS1*NewEgySpec/pow(SphP[i].Density*a3inv, GAMMA_MINUS1) - SphP[i].EntropyPred;
#endif
SphP[i].EntropyPred += DeltaEntropy;
SphP[i].Entropy += DeltaEntropy;
#ifdef DENSITY_INDEPENDENT_SPH
SphP[i].EntVarPred = pow(SphP[i].EntropyPred, 1/GAMMA);
#endif
/* set the adiabatic period for SNIa */
if (SphP[i].NumberOfSNIa>0)
SphP[i].SNIaThermalTime = All.Time;
/* set the adiabatic period for SNII */
if (SphP[i].NumberOfSNII>0)
SphP[i].SNIIThermalTime = All.Time;
/* reset variables */
SphP[i].DeltaEgySpec = 0;
SphP[i].NumberOfSNIa = 0;
SphP[i].NumberOfSNII = 0;
}
}
}
}
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
void chimie_apply_wind(void)
{
/* apply wind */
int i;
double e1,e2;
double phi,costh,sinth,vx,vy,vz;
for(i = 0; i < N_gas; i++)
{
if (P[i].Type==0)
{
if (SphP[i].WindFlag)
{
phi = get_ChimieKineticFeedback_random_number(P[i].ID)*PI*2.;
costh = 1.-2.*get_ChimieKineticFeedback_random_number(P[i].ID+1);
sinth = sqrt(1.-pow(costh,2));
vx = All.ChimieWindSpeed*sinth*cos(phi);
vy = All.ChimieWindSpeed*sinth*sin(phi);
vz = All.ChimieWindSpeed*costh;
e1 = 0.5*P[i].Mass * ( SphP[i].VelPred[0]*SphP[i].VelPred[0] + SphP[i].VelPred[1]*SphP[i].VelPred[1] + SphP[i].VelPred[2]*SphP[i].VelPred[2]);
P[i].Vel[0] += vx;
P[i].Vel[1] += vy;
P[i].Vel[2] += vz;
SphP[i].VelPred[0] += vx;
SphP[i].VelPred[1] += vy;
SphP[i].VelPred[2] += vz;
e2 = 0.5*P[i].Mass * ( SphP[i].VelPred[0]*SphP[i].VelPred[0] + SphP[i].VelPred[1]*SphP[i].VelPred[1] + SphP[i].VelPred[2]*SphP[i].VelPred[2]);
LocalSysState.EnergyKineticFeedback -= e2-e1;
SphP[i].WindFlag = 0;
}
}
}
}
#endif
/*! This function is the driver routine for the calculation of chemical evolution
*/
void chimie(void)
{
double t0, t1;
t0 = second(); /* measure the time for the full chimie computation */
if (ThisTask==0)
printf("Start Chimie computation.\n");
if(All.ComovingIntegrationOn)
{
/* Factors for comoving integration of hydro */
hubble_a = All.Omega0 / (All.Time * All.Time * All.Time)
+ (1 - All.Omega0 - All.OmegaLambda) / (All.Time * All.Time) + All.OmegaLambda;
hubble_a = All.Hubble * sqrt(hubble_a);
hubble_a2 = All.Time * All.Time * hubble_a;
fac_mu = pow(All.Time, 3 * (GAMMA - 1) / 2) / All.Time;
fac_egy = pow(All.Time, 3 * (GAMMA - 1));
fac_vsic_fix = hubble_a * pow(All.Time, 3 * GAMMA_MINUS1);
a3inv = 1 / (All.Time * All.Time * All.Time);
atime = All.Time;
#ifdef FEEDBACK
fac_pow = fac_egy*atime*atime;
#endif
}
else
{
hubble_a = hubble_a2 = atime = fac_mu = fac_vsic_fix = a3inv = fac_egy = 1.0;
#ifdef FEEDBACK
fac_pow = 1.0;
#endif
}
stars_density(); /* compute density */
#ifdef CHIMIE_ONE_SN_ONLY
if(All.ChimieOneSN==0) /* explode only if not one sn only*/
#endif
do_chimie(); /* chimie */
if (ThisTask==0)
printf("Chimie computation done.\n");
t1 = second();
All.CPU_Chimie += timediff(t0, t1);
}
/*! This function is the driver routine for the calculation of chemical evolution
*/
void do_chimie(void)
{
long long ntot, ntotleft;
int i, j, k, n, m, ngrp, maxfill, source, ndone;
int *nbuffer, *noffset, *nsend_local, *nsend, *numlist, *ndonelist;
int level, sendTask, recvTask, nexport, place;
double tstart, tend, sumt, sumcomm;
double timecomp = 0, timecommsumm = 0, timeimbalance = 0, sumimbalance;
int flag_chimie;
MPI_Status status;
int do_it;
int Ti0,Ti1,Ti2;
double t1,t2,t01,t02;
double tmin,tmax;
double minlivetime,maxlivetime;
double m1,m2,M0;
double NSNIa,NSNII,NDYIN;
double NSNIa_tot,NSNII_tot,NDYIN_tot,NSNIa_totlocal,NSNII_totlocal,NDYIN_totlocal;
double EgySN,EgySNlocal;
double EgySNThermal,EgySNKinetic;
int Nchim,Nchimlocal;
int Nwind,Nwindlocal;
int Nflag,Nflaglocal;
int Noldwind,Noldwindlocal;
double metals[NELEMENTS];
double FeH;
float MinRelMass=1e-3;
#ifdef DETAILED_CPU_OUTPUT_IN_CHIMIE
double *timecomplist;
double *timecommsummlist;
double *timeimbalancelist;
#endif
#ifdef PERIODIC
boxSize = All.BoxSize;
boxHalf = 0.5 * All.BoxSize;
#ifdef LONG_X
boxHalf_X = boxHalf * LONG_X;
boxSize_X = boxSize * LONG_X;
#endif
#ifdef LONG_Y
boxHalf_Y = boxHalf * LONG_Y;
boxSize_Y = boxSize * LONG_Y;
#endif
#ifdef LONG_Z
boxHalf_Z = boxHalf * LONG_Z;
boxSize_Z = boxSize * LONG_Z;
#endif
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
double v1m,v2m;
#endif
/* `NumStUpdate' gives the number of particles on this processor that want a chimie computation */
for(n = 0, NumStUpdate = 0; n < N_gas+N_stars; n++)
{
if(P[n].Ti_endstep == All.Ti_Current)
if(P[n].Type == ST)
{
m = P[n].StPIdx;
if ( (P[n].Mass/StP[m].InitialMass) > MinRelMass)
NumStUpdate++;
}
if(P[n].Type == 0)
SphP[n].dMass = 0.;
}
numlist = malloc(NTask * sizeof(int) * NTask);
MPI_Allgather(&NumStUpdate, 1, MPI_INT, numlist, 1, MPI_INT, MPI_COMM_WORLD);
for(i = 0, ntot = 0; i < NTask; i++)
ntot += numlist[i];
free(numlist);
noffset = malloc(sizeof(int) * NTask); /* offsets of bunches in common list */
nbuffer = malloc(sizeof(int) * NTask);
nsend_local = malloc(sizeof(int) * NTask);
nsend = malloc(sizeof(int) * NTask * NTask);
ndonelist = malloc(sizeof(int) * NTask);
i = 0; /* first gas particle, because stars may be hidden among gas particles */
ntotleft = ntot; /* particles left for all tasks together */
NSNIa_tot = 0;
NSNII_tot = 0;
NDYIN_tot = 0;
NSNIa_totlocal = 0;
NSNII_totlocal = 0;
NDYIN_totlocal = 0;
EgySN = 0;
EgySNlocal =0;
Nchimlocal = 0;
Nchim = 0;
Nwindlocal = 0;
Nwind = 0;
Noldwindlocal = 0;
Noldwind = 0;
Nflaglocal = 0;
Nflag = 0;
while(ntotleft > 0)
{
for(j = 0; j < NTask; j++)
nsend_local[j] = 0;
/* do local particles and prepare export list */
tstart = second();
for(nexport = 0, ndone = 0; i < N_gas+N_stars && nexport < All.BunchSizeChimie - NTask; i++)
{
/* only active particles and stars */
if((P[i].Ti_endstep == All.Ti_Current)&&(P[i].Type == ST))
{
if(P[i].Type != ST)
{
printf("P[i].Type != ST, we better stop.\n");
printf("N_gas=%d (type=%d) i=%d (type=%d)\n",N_gas,P[N_gas].Type,i,P[i].Type);
printf("Please, check that you do not use PEANOHILBERT\n");
endrun(777001);
}
m = P[i].StPIdx;
if ( (P[i].Mass/StP[m].InitialMass) > MinRelMass)
{
flag_chimie = 0;
/******************************************/
/* do chimie */
/******************************************/
/*****************************************************/
/* look if a SN may have explode during the last step
/*****************************************************/
/***********************************************/
/***********************************************/
/* set the right table base of the metallicity */
set_table(0);
//FeH = log10( (StP[m].Metal[FE]/get_SolarMassAbundance(FE)) + 1.e-20 );
//if (FeH<-3)
// set_table(1);
//else
// set_table(0);
//if (P[i].ID==65546)
// {
// printf("(%d) %g the particle 65546 FeH=%g metalFe=%g Mmin=%g Mmax=%g n=%d\n",ThisTask,All.Time,FeH,StP[m].Metal[FE],Cp->Mmin,Cp->Mmax,Cp->n);
// }
/*
Cp->Mmin
Cp->Mmax
Cp->n
Cp->ms[]
Cp->as[]
Cp->SNIa_cte
Cp->SNIa_a
Cp->SNIa_Mdl1
Cp->SNIa_Mdu1
Cp->SNIa_bb1
Cp->SNIa_cte1
Cp->SNIa_a1
Cp->SNIa_Mdl2
Cp->SNIa_Mdu2
Cp->SNIa_bb2
Cp->SNIa_cte2
Cp->SNIa_a2
*/
/***********************************************/
/***********************************************/
/* minimum live time for a given metallicity */
minlivetime = star_lifetime(StP[m].Metal[NELEMENTS-1],Cp->Mmax*SOLAR_MASS/All.UnitMass_in_g)*All.HubbleParam;
/* maximum live time for a given metallicity */
maxlivetime = star_lifetime(StP[m].Metal[NELEMENTS-1],Cp->Mmin*SOLAR_MASS/All.UnitMass_in_g)*All.HubbleParam;
//if (P[i].ID==65546)
// printf("(%d) %g the particle 65546 has a max livetime of %g (metal=%g Mmin=%g)\n",ThisTask,All.Time,maxlivetime,StP[m].Metal[NELEMENTS-1],Cp->Mmin);
if (All.ComovingIntegrationOn)
{
/* FormationTime on the time line */
Ti0 = log(StP[m].FormationTime/All.TimeBegin) / All.Timebase_interval;
/* Beginning of time step on the time line */
Ti1 = P[i].Ti_begstep;
/* End of time step on the time line */
Ti2 = All.Ti_Current;
#ifdef COSMICTIME
t01 = get_cosmictime_difference(Ti0,Ti1);
t02 = get_cosmictime_difference(Ti0,Ti2);
#endif
}
else
{
t1 = All.TimeBegin + (P[i].Ti_begstep * All.Timebase_interval);
t2 = All.TimeBegin + (All.Ti_Current * All.Timebase_interval);
t01 = t1-StP[m].FormationTime;
t02 = t2-StP[m].FormationTime;
}
/* now treat all cases */
do_it=1;
#if CHIMIE_ONE_SN_ONLY
if (All.Time<0.1)
do_it=0;
#else
/* beginning of interval */
if (t01>=minlivetime)
if (t01>=maxlivetime)
do_it=0; /* nothing to do */
else
m2 = star_mass_from_age(StP[m].Metal[NELEMENTS-1],t01/All.HubbleParam)*All.HubbleParam;
else
m2 = Cp->Mmax*SOLAR_MASS/All.UnitMass_in_g*All.HubbleParam;
/* end of interval */
if (t02<=maxlivetime)
if (t02<=minlivetime)
do_it=0; /* nothing to do */
else
m1 = star_mass_from_age(StP[m].Metal[NELEMENTS-1],t02/All.HubbleParam)*All.HubbleParam;
else
m1 = Cp->Mmin*SOLAR_MASS/All.UnitMass_in_g*All.HubbleParam;
#endif
//printf("Time=%g t01=%g t02=%g id=%d minlivetime=%g maxlivetime=%g \n",All.Time,t01,t02,P[i].ID,minlivetime,maxlivetime);
/* if some of the stars in the SSP explode between t1 and t2 */
if (do_it)
{
Nchimlocal++;
StP[m].Flag = 1; /* mark it as active */
if (m1>m2)
{
printf("m1=%g (%g Msol) > m2=%g (%g Msol) !!!\n\n",m1,m1*All.UnitMass_in_g/SOLAR_MASS,m2,m2*All.UnitMass_in_g/SOLAR_MASS);
endrun(777002);
}
M0 = StP[m].InitialMass;
for (k=0;k<NELEMENTS;k++)
metals[k] = StP[m].Metal[k];
/* number of SNIa */
NSNIa = SNIa_rate(m1/All.HubbleParam,m2/All.HubbleParam)*M0/All.HubbleParam;
/* number of SNII */
NSNII = SNII_rate(m1/All.HubbleParam,m2/All.HubbleParam)*M0/All.HubbleParam;
/* number of DYIN */
NDYIN = DYIN_rate(m1/All.HubbleParam,m2/All.HubbleParam)*M0/All.HubbleParam;
/* discretize SN */
#ifdef CHIMIE_MC_SUPERNOVAE
double fNSNIa,fNSNII,fNDYIN;
/* discretize SNIa */
fNSNIa = NSNIa-floor(NSNIa);
NSNIa = floor(NSNIa);
if (get_Chimie_random_number(P[i].ID) < fNSNIa)
NSNIa = NSNIa+1;
/* discretize SNII */
fNSNII = NSNII-floor(NSNII);
NSNII = floor(NSNII);
if (get_Chimie_random_number(P[i].ID) < fNSNII)
NSNII = NSNII+1;
/* discretize DYIN */
fNDYIN = NDYIN-floor(NDYIN);
NDYIN = floor(NDYIN);
if (get_Chimie_random_number(P[i].ID) < fNDYIN)
NDYIN = NDYIN+1;
#ifdef CHIMIE_ONE_SN_ONLY
/* here, we force to explode one and only one */
NSNIa=1;
NSNII=0;
NDYIN=0;
#endif
/* compute ejectas */
Total_single_mass_ejection(0.5*(m1+m2)/All.HubbleParam,metals,NSNII,NSNIa,NDYIN);
StP[m].TotalEjectedGasMass = SingleEjectedMass[0]*All.HubbleParam; /* gas mass */
for (k=0;k<NELEMENTS;k++)
StP[m].TotalEjectedEltMass[k] = SingleEjectedMass[k+2]*All.HubbleParam; /* metal mass */
#else
/* compute ejectas */
Total_mass_ejection(m1/All.HubbleParam,m2/All.HubbleParam,M0/All.HubbleParam,metals);
StP[m].TotalEjectedGasMass = EjectedMass[0]*All.HubbleParam; /* gas mass */
for (k=0;k<NELEMENTS;k++)
StP[m].TotalEjectedEltMass[k] = EjectedMass[k+2]*All.HubbleParam; /* metal mass */
#endif CHIMIE_MC_SUPERNOVAE
/* discretize SN */
if (StP[m].TotalEjectedGasMass>0)
flag_chimie=1;
/* compute injected energy */
StP[m].TotalEjectedEgySpec = All.ChimieSupernovaEnergy* (NSNIa + NSNII) /StP[m].TotalEjectedGasMass;
StP[m].NumberOfSNIa = NSNIa;
StP[m].NumberOfSNII = NSNII;
EgySNlocal += All.ChimieSupernovaEnergy* (NSNIa + NSNII);
NSNIa_totlocal += NSNIa;
NSNII_totlocal += NSNII;
NDYIN_totlocal += NDYIN;
/* correct mass particle */
if (P[i].Mass-StP[m].TotalEjectedGasMass<0)
{
printf("mass wants to be less than zero...\n");
printf("P[i].Mass=%g StP[m].TotalEjectedGasMass=%g\n",P[i].Mass,StP[m].TotalEjectedGasMass);
endrun(777100);
}
//if (P[i].ID==65546)
// printf("(%d) %g the particle 65546 is here, mass=%g TotalEjectedEltMass=%g m1=%g m2=%g\n",ThisTask,All.Time,P[i].Mass,StP[m].TotalEjectedGasMass,m1,m2);
P[i].Mass = P[i].Mass-StP[m].TotalEjectedGasMass;
if(P[i].Mass<0)
endrun(777023);
//float Fe,Mg;
//Fe = StP[m].TotalEjectedEltMass[0];
//Mg = StP[m].TotalEjectedEltMass[1];
}
/******************************************/
/* end do chimie */
/******************************************/
ndone++;
if (flag_chimie)
{
for(j = 0; j < NTask; j++)
Exportflag[j] = 0;
chimie_evaluate(i, 0);
for(j = 0; j < NTask; j++)
{
if(Exportflag[j])
{
for(k = 0; k < 3; k++)
{
ChimieDataIn[nexport].Pos[k] = P[i].Pos[k];
ChimieDataIn[nexport].Vel[k] = P[i].Vel[k];
}
ChimieDataIn[nexport].ID = P[i].ID;
ChimieDataIn[nexport].Timestep = P[i].Ti_endstep - P[i].Ti_begstep;
ChimieDataIn[nexport].Hsml = StP[m].Hsml;
ChimieDataIn[nexport].Density = StP[m].Density;
ChimieDataIn[nexport].Volume = StP[m].Volume;
#ifdef CHIMIE_KINETIC_FEEDBACK
ChimieDataIn[nexport].NgbMass = StP[m].NgbMass;
#endif
ChimieDataIn[nexport].TotalEjectedGasMass = StP[m].TotalEjectedGasMass;
for(k = 0; k < NELEMENTS; k++)
ChimieDataIn[nexport].TotalEjectedEltMass[k] = StP[m].TotalEjectedEltMass[k];
ChimieDataIn[nexport].TotalEjectedEgySpec = StP[m].TotalEjectedEgySpec;
ChimieDataIn[nexport].NumberOfSNIa = StP[m].NumberOfSNIa;
ChimieDataIn[nexport].NumberOfSNII = StP[m].NumberOfSNII;
#ifdef WITH_ID_IN_HYDRA
ChimieDataIn[nexport].ID = P[i].ID;
#endif
ChimieDataIn[nexport].Index = i;
ChimieDataIn[nexport].Task = j;
nexport++;
nsend_local[j]++;
}
}
}
}
}
}
tend = second();
timecomp += timediff(tstart, tend);
qsort(ChimieDataIn, nexport, sizeof(struct chimiedata_in), chimie_compare_key);
for(j = 1, noffset[0] = 0; j < NTask; j++)
noffset[j] = noffset[j - 1] + nsend_local[j - 1];
tstart = second();
MPI_Allgather(nsend_local, NTask, MPI_INT, nsend, NTask, MPI_INT, MPI_COMM_WORLD);
tend = second();
timeimbalance += timediff(tstart, tend);
/* now do the particles that need to be exported */
for(level = 1; level < (1 << PTask); level++)
{
tstart = second();
for(j = 0; j < NTask; j++)
nbuffer[j] = 0;
for(ngrp = level; ngrp < (1 << PTask); ngrp++)
{
maxfill = 0;
for(j = 0; j < NTask; j++)
{
if((j ^ ngrp) < NTask)
if(maxfill < nbuffer[j] + nsend[(j ^ ngrp) * NTask + j])
maxfill = nbuffer[j] + nsend[(j ^ ngrp) * NTask + j];
}
if(maxfill >= All.BunchSizeChimie)
break;
sendTask = ThisTask;
recvTask = ThisTask ^ ngrp;
if(recvTask < NTask)
{
if(nsend[ThisTask * NTask + recvTask] > 0 || nsend[recvTask * NTask + ThisTask] > 0)
{
/* get the particles */
MPI_Sendrecv(&ChimieDataIn[noffset[recvTask]],
nsend_local[recvTask] * sizeof(struct chimiedata_in), MPI_BYTE,
recvTask, TAG_CHIMIE_A,
&ChimieDataGet[nbuffer[ThisTask]],
nsend[recvTask * NTask + ThisTask] * sizeof(struct chimiedata_in), MPI_BYTE,
recvTask, TAG_CHIMIE_A, MPI_COMM_WORLD, &status);
}
}
for(j = 0; j < NTask; j++)
if((j ^ ngrp) < NTask)
nbuffer[j] += nsend[(j ^ ngrp) * NTask + j];
}
tend = second();
timecommsumm += timediff(tstart, tend);
/* now do the imported particles */
tstart = second();
for(j = 0; j < nbuffer[ThisTask]; j++)
chimie_evaluate(j, 1);
tend = second();
timecomp += timediff(tstart, tend);
/* do a block to measure imbalance */
tstart = second();
MPI_Barrier(MPI_COMM_WORLD);
tend = second();
timeimbalance += timediff(tstart, tend);
/* get the result */
tstart = second();
for(j = 0; j < NTask; j++)
nbuffer[j] = 0;
for(ngrp = level; ngrp < (1 << PTask); ngrp++)
{
maxfill = 0;
for(j = 0; j < NTask; j++)
{
if((j ^ ngrp) < NTask)
if(maxfill < nbuffer[j] + nsend[(j ^ ngrp) * NTask + j])
maxfill = nbuffer[j] + nsend[(j ^ ngrp) * NTask + j];
}
if(maxfill >= All.BunchSizeChimie)
break;
sendTask = ThisTask;
recvTask = ThisTask ^ ngrp;
if(recvTask < NTask)
{
if(nsend[ThisTask * NTask + recvTask] > 0 || nsend[recvTask * NTask + ThisTask] > 0)
{
/* send the results */
MPI_Sendrecv(&ChimieDataResult[nbuffer[ThisTask]],
nsend[recvTask * NTask + ThisTask] * sizeof(struct chimiedata_out),
MPI_BYTE, recvTask, TAG_CHIMIE_B,
&ChimieDataPartialResult[noffset[recvTask]],
nsend_local[recvTask] * sizeof(struct chimiedata_out),
MPI_BYTE, recvTask, TAG_CHIMIE_B, MPI_COMM_WORLD, &status);
/* add the result to the particles */
for(j = 0; j < nsend_local[recvTask]; j++)
{
source = j + noffset[recvTask];
place = ChimieDataIn[source].Index;
// for(k = 0; k < 3; k++)
// SphP[place].HydroAccel[k] += HydroDataPartialResult[source].Acc[k];
//
// SphP[place].DtEntropy += HydroDataPartialResult[source].DtEntropy;
//#ifdef FEEDBACK
// SphP[place].DtEgySpecFeedback += HydroDataPartialResult[source].DtEgySpecFeedback;
//#endif
// if(SphP[place].MaxSignalVel < HydroDataPartialResult[source].MaxSignalVel)
// SphP[place].MaxSignalVel = HydroDataPartialResult[source].MaxSignalVel;
//#ifdef COMPUTE_VELOCITY_DISPERSION
// for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
// SphP[place].VelocityDispersion[k] += HydroDataPartialResult[source].VelocityDispersion[k];
//#endif
}
}
}
for(j = 0; j < NTask; j++)
if((j ^ ngrp) < NTask)
nbuffer[j] += nsend[(j ^ ngrp) * NTask + j];
}
tend = second();
timecommsumm += timediff(tstart, tend);
level = ngrp - 1;
}
MPI_Allgather(&ndone, 1, MPI_INT, ndonelist, 1, MPI_INT, MPI_COMM_WORLD);
for(j = 0; j < NTask; j++)
ntotleft -= ndonelist[j];
}
free(ndonelist);
free(nsend);
free(nsend_local);
free(nbuffer);
free(noffset);
/* do final operations on results */
tstart = second();
for(i = 0; i < N_gas; i++)
{
if (P[i].Type==0)
{
P[i].Mass += SphP[i].dMass;
SphP[i].dMass = 0.;
}
}
tend = second();
timecomp += timediff(tstart, tend);
/* collect some timing information */
MPI_Reduce(&timecomp, &sumt, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timecommsumm, &sumcomm, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timeimbalance, &sumimbalance, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if(ThisTask == 0)
{
All.CPU_ChimieCompWalk += sumt / NTask;
All.CPU_ChimieCommSumm += sumcomm / NTask;
All.CPU_ChimieImbalance += sumimbalance / NTask;
}
#ifdef DETAILED_CPU_OUTPUT_IN_CHIMIE
numlist = malloc(sizeof(int) * NTask);
timecomplist = malloc(sizeof(double) * NTask);
timecommsummlist = malloc(sizeof(double) * NTask);
timeimbalancelist = malloc(sizeof(double) * NTask);
MPI_Gather(&NumStUpdate, 1, MPI_INT, numlist, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Gather(&timecomp, 1, MPI_DOUBLE, timecomplist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timecommsumm, 1, MPI_DOUBLE, timecommsummlist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timeimbalance, 1, MPI_DOUBLE, timeimbalancelist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
if(ThisTask == 0)
{
fprintf(FdTimings, "\n chimie\n\n");
fprintf(FdTimings, "Nupdate ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12d ",numlist[i]); /* nombre de part par proc */
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timecomp ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timecomplist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timecommsumm ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timecommsummlist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timeimbalance ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timeimbalancelist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "\n");
}
free(timeimbalancelist);
free(timecommsummlist);
free(timecomplist);
free(numlist);
#endif
/* collect some chimie informations */
MPI_Reduce(&NSNIa_totlocal, &NSNIa_tot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&NSNII_totlocal, &NSNII_tot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&NDYIN_totlocal, &NDYIN_tot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&EgySNlocal, &EgySN, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&Nchimlocal, &Nchim, 1, MPI_INT , MPI_SUM, 0, MPI_COMM_WORLD);
#ifdef CHIMIE_THERMAL_FEEDBACK
EgySNThermal = EgySN*(1-All.ChimieKineticFeedbackFraction);
#else
EgySNThermal = 0;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
EgySNKinetic = EgySN*All.ChimieKineticFeedbackFraction;
/* count number of wind particles */
for(i = 0; i < N_gas; i++)
{
if (P[i].Type==0)
{
if (SphP[i].WindTime >= (All.Time-All.ChimieWindTime))
Nwindlocal++;
//else
// if (SphP[i].WindTime > All.TimeBegin-2*All.ChimieWindTime)
// Noldwindlocal++;
if (SphP[i].WindFlag)
Nflaglocal++;
}
}
MPI_Reduce(&Nwindlocal, &Nwind, 1, MPI_INT , MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&Noldwindlocal, &Noldwind, 1, MPI_INT , MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Allreduce(&Nflaglocal, &Nflag, 1, MPI_INT , MPI_SUM, MPI_COMM_WORLD);
#else
EgySNKinetic = 0;
#endif
/* write some info */
if (ThisTask==0)
{
fprintf(FdChimie, "%15g %10d %15g %15g %15g %15g %15g %10d %10d %10d\n",All.Time,Nchim,NSNIa_tot,NSNII_tot,EgySN,EgySNThermal,EgySNKinetic,Nwind,Noldwind,Nflag);
fflush(FdChimie);
}
/* this is no longer used */
// if (Nflag>0)
// {
// SetMinTimeStepForActives=1;
// if (ThisTask==0)
// fprintf(FdLog,"%g : !!! set min timestep for active particles !!!\n",All.Time);
// }
#ifdef CHIMIE_ONE_SN_ONLY
if (EgySN>0)
All.ChimieOneSN=1;
MPI_Bcast(&All.ChimieOneSN, 1, MPI_INT, 0, MPI_COMM_WORLD);
#endif
}
/*! This function is the 'core' of the Chemie computation. A target
* particle is specified which may either be local, or reside in the
* communication buffer.
*/
void chimie_evaluate(int target, int mode)
{
int j, n, startnode, numngb,numngb_inbox,k;
FLOAT *pos,*vel;
//FLOAT *vel;
//FLOAT mass;
double h, h2;
double acc[3];
double dx, dy, dz;
double wk, r, r2, u=0;
double hinv=1, hinv3;
int target_stp;
double density;
double volume;
#ifdef CHIMIE_KINETIC_FEEDBACK
double ngbmass;
double p;
#endif
double aij;
double ejectedGasMass;
double ejectedEltMass[NELEMENTS];
double ejectedEgySpec;
double NumberOfSNIa;
double NumberOfSNII;
double mass_k;
double NewMass;
double fv,vi2,vj2;
double EgySpec,NewEgySpec;
double DeltaEntropy;
double DeltaVel[3];
#ifndef LONGIDS
unsigned int id; /*!< particle identifier */
#else
unsigned long long id; /*!< particle identifier */
#endif
if(mode == 0)
{
pos = P[target].Pos;
vel = P[target].Vel;
id = P[target].ID;
target_stp = P[target].StPIdx;
h = StP[target_stp].Hsml;
density = StP[target_stp].Density;
volume = StP[target_stp].Volume;
#ifdef CHIMIE_KINETIC_FEEDBACK
ngbmass = StP[target_stp].NgbMass;
#endif
ejectedGasMass = StP[target_stp].TotalEjectedGasMass;
for(k=0;k<NELEMENTS;k++)
ejectedEltMass[k] = StP[target_stp].TotalEjectedEltMass[k];
ejectedEgySpec = StP[target_stp].TotalEjectedEgySpec;
NumberOfSNIa = StP[target_stp].NumberOfSNIa;
NumberOfSNII = StP[target_stp].NumberOfSNII;
}
else
{
pos = ChimieDataGet[target].Pos;
vel = ChimieDataGet[target].Vel;
id = ChimieDataGet[target].ID;
h = ChimieDataGet[target].Hsml;
density = ChimieDataGet[target].Density;
volume = ChimieDataGet[target].Volume;
#ifdef CHIMIE_KINETIC_FEEDBACK
ngbmass = ChimieDataGet[target].NgbMass;
#endif
ejectedGasMass = ChimieDataGet[target].TotalEjectedGasMass;
for(k=0;k<NELEMENTS;k++)
ejectedEltMass[k] = ChimieDataGet[target].TotalEjectedEltMass[k];
ejectedEgySpec = ChimieDataGet[target].TotalEjectedEgySpec;
NumberOfSNIa = ChimieDataGet[target].NumberOfSNIa;
NumberOfSNII = ChimieDataGet[target].NumberOfSNII;
}
/* initialize variables before SPH loop is started */
acc[0] = acc[1] = acc[2] = 0;
vi2 = 0;
for(k=0;k<3;k++)
vi2 += vel[k]*vel[k];
h2 = h * h;
hinv = 1.0 / h;
#ifndef TWODIMS
hinv3 = hinv * hinv * hinv;
#else
hinv3 = hinv * hinv / boxSize_Z;
#endif
/* Now start the actual SPH computation for this particle */
startnode = All.MaxPart;
numngb = 0;
do
{
numngb_inbox = ngb_treefind_variable_for_chimie(&pos[0], h, &startnode);
for(n = 0; n < numngb_inbox; n++)
{
j = Ngblist[n];
dx = pos[0] - P[j].Pos[0];
dy = pos[1] - P[j].Pos[1];
dz = pos[2] - P[j].Pos[2];
#ifdef PERIODIC /* now find the closest image in the given box size */
if(dx > boxHalf_X)
dx -= boxSize_X;
if(dx < -boxHalf_X)
dx += boxSize_X;
if(dy > boxHalf_Y)
dy -= boxSize_Y;
if(dy < -boxHalf_Y)
dy += boxSize_Y;
if(dz > boxHalf_Z)
dz -= boxSize_Z;
if(dz < -boxHalf_Z)
dz += boxSize_Z;
#endif
r2 = dx * dx + dy * dy + dz * dz;
if(r2 < h2)
{
numngb++;
r = sqrt(r2);
u = r * hinv;
if(u < 0.5)
{
wk = hinv3 * (KERNEL_COEFF_1 + KERNEL_COEFF_2 * (u - 1) * u * u);
}
else
{
wk = hinv3 * KERNEL_COEFF_5 * (1.0 - u) * (1.0 - u) * (1.0 - u);
}
/* normalisation using mass */
aij = P[j].Mass*wk/density;
/* normalisation using volume */
/* !!! si on utilise, il faut stoquer une nouvelle variable : OldDensity, car density est modifié plus bas... */
//aij = P[j].Mass/SphP[j].Density*wk/volume;
/* metal injection */
for(k=0;k<NELEMENTS;k++)
{
mass_k = SphP[j].Metal[k]*P[j].Mass; /* mass of elt k */
SphP[j].Metal[k] = ( mass_k + aij*ejectedEltMass[k] )/( P[j].Mass + aij*ejectedGasMass );
}
/* new mass */
NewMass = P[j].Mass + aij*ejectedGasMass;
/* new velocity */
vj2 = 0;
for(k=0;k<3;k++)
vj2 += SphP[j].VelPred[k]*SphP[j].VelPred[k];
fv = sqrt( (P[j].Mass/NewMass) + aij*(ejectedGasMass/NewMass) * (vi2/vj2) );
for(k=0;k<3;k++)
{
DeltaVel[k] = fv*SphP[j].VelPred[k] - SphP[j].VelPred[k];
SphP[j].VelPred[k] += DeltaVel[k];
P[j].Vel [k] += DeltaVel[k];
}
/* spec energy at current step */
#ifdef DENSITY_INDEPENDENT_SPH
EgySpec = SphP[j].EntropyPred / GAMMA_MINUS1 * pow(SphP[j].EgyWtDensity*a3inv, GAMMA_MINUS1);
#else
EgySpec = SphP[j].EntropyPred / GAMMA_MINUS1 * pow(SphP[j].Density*a3inv, GAMMA_MINUS1);
#endif
/* new egyspec */
NewEgySpec = (EgySpec )*(P[j].Mass/NewMass);
/* new density */
#ifdef DENSITY_INDEPENDENT_SPH
SphP[j].Density = SphP[j].Density*NewMass/P[j].Mass;
SphP[j].EgyWtDensity = SphP[j].EgyWtDensity*NewMass/P[j].Mass;
#else
SphP[j].Density = SphP[j].Density*NewMass/P[j].Mass;
#endif
/* new entropy */
#ifdef DENSITY_INDEPENDENT_SPH
DeltaEntropy = GAMMA_MINUS1*NewEgySpec/pow(SphP[j].EgyWtDensity*a3inv, GAMMA_MINUS1) - SphP[j].EntropyPred;
#else
DeltaEntropy = GAMMA_MINUS1*NewEgySpec/pow(SphP[j].Density*a3inv, GAMMA_MINUS1) - SphP[j].EntropyPred;
#endif
SphP[j].EntropyPred += DeltaEntropy;
SphP[j].Entropy += DeltaEntropy;
#ifdef CHIMIE_THERMAL_FEEDBACK
SphP[j].DeltaEgySpec += (1.-All.ChimieKineticFeedbackFraction)*(ejectedGasMass*ejectedEgySpec)* aij/NewMass;
SphP[j].NumberOfSNII += NumberOfSNII*aij;
SphP[j].NumberOfSNIa += NumberOfSNIa*aij;
#ifdef TIMESTEP_UPDATE_FOR_FEEDBACK
if(P[j].Ti_endstep != All.Ti_Current)
make_particle_active(j);
#endif
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
p = (All.ChimieKineticFeedbackFraction*ejectedEgySpec*ejectedGasMass)/(0.5*ngbmass*All.ChimieWindSpeed*All.ChimieWindSpeed);
double r;
r = get_Chimie_random_number(P[j].ID+id);
if ( r < p) /* we should maybe have a 2d table here... */
{
if (SphP[j].WindTime < (All.Time-All.ChimieWindTime)) /* not a wind particle */
{
SphP[j].WindFlag = 1;
SphP[j].WindTime = All.Time;
}
}
#endif
#ifdef CHECK_ENTROPY_SIGN
if ((SphP[j].EntropyPred < 0)||(SphP[j].Entropy < 0))
{
printf("\ntask=%d: entropy less than zero in chimie_evaluate !\n", ThisTask);
printf("ID=%d Entropy=%g EntropyPred=%g DeltaEntropy=%g\n",P[j].ID,SphP[j].Entropy,SphP[j].EntropyPred,DeltaEntropy);
fflush(stdout);
endrun(777003);
}
#endif
/* store mass diff. */
SphP[j].dMass += NewMass-P[j].Mass;
}
}
}
while(startnode >= 0);
/* Now collect the result at the right place */
if(mode == 0)
{
// for(k = 0; k < 3; k++)
// SphP[target].HydroAccel[k] = acc[k];
// SphP[target].DtEntropy = dtEntropy;
//#ifdef FEEDBACK
// SphP[target].DtEgySpecFeedback = dtEgySpecFeedback;
//#endif
// SphP[target].MaxSignalVel = maxSignalVel;
//#ifdef COMPUTE_VELOCITY_DISPERSION
// for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
// SphP[target].VelocityDispersion[k] = VelocityDispersion[k];
//#endif
}
else
{
// for(k = 0; k < 3; k++)
// HydroDataResult[target].Acc[k] = acc[k];
// HydroDataResult[target].DtEntropy = dtEntropy;
//#ifdef FEEDBACK
// HydroDataResult[target].DtEgySpecFeedback = dtEgySpecFeedback;
//#endif
// HydroDataResult[target].MaxSignalVel = maxSignalVel;
//#ifdef COMPUTE_VELOCITY_DISPERSION
// for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
// HydroDataResult[target].VelocityDispersion[k] = VelocityDispersion[k];
//#endif
}
}
/*! This is a comparison kernel for a sort routine, which is used to group
* particles that are going to be exported to the same CPU.
*/
int chimie_compare_key(const void *a, const void *b)
{
if(((struct chimiedata_in *) a)->Task < (((struct chimiedata_in *) b)->Task))
return -1;
if(((struct chimiedata_in *) a)->Task > (((struct chimiedata_in *) b)->Task))
return +1;
return 0;
}
/****************************************************************************************/
/*
/*
/*
/* PYTHON INTERFACE
/*
/*
/*
/****************************************************************************************/
#ifdef PYCHEM
static PyObject *
chemistry_CodeUnits_to_SolarMass_Factor(PyObject *self, PyObject *args)
{
return Py_BuildValue("d",All.UnitMass_in_g/SOLAR_MASS);
}
static PyObject *
chemistry_SolarMass_to_CodeUnits_Factor(PyObject *self, PyObject *args)
{
return Py_BuildValue("d",SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject * chemistry_InitDefaultParameters(void)
{
/* list of Gadget parameters */
/* System of units */
All.UnitLength_in_cm = 3.085e+21; /* 1.0 kpc */
All.UnitMass_in_g = 1.989e+43; /* 1.0e10 solar masses */
All.UnitVelocity_in_cm_per_s = 20725573.785998672; /* 207 km/sec */
All.GravityConstantInternal = 0;
All.UnitTime_in_s = All.UnitLength_in_cm / All.UnitVelocity_in_cm_per_s;
All.UnitTime_in_Megayears=All.UnitTime_in_s / SEC_PER_MEGAYEAR;
return Py_BuildValue("i",1);
}
static PyObject * SetParameters(PyObject *dict)
{
PyObject *key;
PyObject *value;
int ivalue;
float fvalue;
double dvalue;
/* check that it is a PyDictObject */
if(!PyDict_Check(dict))
{
PyErr_SetString(PyExc_AttributeError, "argument is not a dictionary.");
return NULL;
}
if (PyDict_Size(dict)==0)
return Py_BuildValue("i",0);
Py_ssize_t pos=0;
while(PyDict_Next(dict,&pos,&key,&value))
{
if(PyString_Check(key))
{
/* System of units */
if(strcmp(PyString_AsString(key), "UnitLength_in_cm")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.UnitLength_in_cm = PyFloat_AsDouble(value);
}
if(strcmp(PyString_AsString(key), "UnitMass_in_g")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.UnitMass_in_g = PyFloat_AsDouble(value);
}
if(strcmp(PyString_AsString(key), "UnitVelocity_in_cm_per_s")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.UnitVelocity_in_cm_per_s = PyFloat_AsDouble(value);
}
if(strcmp(PyString_AsString(key), "GravityConstantInternal")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.GravityConstantInternal = PyFloat_AsDouble(value);
}
}
}
return Py_BuildValue("i",1);
}
static PyObject * chemistry_SetParameters(PyObject *self, PyObject *args)
{
PyObject *dict;
/* here, we can have either arguments or dict directly */
if(PyDict_Check(args))
{
dict = args;
}
else
{
if (! PyArg_ParseTuple(args, "O",&dict))
return NULL;
}
SetParameters(dict);
return Py_BuildValue("i",1);
}
static PyObject * chemistry_GetParameters(void)
{
PyObject *dict;
PyObject *key;
PyObject *value;
dict = PyDict_New();
/* System of units */
key = PyString_FromString("UnitLength_in_cm");
value = PyFloat_FromDouble(All.UnitLength_in_cm);
PyDict_SetItem(dict,key,value);
key = PyString_FromString("UnitMass_in_g");
value = PyFloat_FromDouble(All.UnitMass_in_g);
PyDict_SetItem(dict,key,value);
key = PyString_FromString("UnitVelocity_in_cm_per_s");
value = PyFloat_FromDouble(All.UnitVelocity_in_cm_per_s);
PyDict_SetItem(dict,key,value);
key = PyString_FromString("GravityConstantInternal");
value = PyFloat_FromDouble(All.GravityConstantInternal);
PyDict_SetItem(dict,key,value);
return Py_BuildValue("O",dict);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_init_chimie(PyObject *self, PyObject *args, PyObject *kwds)
{
int NumberOfTables=1;
int DefaultTable=0;
PyObject *paramsDict=NULL;
paramsDict= PyDict_New();
//PyObject *filename;
//if (! PyArg_ParseTuple(args, "Oii",&filename,&NumberOfTables,&DefaultTable))
// {
// PyErr_SetString(PyExc_ValueError,"init_chimie, error in parsing.");
// return NULL;
// }
static char *kwlist[] = {"filename","NumberOfTables","DefaultTable","params", NULL};
PyObject *filename=PyString_FromString("chimie.yr.dat");
/* this fails with python2.6, I do not know why ??? */
if (! PyArg_ParseTupleAndKeywords(args, kwds, "|OiiO",kwlist,&filename,&NumberOfTables,&DefaultTable,&paramsDict))
{
PyErr_SetString(PyExc_ValueError,"init_chimie, error in parsing arguments.");
return NULL;
}
if (!PyString_Check(filename))
{
PyErr_SetString(PyExc_ValueError,"Argument must be a string.");
return NULL;
}
/* copy filename */
All.ChimieParameterFile = PyString_AsString(filename);
/* set number of tables */
All.ChimieNumberOfParameterFiles = NumberOfTables;
/* check if the file exists */
if(!(fopen(All.ChimieParameterFile, "r")))
{
PyErr_SetString(PyExc_ValueError,"The parameter file does not exists.");
return NULL;
}
/* use default parameters */
chemistry_InitDefaultParameters();
/* check if units are given */
/* check that it is a PyDictObject */
if(!PyDict_Check(paramsDict))
{
PyErr_SetString(PyExc_AttributeError, "argument is not a dictionary.");
return NULL;
}
else
{
SetParameters(paramsDict);
}
init_chimie();
/* by default, set the first one */
set_table(DefaultTable);
return Py_BuildValue("O",Py_None);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_info(PyObject *self, PyObject *args, PyObject *kwds)
{
int DefaultTable=0;
static char *kwlist[] = {"DefaultTable", NULL};
/* this fails with python2.6, I do not know why ??? */
if (! PyArg_ParseTupleAndKeywords(args, kwds, "|i",kwlist,&DefaultTable))
{
PyErr_SetString(PyExc_ValueError,"init_chimie, error in parsing arguments.");
return NULL;
}
info(0);
return Py_BuildValue("O",Py_None);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_set_table(PyObject *self, PyObject *args, PyObject *kwds)
{
int i;
if (! PyArg_ParseTuple(args, "i",&i))
return PyString_FromString("error");
/* set the table */
set_table(i);
return Py_BuildValue("d",0);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_get_imf(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *m,*imf;
int i;
if (! PyArg_ParseTuple(args, "O",&m))
return PyString_FromString("error");
m = TO_DOUBLE(m);
/* create an output */
imf = (PyArrayObject *) PyArray_SimpleNew(m->nd,m->dimensions,PyArray_DOUBLE);
//printf("--> %g\n",Cp->bs[0]);
//for (i=0;i<Cp->n;i++)
// printf("%g %g\n",Cp->ms[i],Cp->as[i]);
for(i = 0; i < m->dimensions[0]; i++)
{
*(double *)(imf->data + i*(imf->strides[0])) = get_imf(*(double *)(m->data + i*(m->strides[0])));
}
return PyArray_Return(imf);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_get_imf_M(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *m1,*m2,*imf;
int i;
if (! PyArg_ParseTuple(args, "OO",&m1,&m2))
return PyString_FromString("error");
m1 = TO_DOUBLE(m1);
m2 = TO_DOUBLE(m2);
/* create an output */
imf = (PyArrayObject *) PyArray_SimpleNew(m1->nd,m1->dimensions,PyArray_DOUBLE);
for(i = 0; i < imf->dimensions[0]; i++)
{
*(double *)(imf->data + i*(imf->strides[0])) = get_imf_M( *(double *)(m1->data + i*(m1->strides[0])), *(double *)(m2->data + i*(m2->strides[0])) );
}
return PyArray_Return(imf);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_get_imf_N(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *m1,*m2,*imf;
int i;
if (! PyArg_ParseTuple(args, "OO",&m1,&m2))
return PyString_FromString("error");
m1 = TO_DOUBLE(m1);
m2 = TO_DOUBLE(m2);
/* create an output */
imf = (PyArrayObject *) PyArray_SimpleNew(m1->nd,m1->dimensions,PyArray_DOUBLE);
for(i = 0; i < imf->dimensions[0]; i++)
{
*(double *)(imf->data + i*(imf->strides[0])) = get_imf_N( *(double *)(m1->data + i*(m1->strides[0])), *(double *)(m2->data + i*(m2->strides[0])) );
}
return PyArray_Return(imf);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_star_lifetime(self, args)
PyObject *self;
PyObject *args;
{
/* z is the mass fraction of metals, ie, the metallicity */
/* m is the star mass in code unit */
/* Return t in time unit */
double time,z,m;
if (!PyArg_ParseTuple(args, "dd", &z, &m))
return NULL;
time = star_lifetime(z,m);
return Py_BuildValue("d",time);
}
static PyObject *
chemistry_star_mass_from_age(self, args)
PyObject *self;
PyObject *args;
{
/* t : life time (in code unit) */
/* return the stellar mass (in code unit) that has a lifetime equal to t */
double time,z,m;
if (!PyArg_ParseTuple(args, "dd", &z, &time))
return NULL;
m = star_mass_from_age(z,time);
return Py_BuildValue("d",m);
}
static PyObject *
chemistry_DYIN_rate(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2;
double RDYIN;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1,&m2))
return NULL;
RDYIN = DYIN_rate(m1,m2);
return Py_BuildValue("d",RDYIN);
}
static PyObject *
chemistry_SNII_rate(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2;
double RSNII;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1,&m2))
return NULL;
RSNII = SNII_rate(m1,m2);
return Py_BuildValue("d",RSNII);
}
static PyObject *
chemistry_SNIa_rate(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2;
double RSNIa;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1,&m2))
return NULL;
RSNIa = SNIa_rate(m1,m2);
return Py_BuildValue("d",RSNIa);
}
static PyObject *
chemistry_DYIN_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2;
PyArrayObject *ArrMassDYIN;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1,&m2))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassDYIN = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute dying stars ejection */
DYIN_mass_ejection(m1,m2);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassDYIN->data + (i)*(ArrMassDYIN->strides[0])) = MassFracDYIN[i];
/* convert in array */
return Py_BuildValue("O",ArrMassDYIN);
}
static PyObject *
chemistry_DYIN_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
PyArrayObject *ArrMassDYIN;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "d", &m1))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassDYIN = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute SN ejection */
DYIN_single_mass_ejection(m1);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassDYIN->data + (i)*(ArrMassDYIN->strides[0])) = SingleMassFracDYIN[i];
/* convert in array */
return Py_BuildValue("O",ArrMassDYIN);
}
static PyObject *
chemistry_SNII_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2;
PyArrayObject *ArrMassSNII;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1,&m2))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassSNII = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute SN ejection */
SNII_mass_ejection(m1,m2);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassSNII->data + (i)*(ArrMassSNII->strides[0])) = MassFracSNII[i];
/* convert in array */
return Py_BuildValue("O",ArrMassSNII);
}
static PyObject *
chemistry_SNII_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
PyArrayObject *ArrMassSNII;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "d", &m1))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassSNII = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute SN ejection */
SNII_single_mass_ejection(m1);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassSNII->data + (i)*(ArrMassSNII->strides[0])) = SingleMassFracSNII[i];
/* convert in array */
return Py_BuildValue("O",ArrMassSNII);
}
static PyObject *
chemistry_SNIa_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2;
PyArrayObject *ArrMassSNIa;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1,&m2))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassSNIa = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute SN ejection */
SNIa_mass_ejection(m1,m2);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassSNIa->data + (i)*(ArrMassSNIa->strides[0])) = MassFracSNIa[i];
/* convert in array */
return Py_BuildValue("O",ArrMassSNIa);
}
static PyObject *
chemistry_SNIa_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
PyArrayObject *ArrMassSNIa;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "d", &m1))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassSNIa = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute SN ejection */
SNIa_single_mass_ejection(m1);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassSNIa->data + (i)*(ArrMassSNIa->strides[0])) = SingleMassFracSNIa[i];
/* convert in array */
return Py_BuildValue("O",ArrMassSNIa);
}
static PyObject *
chemistry_Total_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2,M;
PyArrayObject *zs;
PyArrayObject *EMass;
npy_intp ld[1];
int i;
double *z;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dddO", &m1,&m2,&M,&zs))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
EMass = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* allocate memory for the metallicity array */
z = malloc((Cp->nelts) * sizeof(double));
/* export values */
for (i=0;i<Cp->nelts;i++)
z[i]= *(double *)(zs->data + (i)*(zs->strides[0]));
/* compute SN ejection */
Total_mass_ejection(m1,m2,M,z);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(EMass->data + (i)*(EMass->strides[0])) = EjectedMass[i];
/* convert in array */
return Py_BuildValue("O",EMass);
}
static PyObject *
chemistry_DYIN_Total_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
PyArrayObject *zs;
PyArrayObject *EMass;
npy_intp ld[1];
int i;
double *z;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dO", &m1,&zs))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
EMass = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* allocate memory for the metallicity array */
z = malloc((Cp->nelts) * sizeof(double));
/* export values */
for (i=0;i<Cp->nelts;i++)
z[i]= *(double *)(zs->data + (i)*(zs->strides[0]));
/* compute dying stars ejection */
DYIN_Total_single_mass_ejection(m1,z);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(EMass->data + (i)*(EMass->strides[0])) = SingleEjectedMass[i];
/* convert in array */
return Py_BuildValue("O",EMass);
}
static PyObject *
chemistry_SNII_Total_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
PyArrayObject *zs;
PyArrayObject *EMass;
npy_intp ld[1];
int i;
double *z;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dO", &m1,&zs))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
EMass = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* allocate memory for the metallicity array */
z = malloc((Cp->nelts) * sizeof(double));
/* export values */
for (i=0;i<Cp->nelts;i++)
z[i]= *(double *)(zs->data + (i)*(zs->strides[0]));
/* compute SN ejection */
SNII_Total_single_mass_ejection(m1,z);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(EMass->data + (i)*(EMass->strides[0])) = SingleEjectedMass[i];
/* convert in array */
return Py_BuildValue("O",EMass);
}
static PyObject *
chemistry_SNIa_Total_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
PyArrayObject *zs;
PyArrayObject *EMass;
npy_intp ld[1];
int i;
double *z;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dO", &m1,&zs))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
EMass = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* allocate memory for the metallicity array */
z = malloc((Cp->nelts) * sizeof(double));
/* export values */
for (i=0;i<Cp->nelts;i++)
z[i]= *(double *)(zs->data + (i)*(zs->strides[0]));
/* compute SN ejection */
SNIa_Total_single_mass_ejection(m1,z);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(EMass->data + (i)*(EMass->strides[0])) = SingleEjectedMass[i];
/* convert in array */
return Py_BuildValue("O",EMass);
}
static PyObject *
chemistry_Total_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
double NSNII,NSNIa,NDYIN;
PyArrayObject *zs;
PyArrayObject *EMass;
npy_intp ld[1];
int i;
double *z;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dOddd", &m1,&zs,&NSNII,&NSNIa,&NDYIN))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
EMass = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* allocate memory for the metallicity array */
z = malloc((Cp->nelts) * sizeof(double));
/* export values */
for (i=0;i<Cp->nelts;i++)
z[i]= *(double *)(zs->data + (i)*(zs->strides[0]));
/* compute SN ejection */
Total_single_mass_ejection(m1,z,NSNII,NSNIa,NDYIN);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(EMass->data + (i)*(EMass->strides[0])) = SingleEjectedMass[i];
/* convert in array */
return Py_BuildValue("O",EMass);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_cooling_function(self, args)
PyObject *self;
PyObject *args;
{
/*
on gives :
u_energy
metal = metal(i,2)
parameters
t_const,zmin,zmax,slz,tmin,tmax,slt,FeHSolar,cooling_data_max
*/
PyArrayObject *cooling_data;
double u_energy,metal;
double t_const,zmin,zmax,slz,tmin,tmax,slt,FeHSolar,cooling_data_max;
double cooling,u_cutoff,T,Z;
double rt, rz, ft, fz, v1, v2, v;
int it,iz,itp,izp;
/* parse arguments */
if (!PyArg_ParseTuple(args, "ddOddddddddd", &u_energy, &metal, &cooling_data,&t_const,&zmin,&zmax,&slz,&tmin,&tmax,&slt,&FeHSolar,&cooling_data_max))
return NULL;
u_cutoff=(100)/t_const;
cooling = 0.0;
if (u_energy > u_cutoff)
{
T = log10( t_const*u_energy );
Z = log10( metal/FeHSolar + 1.e-10 );
if (Z>zmax)
{
/*print *,'Warning: Z>Zmax for',i*/
Z=zmax;
}
if (Z < zmin)
{
rt = (T-tmin)/slt;
it = (int)rt;
if (it < cooling_data_max )
it = (int)rt;
else
it = cooling_data_max;
itp = it+1;
ft = rt - it;
fz = ( 10. + Z )/( 10. + zmin);
//v1 = ft*(cooling_data( 1, itp)-cooling_data( 1,it) ) + cooling_data( 1,it );
v1 = ft * (*(double *) (cooling_data->data + 1*(cooling_data->strides[0]) + itp*cooling_data->strides[1])
- *(double *) (cooling_data->data + 1*(cooling_data->strides[0]) + it *cooling_data->strides[1]))
+ *(double *) (cooling_data->data + 1*(cooling_data->strides[0]) + it *cooling_data->strides[1]);
//v2 = ft*(cooling_data( 0,itp )-cooling_data( 0, it ) ) + cooling_data( 0, it );
v2 = ft * (*(double *) (cooling_data->data + 0*(cooling_data->strides[0]) + itp*cooling_data->strides[1])
- *(double *) (cooling_data->data + 0*(cooling_data->strides[0]) + it *cooling_data->strides[1]))
+ *(double *) (cooling_data->data + 0*(cooling_data->strides[0]) + it *cooling_data->strides[1]);
v = v2 + fz*(v1-v2);
}
else
{
rt = (T-tmin)/slt;
rz = (Z-zmin)/slz+1.0;
if (it < cooling_data_max )
it = (int)rt;
else
it = cooling_data_max;
iz = (int)rz;
itp = it+1;
izp = iz+1;
ft = rt - it;
fz = rz - iz;
//v1 = ft*(cooling_data( izp, itp)-cooling_data(izp,it)) + cooling_data( izp, it );
v1 = ft * (*(double *) (cooling_data->data + izp*(cooling_data->strides[0]) + itp*cooling_data->strides[1])
- *(double *) (cooling_data->data + izp*(cooling_data->strides[0]) + it *cooling_data->strides[1]))
+ *(double *) (cooling_data->data + izp*(cooling_data->strides[0]) + it *cooling_data->strides[1]);
//v2 = ft*(cooling_data( iz, itp )-cooling_data(iz,it )) + cooling_data( iz, it );
v2 = ft * (*(double *) (cooling_data->data + iz *(cooling_data->strides[0]) + itp*cooling_data->strides[1])
- *(double *) (cooling_data->data + iz *(cooling_data->strides[0]) + it *cooling_data->strides[1]))
+ *(double *) (cooling_data->data + iz *(cooling_data->strides[0]) + it *cooling_data->strides[1]);
v = v2 + fz*(v1-v2);
}
cooling = pow(10,v);
}
return Py_BuildValue("d",cooling);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_get_Mmax(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->Mmax * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_Mmin(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->Mmin * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_Mco(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->Mco * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_SNIa_Mpl(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->SNIa_Mpl * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_SNIa_Mpu(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->SNIa_Mpu * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_SNII_Mmin(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->SNII_Mmin * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_SNII_Mmax(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->SNII_Mmax * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_imf_Ntot(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->imf_Ntot/SOLAR_MASS*All.UnitMass_in_g); /* in code mass unit */
}
static PyObject *
chemistry_get_as(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *as;
npy_intp ld[1];
int i;
/* create output array */
ld[0]= Cp->n+1;
as = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* import values */
for (i=0;i<Cp->n+1;i++)
*(double *)(as->data + (i)*(as->strides[0])) = Cp->as[i];
return Py_BuildValue("O",as);
}
static PyObject *
chemistry_get_bs(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *bs;
npy_intp ld[1];
int i;
/* create output array */
ld[0]= Cp->n+1;
bs = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* import values */
for (i=0;i<Cp->n+1;i++)
*(double *)(bs->data + (i)*(bs->strides[0])) = Cp->bs[i];
return Py_BuildValue("O",bs);
}
static PyObject *
chemistry_get_fs(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *fs;
npy_intp ld[1];
int i;
/* create output array */
ld[0]= Cp->n;
fs = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* import values */
for (i=0;i<Cp->n;i++)
*(double *)(fs->data + (i)*(fs->strides[0])) = Cp->fs[i];
return Py_BuildValue("O",fs);
}
static PyObject *
chemistry_get_allnelts(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("i",(int)Cp->nelts+2);
}
static PyObject *
chemistry_get_nelts(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("i",(int)Cp->nelts);
}
static PyObject *
chemistry_get_allelts_labels(self, args)
PyObject *self;
PyObject *args;
{
int i;
PyObject *LabelList,*LabelString;
LabelList = PyList_New((Py_ssize_t)Cp->nelts+2);
for(i=0;i<Cp->nelts+2;i++)
{
LabelString = PyString_FromString(Elt[i].label);
PyList_SetItem(LabelList, (Py_ssize_t)i,LabelString);
}
return Py_BuildValue("O",LabelList);
}
static PyObject *
chemistry_get_elts_labels(self, args)
PyObject *self;
PyObject *args;
{
int i;
PyObject *LabelList,*LabelString;
LabelList = PyList_New((Py_ssize_t)Cp->nelts);
for(i=2;i<Cp->nelts+2;i++)
{
LabelString = PyString_FromString(Elt[i].label);
PyList_SetItem(LabelList, (Py_ssize_t)i-2,LabelString);
}
return Py_BuildValue("O",LabelList);
}
/* static PyObject *
chemistry_get_elts_SolarMassAbundances(self, args)
PyObject *self;
PyObject *args;
{
int i;
npy_intp ld[1];
PyArrayObject *AbList;
ld[0] = Cp->nelts;
AbList = (PyArrayObject *) PyArray_SimpleNew(1,ld,NPY_FLOAT);
for(i=2;i<Cp->nelts+2;i++)
*(float*)(AbList->data + (i-2)*(AbList->strides[0])) = (float) Elt[i].SolarMassAbundance;
return PyArray_Return(AbList);
} */
static PyObject *
chemistry_get_elts_SolarMassAbundances(self, args)
PyObject *self;
PyObject *args;
{
int i;
PyObject *AbDict,*LabelString,*AbVal;
AbDict = PyDict_New();
for(i=2;i<Cp->nelts+2;i++)
{
AbVal = PyFloat_FromDouble(Elt[i].SolarMassAbundance);
LabelString = PyString_FromString(Elt[i].label);
PyDict_SetItem(AbDict,LabelString, AbVal);
}
return Py_BuildValue("O",AbDict);
}
static PyObject *
chemistry_get_MSNIa(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *MSNIa;
npy_intp ld[1];
int i;
/* create output array */
ld[0]= Cp->nelts;
MSNIa = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* import values */
for (i=0;i<Cp->nelts;i++)
*(double *)(MSNIa->data + (i)*(MSNIa->strides[0])) = Elt[i+2].MSNIa/All.UnitMass_in_g*SOLAR_MASS;
return Py_BuildValue("O",MSNIa);
}
static PyObject *
chemistry_get_MassFracSNII(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *MassFrac;
npy_intp ld[1];
int i;
/* create output array */
ld[0]= Cp->nelts+2;
MassFrac = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(MassFrac->data + (i)*(MassFrac->strides[0])) = MassFracSNII[i];
return Py_BuildValue("O",MassFrac);
}
static PyObject *
chemistry_get_SingleMassFracSNII(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *MassFrac;
npy_intp ld[1];
int i;
/* create output array */
ld[0]= Cp->nelts+2;
MassFrac = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(MassFrac->data + (i)*(MassFrac->strides[0])) = SingleMassFracSNII[i];
return Py_BuildValue("O",MassFrac);
}
static PyObject *
chemistry_imf_sampling(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *ms;
npy_intp ld[1];
int i;
int n,seed;
/* parse arguments */
if (!PyArg_ParseTuple(args, "ii", &n,&seed))
return NULL;
/* create output array */
ld[0]= n;
ms = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
srandom(seed);
/* import values */
for (i=0;i<n;i++)
*(double *)(ms->data + (i)*(ms->strides[0])) = imf_sampling();
return Py_BuildValue("O",ms);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_SNII_rate_P(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *ConstSN,*Msn;
double m1,m2,md;
double powSN1,powSN2;
double RSNII;
RSNII = 0.0;
/* parse arguments */
if (!PyArg_ParseTuple(args, "ddddOO", &m1,&m2,&powSN1,&powSN2,&ConstSN,&Msn))
return NULL;
if ( m1 < *(double *) (Msn->data + 2*(Msn->strides[0]) + 1*(Msn->strides[1])) )
md = *(double *) (Msn->data + 2*(Msn->strides[0]) + 1*(Msn->strides[1]));
else
md = m1;
if (md >= m2)
RSNII = 0;
else
RSNII = *(double *) (ConstSN->data + 2*ConstSN->strides[0]) *(pow(m2,powSN1)-pow(md,powSN1));
return Py_BuildValue("d",RSNII);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_SNIa_rate_P(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *ConstSN,*Msn;
double m1,m2,md,mu;
double powSN1,powSN2;
double RSNIa;
double rate;
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "ddddOO", &m1,&m2,&powSN1,&powSN2,&ConstSN,&Msn))
return NULL;
RSNIa = 0.0;
for (i=0;i<2;i++)
{
if ( m1 < *(double *) (Msn->data + i*(Msn->strides[0]) + 0*(Msn->strides[1])) )
md = *(double *) (Msn->data + i*(Msn->strides[0]) + 0*(Msn->strides[1]));
else
md = m1;
if ( m2 > *(double *) (Msn->data + i*(Msn->strides[0]) + 1*(Msn->strides[1])) )
mu = *(double *) (Msn->data + i*(Msn->strides[0]) + 1*(Msn->strides[1]));
else
mu = m2;
if (md<mu)
RSNIa = RSNIa+ *(double *) (ConstSN->data + i*ConstSN->strides[0])*(pow(mu,powSN2)-pow(md,powSN2));
}
if ( m1 < *(double *) (Msn->data + 2*(Msn->strides[0]) + 0*(Msn->strides[1])) )
md = *(double *) (Msn->data + 2*(Msn->strides[0]) + 0*(Msn->strides[1]));
else
md = m1;
mu = *(double *) (Msn->data + 2*(Msn->strides[0]) + 1*(Msn->strides[1]));
if (md >= mu)
RSNIa = 0.0;
else
RSNIa = RSNIa*(pow(mu,powSN1)-pow(md,powSN1));
if (RSNIa<0)
RSNIa = 0;
return Py_BuildValue("d",RSNIa);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_SNII_mass_ejection_P(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *ArrayOrigin,*ArrayStep,*ChemArray;
double m1,m2;
int NbElement;
double l1,l2;
int i1,i2,i1p,i2p,j;
double f1,f2;
double v1,v2;
PyArrayObject *ArrMassSNII;
npy_intp ld[1];
/* parse arguments */
if (!PyArg_ParseTuple(args, "ddOOOi", &m1,&m2,&ArrayOrigin,&ArrayStep,&ChemArray,&NbElement))
return NULL;
/* create output array */
ld[0]= NbElement+2;
ArrMassSNII = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
l1 = ( log10(m1) - *(double *)(ArrayOrigin->data + 0*(ArrayOrigin->strides[0])) ) / *(double *)(ArrayStep->data + 0*(ArrayStep->strides[0])) ;
l2 = ( log10(m2) - *(double *)(ArrayOrigin->data + 0*(ArrayOrigin->strides[0])) ) / *(double *)(ArrayStep->data + 0*(ArrayStep->strides[0])) ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<1) i1=1;
if (i2<1) i2=1;
/* --------- TOTAL GAS ---------- */
j = NbElement;
v1=f1* (*(double *)(ChemArray->data + (i1p)*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]))
- *(double *)(ChemArray->data + (i1 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1])))
+ *(double *)(ChemArray->data + (i1 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]));
v2=f2* (*(double *)(ChemArray->data + (i2p)*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]))
- *(double *)(ChemArray->data + (i2 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1])))
+ *(double *)(ChemArray->data + (i2 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]));
*(double *)(ArrMassSNII->data + (j)*(ArrMassSNII->strides[0])) = v2-v1;
/* --------- He core therm ---------- */
j = NbElement+1;
v1=f1* (*(double *)(ChemArray->data + (i1p)*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]))
- *(double *)(ChemArray->data + (i1 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1])))
+ *(double *)(ChemArray->data + (i1 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]));
v2=f2* (*(double *)(ChemArray->data + (i2p)*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]))
- *(double *)(ChemArray->data + (i2 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1])))
+ *(double *)(ChemArray->data + (i2 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]));
*(double *)(ArrMassSNII->data + (j)*(ArrMassSNII->strides[0])) = v2-v1;
/* --------- Metals ---------- */
l1 = ( log10(m1) - *(double *)(ArrayOrigin->data + 1*(ArrayOrigin->strides[0])) ) / *(double *)(ArrayStep->data + 1*(ArrayStep->strides[0])) ;
l2 = ( log10(m2) - *(double *)(ArrayOrigin->data + 1*(ArrayOrigin->strides[0])) ) / *(double *)(ArrayStep->data + 1*(ArrayStep->strides[0])) ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<1) i1=1;
if (i2<1) i2=1;
for (j=0;j<NbElement;j++)
{
v1=f1* (*(double *)(ChemArray->data + (i1p)*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]))
- *(double *)(ChemArray->data + (i1 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1])))
+ *(double *)(ChemArray->data + (i1 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]));
v2=f2* (*(double *)(ChemArray->data + (i2p)*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]))
- *(double *)(ChemArray->data + (i2 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1])))
+ *(double *)(ChemArray->data + (i2 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]));
*(double *)(ArrMassSNII->data + (j)*(ArrMassSNII->strides[0])) = v2-v1;
}
return Py_BuildValue("O",ArrMassSNII);
}
/* definition of the method table */
static PyMethodDef chemistryMethods[] = {
{"CodeUnits_to_SolarMass_Factor", chemistry_CodeUnits_to_SolarMass_Factor, METH_VARARGS,
"convertion factor : CodeUnits -> SolarMass"},
{"SolarMass_to_CodeUnits_Factor", chemistry_SolarMass_to_CodeUnits_Factor, METH_VARARGS,
"convertion factor : SolarMass -> CodeUnits"},
{"InitDefaultParameters", (PyCFunction)chemistry_InitDefaultParameters, METH_VARARGS,
"Init default parameters"},
{"SetParameters", (PyCFunction)chemistry_SetParameters, METH_VARARGS,
"Set gadget parameters"},
{"GetParameters", (PyCFunction)chemistry_GetParameters, METH_VARARGS,
"get some gadget parameters"},
{"init_chimie", chemistry_init_chimie, METH_VARARGS| METH_KEYWORDS,
"Init chimie."},
{"info", chemistry_info, METH_VARARGS| METH_KEYWORDS,
"Get info on tables."},
{"set_table", chemistry_set_table, METH_VARARGS,
"Set the chimie table."},
{"get_imf", chemistry_get_imf, METH_VARARGS,
"Compute corresponding imf value."},
{"get_imf_M", chemistry_get_imf_M, METH_VARARGS,
"Compute the mass fraction between m1 and m2."},
{"get_imf_N", chemistry_get_imf_N, METH_VARARGS,
"Compute the fraction number between m1 and m2."},
{"star_lifetime", chemistry_star_lifetime, METH_VARARGS,
"Compute star life time."},
{"star_mass_from_age", chemistry_star_mass_from_age, METH_VARARGS,
"Return the stellar mass that has a lifetime equal to t."},
{"DYIN_rate", chemistry_DYIN_rate, METH_VARARGS,
"Return the number of dying stars per unit mass with masses between m1 and m2."},
{"SNII_rate", chemistry_SNII_rate, METH_VARARGS,
"Return the number of SNII per unit mass with masses between m1 and m2."},
{"SNIa_rate", chemistry_SNIa_rate, METH_VARARGS,
"Return the number of SNIa per unit mass with masses between m1 and m2."},
{"DYIN_mass_ejection", chemistry_DYIN_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements, per unit mass due to the explotion of dying stars with masses between m1 and m2."},
{"DYIN_single_mass_ejection", chemistry_DYIN_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements due to the explotion of one dying star of mass m."},
{"SNII_mass_ejection", chemistry_SNII_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements, per unit mass due to the explotion of SNII with masses between m1 and m2."},
{"SNII_single_mass_ejection", chemistry_SNII_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements due to the explotion of one SNII of mass m."},
{"SNIa_mass_ejection", chemistry_SNIa_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements, per unit mass due to the explotion of SNIa with masses between m1 and m2."},
{"SNIa_single_mass_ejection", chemistry_SNIa_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements due to the explotion of one SNIa of mass m."},
{"Total_mass_ejection", chemistry_Total_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements, per unit mass due to the explotion of SNIa and SNII with masses between m1 and m2."},
{"DYIN_Total_single_mass_ejection", chemistry_DYIN_Total_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements (including processed and non processed elements) due to the explotion of one dying star of mass m."},
{"SNII_Total_single_mass_ejection", chemistry_SNII_Total_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements (including processed and non processed elements) due to the explotion of one SNII of mass m."},
{"SNIa_Total_single_mass_ejection", chemistry_SNIa_Total_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements (including processed and non processed elements) due to the explotion of one SNIa of mass m."},
{"Total_single_mass_ejection", chemistry_Total_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements, per unit mass due to the explotion of one dying star of mass m1."},
{"get_Mmax", chemistry_get_Mmax, METH_VARARGS,
"Get max star mass of the IMF, in code unit."},
{"get_Mmin", chemistry_get_Mmin, METH_VARARGS,
"Get min star mass of the IMF, in code unit."},
{"get_Mco", chemistry_get_Mco, METH_VARARGS,
"Get mean WD mass, in code unit."},
{"get_SNIa_Mpl", chemistry_get_SNIa_Mpl, METH_VARARGS,
"Get min mass of SNIa, in code unit."},
{"get_SNIa_Mpu", chemistry_get_SNIa_Mpu, METH_VARARGS,
"Get max mass of SNIa, in code unit."},
{"get_SNII_Mmin", chemistry_get_SNII_Mmin, METH_VARARGS,
"Get min mass of SNII, in code unit."},
{"get_SNII_Mmax", chemistry_get_SNII_Mmax, METH_VARARGS,
"Get max mass of SNII, in code unit."},
{"get_imf_Ntot", chemistry_get_imf_Ntot, METH_VARARGS,
"Get number of stars in the imf, per unit mass."},
{"get_as", chemistry_get_as, METH_VARARGS,
"Get power coefficients."},
{"get_bs", chemistry_get_bs, METH_VARARGS,
"Get normalisation coefficients."},
{"get_fs", chemistry_get_fs, METH_VARARGS,
"Get fs, mass fraction at ms."},
{"get_allnelts", chemistry_get_allnelts, METH_VARARGS,
"Get the number of element considered, including ejected mass (Ej) and non processed ejected mass (Ejnp).."},
{"get_nelts", chemistry_get_nelts, METH_VARARGS,
"Get the number of element considered."},
{"get_allelts_labels", chemistry_get_allelts_labels, METH_VARARGS,
"Get the labels of elements, including ejected mass (Ej) and non processed ejected mass (Ejnp)."},
{"get_elts_labels", chemistry_get_elts_labels, METH_VARARGS,
"Get the labels of elements."},
{"get_elts_SolarMassAbundances", chemistry_get_elts_SolarMassAbundances, METH_VARARGS,
"Get the solar mass abundance of elements."},
{"get_MassFracSNII", chemistry_get_MassFracSNII, METH_VARARGS,
"Get the mass fraction per element ejected by a set of SNII."},
{"get_SingleMassFracSNII", chemistry_get_SingleMassFracSNII, METH_VARARGS,
"Get the mass fraction per element ejected by a SNII."},
{"get_MSNIa", chemistry_get_MSNIa, METH_VARARGS,
"Get the mass per element ejected by a SNIa."},
{"cooling_function", chemistry_cooling_function, METH_VARARGS,
"Compute cooling."},
{"imf_sampling", chemistry_imf_sampling, METH_VARARGS,
"Sample imf with n points."},
/* old poirier */
{"SNIa_rate_P", chemistry_SNIa_rate_P, METH_VARARGS,
"Return the number of SNIa per unit mass and time. (Poirier version)"},
{"SNII_rate_P", chemistry_SNII_rate_P, METH_VARARGS,
"Return the number of SNII per unit mass and time. (Poirier version)"},
{"SNII_mass_ejection_P", chemistry_SNII_mass_ejection_P, METH_VARARGS,
"Mass ejection due to SNII per unit mass and time. (Poirier version)"},
{NULL, NULL, 0, NULL} /* Sentinel */
};
void initchemistry(void)
{
(void) Py_InitModule("chemistry", chemistryMethods);
import_array();
}
#endif /* PYCHEM */
#endif /* CHIMIE */
diff --git a/src/cooling.c b/src/cooling.c
index 958ab23..5896246 100644
--- a/src/cooling.c
+++ b/src/cooling.c
@@ -1,2974 +1,3005 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_spline.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_roots.h>
#include "allvars.h"
#include "proto.h"
#ifdef COOLING
/*! initialize cooling function (the metallicity is fixed)
*
* T = temperature
* L0 = m000 primordial metallicity
* L1 = m-30
* L2 = m-20
* L3 = m-10
* L4 = m-05
* L5 = m-00 solar metallicity
* L6 = m+05
*/
int init_cooling(FLOAT metallicity)
{
FILE *fd;
int n,i;
char line[72];
float T,L0,L1,L2,L3,L4,L5,L6;
int MetallicityIndex=4;
/* find the right index */
if (All.InitGasMetallicity<-3)
MetallicityIndex = 0;
else
{
if (All.InitGasMetallicity<-2)
MetallicityIndex = 1;
else
{
if (All.InitGasMetallicity<-1)
MetallicityIndex = 2;
else
{
if (All.InitGasMetallicity<-0.5)
MetallicityIndex = 3;
else
{
if (All.InitGasMetallicity<0)
MetallicityIndex = 4;
else
{
MetallicityIndex = 5;
}
}
}
}
}
fd = fopen(All.CoolingFile,"r");
fscanf(fd, "# %6d\n", &n);
/* allocate memory */
All.logT = malloc(n * sizeof(double));
All.logL = malloc(n * sizeof(double));
/* read empty line */
fgets(line, sizeof(line), fd);
/* read file */
for (i=0;i<n;i++){
fscanf(fd, "%f %f %f %f %f %f %f %f\n",&T,&L0,&L1,&L2,&L3,&L4,&L5,&L6);
//printf("%8.3f %8.3f\n",T,L0);
/* keep only solar values */
All.logT[i] = (double)T;
switch (MetallicityIndex)
{
case 0:
All.logL[i] = (double)L0;
break;
case 1:
All.logL[i] = (double)L1;
break;
case 2:
All.logL[i] = (double)L2;
break;
case 3:
All.logL[i] = (double)L3;
break;
case 4:
All.logL[i] = (double)L4;
break;
case 5:
All.logL[i] = (double)L5;
break;
case 6:
All.logL[i] = (double)L6;
break;
}
}
fclose(fd);
/* init interpolation */
All.acc_cooling_spline = gsl_interp_accel_alloc ();
All.cooling_spline = gsl_spline_alloc (gsl_interp_cspline, n);
gsl_spline_init (All.cooling_spline, All.logT, All.logL, n);
#ifdef OUTPUT_COOLING_FUNCTION
/* test cooling */
double logT;
double l;
logT = 1.;
while(logT<8)
{
T = pow(10,logT);
l = log10(cooling_function(T));
if(ThisTask == 0)
printf("%8.3f %8.3f\n",logT,l);
logT = logT + 0.05;
}
#endif
return 0;
}
/*! This function return the normalized cooling function (no metallicity dependency)
*/
double cooling_function(double temperature)
{
double logT;
if (temperature >= All.CutofCoolingTemperature)
{
logT = log10(temperature);
if (logT>8.5)
logT = 8.5;
return pow(10,gsl_spline_eval (All.cooling_spline, logT, All.acc_cooling_spline));
}
else
return 1e-100;
}
/***************************************************************************
METALLICITY DEPENDENT COOLING
**************************************************************************/
int init_cooling_with_metals()
{
/*
zmin zmax slz
tmin tmax slt
FeHSolar
p k
*/
FILE *fd;
int p,k,i,j;
float zmin,zmax,slz,tmin,tmax,slt,FeHSolar;
float lbd;
#ifdef COOLING_FCT_FROM_HDF5
if (ThisTask == 0)
updateCoolingTable();
BroadcastTablesToAllFromMaster();
#endif
if (ThisTask==0)
{
fd = fopen(All.CoolingFile,"r");
fscanf(fd, "%f %f %f\n", &zmin,&zmax,&slz);
fscanf(fd, "%f %f %f\n", &tmin,&tmax,&slt);
fscanf(fd, "%f\n" , &FeHSolar);
fscanf(fd, "%d %d\n" , &p,&k);
All.CoolingParameters_zmin = zmin;
All.CoolingParameters_zmax = zmax;
All.CoolingParameters_slz = slz;
All.CoolingParameters_tmin = tmin;
All.CoolingParameters_tmax = tmax;
All.CoolingParameters_slt = slt;
//All.CoolingParameters_FeHSolar = FEH_SOLAR; /* instead of FeHSolar */ /* All.CoolingParameters_FeHSolar is initialized in begrun.c*/
All.CoolingParameters_cooling_data_max = k-2;
for (i=0;i<p;i++)
for (j=0;j<k;j++)
{
fscanf(fd, "%f\n" ,&lbd);
All.CoolingParameters_cooling_data[i][j]=lbd;
}
fclose(fd);
}
/* now broadcast */
/*
This is quite bad to do it like this, however, there is no other solution, as
All has already be sent.
The other solution will be to create a structure devoted to the cooling (like Cps in chimie.c)
avoiding to link the parameters to All.
*/
MPI_Bcast(&All.CoolingParameters_zmin, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast(&All.CoolingParameters_zmax, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast(&All.CoolingParameters_slz, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast(&All.CoolingParameters_tmin, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast(&All.CoolingParameters_tmax, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast(&All.CoolingParameters_slt, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast(&All.CoolingParameters_cooling_data_max, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Bcast(&All.CoolingParameters_cooling_data , (COOLING_NMETALICITIES*COOLING_NTEMPERATURES), MPI_DOUBLE, 0, MPI_COMM_WORLD);
#ifdef OUTPUT_COOLING_FUNCTION
/* test cooling */
double logT,T;
double l;
double metal;
logT = 1.;
metal = (pow(10,All.InitGasMetallicity)-1e-10)*All.CoolingParameters_FeHSolar;
while(logT<8)
{
T = pow(10,logT);
l = log10(cooling_function_with_metals(T,metal));
if(ThisTask == 0)
printf("%8.3f %8.3f\n",logT,l);
logT = logT + 0.05;
}
#endif
return 0;
}
/*! This function return the normalized cooling function, that depends on metallicity
*/
double cooling_function_with_metals(double temperature,double metal)
{
double cooling;
double T,Z;
double rt, rz, ft, fz, v1, v2, v;
int it,iz,itp,izp;
double zmin,zmax,slz,tmin,tmax,slt,FeHSolar,cooling_data_max;
zmin = All.CoolingParameters_zmin;
zmax = All.CoolingParameters_zmax;
slz = All.CoolingParameters_slz;
tmin = All.CoolingParameters_tmin;
tmax = All.CoolingParameters_tmax;
slt = All.CoolingParameters_slt;
FeHSolar = All.CoolingParameters_FeHSolar;
cooling_data_max = All.CoolingParameters_cooling_data_max;
cooling = 0.0;
T = log10( temperature );
Z = log10( metal/FeHSolar + 1.e-10 ); /* here, we compute Z, with corresponds to Z_Fe and not the total amount of metals */
if (Z>zmax)
{
/*print *,'Warning: Z>Zmax for',i*/
Z=zmax;
}
if (Z < zmin)
{
rt = (T-tmin)/slt;
it = (int)rt;
if (it < cooling_data_max )
it = (int)rt;
else
it = cooling_data_max;
itp = it+1;
ft = rt - it;
fz = ( 10. + Z )/( 10. + zmin);
v1 = ft*( All.CoolingParameters_cooling_data[1][itp] -All.CoolingParameters_cooling_data[1][it] ) + All.CoolingParameters_cooling_data[1][it];
v2 = ft*( All.CoolingParameters_cooling_data[0][itp] -All.CoolingParameters_cooling_data[0][it] ) + All.CoolingParameters_cooling_data[0][it];
v = v2 + fz*(v1-v2);
}
else
{
rt = (T-tmin)/slt;
rz = (Z-zmin)/slz+1.0;
it = (int)rt;
if (it < cooling_data_max )
it = (int)rt;
else
it = cooling_data_max;
iz = (int)rz;
itp = it+1;
izp = iz+1;
ft = rt - it;
fz = rz - iz;
v1 = ft*(All.CoolingParameters_cooling_data[izp][itp] - All.CoolingParameters_cooling_data[izp][it]) + All.CoolingParameters_cooling_data[izp][it];
v2 = ft*(All.CoolingParameters_cooling_data[iz][itp] - All.CoolingParameters_cooling_data[iz][it]) + All.CoolingParameters_cooling_data[iz][it];
v = v2 + fz*(v1-v2);
}
cooling = pow(10,v);
return cooling;
}
/***************************************************************************
END OF METALLICITY DEPENDENT COOLING
**************************************************************************/
/*! \file cooling.c
* \brief Compute gas cooling
*
*/
static double hubble_a, a3inv;
static double eV = 1.6022000e-12;
static double normfacJ0 = 0.74627;
static double J0min = 1.e-29;
static double alpha = 1.0;
static int Norderweinberg = 7; /* polynom order+1 */
static double coefweinberg[7][6];
static double z;
static double J0;
static double Cte_G_gHI;
static double Cte_G_gHeI;
static double Cte_G_gHeII;
static double Cte_heating_radiative_HI;
static double Cte_heating_radiative_HeI;
static double Cte_heating_radiative_HeII;
/*
* init some variables that depends only on redshift
*/
void init_from_new_redshift(double Redshift)
{
/* init weinberg coeff */
coefweinberg[0][0] = -0.31086729929951613e+002;
coefweinberg[1][0] = 0.34803667059463761e+001;
coefweinberg[2][0] = -0.15145716066316397e+001;
coefweinberg[3][0] = 0.54649951450632972e+000;
coefweinberg[4][0] = -0.16395924120387340e+000;
coefweinberg[5][0] = 0.25197466148524143e-001;
coefweinberg[6][0] = -0.15352763785487806e-002;
coefweinberg[0][1] = -0.31887274113252204e+002;
coefweinberg[1][1] = 0.44178493140927095e+001;
coefweinberg[2][1] = -0.20158132553082293e+001;
coefweinberg[3][1] = 0.64080497292269134e+000;
coefweinberg[4][1] = -0.15981267091909040e+000;
coefweinberg[5][1] = 0.22056900050237707e-001;
coefweinberg[6][1] = -0.12837570029562849e-002;
coefweinberg[0][2] = -0.35693331167978656e+002;
coefweinberg[1][2] = 0.20207245722165794e+001;
coefweinberg[2][2] = -0.76856976101363744e-001;
coefweinberg[3][2] = -0.75691470654320359e-001;
coefweinberg[4][2] = -0.54502220282734729e-001;
coefweinberg[5][2] = 0.20633345104660583e-001;
coefweinberg[6][2] = -0.18410307456285177e-002;
coefweinberg[0][3] = -0.56967559787460921e+002;
coefweinberg[1][3] = 0.38601174525546353e+001;
coefweinberg[2][3] = -0.18318926655684415e+001;
coefweinberg[3][3] = 0.67360594266440688e+000;
coefweinberg[4][3] = -0.18983466813215341e+000;
coefweinberg[5][3] = 0.27768907786915147e-001;
coefweinberg[6][3] = -0.16330066969315893e-002;
coefweinberg[0][4] = -0.56977907250821026e+002;
coefweinberg[1][4] = 0.38686249565302266e+001;
coefweinberg[2][4] = -0.13330942368518774e+001;
coefweinberg[3][4] = 0.33988839029092172e+000;
coefweinberg[4][4] = -0.98997915675929332e-001;
coefweinberg[5][4] = 0.16781612113050747e-001;
coefweinberg[6][4] = -0.11514328893746039e-002;
coefweinberg[0][5] = -0.59825233828609278e+002;
coefweinberg[1][5] = 0.21898162706563347e+001;
coefweinberg[2][5] = -0.42982055888598525e+000;
coefweinberg[3][5] = 0.50312144291614215e-001;
coefweinberg[4][5] = -0.61550639239553132e-001;
coefweinberg[5][5] = 0.18017109270959387e-001;
coefweinberg[6][5] = -0.15438891584271634e-002;
z = Redshift;
J0 = J_0();
/* here, we initialize the ctes that uses J_nu(z) */
/* Tessier */
/*
Cte_G_gHI = G_gHI();
Cte_G_gHeI = G_gHeI();
Cte_G_gHeII = G_gHeII();
Cte_heating_radiative_HI = heating_radiative_HI();
Cte_heating_radiative_HeI = heating_radiative_HeI();
Cte_heating_radiative_HeII = heating_radiative_HeII();
*/
/* Theuns */
/*
Cte_G_gHI = G_gHI_t(J0);
Cte_G_gHeI = G_gHeI_t(J0);
Cte_G_gHeII = G_gHeII_t(J0);
Cte_heating_radiative_HI = heating_radiative_HI_t(J0);
Cte_heating_radiative_HeI = heating_radiative_HeI_t(J0);
Cte_heating_radiative_HeII = heating_radiative_HeII_t(J0);
*/
/* Weinberg */
Cte_G_gHI = G_gHI_w();
Cte_G_gHeI = G_gHeI_w();
Cte_G_gHeII = G_gHeII_w();
Cte_heating_radiative_HI = heating_radiative_HI_w();
Cte_heating_radiative_HeI = heating_radiative_HeI_w();
Cte_heating_radiative_HeII = heating_radiative_HeII_w();
}
/*
* J0
*/
double J_0()
{
double Fz;
if (z > 6)
Fz = 0;
else
{
if (z > 3)
Fz = 4/(z+1);
else
{
if (z > 2)
Fz = 1;
else
Fz = pow(((1+z)/3.),3);
}
}
return 1.0e-22*Fz;
}
/*
* UV background intensity
*/
double J_nu(double e)
{
double e_L;
e_L = 13.598*eV;
return (e_L/e)*J_0();
}
/*
* sigma_rad
*/
double sigma_rad_HI(double e)
{
double xxx,alph,e_i;
e_i = 13.598 *eV;
xxx = e/e_i;
alph = sqrt(xxx-1.0);
return 6.30e-18/pow(xxx,4)*exp(4.0-4.0*atan(alph)/alph) /(1.0-exp(-TWOPI/alph));
}
double sigma_rad_HeI(double e)
{
double xxx,alph,e_i;
e_i = 24.587 *eV;
xxx = e/e_i;
alph = sqrt(xxx-1.0);
return 7.42e-18*(1.660/pow(xxx,2.050)-0.660/pow(xxx,3.050));
}
double sigma_rad_HeII(double e)
{
double xxx,alph,e_i;
e_i = 54.416 *eV;
xxx = e/e_i;
alph = sqrt(xxx-1.0);
return 1.58e-18/pow(xxx,4)*exp(4.0-4.0*atan(alph)/alph)/(1.0-exp(-TWOPI/alph));
}
/*
* cooling rates
*/
/* Bremstrahlung */
double cooling_bremstrahlung_HI(double T)
{
return 1.42e-27*sqrt(T)*(1.10+0.340*exp(-pow((5.50-log10(T)),2) /3.0));
}
double cooling_bremstrahlung_HeI(double T)
{
return 1.42e-27*sqrt(T)*(1.10+0.340*exp(-pow((5.50-log10(T)),2) /3.0));
}
double cooling_bremstrahlung_HeII(double T)
{
return 5.68e-27*sqrt(T)*(1.10+0.340*exp(-pow((5.50-log10(T)),2) /3.0));
}
/* Ionization */
double cooling_ionization_HI(double T)
{
double T5;
T5 = T/1e5;
return 2.54e-21*sqrt(T)*exp(-157809.1/T)/(1+sqrt(T5));
}
double cooling_ionization_HeI(double T)
{
double T5;
T5 = T/1e5;
return 1.88e-21*sqrt(T)*exp(-285335.4/T)/(1+sqrt(T5));
}
double cooling_ionization_HeII(double T)
{
double T5;
T5 = T/1e5;
return 9.90e-22*sqrt(T)*exp(-631515.0/T)/(1+sqrt(T5));
}
/* Recombination */
double cooling_recombination_HI(double T)
{
double T3,T6;
T3 = T/1e3;
T6 = T/1e6;
return 8.70e-27*sqrt(T)/pow(T3,0.2)/(1.0+pow(T6,0.7));
}
double cooling_recombination_HeI(double T)
{
return 1.55e-26*pow(T,0.3647);
}
double cooling_recombination_HeII(double T)
{
double T3,T6;
T3 = T/1e3;
T6 = T/1e6;
return 3.48e-26*sqrt(T)/pow(T3,0.2)/(1.0+pow(T6,0.7));
}
/* Dielectric Recombination */
double cooling_dielectric_recombination(double T)
{
return 1.24e-13*pow(T,-1.5)*exp(-470000.0/T)*(1.0+0.3*exp(-94000.0/T));
}
/* Ecitation cooling (line cooling) */
double cooling_excitation_HI(double T)
{
double T5;
T5 = T/1e5;
return 7.50e-19*exp(-118348.0/T)/(1+sqrt(T5));
}
double cooling_excitation_HII(double T)
{
double T5;
T5 = T/1e5;
return 5.54e-17/pow(T,0.397)*exp(-473638.0/T)/(1+sqrt(T5));
}
/* Compton cooling */
double cooling_compton(double T)
{
return 5.406e-36*(T-2.7*(1+z))*pow((1+z),4);
}
/*
* recombination rates (taux_rec)
*/
double A_HII(double T)
{
double T3,T6;
T3 = T/1e3;
T6 = T/1e6;
return 6.30e-11/sqrt(T)/pow(T3,0.2)/(1+pow(T6,0.7));
}
double A_HeIId(double T)
{
return 1.9e-3/pow(T,1.50)*exp(-470000.0/T)*(1.0+0.30*exp(-94000.0/T));
}
double A_HeII(double T)
{
return 1.5e-10/pow(T,0.6353) + A_HeIId(T);
}
double A_HeIII(double T)
{
double T3,T6;
T3 = T/1e3;
T6 = T/1e6;
return 3.36e-10/sqrt(T)/pow(T3,0.2)/(1.0+pow(T6,0.7));
}
/*
* collisional rates (taux_ion)
*/
double G_HI(double T)
{
double T5;
T5 = T/1e5;
return 1.17e-10*sqrt(T)*exp(-157809.1/T)/(1.0+sqrt(T5));
}
double G_HeI(double T)
{
double T5;
T5 = T/1e5;
return 2.38e-11*sqrt(T)*exp(-285335.4/T)/(1.0+sqrt(T5));
}
double G_HeII(double T)
{
double T5;
T5 = T/1e5;
return 5.68e-12*sqrt(T)*exp(-631515.0/T)/(1.0+sqrt(T5));
}
/*
* photoionisation rates (depend only on z)
*/
double G_gHI()
{
double e_i,integ,e,de,error;
e_i = 13.598*eV;
integ = 0.0;
e = e_i;
de = e/100.0;
error = 1.0;
while (error>1.e-6)
{
e = e + de;
de = e/100.0;
error = 2*TWOPI*J_nu(e)*sigma_rad_HI(e)*de/e;
integ = integ + error;
error = error/fabs(integ);
}
return integ/PLANCK;
}
double G_gHeI()
{
double e_i,integ,e,de,error;
e_i = 24.587*eV;
integ = 0.0;
e = e_i;
de = e/100.0;
error = 1.0;
while (error>1.e-6)
{
e = e + de;
de = e/100.0;
error = 2*TWOPI*J_nu(e)*sigma_rad_HeI(e)*de/e;
integ = integ + error;
error = error/fabs(integ);
}
return integ/PLANCK;
}
double G_gHeII()
{
double e_i,integ,e,de,error;
e_i = 54.416*eV;
integ = 0.0;
e = e_i;
de = e/100.0;
error = 1.0;
while (error>1.e-6)
{
e = e + de;
de = e/100.0;
error = 2*TWOPI*J_nu(e)*sigma_rad_HeII(e)*de/e;
integ = integ + error;
error = error/fabs(integ);
}
return integ/PLANCK;
}
double G_gHI_t(double J0)
{
return 1.26e10*J0/(3.0+alpha);
}
double G_gHeI_t(double J0)
{
return 1.48e10*J0*pow(0.5530,alpha) *(1.660/(alpha+2.050)-0.660/(alpha+3.050));
}
double G_gHeII_t(double J0)
{
return 3.34e9*J0*pow(0.2490,alpha)/(3.0+alpha);
}
double G_gHI_w()
{
double taux_rad_weinbergint;
double hh,tt,zz;
int i;
if (z < 8.50)
{
hh=0.0;
zz=dmax(z,1.0e-15);
for (i=0;i<Norderweinberg;i++)
hh=hh+coefweinberg[i][0]*pow(zz,i);
taux_rad_weinbergint=normfacJ0*exp(hh);
}
else
taux_rad_weinbergint=0.0;
tt=G_gHI_t(J0min);
if (taux_rad_weinbergint < tt)
taux_rad_weinbergint=tt;
return taux_rad_weinbergint;
}
double G_gHeI_w()
{
double taux_rad_weinbergint;
double hh,tt,zz;
int i;
if (z < 8.50)
{
hh=0.0;
zz=dmax(z,1.0e-15);
for (i=0;i<Norderweinberg;i++)
hh=hh+coefweinberg[i][1]*pow(zz,i);
taux_rad_weinbergint=normfacJ0*exp(hh);
}
else
taux_rad_weinbergint=0.0;
tt=G_gHeI_t(J0min);
if (taux_rad_weinbergint < tt)
taux_rad_weinbergint=tt;
return taux_rad_weinbergint;
}
double G_gHeII_w()
{
double taux_rad_weinbergint;
double hh,tt,zz;
int i;
if (z < 8.50)
{
hh=0.0;
zz=dmax(z,1.0e-15);
for (i=0;i<Norderweinberg;i++)
hh=hh+coefweinberg[i][2]*pow(zz,i);
taux_rad_weinbergint=normfacJ0*exp(hh);
}
else
taux_rad_weinbergint=0.0;
tt=G_gHeII_t(J0min);
if (taux_rad_weinbergint < tt)
taux_rad_weinbergint=tt;
return taux_rad_weinbergint;
}
/*
* heating rates (depend only on z)
*/
double heating_radiative_HI() /* use J_nu */
{
double e_i,integ,e,de,error;
e_i = 13.598*eV;
integ = 0.0;
e = e_i;
de = e/100.0;
error = 1.0;
while(error>1.e-6)
{
e = e + de;
de = e/100.0;
error = 2.0*TWOPI*J_nu(e)*sigma_rad_HI(e)*(e/e_i-1.0)*de/e;
integ = integ + error;
error=error/fabs(integ);
}
return integ/PLANCK*e_i;
}
double heating_radiative_HeI() /* use J_nu */
{
double e_i,integ,e,de,error;
e_i = 24.587*eV;
integ = 0.0;
e = e_i;
de = e/100.0;
error = 1.0;
while(error>1.e-6)
{
e = e + de;
de = e/100.0;
error = 2.0*TWOPI*J_nu(e)*sigma_rad_HeI(e)*(e/e_i-1.0)*de/e;
integ = integ + error;
error=error/fabs(integ);
}
return integ/PLANCK*e_i;
}
double heating_radiative_HeII() /* use J_nu */
{
double e_i,integ,e,de,error;
e_i = 54.416*eV;
integ = 0.0;
e = e_i;
de = e/100.0;
error = 1.0;
while(error>1.e-6)
{
e = e + de;
de = e/100.0;
error = 2.0*TWOPI*J_nu(e)*sigma_rad_HeII(e)*(e/e_i-1.0)*de/e;
integ = integ + error;
error=error/fabs(integ);
}
return integ/PLANCK*e_i;
}
double heating_radiative_HI_t(double J0) /* use Theuns */
{
return (2.91e-1*J0/(2.0+alpha))/(3.0+alpha);
}
double heating_radiative_HeI_t(double J0) /* use Theuns */
{
return 5.84e-1*J0*pow(0.5530,alpha)*(1.660/(alpha+1.050)-2.320/(alpha+2.050)+0.660/(alpha+3.050));
}
double heating_radiative_HeII_t(double J0) /* use Theuns */
{
return (2.92e-1*J0*pow(0.2490,alpha)/(2.0+alpha))/(3.0+alpha);
}
double heating_radiative_HI_w() /* use weinberg coeff */
{
double heat_rad_weinbergint;
double hh,tt,zz;
int i;
if (z < 8.50)
{
hh=0.0;
zz=dmax(z,1.0e-15);
for (i=0;i<Norderweinberg;i++)
hh=hh+coefweinberg[i][3]*pow(zz,i);
heat_rad_weinbergint=normfacJ0*exp(hh);
}
else
heat_rad_weinbergint=0.0;
tt=heating_radiative_HI_t(J0min);
if (heat_rad_weinbergint < tt)
heat_rad_weinbergint=tt;
return heat_rad_weinbergint;
}
double heating_radiative_HeI_w() /* use weinberg coeff */
{
double heat_rad_weinbergint;
double hh,tt,zz;
int i;
if (z < 8.50)
{
hh=0.0;
zz=dmax(z,1.0e-15);
for (i=0;i<Norderweinberg;i++)
hh=hh+coefweinberg[i][4]*pow(zz,i);
heat_rad_weinbergint=normfacJ0*exp(hh);
}
else
heat_rad_weinbergint=0.0;
tt=heating_radiative_HeI_t(J0min);
if (heat_rad_weinbergint < tt)
heat_rad_weinbergint=tt;
return heat_rad_weinbergint;
}
double heating_radiative_HeII_w() /* use weinberg coeff */
{
double heat_rad_weinbergint;
double hh,tt,zz;
int i;
if (z < 8.50)
{
hh=0.0;
zz=dmax(z,1.0e-15);
for (i=0;i<Norderweinberg;i++)
hh=hh+coefweinberg[i][5]*pow(zz,i);
heat_rad_weinbergint=normfacJ0*exp(hh);
}
else
heat_rad_weinbergint=0.0;
tt=heating_radiative_HeII_t(J0min);
if (heat_rad_weinbergint < tt)
heat_rad_weinbergint=tt;
return heat_rad_weinbergint;
}
double heating_compton()
{
/* Abel, Tom; Haehnelt, Martin G.Apj 520 */
//return 5.406e-36*2.726*pow((1+z),5); /* from Ramses */
//if (z>6)
// return 0;
//else
// return 1.25e-31*pow((1+z),13/3.);
return 0;
}
void compute_densities(double T,double X,double *pn_H, double *pn_HI,double *pn_HII,double *pn_HEI,double *pn_HEII,double *pn_HEIII,double *pn_E,double *pmu)
{
double Y,yy,x1;
double t_rad_HI,t_rec_HI,t_ion_HI;
double t_rad_HEI,t_rec_HEI,t_ion_HEI;
double t_rad_HEII,t_rec_HEII,t_ion_HEII;
double t_ion2_HI,t_ion2_HEI,t_ion2_HEII;
double err_nE;
double n_T;
double n_H,n_HI,n_HII,n_HEI,n_HEII,n_HEIII,n_E,mu;
Y = 1-X;
yy = Y/(4-4*Y);
t_rad_HI = Cte_G_gHI;
t_rec_HI = A_HII(T);
t_ion_HI = G_HI(T);
t_rad_HEI = Cte_G_gHeI;
t_rec_HEI = A_HeII(T);
t_ion_HEI = G_HeI(T);
t_rad_HEII = Cte_G_gHeII;
t_rec_HEII = A_HeIII(T);
t_ion_HEII = G_HeII(T);
n_H = *pn_H;
n_E = n_H;
err_nE = 1.;
while(err_nE > 1.e-8)
{
/* compute densities (Ramses implementation) */
t_ion2_HI = t_ion_HI + t_rad_HI /dmax(n_E,1e-15*n_H);
t_ion2_HEI = t_ion_HEI + t_rad_HEI /dmax(n_E,1e-15*n_H);
t_ion2_HEII = t_ion_HEII + t_rad_HEII/dmax(n_E,1e-15*n_H);
n_HI = t_rec_HI/(t_ion2_HI+t_rec_HI)*n_H;
n_HII = t_ion2_HI/(t_ion2_HI+t_rec_HI)*n_H;
x1 = (t_rec_HEII*t_rec_HEI+t_ion2_HEI*t_rec_HEII+t_ion2_HEII*t_ion2_HEI);
n_HEIII = yy*t_ion2_HEII*t_ion2_HEI/x1*n_H;
n_HEII = yy*t_ion2_HEI *t_rec_HEII/x1*n_H;
n_HEI = yy*t_rec_HEII *t_rec_HEI /x1*n_H;
err_nE = fabs((n_E - (n_HII + n_HEII + 2.*n_HEIII))/n_H);
n_E = 0.5*n_E+0.5*(n_HII + n_HEII + 2.*n_HEIII);
}
n_T = n_HI + n_HII+ n_HEI+ n_HEII+ n_HEIII+ n_E;
mu = n_H/X/n_T;
*pn_H = n_H;
*pn_HI = n_HI;
*pn_HII = n_HII;
*pn_HEI = n_HEI;
*pn_HEII = n_HEII;
*pn_HEIII = n_HEIII;
*pn_E = n_E;
*pmu = mu;
}
void print_cooling(double T,
double c1,double c2,double c3,double c4,double c5,double c6,double c7,double c8,double c9,
double c10,double c11,double c12,double c13,double h1, double h2, double h3, double h4)
{
double ctot,htot,chtot;
ctot = c1+c2+c3+c4+c5+c6+c7+c8+c9+c10+c11+c12+c13;
htot = h1+h2+h3+h4;
chtot= ctot - htot;
printf("%g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g\n",T,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,h1,h2,h3,h4,ctot,htot,chtot);
}
void compute_cooling(double T, double n_H, double n_HI,double n_HII,double n_HEI,double n_HEII,double n_HEIII,double n_E,double mu,
double *c1,double *c2,double *c3,double *c4,double *c5,double *c6,double *c7,double *c8,double *c9,
double *c10,double *c11,double *c12,double *c13,double *h1, double *h2, double *h3, double *h4)
{
double nH2;
nH2 = n_H*n_H;
/*
* compute cooling
*/
/* Bremstrahlung (cool_bre) */
*c1 = cooling_bremstrahlung_HI(T) *n_E*n_HII /nH2;
*c2 = cooling_bremstrahlung_HeI(T) *n_E*n_HEII /nH2;
*c3 = cooling_bremstrahlung_HeII(T) *n_E*n_HEIII/nH2;
/* Ionization cooling (cool_ion) */
*c4 = cooling_ionization_HI(T) *n_E*n_HI /nH2;
*c5 = cooling_ionization_HeI(T) *n_E*n_HEI /nH2;
*c6 = cooling_ionization_HeII(T) *n_E*n_HEII /nH2;
/* Recombination cooling (cool_rec) */
*c7 = cooling_recombination_HI(T) *n_E*n_HII /nH2;
*c8 = cooling_recombination_HeI(T) *n_E*n_HEII /nH2;
*c9 = cooling_recombination_HeII(T) *n_E*n_HEIII/nH2;
/* Dielectric recombination cooling (cool_die) */
*c10 = cooling_dielectric_recombination(T) *n_E*n_HEII /nH2;
/* Line cooling (cool_exc) */
*c11 = cooling_excitation_HI(T) *n_E*n_HI /nH2;
*c12 = cooling_excitation_HII(T) *n_E*n_HEII /nH2;
/* Compton cooling (cool_com) */
*c13 = cooling_compton(T) *n_E /nH2; /* !! dep on z */
/*
* compute heating
*/
/* Radiative heating (h_rad_spec) */
*h1 = Cte_heating_radiative_HI *n_HI /nH2;
*h2 = Cte_heating_radiative_HeI *n_HEI /nH2;
*h3 = Cte_heating_radiative_HeII *n_HEII /nH2;
/* Compton heating (heat_com) */
*h4 = heating_compton() *n_E /nH2; /* !! dep on z */
}
void compute_cooling_from_T_and_Nh(double T,double X,double n_H,
double *c1,double *c2,double *c3,double *c4,double *c5,double *c6,double *c7,double *c8,double *c9,
double *c10,double *c11,double *c12,double *c13,double *h1, double *h2, double *h3, double *h4)
{
double n_HI,n_HII,n_HEI,n_HEII,n_HEIII,n_E,mu;
double nH2;
//double c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13;
//double h1,h2,h3,h4;
compute_densities(T,X,&n_H,&n_HI,&n_HII,&n_HEI,&n_HEII,&n_HEIII,&n_E,&mu);
nH2 = n_H*n_H;
/*
* compute cooling
*/
/* Bremstrahlung (cool_bre) */
*c1 = cooling_bremstrahlung_HI(T) *n_E*n_HII /nH2;
*c2 = cooling_bremstrahlung_HeI(T) *n_E*n_HEII /nH2;
*c3 = cooling_bremstrahlung_HeII(T) *n_E*n_HEIII/nH2;
/* Ionization cooling (cool_ion) */
*c4 = cooling_ionization_HI(T) *n_E*n_HI /nH2;
*c5 = cooling_ionization_HeI(T) *n_E*n_HEI /nH2;
*c6 = cooling_ionization_HeII(T) *n_E*n_HEII /nH2;
/* Recombination cooling (cool_rec) */
*c7 = cooling_recombination_HI(T) *n_E*n_HII /nH2;
*c8 = cooling_recombination_HeI(T) *n_E*n_HEII /nH2;
*c9 = cooling_recombination_HeII(T) *n_E*n_HEIII/nH2;
/* Dielectric recombination cooling (cool_die) */
*c10 = cooling_dielectric_recombination(T) *n_E*n_HEII /nH2;
/* Line cooling (cool_exc) */
*c11 = cooling_excitation_HI(T) *n_E*n_HI /nH2;
*c12 = cooling_excitation_HII(T) *n_E*n_HEII /nH2;
/* Compton cooling (cool_com) */
*c13 = cooling_compton(T) *n_E /nH2; /* !! dep on z */
/*
* compute heating
*/
/* Radiative heating (h_rad_spec) */
*h1 = Cte_heating_radiative_HI *n_HI /nH2;
*h2 = Cte_heating_radiative_HeI *n_HEI /nH2;
*h3 = Cte_heating_radiative_HeII *n_HEII /nH2;
/* Compton heating (heat_com) */
*h4 = heating_compton() *n_E /nH2; /* !! dep on z */
}
double compute_cooling_from_Egyspec_and_Density(double Egyspec,double Density,double *MeanWeight)
{
double T,mu,n_H;
double n_HI,n_HII,n_HEI,n_HEII,n_HEIII,n_E;
double err_mu,mu_left,mu_right,mu_old;
int niter;
double c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13;
double h1,h2,h3,h4;
double nH2;
/* Hydrogen density (cgs) */
n_H = HYDROGEN_MASSFRAC * Density/ PROTONMASS;
/* itterate to find the right mu and T */
err_mu=1.;
mu_left=0.5;
mu_right=1.3;
niter=0;
while ( (err_mu > 1.e-4) && (niter <= 50) )
{
mu_old=0.5*(mu_left+mu_right);
/* compute temperature */
T = GAMMA_MINUS1 *mu_old*PROTONMASS/BOLTZMANN *Egyspec;
/* compute all */
compute_densities(T,HYDROGEN_MASSFRAC,&n_H,&n_HI,&n_HII,&n_HEI,&n_HEII,&n_HEIII,&n_E,&mu);
err_mu = (mu-mu_old)/mu_old;
if(err_mu>0.)
{
mu_left =0.5*(mu_left+mu_right);
mu_right=mu_right;
}
else
{
mu_left =mu_left;
mu_right=0.5*(mu_left+mu_right);
}
err_mu=fabs(err_mu);
niter=niter+1;
}
if (niter > 50)
printf("ERROR : too many iterations.");
*MeanWeight = 0.5*(mu_left+mu_right);
/* now, compute cooling */
nH2 = n_H*n_H;
/*
* compute cooling
*/
/* Bremstrahlung (cool_bre) */
c1 = cooling_bremstrahlung_HI(T) *n_E*n_HII /nH2;
c2 = cooling_bremstrahlung_HeI(T) *n_E*n_HEII /nH2;
c3 = cooling_bremstrahlung_HeII(T) *n_E*n_HEIII/nH2;
/* Ionization cooling (cool_ion) */
c4 = cooling_ionization_HI(T) *n_E*n_HI /nH2;
c5 = cooling_ionization_HeI(T) *n_E*n_HEI /nH2;
c6 = cooling_ionization_HeII(T) *n_E*n_HEII /nH2;
/* Recombination cooling (cool_rec) */
c7 = cooling_recombination_HI(T) *n_E*n_HII /nH2;
c8 = cooling_recombination_HeI(T) *n_E*n_HEII /nH2;
c9 = cooling_recombination_HeII(T) *n_E*n_HEIII/nH2;
/* Dielectric recombination cooling (cool_die) */
c10 = cooling_dielectric_recombination(T) *n_E*n_HEII /nH2;
/* Line cooling (cool_exc) */
c11 = cooling_excitation_HI(T) *n_E*n_HI /nH2;
c12 = cooling_excitation_HII(T) *n_E*n_HEII /nH2;
/* Compton cooling (cool_com) */
c13 = cooling_compton(T) *n_E /nH2; /* !! dep on z */
/*
* compute heating
*/
/* Radiative heating (h_rad_spec) */
h1 = Cte_heating_radiative_HI *n_HI /nH2;
h2 = Cte_heating_radiative_HeI *n_HEI /nH2;
h3 = Cte_heating_radiative_HeII *n_HEII /nH2;
/* Compton heating (heat_com) */
h4 = heating_compton() *n_E /nH2; /* !! dep on z */
/* output info */
//print_cooling(T,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,h1,h2,h3,h4);
c1 = dmax(c1,0);
c2 = dmax(c2,0);
c3 = dmax(c3,0);
c4 = dmax(c4,0);
c5 = dmax(c5,0);
c6 = dmax(c6,0);
c7 = dmax(c7,0);
c8 = dmax(c8,0);
c9 = dmax(c9,0);
c10 = dmax(c10,0);
c11 = dmax(c11,0);
c12 = dmax(c12,0);
c13 = dmax(c13,0);
h1 = dmax(h1,0);
h2 = dmax(h2,0);
h3 = dmax(h3,0);
h4 = dmax(h4,0);
return (c1+c2+c3+c4+c5+c6+c7+c8+c9+c10+c11+c12+c13) - (h1+h2+h3+h4);
}
struct cooling_solver_params
{
double Entropy;
double Density;
int Phase;
int i;
double DtEntropyVisc;
double dt;
double hubble_a;
};
double cooling_solver_function(double EntropyVar, void *params)
{
struct cooling_solver_params *p = (struct cooling_solver_params *) params;
double Entropy = p->Entropy;
double Density = p->Density;
int Phase = p->Phase;
int i = p->i;
double DtEntropyVisc = p->DtEntropyVisc;
double dt = p->dt;
double hubble_a = p->hubble_a;
double DtEntropyRadSph=0;
#ifdef MULTIPHASE
switch (Phase)
{
case GAS_SPH:
DtEntropyRadSph = -GAMMA_MINUS1*pow(Density,-GAMMA)*lambda(Density,EntropyVar,-10,Phase,i)/hubble_a;
break;
case GAS_STICKY:
case GAS_DARK:
DtEntropyRadSph = -1/(Density * a3inv) *lambda(Density,EntropyVar,-10,Phase,i)/hubble_a;
break;
}
#else
DtEntropyRadSph = -GAMMA_MINUS1*pow(Density,-GAMMA)*lambda(Density,EntropyVar,-10,Phase,i)/hubble_a;
#endif
return Entropy + (DtEntropyVisc + DtEntropyRadSph)*dt - EntropyVar;
};
/*! This function compute the new Entropy due to isochoric cooling
* using an implicit iteration scheme
*
* !!! here Density is already expressed in comobile coord
*
*/
double DoCooling(FLOAT Density,FLOAT Entropy,int Phase,int i,FLOAT DtEntropyVisc, double dt, double hubble_a)
{
double EntropyNew;
double Entropy_lo=0, Entropy_hi=0;
double lo,hi;
int status;
int iter = 0;
int max_iter = 100;
const gsl_root_fsolver_type *T;
gsl_root_fsolver *s;
gsl_function F;
struct cooling_solver_params params = {(double)Entropy,(double)Density,(int)Phase,(int)i,(double)DtEntropyVisc,(double)dt,(double)hubble_a};
F.function = &cooling_solver_function;
F.params = &params;
T = gsl_root_fsolver_brent;
s = gsl_root_fsolver_alloc (T);
Entropy_lo = 0.5*Entropy;
Entropy_hi = 1.1*Entropy;
lo = cooling_solver_function(Entropy_lo,&params);
hi = cooling_solver_function(Entropy_hi,&params);
if (lo*hi>0)
{
do
{
Entropy_hi = 2* Entropy_hi;
Entropy_lo = 0.5*Entropy_lo;
lo = cooling_solver_function(Entropy_lo,&params);
hi = cooling_solver_function(Entropy_hi,&params);
//printf("here, we need to iterate...\n");
}
while (lo*hi>0);
}
gsl_root_fsolver_set (s, &F, Entropy_lo, Entropy_hi);
do
{
iter++;
status = gsl_root_fsolver_iterate (s);
EntropyNew = gsl_root_fsolver_root (s);
Entropy_lo = gsl_root_fsolver_x_lower (s);
Entropy_hi = gsl_root_fsolver_x_upper (s);
status = gsl_root_test_interval (Entropy_lo, Entropy_hi,0, 0.001);
}
while (status == GSL_CONTINUE && iter < max_iter);
gsl_root_fsolver_free (s);
if (status!=GSL_SUCCESS)
{
printf("WARNING, HERE WE DO NOT CONVERGE...%g %g\n",Entropy_lo,Entropy_hi);
endrun(3737);
}
return EntropyNew;
}
/*! This function computes the entropy variation due to the cooling.
* Cooling is computed only for sph active particles.
*/
void cooling()
{
int i;
double dt=0;
double EntropyNew;
/* set the right Redshift and compute value indep of Temperature */
if (All.CoolingType==1)
init_from_new_redshift(1.0 / (All.Time) - 1);
if(All.ComovingIntegrationOn)
{
hubble_a = All.Omega0 / (All.Time * All.Time * All.Time)
+ (1 - All.Omega0 - All.OmegaLambda) / (All.Time * All.Time) + All.OmegaLambda;
hubble_a = All.Hubble * sqrt(hubble_a);
a3inv = 1 / (All.Time * All.Time * All.Time);
}
else
a3inv = hubble_a = 1;
for(i = 0; i < NumPart; i++)
{
if(P[i].Ti_endstep == All.Ti_Current) /* active particles */
{
if(P[i].Type == 0) /* SPH stuff */
{
//DtEntropyRadSph=0.;
//SphP[i].DtEntropyRadSph = 0;
#ifdef MULTIPHASE
if (SphP[i].Phase == GAS_SPH)
{
#endif
/* note : SphP[i].DtEntropyRadSph should not be necessary */
dt = (All.Ti_Current - P[i].Ti_begstep) * All.Timebase_interval;
//SphP[i].DtEntropyRadSph = -GAMMA_MINUS1*pow(SphP[i].Density * a3inv,-GAMMA)*lambda(SphP[i].Density *a3inv,SphP[i].Entropy,-10,0,i)/hubble_a;
//if (fabs((SphP[i].DtEntropyRadSph+SphP[i].DtEntropy)*dt) > 0.1*fabs(SphP[i].Entropy))
{
/* do implicit isochoric cooling */
EntropyNew = DoCooling(SphP[i].Density*a3inv,SphP[i].Entropy,0,i,SphP[i].DtEntropy,dt,hubble_a);
if(dt > 0)
SphP[i].DtEntropy = (EntropyNew - SphP[i].Entropy)/dt;
}
//else
{
// SphP[i].DtEntropy += SphP[i].DtEntropyRadSph;
}
//SphP[i].DtEgySpecRadSph = - 1/GAMMA_MINUS1 * pow(SphP[i].Density * a3inv,GAMMA_MINUS1) * (SphP[i].DtEntropyRadSph);
#ifdef MULTIPHASE
}
else /* STICKY OR DARK */
{
//SphP[i].DtEntropyRadSph = -1/(SphP[i].Density * a3inv)*lambda(SphP[i].Density *a3inv,SphP[i].Entropy,-10,SphP[i].Phase,i)/hubble_a;
//SphP[i].DtEntropy += SphP[i].DtEntropyRadSph;
/* do implicit isochoric cooling */
dt = (All.Ti_Current - P[i].Ti_begstep) * All.Timebase_interval;
EntropyNew = DoCooling(SphP[i].Density*a3inv,SphP[i].Entropy,SphP[i].Phase,i,SphP[i].DtEntropy,dt,hubble_a);
if(dt > 0)
SphP[i].DtEntropy = (EntropyNew - SphP[i].Entropy)/dt;
/* !!! here, we do not take into account the energy variation !!! */
/* SphP[i].DtEgySpecRadSph = SphP[i].DtEntropy, no ?*/
}
#endif
/* finally sum to the entropy variation */
/* WARNING : we do not compute DtEntropy here, it is updated in timestep.c */
/* no, because, it is updated juste above, no ? */
//SphP[i].DtEntropy += SphP[i].DtEntropyRadSph;
//SphP[i].DtEntropy += SphP[i].DtEgySpecRadSph / (-1/GAMMA_MINUS1 * pow(SphP[i].Density * a3inv,GAMMA_MINUS1));
}
}
}
}
/*! This function computes the new entropy due to the cooling,
* between step t0 and t1.
*/
void CoolingForOne(int i,int tstart,int tend,int ti_step2, double dt_entr3,double a3inv,double hubble_a)
{
double dt,dadt,tcool,dt_entr,dt_entr2;
double MinSizeTimestep,ErrTolIntAccuracy;
int ti_current,istep;
int ti_step;
double minentropy;
double Entropy,DEntropyRad,DtEntropy,DtEgySpec,Entropy_init;
if(All.MinEgySpec)
#ifdef DENSITY_INDEPENDENT_SPH
minentropy = All.MinEgySpec * GAMMA_MINUS1 / pow(SphP[i].EgyWtDensity * a3inv, GAMMA_MINUS1);
#else
minentropy = All.MinEgySpec * GAMMA_MINUS1 / pow(SphP[i].Density * a3inv, GAMMA_MINUS1);
#endif
/* compute dt */
/* here we use the convention of Gadget */
/* this assume that DtEntropy = dA/dt/hubble_a */
/* and not only dA/dt */
dt_entr = (tend - tstart) * All.Timebase_interval;
dt_entr2 = ( (tend+ti_step2/2. - tstart) * All.Timebase_interval ); /* size of step that goes towards the end of the predicted step */
int tend2;
tend2 = tend+ti_step2/2;
ErrTolIntAccuracy = 0.02;
MinSizeTimestep = 0.01*dt_entr;
/* compute da/dt */
//dadt = fabs( -GAMMA_MINUS1*pow(SphP[i].Density * a3inv,-GAMMA)*lambda(SphP[i].Density *a3inv,SphP[i].Entropy,SphP[i].Metal[FE],0,i)/hubble_a );
/* compute cooling time */
//tcool = SphP[i].Entropy / dadt;
//if (ErrTolIntAccuracy*tcool/dt_entr < 1)
// printf("** %g %g\n",ErrTolIntAccuracy*tcool,dt_entr); /* --> verifier le cooling time */
/***************************************/
/* integrate with adaptative timesteps */
/***************************************/
Entropy_init = Entropy = SphP[i].Entropy; /* we should use entropy pred, no ? */
if(Entropy_init<=minentropy)
{
/* do not cool */
/* SphP[i].DtEntropy is kept unchanged */
SphP[i].DtEntropyRad = 0;
SphP[i].DtEnergyRad = 0;
SphP[i].Entropy = Entropy_init + (SphP[i].DtEntropy)*dt_entr;
#ifdef ENTROPYPRED
/* compute entropy pred */
SphP[i].EntropyPred = SphP[i].Entropy - dt_entr3 * SphP[i].DtEntropy ;
if (SphP[i].EntropyPred < 0)
{
printf("\ntask=%d: EntropyPred less than zero in CoolingForOne !\n", ThisTask);
printf("ID=%d Entropy=%g EntropyPred=%g DtEntropy=%g\n",P[i].ID,SphP[i].Entropy,SphP[i].EntropyPred,SphP[i].DtEntropy);
fflush(stdout);
endrun(444003);
}
#endif
return ;
}
ti_current = tstart;
istep = 0;
#ifdef CHIMIE_THERMAL_FEEDBACK
int no_cooling_SNII,no_cooling_SNIa,no_cooling;
int Tis,Tic;
double td;
no_cooling=0;
no_cooling_SNIa=0;
no_cooling_SNII=0;
/* check if we are in an adiabatic phase or not */
if (All.ComovingIntegrationOn)
{
Tic = All.Ti_Current;
if (SphP[i].SNIaThermalTime>0) /* only if the time has been set at least once, it is negative instead (see init.c) */
{
Tis = log(SphP[i].SNIaThermalTime/All.TimeBegin) / All.Timebase_interval;
td = get_cosmictime_difference(Tis,Tic);
if(td<All.ChimieSNIaThermalTime)
no_cooling_SNIa=1;
}
if (SphP[i].SNIIThermalTime>0) /* only if the time has been set at least once, it is negative instead (see init.c) */
{
Tis = log(SphP[i].SNIIThermalTime/All.TimeBegin) / All.Timebase_interval;
td = get_cosmictime_difference(Tis,Tic);
if(td<All.ChimieSNIIThermalTime)
no_cooling_SNII=1;
}
}
else
{
if (SphP[i].SNIaThermalTime>0) /* only if the time has been set at least once, it is negative instead (see init.c) */
if ((All.Time-SphP[i].SNIaThermalTime)<All.ChimieSNIaThermalTime)
no_cooling_SNIa=1;
if (SphP[i].SNIIThermalTime>0) /* only if the time has been set at least once, it is negative instead (see init.c) */
if ((All.Time-SphP[i].SNIIThermalTime)<All.ChimieSNIIThermalTime)
no_cooling_SNII=1;
}
no_cooling=no_cooling_SNIa+no_cooling_SNII;
/* do not cool */
if(no_cooling)
{
Entropy = Entropy + SphP[i].DtEntropy* dt_entr;
/* avoid Entropy to be less than minentropy */
if(All.MinEgySpec)
if(Entropy < minentropy)
Entropy = 2*minentropy; /* 2 in order to be a bit safer */
/* update particle */
SphP[i].DtEntropy = (Entropy-Entropy_init)/dt_entr;
SphP[i].Entropy = Entropy;
/* cooling rate is zero */
SphP[i].DtEntropyRad = 0;
SphP[i].DtEnergyRad = 0;
SphP[i].Entropy = Entropy_init + (SphP[i].DtEntropy)*dt_entr;
#ifdef ENTROPYPRED
/* compute entropy pred */
SphP[i].EntropyPred = SphP[i].Entropy - dt_entr3 * SphP[i].DtEntropy ;
if (SphP[i].EntropyPred < 0)
{
printf("\ntask=%d: EntropyPred less than zero in CoolingForOne !\n", ThisTask);
printf("ID=%d Entropy=%g EntropyPred=%g DtEntropy=%g\n",P[i].ID,SphP[i].Entropy,SphP[i].EntropyPred,SphP[i].DtEntropy);
fflush(stdout);
endrun(444004);
}
#endif
return ;
}
#endif
while (ti_current<tend2) /* here we go upt to the end of the predicted step, this avoids overcooling during the predicted step */
//while (ti_current<tend)
{
/* compute da/dt */
#ifdef DENSITY_INDEPENDENT_SPH
dadt = fabs( -GAMMA_MINUS1*pow(SphP[i].EgyWtDensity * a3inv,-GAMMA)*lambda(SphP[i].EgyWtDensity *a3inv,Entropy,SphP[i].Metal[FE],0,i)/hubble_a );
#else
dadt = fabs( -GAMMA_MINUS1*pow(SphP[i].Density * a3inv,-GAMMA)*lambda(SphP[i].Density *a3inv,Entropy,SphP[i].Metal[FE],0,i)/hubble_a );
#endif
/* compute cooling time */
/* this is similar in comobile integraction */
tcool = Entropy / dadt;
/* find dt */
dt = dmax(MinSizeTimestep, tcool*ErrTolIntAccuracy);
dt = dmin(dt,dt_entr);
ti_step = dt / All.Timebase_interval;
ti_step = imax(1,ti_step);
ti_step = imin(ti_step,tend2-ti_current);
dt = ti_step* All.Timebase_interval;
#ifndef IMPLICIT_COOLING_INTEGRATION
/* normal integration of Entropy */
Entropy += SphP[i].DtEntropy* dt; /* viscosity */
#ifdef DENSITY_INDEPENDENT_SPH
Entropy += -GAMMA_MINUS1*pow(SphP[i].EgyWtDensity * a3inv,-GAMMA)*lambda(SphP[i].EgyWtDensity *a3inv,Entropy,SphP[i].Metal[FE],0,i)/hubble_a *dt;
#else
Entropy += -GAMMA_MINUS1*pow(SphP[i].Density * a3inv,-GAMMA)*lambda(SphP[i].Density *a3inv,Entropy,SphP[i].Metal[FE],0,i)/hubble_a *dt; /* cooling */
#endif
#else
/* or use implicit integration of Entropy */
/* need this if there is also heating like UV */
if(All.ComovingIntegrationOn)
{
printf("CoolingForOne : this must be checked !\n");
endrun(123321);
}
#ifdef DENSITY_INDEPENDENT_SPH
Entropy = DoCooling(SphP[i].EgyWtDensity*a3inv,Entropy,0,i,SphP[i].DtEntropy,dt,hubble_a);
#else
Entropy = DoCooling(SphP[i].Density*a3inv,Entropy,0,i,SphP[i].DtEntropy,dt,hubble_a);
#endif
#endif
/* avoid Entropy to be less than minentropy */
if(All.MinEgySpec)
if(Entropy < minentropy)
{
printf("t1.5 i=%d id=%d Entropy-E_i=%e\n",i,P[i].ID,Entropy-Entropy_init);
Entropy = 2*minentropy; /* 2 in order to be a bit safer */
break;
}
ti_current += ti_step;
istep = istep+1;
}
/* entropy only due to cooling */
//DEntropyRad = Entropy-Entropy_init - SphP[i].DtEntropy* dt_entr;
DEntropyRad = Entropy-Entropy_init - SphP[i].DtEntropy* dt_entr2;
DEntropyRad = dmin(0,DEntropyRad);
/* limit the cooling */
if (SphP[i].Entropy+DEntropyRad<0.5*SphP[i].Entropy)
DEntropyRad = -0.5*SphP[i].Entropy;
if (DEntropyRad > 0)
{
printf("t3 i=%d Entropy-E_i=%e\n",i,Entropy-Entropy_init);
printf("i=%d DEntropyRad=%g Entropy_f=%e Entropy_i=%e Entr_f-Entr_i=%e dAa_a=%g dt=%e \n",i,DEntropyRad,Entropy,Entropy_init, Entropy-Entropy_init ,SphP[i].DtEntropy* dt_entr,dt_entr);
endrun(8765493);
}
SphP[i].DtEntropyRad = DEntropyRad/dt_entr2;
if (SphP[i].DtEntropyRad > 0)
{
printf("t3 i=%d Entropy-E_i=%e\n",i,Entropy-Entropy_init);
printf("i=%d DEntropyRad=%g Entropy_f=%e Entropy_i=%e Entr_f-Entr_i=%e dAa_a=%g dt=%e \n",i,DEntropyRad,Entropy,Entropy_init, Entropy-Entropy_init ,SphP[i].DtEntropy* dt_entr,dt_entr);
endrun(8765494);
}
/* update particle */
//SphP[i].Entropy = Entropy; /* total entropy */ /* here, now, Entropy corresponds to the end of the predicted step */
SphP[i].Entropy = Entropy_init + (SphP[i].DtEntropy+SphP[i].DtEntropyRad)*dt_entr;
/* here, we sum all to DtEntropy */
SphP[i].DtEntropy = SphP[i].DtEntropy + SphP[i].DtEntropyRad;
#ifdef ENTROPYPRED
/* compute entropy pred */
SphP[i].EntropyPred = SphP[i].Entropy - dt_entr3 * SphP[i].DtEntropy ;
if (SphP[i].EntropyPred < 0)
{
printf("\ntask=%d: EntropyPred less than zero in CoolingForOne !\n", ThisTask);
printf("ID=%d Entropy=%g EntropyPred=%g DtEntropy=%g\n",P[i].ID,SphP[i].Entropy,SphP[i].EntropyPred,SphP[i].DtEntropy);
fflush(stdout);
endrun(444002);
}
#endif
/* count energy */
#ifdef DENSITY_INDEPENDENT_SPH
DtEgySpec = - 1/GAMMA_MINUS1 * pow(SphP[i].EgyWtDensity * a3inv,GAMMA_MINUS1) * (SphP[i].DtEntropyRad);
#else
DtEgySpec = - 1/GAMMA_MINUS1 * pow(SphP[i].Density * a3inv,GAMMA_MINUS1) * (SphP[i].DtEntropyRad);
#endif
LocalSysState.RadiatedEnergy += DtEgySpec * dt_entr * P[i].Mass;
SphP[i].DtEnergyRad = DtEgySpec;
#ifdef CHECK_ENTROPY_SIGN
if (SphP[i].Entropy < 0)
{
printf("\ntask=%d: entropy less than zero in CoolingForOne !\n", ThisTask);
printf("ID=%d Entropy=%g EntropyPred=%g DtEntropy=%g\n",P[i].ID,SphP[i].Entropy,SphP[i].EntropyPred,SphP[i].DtEntropy);
fflush(stdout);
endrun(444001);
}
#endif
}
/*! cooling function
*
*/
double lambda(FLOAT Density,FLOAT Entropy,FLOAT Metal,int phase,int i)
{
/*
* These function returns the Lambda (not the Lambda_n)
* Here, we assume that Lambda may also contain the heating term.
*
* Here, the Entropy and Density are physical, but in h units
*
* The function is used only in cooling.c
*
*/
double EgySpec;
double MeanWeight;
double T=0,nH=0,nH2=0,l=0;
double nHcgs=0,nH2cgs=0;
#ifdef HEATING
double Gpe=0;
double X,XTne,eps,ne,flux_in_cgs;
#endif
/* number of Hydrogen atoms per unit volume (user units, not corrected from h : [nH] = h2/cm^3 ) */
#ifndef DO_NO_USE_HYDROGEN_MASSFRAC_IN_COOLING
nH = HYDROGEN_MASSFRAC*Density/All.ProtonMass;
#else
nH = 1 *Density/All.ProtonMass;
#endif
nH2 = nH*nH;
/* in cgs, corrected from h */
nHcgs = nH/pow(All.UnitLength_in_cm, 3)*(All.HubbleParam*All.HubbleParam);
nH2cgs = nHcgs*nHcgs;
/* compute temperature */
#ifdef MULTIPHASE
switch(phase)
{
case GAS_SPH:
T = All.mumh/All.Boltzmann * Entropy * pow(Density,GAMMA_MINUS1);
break;
case GAS_STICKY:
case GAS_DARK:
T = All.mumh/All.Boltzmann * GAMMA_MINUS1 * Entropy;
break;
}
#else
T = All.mumh/All.Boltzmann * Entropy * pow(Density,GAMMA_MINUS1);
#endif
/*******************
* * * COOLING * * *
*******************/
if (All.CoolingType==0 || All.CoolingType==2)
{
/**************/
/* Sutherland */
/**************/
#ifdef MULTIPHASE
switch(phase)
{
case GAS_SPH:
if (T > All.CutofCoolingTemperature)
if (All.CoolingType==0)
l = cooling_function(T);
else
#ifdef CHIMIE
+
+#ifdef COOLING_WIERSMA
+ l = compute_LambdaTotal(T,nH,1.0-HYDROGEN_MASSFRAC,SphP[i].Metal[NELEMENTS-1], 0.02);
+#else
l = cooling_function_with_metals(T,Metal);
+#endif //COOLING_WIERSMA
+
+#else //CHIMIE
+
+#ifdef COOLING_WIERSMA
+ l = compute_LambdaTotal(T,nH,1.0-HYDROGEN_MASSFRAC,All.InitGasMetallicity, 0.02);
#else
- Metal=(pow(10,All.InitGasMetallicity)-1e-10)*All.CoolingParameters_FeHSolar;
+ Metal=(pow(10,All.InitGasMetallicity)-1e-10)*All.CoolingParameters_FeHSolar;
l = cooling_function_with_metals(T,Metal);
-#endif
+#endif //COOLING_WIERSMA
+
+#endif //CHIMIE
else
l = 0;
break;
case GAS_STICKY:
case GAS_DARK:
if (T > All.CutofCoolingTemperature)
if (All.CoolingType==0)
l = cooling_function(T);
else
#ifdef CHIMIE
- l = cooling_function_with_metals(T,Metal);
+
+
+#ifdef COOLING_WIERSMA
+ l = compute_LambdaTotal(T,nH,1.0-HYDROGEN_MASSFRAC,SphP[i].Metal[NELEMENTS-1], 0.02);
#else
+ l = cooling_function_with_metals(T,Metal);
+#endif //COOLING_WIERSMA
+
+
+#else //CHIMIE
Metal = (pow(10,All.InitGasMetallicity)-1e-10)*All.CoolingParameters_FeHSolar
l = cooling_function_with_metals(T,Metal);
#endif
else
l = 0;
break;
}
-#else
+#else //MULTIPHASE
+
+
+
/* here, lambda' is in erg*cm^3/s = kg*m^5/s^3 */
if (T > All.CutofCoolingTemperature)
if (All.CoolingType==0)
l = cooling_function(T);
else
#ifdef CHIMIE
- l = cooling_function_with_metals(T,Metal);
+
+
+#ifdef COOLING_WIERSMA
+ l = compute_LambdaTotal(T,nH,1.0-HYDROGEN_MASSFRAC,SphP[i].Metal[NELEMENTS-1], 0.02);
#else
+ l = cooling_function_with_metals(T,Metal);
+#endif //COOLING_WIERSMA
+
+
+#else //CHIMIE
Metal = (pow(10,All.InitGasMetallicity)-1e-10)*All.CoolingParameters_FeHSolar;
l = cooling_function_with_metals(T,Metal);
#endif
else
l = 0;
#endif
}
else
{
/******************************/
/* cooling with UV background */
/******************************/
/* get the right density and egyspec in cgs */
/* entropy and density are already physical */
#ifdef MULTIPHASE
/* WARNING, HERE, WE MUST DIFERENCIATE ACORDING TO THE PHASE... */
printf("WARNING, HERE, WE MUST DIFERENCIATE ACORDING TO THE PHASE...\n");
exit(0);
// if (phase == GAS_SPH)
// EgySpec = Entropy / GAMMA_MINUS1 * pow(Density, GAMMA_MINUS1);
// else
// EgySpec = Entropy;
#else
EgySpec = Entropy / GAMMA_MINUS1 * pow(Density, GAMMA_MINUS1);
#endif
/* into cgs, corrected from h */
EgySpec *= All.UnitEnergy_in_cgs/All.UnitMass_in_g;
Density *= All.UnitDensity_in_cgs;
//if(All.ComovingIntegrationOn)
// Density *= (All.HubbleParam*All.HubbleParam);
/* compute cooling from EnergySpec and Density */
l = compute_cooling_from_Egyspec_and_Density(EgySpec,Density,&MeanWeight);
/* compute temperature */
/*
Temperature = GAMMA_MINUS1 *MeanWeight*PROTONMASS/BOLTZMANN *EgySpec;
//printf("%g %g %g\n",Temperature,MeanWeight,Lambda);
logT = log10(Temperature);
*/
}
/*******************
* * * HEATING * * *
*******************/
#ifdef HEATING
#ifdef HEATING_PE
/**************************/
/* Photo-electric heating */ /* all must be in cgs */
/**************************/
X = 0;
#ifdef STELLAR_FLUX
flux_in_cgs = SphP[i].EnergyFlux* All.UnitEnergy_in_cgs/All.UnitTime_in_s/pow(All.UnitLength_in_cm, 2);
X = X + flux_in_cgs/C / All.HeatingPeSolarEnergyDensity;
#endif
#ifdef EXTERNAL_FLUX
X = X + All.HeatingExternalFLuxEnergyDensity/All.HeatingPeSolarEnergyDensity ;
#endif
ne = nHcgs*All.HeatingPeElectronFraction;
XTne = X*sqrt(T)/ne;
eps = 4.87e-2/(1+4e-3*pow(XTne,0.73)) + 3.65e-2*(T/1e4)/(1+2e-4*XTne);
Gpe = (1e-24 * eps * X * nHcgs)/ nH2cgs ;
l = l - Gpe;
#endif /*HEATING_PE*/
#endif
/**********************************
* * * final unit conversions * * *
***********************************/
/* convert lambda' in user units */
l = l / All.UnitEnergy_in_cgs /pow(All.UnitLength_in_cm,3) * All.UnitTime_in_s;
/* in unit with h */
l = l*All.HubbleParam;
/* correct from h */
/*
* [ Lambda / H / rho_p ] = [u] = cm^2/s^2
*
* [H] = h/s
* [rho_p] = g/cm^3 * h^2
* [Lambda_n] = g * m^5 / s^3
* [n] = h^2/m^5
*
* => Lambda_n must be multiplied by h (in order to remove one h !! not a unit !!)
*
*/
//if(All.ComovingIntegrationOn)
// l = l * All.HubbleParam;
/* get the final lambda by multiplying lambda' by nH2 (all in user units) */
l = l*nH2;
return l;
}
/****************************************************************************************/
/*
/*
/*
/* PYTHON INTERFACE
/*
/*
/*
/****************************************************************************************/
#ifdef PY_INTERFACE
#ifdef PYCOOL
#include <Python.h>
#include <numpy/arrayobject.h>
#define TO_INT(a) ( (PyArrayObject*) PyArray_CastToType(a, PyArray_DescrFromType(NPY_INT) ,0) )
#define TO_DOUBLE(a) ( (PyArrayObject*) PyArray_CastToType(a, PyArray_DescrFromType(NPY_DOUBLE) ,0) )
#define TO_FLOAT(a) ( (PyArrayObject*) PyArray_CastToType(a, PyArray_DescrFromType(NPY_FLOAT) ,0) )
static PyObject * cooling_InitDefaultParameters(void)
{
/* list of Gadget parameters */
/* System of units */
All.UnitLength_in_cm = 3.085e+21; /* 1.0 kpc */
All.UnitMass_in_g = 1.989e+43; /* 1.0e10 solar masses */
All.UnitVelocity_in_cm_per_s = 20725573.785998672; /* 207 km/sec */
All.GravityConstantInternal = 0;
All.UnitTime_in_s = All.UnitLength_in_cm / All.UnitVelocity_in_cm_per_s;
All.UnitTime_in_Megayears=All.UnitTime_in_s / SEC_PER_MEGAYEAR;
return Py_BuildValue("i",1);
}
static PyObject * SetParameters(PyObject *dict)
{
PyObject *key;
PyObject *value;
int ivalue;
float fvalue;
double dvalue;
/* check that it is a PyDictObject */
if(!PyDict_Check(dict))
{
PyErr_SetString(PyExc_AttributeError, "argument is not a dictionary.");
return NULL;
}
if (PyDict_Size(dict)==0)
return Py_BuildValue("i",0);
Py_ssize_t pos=0;
while(PyDict_Next(dict,&pos,&key,&value))
{
if(PyString_Check(key))
{
/* System of units */
if(strcmp(PyString_AsString(key), "UnitLength_in_cm")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.UnitLength_in_cm = PyFloat_AsDouble(value);
}
if(strcmp(PyString_AsString(key), "UnitMass_in_g")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.UnitMass_in_g = PyFloat_AsDouble(value);
}
if(strcmp(PyString_AsString(key), "UnitVelocity_in_cm_per_s")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.UnitVelocity_in_cm_per_s = PyFloat_AsDouble(value);
}
if(strcmp(PyString_AsString(key), "GravityConstantInternal")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.GravityConstantInternal = PyFloat_AsDouble(value);
}
if(strcmp(PyString_AsString(key), "CoolingType")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.CoolingType = PyInt_AsLong(value);
}
if(strcmp(PyString_AsString(key), "CutofCoolingTemperature")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.CutofCoolingTemperature = PyFloat_AsDouble(value);
}
if(strcmp(PyString_AsString(key), "InitGasMetallicity")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.InitGasMetallicity = PyFloat_AsDouble(value);
}
if(strcmp(PyString_AsString(key), "CoolingParameters_FeHSolar")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.CoolingParameters_FeHSolar = PyFloat_AsDouble(value);
}
if(strcmp(PyString_AsString(key), "HubbleParam")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.HubbleParam = PyFloat_AsDouble(value);
}
}
}
return Py_BuildValue("i",1);
}
static PyObject * cooling_SetParameters(PyObject *self, PyObject *args)
{
PyObject *dict;
/* here, we can have either arguments or dict directly */
if(PyDict_Check(args))
{
dict = args;
}
else
{
if (! PyArg_ParseTuple(args, "O",&dict))
return NULL;
}
SetParameters(dict);
return Py_BuildValue("i",1);
}
static PyObject * cooling_GetParameters(void)
{
PyObject *dict;
PyObject *key;
PyObject *value;
dict = PyDict_New();
/* System of units */
key = PyString_FromString("UnitLength_in_cm");
value = PyFloat_FromDouble(All.UnitLength_in_cm);
PyDict_SetItem(dict,key,value);
key = PyString_FromString("UnitMass_in_g");
value = PyFloat_FromDouble(All.UnitMass_in_g);
PyDict_SetItem(dict,key,value);
key = PyString_FromString("UnitVelocity_in_cm_per_s");
value = PyFloat_FromDouble(All.UnitVelocity_in_cm_per_s);
PyDict_SetItem(dict,key,value);
key = PyString_FromString("GravityConstantInternal");
value = PyFloat_FromDouble(All.GravityConstantInternal);
PyDict_SetItem(dict,key,value);
/* cooling type */
key = PyString_FromString("CoolingType");
value = PyInt_FromLong(All.CoolingType);
PyDict_SetItem(dict,key,value);
/* cooling type = 2 */
key = PyString_FromString("CoolingFile");
value = PyString_FromString(All.CoolingFile);
PyDict_SetItem(dict,key,value);
key = PyString_FromString("InitGasMetallicity");
value = PyFloat_FromDouble(All.InitGasMetallicity);
PyDict_SetItem(dict,key,value);
key = PyString_FromString("CutofCoolingTemperature");
value = PyFloat_FromDouble(All.CutofCoolingTemperature);
PyDict_SetItem(dict,key,value);
key = PyString_FromString("CoolingParameters_FeHSolar");
value = PyFloat_FromDouble(All.CoolingParameters_FeHSolar);
PyDict_SetItem(dict,key,value);
key = PyString_FromString("HubbleParam");
value = PyFloat_FromDouble(All.HubbleParam);
PyDict_SetItem(dict,key,value);
return Py_BuildValue("O",dict);
}
/*********************************/
/* */
/*********************************/
static PyObject *
cooling_init_cooling(PyObject *self, PyObject *args, PyObject *kwds)
{
PyObject *paramsDict=NULL;
paramsDict= PyDict_New();
//PyObject *filename;
//if (! PyArg_ParseTuple(args, "Oii",&filename,&NumberOfTables,&DefaultTable))
// {
// PyErr_SetString(PyExc_ValueError,"init_chimie, error in parsing.");
// return NULL;
// }
static char *kwlist[] = {"filename","params", NULL};
PyObject *filename=PyString_FromString("cooling.dat");
/* this fails with python2.6, I do not know why ??? */
if (! PyArg_ParseTupleAndKeywords(args, kwds, "|OO",kwlist,&filename,&paramsDict))
{
PyErr_SetString(PyExc_ValueError,"init_chimie, error in parsing arguments.");
return NULL;
}
if (!PyString_Check(filename))
{
PyErr_SetString(PyExc_ValueError,"Argument must be a string.");
return NULL;
}
/* copy filename */
All.CoolingFile = PyString_AsString(filename);
/* check if the file exists */
if(!(fopen(All.CoolingFile, "r")))
{
PyErr_SetString(PyExc_ValueError,"The parameter file does not exists.");
return NULL;
}
/* use default parameters */
cooling_InitDefaultParameters();
/* check if units are given */
/* check that it is a PyDictObject */
if(!PyDict_Check(paramsDict))
{
PyErr_SetString(PyExc_AttributeError, "argument is not a dictionary.");
return NULL;
}
else
{
SetParameters(paramsDict);
}
All.UnitTime_in_s = All.UnitLength_in_cm / All.UnitVelocity_in_cm_per_s;
All.UnitEnergy_in_cgs = All.UnitMass_in_g * pow(All.UnitLength_in_cm, 2) / pow(All.UnitTime_in_s, 2);
All.Boltzmann = BOLTZMANN /All.UnitEnergy_in_cgs;
All.ProtonMass = PROTONMASS/All.UnitMass_in_g;
double meanweight;
meanweight = 4.0 / (1 + 3 * HYDROGEN_MASSFRAC); /* note: we assume neutral gas here */
All.mumh = All.ProtonMass*meanweight;
return Py_BuildValue("O",Py_None);
}
static PyObject * cooling_init_cooling_with_metals(void)
{
init_cooling_with_metals();
return Py_BuildValue("O",Py_None);
}
static PyObject * cooling_check_cooling_table_with_metals(void)
{
double logT,T;
double l;
double metal;
logT = 1.;
metal = (pow(10,All.InitGasMetallicity)-1e-10)*All.CoolingParameters_FeHSolar;
while(logT<8)
{
T = pow(10,logT);
l = log10(cooling_function_with_metals(T,metal));
if(ThisTask == 0)
printf("%8.3f %8.3f\n",logT,l);
logT = logT + 0.05;
}
return Py_BuildValue("O",Py_None);
}
static PyObject *
cooling_init_from_new_redshift(PyObject *self, PyObject *args, PyObject *kwds)
{
double Redshift;
if (!PyArg_ParseTuple(args, "d", &Redshift))
return NULL;
printf("start init from new redshift...\n");
init_from_new_redshift(Redshift);
printf("stop init from new redshift.\n");
return Py_BuildValue("O",Py_None);
}
static PyObject *
cooling_compute_densities(PyObject *self, PyObject *args, PyObject *kwds)
{
double T; /* temperature */
double X; /* hydrogen fraction */
double n_H; /* hydrogen density */
double n_HI; /* HI neutral */
double n_HII; /* HII ionized */
double n_HEI;
double n_HEII;
double n_HEIII;
double n_E; /* eletron density */
double mu;
double Redshift;
if (!PyArg_ParseTuple(args, "ddd", &T,&X,&n_H))
return NULL;
compute_densities(T,X,&n_H,&n_HI,&n_HII,&n_HEI,&n_HEII,&n_HEIII,&n_E,&mu);
return Py_BuildValue("dddddddd",n_H,n_HI,n_HII,n_HEI,n_HEII,n_HEIII,n_E,mu);
}
static PyObject *
cooling_compute_cooling(PyObject *self, PyObject *args, PyObject *kwds)
{
double T; /* temperature */
double X; /* hydrogen fraction */
double n_H; /* hydrogen density */
double n_HI; /* HI neutral */
double n_HII; /* HII ionized */
double n_HEI;
double n_HEII;
double n_HEIII;
double n_E; /* eletron density */
double mu;
double c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,h1,h2,h3,h4;
double Redshift;
if (!PyArg_ParseTuple(args, "dddddddddd", &T,&X,&n_H,&n_HI,&n_HII,&n_HEI,&n_HEII,&n_HEIII,&n_E,&mu))
return NULL;
compute_cooling(T,n_H,n_HI,n_HII,n_HEI,n_HEII,n_HEIII,n_E,mu,&c1,&c2,&c3,&c4,&c5,&c6,&c7,&c8,&c9,&c10,&c11,&c12,&c13,&h1,&h2,&h3,&h4);
return Py_BuildValue("ddddddddddddddddd",c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,h1,h2,h3,h4);
}
static PyObject *
cooling_lambda_fct(PyObject *self, PyObject *args, PyObject *kwds)
{
/*
i is only used to get the metalicity of a particle or the local flux (by the way, this is bad)
*/
double l;
double Density;
double Entropy;
double Metal;
int phase=0;
int i=0;
if (!PyArg_ParseTuple(args, "ddd", &Density,&Entropy,&Metal))
return NULL;
l = lambda(Density,Entropy,Metal,phase,i);
return Py_BuildValue("d",l);
}
static PyObject *
cooling_cooling_function_with_metals(PyObject *self, PyObject *args, PyObject *kwds)
{
double l;
double Temperature;
double Metal;
if (!PyArg_ParseTuple(args, "dd", &Temperature,&Metal))
return NULL;
l = cooling_function_with_metals(Temperature,Metal);
return Py_BuildValue("d",l);
}
static PyObject *
cooling_Entropy_from_Energy(PyObject *self, PyObject *args, PyObject *kwds)
{
double Entropy,Energy,Density;
double a, a3;
if (!PyArg_ParseTuple(args, "ddd",&Energy, &Density, &a))
return NULL;
a3 = a*a*a;
Entropy = Energy * (GAMMA_MINUS1) / pow(Density / a3, GAMMA_MINUS1);
return Py_BuildValue("d",Entropy);
}
static PyObject *
cooling_Energy_from_Entropy(PyObject *self, PyObject *args, PyObject *kwds)
{
double Entropy,Energy,Density;
double a,a3;
if (!PyArg_ParseTuple(args, "ddd",&Entropy, &Density,&a))
return NULL;
a3 = a*a*a;
Energy = Entropy / (GAMMA_MINUS1) * pow(Density / a3, GAMMA_MINUS1);
return Py_BuildValue("d",Energy);
}
static PyObject *
cooling_Temperature_from_Energy(PyObject *self, PyObject *args, PyObject *kwds)
{
double Energy,Temperature;
if (!PyArg_ParseTuple(args, "d",&Energy))
return NULL;
Temperature = GAMMA_MINUS1 * (All.mumh/All.Boltzmann) * Energy;
return Py_BuildValue("d",Temperature);
}
static PyObject *
cooling_Energy_from_Temperature(PyObject *self, PyObject *args, PyObject *kwds)
{
double Energy,Temperature;
if (!PyArg_ParseTuple(args, "d",&Temperature))
return NULL;
Energy = 1/GAMMA_MINUS1 * (All.Boltzmann/All.mumh) * Temperature;
return Py_BuildValue("d",Energy);
}
/* definition of the method table */
static PyMethodDef coolingMethods[] = {
{"InitDefaultParameters", (PyCFunction)cooling_InitDefaultParameters, METH_VARARGS,
"Init default parameters"},
{"SetParameters", (PyCFunction)cooling_SetParameters, METH_VARARGS,
"Set gadget parameters"},
{"GetParameters", (PyCFunction)cooling_GetParameters, METH_VARARGS,
"get some gadget parameters"},
{"init_cooling", cooling_init_cooling, METH_VARARGS| METH_KEYWORDS,
"Init cooling."},
{"init_cooling_with_metals", cooling_init_cooling_with_metals, METH_VARARGS| METH_KEYWORDS,
"Init cooling table with metals."},
{"check_cooling_table_with_metals", cooling_check_cooling_table_with_metals, METH_VARARGS| METH_KEYWORDS,
"Check cooling table with metals."},
{"init_from_new_redshift", cooling_init_from_new_redshift, METH_VARARGS| METH_KEYWORDS,
"Initializate variables for a new redshift."},
{"compute_densities", cooling_compute_densities, METH_VARARGS| METH_KEYWORDS,
"Compute the elements densities."},
{"compute_cooling", cooling_compute_cooling, METH_VARARGS| METH_KEYWORDS,
"Compute cooling for elements densities."},
{"Entropy_from_Energy", cooling_Entropy_from_Energy, METH_VARARGS| METH_KEYWORDS,
"Compute entropy from energy."},
{"Energy_from_Entropy", cooling_Energy_from_Entropy, METH_VARARGS| METH_KEYWORDS,
"Compute energy from entropy."},
{"Energy_from_Temperature", cooling_Energy_from_Temperature, METH_VARARGS| METH_KEYWORDS,
"Compute energy from temperature."},
{"Temperature_from_Energy", cooling_Temperature_from_Energy, METH_VARARGS| METH_KEYWORDS,
"Compute temperature from energy."},
{"lambda_fct", cooling_lambda_fct, METH_VARARGS| METH_KEYWORDS,
"Return the lambda value for a given density and entropy. This is a direct call the gear lambda function."},
{"cooling_function_with_metals", cooling_cooling_function_with_metals, METH_VARARGS| METH_KEYWORDS,
"Return the normalized cooling function, as given by cooling_function_with_metals. Interpolation of the tables."},
{NULL, NULL, 0, NULL} /* Sentinel */
};
void initcooling(void)
{
(void) Py_InitModule("cooling", coolingMethods);
import_array();
}
#endif /* PYCOOL */
#endif /* PYTHON_INTERFACE */
#endif /* COOLING */
diff --git a/src/cooling_fct_from_hdf5.c b/src/cooling_fct_from_hdf5.c
index 83f7f5b..d60541f 100644
--- a/src/cooling_fct_from_hdf5.c
+++ b/src/cooling_fct_from_hdf5.c
@@ -1,927 +1,929 @@
#ifdef PY_INTERFACE
#include <Python.h>
#else
#include <stdio.h>
#include <string.h>
#endif
#include "proto.h"
#include <stdlib.h>
#include <math.h>
#include <mpi.h>
//standard C POSIX library for file handling
//(opendir, readdir, etc)
#include <dirent.h>
#ifdef COOLING_FCT_FROM_HDF5
#ifdef COOLING
int withLinInterpolation = 1;
-int debugMessagesLevel = 2;
+int debugMessagesLevel = 0;
int Z_global_index_solar = 4;
double Redshift=0;
/*******************************************************************************/
// Update gloval variable All.*_TABLE with current values
int updateCoolingTable(){
printf("Updating cooling tables...\n");
//FIXME (make general use of type_name)
char* type_name = "/Total_Metals";
//hdf5 tables location
char* tables_dir = "/home/epfl/revaz/code/gear/PyCool/tables_wiersma/coolingtables/";
if(debugMessagesLevel >= 1){
printf("tables location: %s\n", tables_dir);
}
//load corresponding hdf5 table
int err = 0;
int hdf5 = 0;
float z_file = 0.0;
float diff = 0.0;
float min = 1.0e10;
DIR *dir;
struct dirent* content;
char* file_name = "";
//open directory containing the tables
dir = opendir(tables_dir);
if(dir == NULL){
printf("an error occured while opening hdf5 directory %s\n", tables_dir);
return 1;
}
/*********************** z ***********************/
float z = 0.0;
#ifndef PY_INTERFACE
float a = get_a_from_CosmicTime(All.Time);
float actual_z = get_Redshift_from_a(a);
if(debugMessagesLevel >= 1){
printf("Redshift z = %g\n", actual_z);
printf("a = %g\n", a);
}
#else
float actual_z = Redshift;
if(debugMessagesLevel >= 1){
printf("Redshift z = %g\n", actual_z);
}
#endif
//scan directory content
while((content = readdir(dir)) != NULL){
//consider only files having the extension .hdf5
hdf5 = endsWith(content->d_name, ".hdf5");
if(hdf5 == 1){
//scan file name to determine the redshift value
err = sscanf(content->d_name, "z_%f.hdf5", &z_file);
if(err != 1){
printf("an error occured while reading file %s in directory %s\n",
content->d_name, tables_dir);
return 1;
}
//determine the file closest to the redshift value given as input
diff = fabs(z_file - actual_z);
if(diff < min){
file_name = content->d_name;
z = z_file;
min = diff;
}
}
}
if(debugMessagesLevel >= 1){
printf("loading data from file %s\n", file_name);
}
All.CURRENT_TABLE_REDSHIFT = z;
//close directory
err = closedir(dir);
if (err != 0){
printf("an error occured while closing directory %s\n", tables_dir);
return 1;
}
//variables types specific to the hdf5 library
hid_t table;
//store path to table file
char file_path[(int)strlen(tables_dir)+(int)strlen(file_name)];
strcpy(file_path, tables_dir);
strcat(file_path, file_name);
//load hdf5 table
table = H5Fopen(file_path, H5F_ACC_RDONLY, H5P_DEFAULT);
/*********************** T ***********************/
char* T_key = "/Temperature_bins";
char T_table_key[(int)strlen(type_name)+(int)strlen(T_key)+1];
strcpy(T_table_key, type_name);
strcat(T_table_key, T_key);
loadDataInTable1D(table, T_table_key, &All.TEMPERATURE_TABLES, &All.SIZE_TEMPERATURE_TABLES);
/********************* rho_H *********************/
char* rho_H_key = "/Hydrogen_density_bins";
char rho_H_table_key[(int)strlen(type_name)+(int)strlen(rho_H_key)+1];
strcpy(rho_H_table_key, type_name);
strcat(rho_H_table_key, rho_H_key);
loadDataInTable1D(table, rho_H_table_key, &All.HYDROGEN_TABLES, &All.SIZE_HYDROGEN_TABLES);
/********************** nHe **********************/
char* nHe_key = "/Helium_mass_fraction_bins";
//or
//char* nHe_key = "/Helium_number_ratio_bins";
char nHe_table_key[(int)strlen("/Metal_free")+(int)strlen(nHe_key)+1];
strcpy(nHe_table_key, "/Metal_free");
strcat(nHe_table_key, nHe_key);
loadDataInTable1D(table, nHe_table_key, &All.HELIUM_ABOUNDANCE_TABLES, &All.SIZE_HELIUM_ABOUNDANCE_TABLES);
/********************* ne/n_H *********************/
char* ne_over_nH_key = "/Electron_density_over_n_h";
char ne_over_nH_table_key[(int)strlen("/Metal_free")+(int)strlen(ne_over_nH_key)+1];
strcpy(ne_over_nH_table_key, "/Metal_free");
strcat(ne_over_nH_table_key, ne_over_nH_key);
loadDataInTable3D(table, ne_over_nH_table_key, &All.ELECTRON_DENSITY_OVER_N_H_TABLES);
/******************** ne/n_H (Solar) ********************/
char* ne_over_nH_solar_key = "/Electron_density_over_n_h";
char ne_over_nH_solar_table_key[(int)strlen("/Solar")+(int)strlen(ne_over_nH_solar_key)+1];
strcpy(ne_over_nH_solar_table_key, "/Solar");
strcat(ne_over_nH_solar_table_key, ne_over_nH_solar_key);
loadDataInTable2D(table, ne_over_nH_solar_table_key, &All.ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR);
/********************* lambda *********************/
//load corresponding lambda value for metal
char* lambda_key = "/Net_cooling"; // /!\ sometimes written "/Net_Cooling"
char lambda_table_key[(int)strlen(type_name)+(int)strlen(lambda_key)+1];
strcpy(lambda_table_key, type_name);
strcat(lambda_table_key, lambda_key);
loadDataInTable2D(table, lambda_table_key, &All.COOLING_TABLES_TOTAL_METAL);
/**************** lambda Metal Free ****************/
//load corresponding lambda value for metal free
char* lambda_key_mf = "/Net_Cooling"; // /!\ sometimes written "/Net_cooling"
char lambda_table_key_mf[(int)strlen("/Metal_free")+(int)strlen(lambda_key_mf)+1];
strcpy(lambda_table_key_mf, "/Metal_free");
strcat(lambda_table_key_mf, lambda_key_mf);
loadDataInTable3D(table, lambda_table_key_mf, &All.COOLING_TABLES_METAL_FREE);
//close file
H5Fclose(table);
return 0;
}
/*******************************************************************************/
// Compute the resulting value of the cooling function using the data stored in
// the global variables
//
// variables ending with "_in" are user input, other variables are closest match
// in the hdf5 tables
float computeLambda(float rho_H_in, float T_in, float nHe_in, float metalicity){
float lambda_metal_free = 0.0;
float lambda_metals = 0.0;
float total_lambda = 0.0;
float ne_over_nH = 0.0;
float ne_over_nH_solar = 0.0;
float epsilon_diff = 1.0e-7;
float epsilon = 1.0e-38;
//find the indices for temperature, hydrogen density and
//helium mass fraction that correspond to the closest
//input values
/*********************** T ***********************/
float T [2] = {0.0, 0.0};
int T_index[2] = {0,0};
closestMatch1D(All.TEMPERATURE_TABLES, All.SIZE_TEMPERATURE_TABLES, T_in, T, T_index);
/********************* rho_H *********************/
float rho_H [2] = {0.0, 0.0};
int rho_H_index[2] = {0,0};
closestMatch1D(All.HYDROGEN_TABLES, All.SIZE_HYDROGEN_TABLES, rho_H_in, rho_H, rho_H_index);
/********************** nHe **********************/
float nHe [2] = {0.0, 0.0};
int nHe_index[2] = {0,0};
closestMatch1D(All.HELIUM_ABOUNDANCE_TABLES, All.SIZE_HELIUM_ABOUNDANCE_TABLES, nHe_in, nHe, nHe_index);
/********************* ne/n_H *********************/
//read electron density value from indices position
ne_over_nH = All.ELECTRON_DENSITY_OVER_N_H_TABLES[nHe_index[0]][T_index[0]][rho_H_index[0]];
if(withLinInterpolation == 1){
//linear interpolation of the results
//the derivative is computed by a simple finite difference method.
//f(c) ~ \-/f(a) * (c-a) ~ (f(b)-f(a))/(b-a) * (c-a)
ne_over_nH += (All.ELECTRON_DENSITY_OVER_N_H_TABLES[nHe_index[0]][T_index[0]][rho_H_index[0]]
- All.ELECTRON_DENSITY_OVER_N_H_TABLES[nHe_index[1]][T_index[0]][rho_H_index[0]])
/ fmax(nHe[0]-nHe[1], epsilon_diff) * (nHe_in - nHe[0]);
ne_over_nH += (All.ELECTRON_DENSITY_OVER_N_H_TABLES[nHe_index[0]][T_index[0]][rho_H_index[0]]
- All.ELECTRON_DENSITY_OVER_N_H_TABLES[nHe_index[0]][T_index[1]][rho_H_index[0]])
/ fmax(T[0]-T[1], epsilon_diff) * (T_in - T[0]);
ne_over_nH += (All.ELECTRON_DENSITY_OVER_N_H_TABLES[nHe_index[0]][T_index[0]][rho_H_index[0]]
- All.ELECTRON_DENSITY_OVER_N_H_TABLES[nHe_index[0]][T_index[0]][rho_H_index[1]])
/ fmax(rho_H[0]-rho_H[1], epsilon_diff) * (rho_H_in - rho_H[0]);
}
//contribution of metals
ne_over_nH_solar = All.ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR[T_index[0]][rho_H_index[0]];
if(withLinInterpolation == 1){
//linear interpolation of the results
//the derivative is computed by a simple finite difference method.
//f(c) ~ \-/f(a) * (c-a) ~ (f(b)-f(a))/(b-a) * (c-a)
ne_over_nH_solar += (All.ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR[T_index[0]][rho_H_index[0]]
- All.ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR[T_index[1]][rho_H_index[0]])
/ fmax(T[0]-T[1], epsilon_diff) * (T_in - T[0]);
ne_over_nH_solar += (All.ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR[T_index[0]][rho_H_index[0]]
- All.ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR[T_index[0]][rho_H_index[1]])
/ fmax(rho_H[0]-rho_H[1], epsilon_diff) * (rho_H_in - rho_H[0]);
}
/********************* lambda *********************/
//read lambda value from indices position
//contribution of hydrogen and helium
lambda_metal_free = All.COOLING_TABLES_METAL_FREE[nHe_index[0]][T_index[0]][rho_H_index[0]];
if(withLinInterpolation == 1){
//linear interpolation of the results
//the derivative is computed by a simple finite difference method.
//f(c) ~ \-/f(a) * (c-a) ~ (f(b)-f(a))/(b-a) * (c-a)
lambda_metal_free += (All.COOLING_TABLES_METAL_FREE[nHe_index[0]][T_index[0]][rho_H_index[0]]
- All.COOLING_TABLES_METAL_FREE[nHe_index[1]][T_index[0]][rho_H_index[0]])
/ fmax(nHe[0]-nHe[1], epsilon_diff) * (nHe_in - nHe[0]);
lambda_metal_free += (All.COOLING_TABLES_METAL_FREE[nHe_index[0]][T_index[0]][rho_H_index[0]]
- All.COOLING_TABLES_METAL_FREE[nHe_index[0]][T_index[1]][rho_H_index[0]])
/ fmax(T[0]-T[1], epsilon_diff) * (T_in - T[0]);
lambda_metal_free += (All.COOLING_TABLES_METAL_FREE[nHe_index[0]][T_index[0]][rho_H_index[0]]
- All.COOLING_TABLES_METAL_FREE[nHe_index[0]][T_index[0]][rho_H_index[1]])
/ fmax(rho_H[0]-rho_H[1], epsilon_diff) * (rho_H_in - rho_H[0]);
}
//contribution of metals
lambda_metals = All.COOLING_TABLES_TOTAL_METAL[T_index[0]][rho_H_index[0]];
if(withLinInterpolation == 1){
//linear interpolation of the results
//the derivative is computed by a simple finite difference method.
//f(c) ~ \-/f(a) * (c-a) ~ (f(b)-f(a))/(b-a) * (c-a)
lambda_metals += (All.COOLING_TABLES_TOTAL_METAL[T_index[0]][rho_H_index[0]]
- All.COOLING_TABLES_TOTAL_METAL[T_index[1]][rho_H_index[0]])
/ fmax(T[0]-T[1], epsilon_diff) * (T_in - T[0]);
lambda_metals += (All.COOLING_TABLES_TOTAL_METAL[T_index[0]][rho_H_index[0]]
- All.COOLING_TABLES_TOTAL_METAL[T_index[0]][rho_H_index[1]])
/ fmax(rho_H[0]-rho_H[1], epsilon_diff) * (rho_H_in - rho_H[0]);
}
// formula from taken from:
// "The effect of photoionization on the cooling rates of enriched,
// astrophysical plasmas"
// Robert P.C. Wiersma, J. Schaye & B.D. Smith
// p.101, eq. (5)
// http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2008.14191.x/pdf
//
#ifndef PY_INTERFACE
total_lambda = lambda_metal_free + lambda_metals * ne_over_nH/ne_over_nH_solar
* metalicity/fmax(chimie_extraheader.SolarMassAbundances[Z_global_index_solar], epsilon);
#else
//chimie_extraheader.SolarMassAbundances[] not defined, use constant value instead
total_lambda = lambda_metal_free + lambda_metals * ne_over_nH/ne_over_nH_solar
* metalicity/0.02;
#endif
//denormalized value (not used for now...)
/*
if(withLinInterpolation == 1){
total_lambda *= pow( ((All.HYDROGEN_TABLES[rho_H_index[0]] - All.HYDROGEN_TABLES[rho_H_index[1]])
/ fmax(rho_H[0]-rho_H[1], epsilon_diff) * (rho_H_in - rho_H[0])) ,2);
} else {
total_lambda *= pow(All.HYDROGEN_TABLES[rho_H_index[0]], 2);
}
*/
if(debugMessagesLevel >= 3){
printf("lambda = %g\n", total_lambda);
}
return total_lambda;
}
/*******************************************************************************/
// write data from hdf5 tables to global variable TABLE (1D) and write the
// corresponding array size in SIZE_TABLE
void loadDataInTable1D(hid_t table, char* table_key, float** TABLE, int* SIZE_TABLE){
hid_t dataset;
hid_t dataspace;
hid_t memspace;
herr_t status;
hsize_t size[1];
int rank;
dataset = H5Dopen2(table, table_key, H5P_DEFAULT); // open dataset (key)
dataspace = H5Dget_space(dataset); // get dataspace
rank = H5Sget_simple_extent_ndims(dataspace); // compute dataspace rank
status = H5Sget_simple_extent_dims(dataspace, size, NULL);// save dataspace dimensions in dims
memspace = H5Screate_simple(rank, size, NULL); // determine memory space required
//read data
float data[size[0]];
status = H5Dread(dataset, H5T_NATIVE_FLOAT, memspace, dataspace, H5P_DEFAULT, data);
if(debugMessagesLevel >= 2){
printf("%s: rank %d, dimension %d \n", table_key, rank, (int)size[0]);
}
*TABLE = (float*)malloc(size[0]*sizeof(float));
if(TABLE == NULL){
printf("\nMemory allocation failed in loadDataInTable1D()\n");
return;
}
//store data in global variables
*SIZE_TABLE = size[0];
int k=0;
for(k=0; k<size[0]; k++){
(*TABLE)[k] = data[k];
}
//close instances
H5Sclose(memspace);
H5Sclose(dataspace);
H5Dclose(dataset);
}
/*******************************************************************************/
// write data from hdf5 tables to global variable TABLE (2D)
void loadDataInTable2D(hid_t table, char* table_key, float*** TABLE){
hid_t dataset;
hid_t dataspace;
hid_t memspace;
herr_t status;
hsize_t dims[2];
int rank;
dataset = H5Dopen2(table, table_key, H5P_DEFAULT); // open dataset (key)
dataspace = H5Dget_space(dataset); // get dataspace
rank = H5Sget_simple_extent_ndims(dataspace); // compute dataspace rank
status = H5Sget_simple_extent_dims(dataspace, dims, NULL);// save dataspace dimensions in dims
memspace = H5Screate_simple(rank, dims, NULL); // determine memory space required
float* temp;
int i = 0;
int j = 0;
//format of the data: data[T][nH]
float data[dims[0]][dims[1]];
status = H5Dread(dataset, H5T_NATIVE_FLOAT, memspace, dataspace, H5P_DEFAULT, data);
//allocate contiguous memory to enable the later use of MPI_Bcast()
temp = (float*)malloc(dims[0]*dims[1]*sizeof(float));
//allocate memory for TABLE accordingly
*TABLE = (float**)malloc(dims[0]*sizeof(float*));
for(i=0; i<dims[0]; i++){
(*TABLE)[i] = &(temp[i*dims[1]]);
}
if(TABLE == NULL){
printf("\nMemory allocation failed in loadDataInTable2D()\n");
free(temp);
return;
}
for(i=0; i<dims[0]; i++){
for(j=0; j<dims[1]; j++){
(*TABLE)[i][j] = data[i][j];
}
}
if(debugMessagesLevel >= 2){
printf("%s loaded with dimensions: %d x %d\n", table_key, (int)dims[0], (int)dims[1]);
}
//close instances
H5Sclose(memspace);
H5Sclose(dataspace);
H5Dclose(dataset);
}
/*******************************************************************************/
// write data from hdf5 tables to global variable TABLE (3D)
void loadDataInTable3D(hid_t table, char* table_key, float**** TABLE){
hid_t dataset;
hid_t dataspace;
hid_t memspace;
herr_t status;
hsize_t dims[3];
int rank;
dataset = H5Dopen2(table, table_key, H5P_DEFAULT); // open dataset (key)
dataspace = H5Dget_space(dataset); // get dataspace
rank = H5Sget_simple_extent_ndims(dataspace); // compute dataspace rank
status = H5Sget_simple_extent_dims(dataspace, dims, NULL);// save dataspace dimensions in dims
memspace = H5Screate_simple(rank, dims, NULL); // determine memory space required
float** temp1;
float* temp2;
int i = 0;
int j = 0;
int k = 0;
//format of the data: data[nHe][T][nH]
float data[dims[0]][dims[1]][dims[2]];
status = H5Dread(dataset, H5T_NATIVE_FLOAT, memspace, dataspace, H5P_DEFAULT, data);
//allocate contiguous memory to enable the later use of MPI_Bcast()
temp1 = (float**)malloc(dims[0]*dims[1]*sizeof(float*));
temp2 = (float*)malloc(dims[0]*dims[1]*dims[2]*sizeof(float));
for(i=0, j=0; i<dims[0]*dims[1]; i++, j++){
temp1[i] = &(temp2[j*dims[2]]);
}
*TABLE = (float***)malloc(dims[0]*sizeof(float**));
for(i=0, j=0; j<dims[0]; i++, j++){
(*TABLE)[i] = &(temp1[j*dims[1]]);
}
if(TABLE == NULL){
printf("\nMemory allocation failed in loadDataInTable3D()\n");
free(temp1);
free(temp2);
return;
}
for(i=0; i<dims[0]; i++){
for(j=0; j<dims[1]; j++){
for(k=0; k<dims[2]; k++){
(*TABLE)[i][j][k] = data[i][j][k];
}
}
}
if(debugMessagesLevel >= 2){
printf("%s loaded with dimensions: %d x %d x %d\n",
table_key, (int)dims[0], (int)dims[1], (int)dims[2]);
}
//close instances
H5Sclose(memspace);
H5Sclose(dataspace);
H5Dclose(dataset);
}
/*******************************************************************************/
//determine if the string str ends by the string suffix
//function used here to determine the extension of file given their name
int endsWith(const char *str, const char *suffix) {
if (!str || !suffix)
return 0;
size_t lenstr = strlen(str);
size_t lensuffix = strlen(suffix);
if (lensuffix > lenstr)
return 0;
return strncmp(str + lenstr - lensuffix, suffix, lensuffix) == 0;
}
/*******************************************************************************/
//return the indices of the 2 closest element of the hdf5 table matching the user
// input. Note that the dimension of the data has to be 1D
void closestMatch1D(float* TABLE, int SIZE, float input, float match[2], int index[2]){
//determine the index of the closest values (above and below)
int k = 0;
int oldk = 0;
float min1 = 1e30;
float min2 = 1e30;
float oldmin = 1e30;
float oldmatch = 0.0;
float diff = 0.0;
//the values having the smallest difference
//to the input are computed and the indeces are stored
for(k=0; k<SIZE; k++){
diff = fabs(input - TABLE[k]);
if(diff < min1){
oldmatch = match[0];
match[0] = TABLE[k];
oldk = index[0];
index[0] = k;
oldmin = min1;
min1 = diff;
}
if(diff < min2 && diff != min1){
if(min2 < oldmin){
match[1] = TABLE[k];
index[1] = k;
min2 = diff;
} else {
match[1] = oldmatch;
index[1] = oldk;
min2 = oldmin;
}
}
}
if(debugMessagesLevel >= 3){
printf("closest match#1 for %f is %f with index %d\n", input, match[0], index[0]);
printf("closest match#2 for %f is %f with index %d\n", input, match[1], index[1]);
}
}
/*******************************************************************************/
// Check if the file that is read currently still has the correct redshift value
void checkRedshiftForUpdate(){
#ifndef PY_INTERFACE
float a = get_a_from_CosmicTime(All.Time);
float z = get_Redshift_from_a(a);
#else
float z = Redshift;
#endif
printf("----> %g %g %g\n",All.CURRENT_TABLE_REDSHIFT,z,fabs(All.CURRENT_TABLE_REDSHIFT - z));
if(fabs(All.CURRENT_TABLE_REDSHIFT - z) >= 0.04){
freeMemory();
if(ThisTask == 0){
updateCoolingTable();
}
BroadcastTablesToAllFromMaster();
}
}
/*******************************************************************************/
// Broadcast tables to all other procs from proc 0
void BroadcastTablesToAllFromMaster(){
if(debugMessagesLevel >= 1 && ThisTask == 0){
printf("broadcasting cooling tables...\n");
}
//broadcast array sizes
MPI_Bcast(&All.SIZE_HYDROGEN_TABLES, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Bcast(&All.SIZE_TEMPERATURE_TABLES, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Bcast(&All.SIZE_HELIUM_ABOUNDANCE_TABLES, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);
//for safety
MPI_Barrier(MPI_COMM_WORLD);
//allocate memory for all procs (except proc 0)
if(ThisTask != 0){
//temporary arrays used to allocate contiguous memory
float* temp1;
float* temp2;
float* temp3;
float** temp4;
float* temp5;
float** temp6;
int i=0;
int j=0;
// 1D arrays
All.HYDROGEN_TABLES = (float*)malloc(All.SIZE_HYDROGEN_TABLES*sizeof(float));
All.TEMPERATURE_TABLES = (float*)malloc(All.SIZE_TEMPERATURE_TABLES*sizeof(float));
All.HELIUM_ABOUNDANCE_TABLES = (float*)malloc(All.SIZE_HELIUM_ABOUNDANCE_TABLES*sizeof(float));
// 2D arrays
// allocate contiguous memory
temp1 = (float*)malloc(All.SIZE_TEMPERATURE_TABLES*All.SIZE_HYDROGEN_TABLES*sizeof(float));
temp2 = (float*)malloc(All.SIZE_TEMPERATURE_TABLES*All.SIZE_HYDROGEN_TABLES*sizeof(float));
//allocate arrays
All.COOLING_TABLES_TOTAL_METAL = (float**)malloc(All.SIZE_TEMPERATURE_TABLES*sizeof(float*));
for(i=0; i<All.SIZE_TEMPERATURE_TABLES; i++){
All.COOLING_TABLES_TOTAL_METAL[i] = &(temp1[i*All.SIZE_HYDROGEN_TABLES]);
}
All.ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR = (float**)malloc(All.SIZE_TEMPERATURE_TABLES*sizeof(float*));
for(i=0; i<All.SIZE_TEMPERATURE_TABLES; i++){
All.ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR[i] = &(temp2[i*All.SIZE_HYDROGEN_TABLES]);
}
// 3D arrays
// allocate contiguous memory
temp3 = (float*)malloc(All.SIZE_HELIUM_ABOUNDANCE_TABLES*All.SIZE_TEMPERATURE_TABLES*All.SIZE_HYDROGEN_TABLES*sizeof(float));
temp4 = (float**)malloc(All.SIZE_HELIUM_ABOUNDANCE_TABLES*All.SIZE_TEMPERATURE_TABLES*sizeof(float*));
for(i=0, j=0; i<All.SIZE_HELIUM_ABOUNDANCE_TABLES*All.SIZE_TEMPERATURE_TABLES; i++, j++){
temp4[i] = &(temp3[j*All.SIZE_HYDROGEN_TABLES]);
}
All.COOLING_TABLES_METAL_FREE = (float***)malloc(All.SIZE_HELIUM_ABOUNDANCE_TABLES*sizeof(float**));
for(i=0, j=0; j<All.SIZE_HELIUM_ABOUNDANCE_TABLES; i++, j++){
All.COOLING_TABLES_METAL_FREE[i] = &(temp4[j*All.SIZE_TEMPERATURE_TABLES]);
}
temp5 = (float*)malloc(All.SIZE_HELIUM_ABOUNDANCE_TABLES*All.SIZE_TEMPERATURE_TABLES*All.SIZE_HYDROGEN_TABLES*sizeof(float));
temp6 = (float**)malloc(All.SIZE_HELIUM_ABOUNDANCE_TABLES*All.SIZE_TEMPERATURE_TABLES*sizeof(float*));
for(i=0, j=0; i<All.SIZE_HELIUM_ABOUNDANCE_TABLES*All.SIZE_TEMPERATURE_TABLES; i++, j++){
temp6[i] = &(temp5[j*All.SIZE_HYDROGEN_TABLES]);
}
All.ELECTRON_DENSITY_OVER_N_H_TABLES = (float***)malloc(All.SIZE_HELIUM_ABOUNDANCE_TABLES*sizeof(float**));
for(i=0, j=0; j<All.SIZE_HELIUM_ABOUNDANCE_TABLES; i++, j++){
All.ELECTRON_DENSITY_OVER_N_H_TABLES[i] = &(temp6[j*All.SIZE_TEMPERATURE_TABLES]);
}
}
//broadcast global arrays to all procs from 0
MPI_Bcast(&(All.COOLING_TABLES_TOTAL_METAL[0][0]),
All.SIZE_TEMPERATURE_TABLES*All.SIZE_HYDROGEN_TABLES, MPI_FLOAT,0, MPI_COMM_WORLD);
MPI_Bcast(&(All.COOLING_TABLES_METAL_FREE[0][0][0]),
All.SIZE_HELIUM_ABOUNDANCE_TABLES*All.SIZE_TEMPERATURE_TABLES*All.SIZE_HYDROGEN_TABLES, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Bcast(&(All.ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR[0][0]),
All.SIZE_TEMPERATURE_TABLES*All.SIZE_HYDROGEN_TABLES, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Bcast(&(All.ELECTRON_DENSITY_OVER_N_H_TABLES[0][0][0]),
All.SIZE_HELIUM_ABOUNDANCE_TABLES*All.SIZE_TEMPERATURE_TABLES*All.SIZE_HYDROGEN_TABLES, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Bcast(All.HYDROGEN_TABLES, All.SIZE_HYDROGEN_TABLES, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Bcast(All.TEMPERATURE_TABLES, All.SIZE_TEMPERATURE_TABLES, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Bcast(All.HELIUM_ABOUNDANCE_TABLES, All.SIZE_HELIUM_ABOUNDANCE_TABLES, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Bcast(&All.CURRENT_TABLE_REDSHIFT, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);
if(debugMessagesLevel >= 1 && ThisTask == 0){
printf("cooling tables broadcasted to all procs\n");
}
}
/*******************************************************************************/
// Function that free memory to avoid overflows
// copy in allocate.c
int freeMemory(){
int error = 0;
// free 3D arrays
if(All.COOLING_TABLES_METAL_FREE){
free(All.COOLING_TABLES_METAL_FREE[0][0]);
free(All.COOLING_TABLES_METAL_FREE[0]);
free(All.COOLING_TABLES_METAL_FREE);
All.COOLING_TABLES_METAL_FREE = NULL;
} else {
error++;
}
if(All.ELECTRON_DENSITY_OVER_N_H_TABLES){
free(All.ELECTRON_DENSITY_OVER_N_H_TABLES[0][0]);
free(All.ELECTRON_DENSITY_OVER_N_H_TABLES[0]);
free(All.ELECTRON_DENSITY_OVER_N_H_TABLES);
All.ELECTRON_DENSITY_OVER_N_H_TABLES = NULL;
} else {
error++;
}
// free 2D arrays
if(All.COOLING_TABLES_TOTAL_METAL){
free(All.COOLING_TABLES_TOTAL_METAL[0]);
free(All.COOLING_TABLES_TOTAL_METAL);
All.COOLING_TABLES_TOTAL_METAL = NULL;
} else {
error++;
}
if(All.ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR){
free(All.ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR[0]);
free(All.ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR);
All.ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR = NULL;
} else {
error++;
}
// free 1D arrays
if(All.HYDROGEN_TABLES){
free(All.HYDROGEN_TABLES);
All.HYDROGEN_TABLES = NULL;
} else {
error++;
}
if(All.TEMPERATURE_TABLES){
free(All.TEMPERATURE_TABLES);
All.TEMPERATURE_TABLES = NULL;
} else {
error++;
}
if(All.HELIUM_ABOUNDANCE_TABLES){
free(All.HELIUM_ABOUNDANCE_TABLES);
All.HELIUM_ABOUNDANCE_TABLES = NULL;
} else {
error++;
}
if(debugMessagesLevel >= 1 && ThisTask == 0){
printf("cooling table memory freed\n");
}
return error;
}
/************************************* Python Interface ************************************/
#ifdef PY_INTERFACE
/*****************************************************/
/* functions declarations */
/*****************************************************/
static PyObject* updateCoolingTableInterface(PyObject *self, PyObject *args) {
int error_status = 0;
error_status = updateCoolingTable();
return Py_BuildValue("d", error_status);
}
static PyObject* BroadcastTablesToAllFromMasterInterface(PyObject *self, PyObject *args) {
BroadcastTablesToAllFromMaster();
return Py_BuildValue("d", 0);
}
static PyObject* computeLambdaInterface(PyObject *self, PyObject *args) {
float rho_H_in;
float T_in;
float nHe_in;
float metalicity;
float lambda = 0.0;
if (!PyArg_ParseTuple(args, "ffff", &rho_H_in, &T_in, &nHe_in, &metalicity)) {
return NULL;
}
+ /*
printf("%s\n","computing function with parameters:");
printf("%s: %g\n","hydrogen density", rho_H_in);
printf("%s: %g\n","temperature", T_in);
printf("%s: %g\n","helium aboundance", nHe_in);
printf("%s: %g\n","metalicity", metalicity);
+ */
lambda = computeLambda(rho_H_in, T_in, nHe_in, metalicity);
return Py_BuildValue("f",lambda);
}
static PyObject* freeMemoryInterface(PyObject *self, PyObject *args) {
int error_status;
error_status = freeMemory();
return Py_BuildValue("d",error_status);
}
static PyObject * SetRedshiftInterface(self, args)
PyObject *self;
PyObject *args;
{
double redshift;
/* parse arguments */
if (!PyArg_ParseTuple(args, "d", &redshift))
return NULL;
Redshift=redshift;
/* convert in array */
return Py_BuildValue("i",1);
}
static PyObject * GetRedshiftInterface(self, args)
PyObject *self;
PyObject *args;
{
/* convert in array */
return Py_BuildValue("d",Redshift);
}
static PyObject * checkRedshiftForUpdateInterface(self, args)
PyObject *self;
PyObject *args;
{
checkRedshiftForUpdate();
/* convert in array */
return Py_BuildValue("i",1);
}
/*****************************************************/
/* Method table */
/*****************************************************/
static PyMethodDef computeLambdaMethods[] = {
{"updateCoolingTable", updateCoolingTableInterface, METH_VARARGS,
"Update cooling table data using HDF5 tables."},
{"BroadcastTablesToAllFromMaster", BroadcastTablesToAllFromMasterInterface, METH_VARARGS,
"Broadcast tables to all other procs from proc 0."},
{"computeLambda", computeLambdaInterface, METH_VARARGS,
"Compute the cooling from given inputs."},
{"freeMemory", freeMemoryInterface, METH_VARARGS,
"Free allocated memory."},
{"SetRedshift", SetRedshiftInterface, METH_VARARGS,
"Let the user define the current redshift."},
{"GetRedshift", GetRedshiftInterface, METH_VARARGS,
"Get the user define the current redshift."},
{"checkRedshiftForUpdate", checkRedshiftForUpdateInterface, METH_VARARGS,
"Check the redshift, and if necessary, update the cooling tables."},
{NULL, NULL, 0, NULL} /* Sentinel */
};
/*****************************************************/
/* initialization */
/*****************************************************/
//void initcompute_lambda_interface(void)
PyMODINIT_FUNC initcompute_lambda_interface(void) {
(void) Py_InitModule("compute_lambda_interface", computeLambdaMethods);
}
#endif //PY_INTERFACE
#endif //COOLING_FCT_FROM_HDF5
#endif //COOLING
diff --git a/src/cooling_wiersma.c b/src/cooling_wiersma.c
index f50a273..b3daac8 100644
--- a/src/cooling_wiersma.c
+++ b/src/cooling_wiersma.c
@@ -1,1130 +1,1131 @@
#ifdef COOLING
#ifdef COOLING_WIERSMA
#ifdef PY_INTERFACE
#include <Python.h>
#else
#include <stdio.h>
#include <string.h>
#endif
#include "lt3d.h"
#include "hdf5io.h"
#include <stdlib.h>
#include <math.h>
#include <mpi.h>
#include <dirent.h>
#include <hdf5.h>
#include <math.h>
#include <mpi.h>
#define HEADER_GRP "/Header"
#define TOTAL_METAL_GRP "/Total_Metals"
#define METAL_FREE_GRP "/Metal_free"
#define SOLAR_GRP "/Solar"
#define TABLE_DIR "/home/epfl/revaz/code/gear/PyCool/tables_wiersma/coolingtables/"
static int locThisTask=0;
/* some global variables */
static int RedshiftInterpolation=0;
struct RedshiftFileStruct
{
double Redshift;
char * filename;
}
*RedshiftFiles;
static int nFiles;
double currentRedshift;
struct CoolingTableStruct
{
char * filename;
int index;
double Redshift;
int Number_of_temperature_bins;
int Number_of_density_bins;
int Number_of_helium_fractions;
int Number_of_species;
//double *Temperature_bins;
//double *Hydrogen_density_bins;
//double *Helium_mass_fraction_bins;
struct lt3d_RegularTable3D lambda_metal_free;
struct lt3d_RegularTable2D lambda_metal;
struct lt3d_RegularTable3D ne_n_H;
struct lt3d_RegularTable2D ne_n_H_solar;
}
cTable0,cTable1;
/*! This is a comparison kernel used in a sort routine.
*/
int redshift_compare_key(const void *a, const void *b)
{
if(((struct RedshiftFileStruct *) a)->Redshift < (((struct RedshiftFileStruct *) b)->Redshift))
return -1;
if(((struct RedshiftFileStruct *) a)->Redshift > (((struct RedshiftFileStruct *) b)->Redshift))
return +1;
return 0;
}
double i2Redshift(int i)
{
double xmin=0;
double dx=1/48.;
return pow(10,xmin+i*dx)-1;
}
int Redshift2i(double Redshift)
{
double xmin=0;
double dx=1/48.;
int idx;
idx = (int)round( (log10(Redshift+1)-xmin)/(dx) );
if (idx<0)
return 0;
if (idx>48)
return 48;
return idx;
}
int Redshift2ij(double Redshift, int *idx0, int *idx1)
{
double xmin=0;
double dx=1/48.;
*idx1 = (int)round( (log10(Redshift+1)-xmin)/(dx) );
if (*idx1<0)
*idx1 =0;
if (*idx1>48)
*idx1= 48;
*idx0 = *idx1-1;
if (*idx0<0)
*idx0 = 0;
if (*idx1>48)
*idx0 = 48;
return 0;
}
int findRedshiftij(double Redshift, int *idx0, int *idx1)
{
int i;
/* more than the max */
if (Redshift>=RedshiftFiles[nFiles-1].Redshift)
{
*idx0 = nFiles-1;
*idx1 = nFiles-1;
return 0;
}
i=0;
for (i=0;i<nFiles-2;i++)
{
if (Redshift<=RedshiftFiles[i].Redshift)
break;
}
if (i<=0)
{
*idx0 = 0;
*idx1 = 0;
}
else
{
*idx0 = i-1;
*idx1 = i;
}
return 0;
}
double i2Helium_mass_fraction(int i)
{
double xmin=0.238;
double dx=0.01;
return xmin + i*dx;
}
int Helium_mass_fraction2i(double Helium_mass_fraction)
{
double xmin=0.238;
double dx=0.01;
int idx;
idx = (int)round( (Helium_mass_fraction - xmin)/dx );
if (idx<0)
return 0;
if (idx>6)
return 6;
return idx;
}
double i2Hydrogen_density(int i)
{
double xmin=-8.0;
double dx=0.1;
return pow( 10.0, xmin + i*dx);
}
int Hydrogen_density2i(double Hydrogen_density)
{
double xmin=-8.0;
double dx=0.1;
int idx;
idx = (int)round( (log10(Hydrogen_density) - xmin)/dx );
if (idx<0)
return 0;
if (idx>80)
return 80;
return idx;
}
double i2Temperature(int i)
{
double xmin=2.0;
double xmax=8.98185062;
double n = 352;
double dx;
dx = (xmax-xmin)/(n-1);
return pow(10,(xmin + i*dx));
}
int Temperature2i(double Temperature)
{
double xmin=2.0;
double xmax=8.98185062;
double n = 352;
double dx;
int idx;
dx = (xmax-xmin)/(n-1);
idx = (int)round( (log10(Temperature) - xmin)/dx );
if (idx<0)
return 0;
if (idx>n-1)
return n-1;
return idx;
}
/*! determine if the string str ends by the string suffix
* function used here to determine the extension of file given their name
*
*/
int endsWith(const char *str, const char *suffix) {
if (!str || !suffix)
return 0;
size_t lenstr = strlen(str);
size_t lensuffix = strlen(suffix);
if (lensuffix > lenstr)
return 0;
return strncmp(str + lenstr - lensuffix, suffix, lensuffix) == 0;
}
int SetRedshiftInterpolationOn()
{
RedshiftInterpolation=1;
return 0;
}
int SetRedshiftInterpolationOff()
{
RedshiftInterpolation=0;
return 0;
}
int InitWiersmaCooling(char * TablesDirectory)
{
DIR *dir;
struct dirent* content;
int hdf5 = 0;
int i;
MPI_Comm_rank(MPI_COMM_WORLD, &locThisTask);
SetRedshiftInterpolationOn();
if (locThisTask==0)
{
/* some general inits */
cTable0.index=-1;
cTable1.index=-1;
/* open directory */
dir = opendir(TablesDirectory);
if(dir == NULL){
printf("an error occured while opening hdf5 directory %s\n", TablesDirectory);
return 1;
}
/* scan directory */
nFiles=0;
while((content = readdir(dir)) != NULL)
{
hdf5 = endsWith(content->d_name, ".hdf5");
if(hdf5 == 1)
nFiles++;
}
closedir(dir);
printf("%d hdf5 files\n",nFiles);
RedshiftFiles = malloc(nFiles*sizeof(struct RedshiftFileStruct));
i=0;
dir = opendir(TablesDirectory);
while((content = readdir(dir)) != NULL)
{
hdf5 = endsWith(content->d_name, ".hdf5");
if(hdf5 == 1)
{
/* read the file and record redshift */
char file_path[(int)strlen(TablesDirectory)+(int)strlen(content->d_name)];
strcpy(file_path, TablesDirectory);
strcat(file_path, content->d_name);
//printf("reading: %s\n",file_path);
hid_t table;
hid_t group;
hid_t dset;
herr_t status;
float fRedshift;
table = H5Fopen(file_path, H5F_ACC_RDONLY, H5P_DEFAULT);
group = H5Gopen( table , HEADER_GRP, H5P_DEFAULT);
dset = H5Dopen( group , "Redshift", H5P_DEFAULT);
status = H5Dread(dset,H5T_IEEE_F32LE,H5S_ALL, H5S_ALL, H5P_DEFAULT,&fRedshift);
status = H5Dclose (dset);
status = H5Gclose(group);
status = H5Fclose(table);
//printf("%g\n",fRedshift);
/* copy to the file list */
RedshiftFiles[i].Redshift = (double)fRedshift;
RedshiftFiles[i].filename = (char *) malloc((strlen(file_path)+1)*sizeof(char));
strcpy(RedshiftFiles[i].filename,file_path);
//printf("%8.3f %s\n",RedshiftFiles[i].Redshift,RedshiftFiles[i].filename);
i++;
}
}
/* sort according to the redshift */
qsort(RedshiftFiles, nFiles, sizeof(struct RedshiftFileStruct), redshift_compare_key);
//for(i=0;i<nFiles;i++)
// printf("%d %8.5f %8.5f %d %s\n",i,RedshiftFiles[i].Redshift, i2Redshift(i) , Redshift2i(RedshiftFiles[i].Redshift) ,RedshiftFiles[i].filename);
/* check */
//for (i=0;i<100;i++)
// printf("i=%03d z=%8.5f idx=%d z=%8.5f\n",i, i*0.1 , Redshift2i(i*0.1), RedshiftFiles[Redshift2i(i*0.1)].Redshift );
}
return 0;
}
int CoolingTableFree(struct CoolingTableStruct ctab)
{
/* tables */
//lt3d_FreeRegularTable3D(ctab.lambda_metal_free);
//lt3d_FreeRegularTable2D(ctab.lambda_metal);
//lt3d_FreeRegularTable3D(ctab.ne_n_H);
//lt3d_FreeRegularTable2D(ctab.ne_n_H_solar);
//free(ctab.filename);
/* bins */
//free(ctab.Temperature_bins);
//free(ctab.Hydrogen_density_bins);
//free(ctab.Helium_mass_fraction_bins);
return 0;
}
int Free()
{
CoolingTableFree(cTable0);
CoolingTableFree(cTable1);
return 0;
}
int readCoolingTable(char *table_name,struct CoolingTableStruct *ctab)
{
hid_t table;
hid_t group;
herr_t status;
printf("reading %s...\n",table_name);
table = H5Fopen(table_name, H5F_ACC_RDONLY, H5P_DEFAULT);
/* store the name */
ctab->filename = malloc(strlen(table_name)*sizeof(char)+1);
strcpy(ctab->filename, table_name);
/* read header */
group = H5Gopen( table , HEADER_GRP, H5P_DEFAULT);
ctab->Redshift = readDataSetAsDouble(group,"Redshift");
ctab->Number_of_temperature_bins = readDataSetAsInt(group,"Number_of_temperature_bins");
ctab->Number_of_density_bins = readDataSetAsInt(group,"Number_of_density_bins");
//ctab->Number_of_helium_fractions = readDataSetAsInt(group,"Number_of_helium_fractions");
ctab->Number_of_helium_fractions = 7; /* seems to be a bug in the table */
ctab->Number_of_species = readDataSetAsInt(group,"Number_of_species");
status = H5Gclose (group);
/*****************/
/* read the bins */
/*****************/
group = H5Gopen( table , METAL_FREE_GRP, H5P_DEFAULT);
/* not needed (only for tests) */
//ctab->Temperature_bins = malloc( ctab->Number_of_temperature_bins*sizeof(double));
//ctab->Hydrogen_density_bins = malloc( ctab->Number_of_density_bins*sizeof(double));
//ctab->Helium_mass_fraction_bins = malloc( ctab->Number_of_helium_fractions*sizeof(double));
//ctab->Temperature_bins = readDatasetAsArrayDouble(group,"Temperature_bins");
//ctab->Hydrogen_density_bins = readDatasetAsArrayDouble(group,"Hydrogen_density_bins");
//ctab->Helium_mass_fraction_bins = readDatasetAsArrayDouble(group,"Helium_mass_fraction_bins");
/* use lt3d objects */
/* Temperature */
struct lt3d_RegularBinning logTemperature_bins;
logTemperature_bins.name = "logTemperature";
logTemperature_bins.n = ctab->Number_of_temperature_bins;
logTemperature_bins.x0 = 2.0;
logTemperature_bins.dx = 0.019891312307692307;
/* Hydrogen */
struct lt3d_RegularBinning logHydrogen_density_bins;
logHydrogen_density_bins.name = "logHydrogen_density";
logHydrogen_density_bins.n = ctab->Number_of_density_bins;
logHydrogen_density_bins.x0 = -8.0;
logHydrogen_density_bins.dx = 0.1;
/* Helium mass fraction */
struct lt3d_RegularBinning Helium_mass_fraction_bins;
Helium_mass_fraction_bins.name = "Helium mass fraction";
Helium_mass_fraction_bins.n = ctab->Number_of_helium_fractions;
Helium_mass_fraction_bins.x0 = 0.238;
Helium_mass_fraction_bins.dx = 0.01;
status = H5Gclose (group);
/*******************/
/* read the tables */
/*******************/
/* cooling function, metal free */
group = H5Gopen( table , METAL_FREE_GRP, H5P_DEFAULT);
strcpy(ctab->lambda_metal_free.name,"Net_Cooling_metal_free");
//ctab->lambda_metal_free.data = readDatasetAsArray3dDouble(group,"Net_Cooling",ctab->lambda_metal_free.dims);
readDatasetAsArray3dDouble(group,"Net_Cooling",ctab->lambda_metal_free.dims,ctab->lambda_metal_free.data);
ctab->lambda_metal_free.x = Helium_mass_fraction_bins;
ctab->lambda_metal_free.y = logTemperature_bins;
ctab->lambda_metal_free.z = logHydrogen_density_bins;
status = H5Gclose (group);
/* cooling function, metal free */
group = H5Gopen( table , TOTAL_METAL_GRP, H5P_DEFAULT);
strcpy(ctab->lambda_metal.name ,"Net_Cooling");
//ctab->lambda_metal.data = readDatasetAsArray2dDouble(group,"Net_cooling",ctab->lambda_metal.dims);
readDatasetAsArray2dDouble(group,"Net_cooling",ctab->lambda_metal.dims,ctab->lambda_metal.data);
ctab->lambda_metal.x = logTemperature_bins;
ctab->lambda_metal.y = logHydrogen_density_bins;
status = H5Gclose (group);
/* electron density of hydrogen density */
group = H5Gopen( table , METAL_FREE_GRP, H5P_DEFAULT);
strcpy(ctab->ne_n_H.name,"Electron_density_over_n_h");
//ctab->ne_n_H.data = readDatasetAsArray3dDouble(group,"Electron_density_over_n_h",ctab->ne_n_H.dims);
readDatasetAsArray3dDouble(group,"Electron_density_over_n_h",ctab->ne_n_H.dims,ctab->ne_n_H.data);
ctab->ne_n_H.x = Helium_mass_fraction_bins;
ctab->ne_n_H.y = logTemperature_bins;
ctab->ne_n_H.z = logHydrogen_density_bins;
status = H5Gclose (group);
/* electron density of hydrogen density solar */
group = H5Gopen( table , SOLAR_GRP, H5P_DEFAULT);
strcpy(ctab->ne_n_H_solar.name,"Electron_density_over_n_h_solar");
//ctab->ne_n_H_solar.data = readDatasetAsArray2dDouble(group,"Electron_density_over_n_h",ctab->ne_n_H_solar.dims);
readDatasetAsArray2dDouble(group,"Electron_density_over_n_h",ctab->ne_n_H_solar.dims,ctab->ne_n_H_solar.data);
ctab->ne_n_H_solar.x = logTemperature_bins;
ctab->ne_n_H_solar.y = logHydrogen_density_bins;
status = H5Gclose (group);
status = H5Fclose(table);
return 0;
}
int printCoolingTable(struct CoolingTableStruct ctab)
{
//int i;
//char *space="\t\t";
printf("\n");
printf("table name: %s\n\n",ctab.filename);
printf("\t Redshift = %g\n\n",ctab.Redshift);
printf("\t Number_of_temperature_bins = %d\n\n",ctab.Number_of_temperature_bins);
//for(i=0;i<3;i++)
// printf("%s\t [%d] %g\n",space,i,ctab.Temperature_bins[i]);
//printf("%s\t ...\n",space);
//for(i=ctab.Number_of_temperature_bins-3;i<ctab.Number_of_temperature_bins;i++)
// printf("%s\t [%d] %g\n",space,i,ctab.Temperature_bins[i]);
//printf("\n");
printf("\t Number_of_density_bins = %d\n\n",ctab.Number_of_density_bins );
//for(i=0;i<3;i++)
// printf("%s\t [%d] %g\n",space,i,ctab.Hydrogen_density_bins[i]);
//printf("%s\t ...\n",space);
//for(i=ctab.Number_of_density_bins-3;i<ctab.Number_of_density_bins;i++)
// printf("%s\t [%d] %g\n",space,i,ctab.Hydrogen_density_bins[i]);
//printf("\n");
printf("\t Number_of_helium_fractions = %d\n\n",ctab.Number_of_helium_fractions);
//for(i=0;i<3;i++)
// printf("%s\t [%d] %g\n",space,i,ctab.Helium_mass_fraction_bins[i]);
//printf("%s\t ...\n",space);
//for(i=ctab.Number_of_helium_fractions-3;i<ctab.Number_of_helium_fractions;i++)
// printf("%s\t [%d] %g\n",space,i,ctab.Helium_mass_fraction_bins[i]);
//printf("\n");
printf("\t Number_of_species = %d\n",ctab.Number_of_species );
printf("\n");
return 0;
}
int setTablesFromRedshift(double RedShift)
{
int idx0,idx1;
currentRedshift=RedShift; /* make it global */
if (locThisTask==0)
{
findRedshiftij(RedShift,&idx0,&idx1);
//Redshift2ij(RedShift,&idx0,&idx1),
- printf("SeTables : z=%8.5f z0=%8.5f(%d) z1=%8.5f(%d) \n",RedShift, RedshiftFiles[idx0].Redshift,idx0, RedshiftFiles[idx1].Redshift,idx1 );
+ if(locThisTask==0)
+ printf("SeTables : z=%8.5f z0=%8.5f(%d) z1=%8.5f(%d) \n",RedShift, RedshiftFiles[idx0].Redshift,idx0, RedshiftFiles[idx1].Redshift,idx1 );
if (cTable0.index!=idx0)
{
readCoolingTable(RedshiftFiles[idx0].filename,&cTable0);
cTable0.index = idx0;
}
if (RedshiftInterpolation)
{
if (cTable1.index!=idx1)
{
readCoolingTable(RedshiftFiles[idx1].filename,&cTable1);
cTable1.index = idx1;
}
}
//printCoolingTable(cTable0);
//printCoolingTable(cTable1);
}
/* at this point, we needs to broadcast the tables */
MPI_Bcast(&cTable0, sizeof(struct CoolingTableStruct), MPI_BYTE, 0, MPI_COMM_WORLD);
MPI_Bcast(&cTable1, sizeof(struct CoolingTableStruct), MPI_BYTE, 0, MPI_COMM_WORLD);
return 0;
}
double compute_LambdaMetalFree(double T,double nH,double HeMfrac)
{
double lognH;
double logT;
double L,L0;
lognH = log10(nH);
logT = log10(T);
- L0 = lt3d_getInterpolationFromRegularTable3D(cTable0.lambda_metal_free,HeMfrac,logT,lognH);
-
+ L0 = lt3d_getInterpolationFromRegularTable3D(&cTable0.lambda_metal_free,HeMfrac,logT,lognH);
+
if (RedshiftInterpolation)
{
if (cTable0.index==cTable1.index)
L = L0;
else
{
double L1;
double xd;
- L1 = lt3d_getInterpolationFromRegularTable3D(cTable1.lambda_metal_free,HeMfrac,logT,lognH);
+ L1 = lt3d_getInterpolationFromRegularTable3D(&cTable1.lambda_metal_free,HeMfrac,logT,lognH);
xd = (currentRedshift-cTable0.Redshift) / (cTable1.Redshift-cTable0.Redshift);
L = L0*(1-xd) + L1*xd;
}
}
else
L = L0;
return L;
}
double compute_LambdaMetal(double T,double nH)
{
double lognH;
double logT;
double L,L0;
-
+
lognH = log10(nH);
logT = log10(T);
- L0 = lt3d_getInterpolationFromRegularTable2D(cTable0.lambda_metal,logT,lognH);
-
+ L0 = lt3d_getInterpolationFromRegularTable2D(&cTable0.lambda_metal,logT,lognH);
+
if (RedshiftInterpolation)
{
if (cTable0.index==cTable1.index)
L = L0;
else
{
double L1;
double xd;
- L1 = lt3d_getInterpolationFromRegularTable2D(cTable1.lambda_metal,logT,lognH);
+ L1 = lt3d_getInterpolationFromRegularTable2D(&cTable1.lambda_metal,logT,lognH);
xd = (currentRedshift-cTable0.Redshift) / (cTable1.Redshift-cTable0.Redshift);
L = L0*(1-xd) + L1*xd;
}
}
else
L = L0;
return L;
}
double compute_ElectronHydrogenRatio(double T,double nH,double HeMfrac)
{
double lognH;
double logT;
double L,L0;
-
+
lognH = log10(nH);
logT = log10(T);
- L0 = lt3d_getInterpolationFromRegularTable3D(cTable0.ne_n_H,HeMfrac,logT,lognH);
-
+ L0 = lt3d_getInterpolationFromRegularTable3D(&cTable0.ne_n_H,HeMfrac,logT,lognH);
+
if (RedshiftInterpolation)
{
if (cTable0.index==cTable1.index)
L = L0;
else
{
double L1;
double xd;
- L1 = lt3d_getInterpolationFromRegularTable3D(cTable1.ne_n_H,HeMfrac,logT,lognH);
+ L1 = lt3d_getInterpolationFromRegularTable3D(&cTable1.ne_n_H,HeMfrac,logT,lognH);
xd = (currentRedshift-cTable0.Redshift) / (cTable1.Redshift-cTable0.Redshift);
L = L0*(1-xd) + L1*xd;
}
}
else
L = L0;
return L;
}
double compute_ElectronHydrogenRatioSolar(double T,double nH)
{
double lognH;
double logT;
double L,L0;
-
+
lognH = log10(nH);
logT = log10(T);
- L0 = lt3d_getInterpolationFromRegularTable2D(cTable0.ne_n_H_solar,logT,lognH);
-
+ L0 = lt3d_getInterpolationFromRegularTable2D(&cTable0.ne_n_H_solar,logT,lognH);
+
if (RedshiftInterpolation)
{
if (cTable0.index==cTable1.index)
L = L0;
else
{
double L1;
double xd;
- L1 = lt3d_getInterpolationFromRegularTable2D(cTable1.ne_n_H_solar,logT,lognH);
+ L1 = lt3d_getInterpolationFromRegularTable2D(&cTable1.ne_n_H_solar,logT,lognH);
xd = (currentRedshift-cTable0.Redshift) / (cTable1.Redshift-cTable0.Redshift);
L = L0*(1-xd) + L1*xd;
}
}
else
L = L0;
return L;
}
double compute_LambdaTotal(double T,double nH,double HeMfrac,double Z, double Zsol)
{
double Lf;
double Lm;
double nEnH;
double nEnHsol;
double L;
Lf = compute_LambdaMetalFree(T,nH,HeMfrac);
Lm = compute_LambdaMetal(T,nH);
nEnH = compute_ElectronHydrogenRatio(T,nH,HeMfrac);
nEnHsol = compute_ElectronHydrogenRatioSolar(T,nH);
L= Lf + Lm * (nEnH/nEnHsol)*(Z/Zsol);
return L;
}
/*****************************************************************/
/* python interface */
/*****************************************************************/
#ifdef PY_INTERFACE
static PyObject * CoolingTables_Init(PyObject *self, PyObject *args, PyObject *kwds)
{
//static char *kwlist[] = {"directory", NULL};
PyObject *directory=PyString_FromString(TABLE_DIR);
/* this fails with python2.6, I do not know why ??? */
/*
if (! PyArg_ParseTupleAndKeywords(args, kwds, "|O",kwlist,&directory))
{
PyErr_SetString(PyExc_ValueError,"Init, error in parsing arguments.");
return NULL;
}
*/
if (! PyArg_ParseTuple(args, "O",&directory))
{
PyErr_SetString(PyExc_ValueError,"Init, error in parsing arguments.");
return NULL;
}
if (!PyString_Check(directory))
{
PyErr_SetString(PyExc_ValueError,"Argument must be a string.");
return NULL;
}
InitWiersmaCooling(PyString_AsString(directory));
return Py_BuildValue("i",1);
}
static PyObject * CoolingTables_Free(PyObject *self, PyObject *args, PyObject *kwds)
{
Free();
return Py_BuildValue("i",1);
}
static PyObject * CoolingTables_setTablesFromRedshift(self, args)
PyObject *self;
PyObject *args;
{
double Redshift;
if (! PyArg_ParseTuple(args, "d",&Redshift))
{
PyErr_SetString(PyExc_ValueError,"Init, error in parsing arguments.");
return NULL;
}
setTablesFromRedshift(Redshift);
return Py_BuildValue("i",1);
}
static PyObject * CoolingTables_SetRedshiftInterpolationOn(PyObject *self, PyObject *args, PyObject *kwds)
{
SetRedshiftInterpolationOn();
return Py_BuildValue("i",1);
}
static PyObject * CoolingTables_SetRedshiftInterpolationOff(PyObject *self, PyObject *args, PyObject *kwds)
{
SetRedshiftInterpolationOff();
return Py_BuildValue("i",1);
}
static PyObject * CoolingTables_compute_LambdaMetalFree(PyObject *self, PyObject *args, PyObject *kwds)
{
double nH,HeMfrac,T;
double L;
if (! PyArg_ParseTuple(args, "ddd",&T,&nH,&HeMfrac))
{
PyErr_SetString(PyExc_ValueError,"Init, error in parsing arguments.");
return NULL;
}
L = compute_LambdaMetalFree(T,nH,HeMfrac);
return Py_BuildValue("d",L);
}
static PyObject * CoolingTables_compute_LambdaMetal(PyObject *self, PyObject *args, PyObject *kwds)
{
double nH,T;
double L;
if (! PyArg_ParseTuple(args, "dd",&T,&nH))
{
PyErr_SetString(PyExc_ValueError,"Init, error in parsing arguments.");
return NULL;
}
L = compute_LambdaMetal(T,nH);
return Py_BuildValue("d",L);
}
static PyObject * CoolingTables_compute_LambdaTotal(PyObject *self, PyObject *args, PyObject *kwds)
{
double nH,HeMfrac,T;
double L;
//double Lf,Lm;
//double nEnH,nEnHsol;
double Z,Zsol;
if (! PyArg_ParseTuple(args, "ddddd",&T,&nH,&HeMfrac,&Z,&Zsol))
{
PyErr_SetString(PyExc_ValueError,"Init, error in parsing arguments.");
return NULL;
}
/*
Lf = compute_LambdaMetalFree(T,nH,HeMfrac);
Lm = compute_LambdaMetal(T,nH);
nEnH = compute_ElectronHydrogenRatio(T,nH,HeMfrac);
nEnHsol = compute_ElectronHydrogenRatioSolar(T,nH);
L= Lf + Lm * (nEnH/nEnHsol)*(Z/Zsol);
*/
L = compute_LambdaTotal(T,nH,HeMfrac,Z,Zsol);
return Py_BuildValue("d",L);
}
static PyObject * CoolingTables_compute_ElectronHydrogenRatio(PyObject *self, PyObject *args, PyObject *kwds)
{
double nH,T,HeMfrac;
double nEnH;
if (! PyArg_ParseTuple(args, "ddd",&T,&nH,&HeMfrac))
{
PyErr_SetString(PyExc_ValueError,"Init, error in parsing arguments.");
return NULL;
}
nEnH = compute_ElectronHydrogenRatio(T,nH,HeMfrac);
return Py_BuildValue("d",nEnH);
}
static PyObject * CoolingTables_compute_ElectronHydrogenRatioSolar(PyObject *self, PyObject *args, PyObject *kwds)
{
double nH,T;
double nEnH;
if (! PyArg_ParseTuple(args, "dd",&T,&nH))
{
PyErr_SetString(PyExc_ValueError,"Init, error in parsing arguments.");
return NULL;
}
nEnH = compute_ElectronHydrogenRatioSolar(T,nH);
return Py_BuildValue("d",nEnH);
}
/*****************************************************/
/* Method table */
/*****************************************************/
static PyMethodDef CoolingTablesMethods[] = {
{"Init", CoolingTables_Init, METH_VARARGS,
"Init Coolings tables."},
{"Free", CoolingTables_Free, METH_VARARGS,
"Free memory."},
{"setTablesFromRedshift", CoolingTables_setTablesFromRedshift, METH_VARARGS,
"Set table from redshift."},
{"setRedshiftInterpolationOn", CoolingTables_SetRedshiftInterpolationOn, METH_VARARGS,
"Switch on the redshift interpolation."},
{"setRedshiftInterpolationOff", CoolingTables_SetRedshiftInterpolationOff, METH_VARARGS,
"Switch off the redshift interpolation."},
{"compute_LambdaMetalFree", CoolingTables_compute_LambdaMetalFree, METH_VARARGS,
"compute LambdaMetalFree from tables."},
{"compute_LambdaMetal", CoolingTables_compute_LambdaMetal, METH_VARARGS,
"compute LambdaMetal from tables."},
{"compute_LambdaTotal", CoolingTables_compute_LambdaTotal, METH_VARARGS,
"compute Lambda Total."},
{"compute_ElectronHydrogenRatio", CoolingTables_compute_ElectronHydrogenRatio, METH_VARARGS,
"Density of electron over density of hydrogen."},
{"compute_ElectronHydrogenRatioSolar", CoolingTables_compute_ElectronHydrogenRatioSolar, METH_VARARGS,
"Density of electron over density of hydrogen at solar metallicities."},
{NULL, NULL, 0, NULL} /* Sentinel */
};
/*****************************************************/
/* initialization */
/*****************************************************/
PyMODINIT_FUNC initCoolingWiersma(void) {
(void) Py_InitModule("CoolingWiersma", CoolingTablesMethods);
}
#endif //PY_INTERFACE
#endif //COOLING_WIERSMA
#endif //COOLING
diff --git a/src/hdf5io.c b/src/hdf5io.c
index 19a59d2..42f355d 100644
--- a/src/hdf5io.c
+++ b/src/hdf5io.c
@@ -1,690 +1,746 @@
#include <hdf5.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "hdf5io.h"
/********************************************************
High level hdf5 level functions
*********************************************************/
/*******************************
read Attribute
*******************************/
char * readAttributeAsString(hid_t group,char *name)
{
hid_t attr;
hid_t memtype;
herr_t status;
char **string;
char *output;
int l;
attr = H5Aopen( group , name, H5P_DEFAULT);
string = (char **) malloc (1 * sizeof (char *));
memtype = H5Tcopy (H5T_C_S1);
status = H5Tset_size(memtype, H5T_VARIABLE);
status = H5Aread (attr, memtype,string);
//printf ("%s = %s\n",name, string[0]);
/* copy to output */
l = strlen(string[0])+1;
output = (char *) malloc(l*sizeof(char));
memcpy(output, string[0], l);
free(string);
status = H5Aclose(attr);
return output;
}
int readAttributeAsInt(hid_t group,char *name)
{
hid_t attr;
herr_t status;
long output;
attr = H5Aopen( group , name, H5P_DEFAULT);
status = H5Aread(attr,H5T_STD_I64LE,&output);
status = H5Aclose(attr);
return (int)output;
}
double readAttributeAsDouble(hid_t group,char *name)
{
hid_t attr;
herr_t status;
double output;
attr = H5Aopen( group , name, H5P_DEFAULT);
status = H5Aread(attr,H5T_IEEE_F64LE,&output);
status = H5Aclose(attr);
return output;
}
char ** readAttributeAsArrayString(hid_t group,char *name)
{
hid_t attr;
hid_t filetype;
hid_t space;
hid_t memtype;
herr_t status;
size_t sdim;
hsize_t dims[1];
int ndims;
int i;
char **rdata;
char **output;
attr = H5Aopen( group , name, H5P_DEFAULT);
filetype = H5Aget_type (attr);
sdim = H5Tget_size (filetype);
sdim++; /* Make room for null terminator */
space = H5Aget_space (attr);
ndims = H5Sget_simple_extent_dims (space, dims, NULL);
rdata = (char **) malloc (dims[0] * sizeof (char *));
rdata[0] = (char *) malloc (dims[0] * sdim * sizeof (char));
for (i=1; i<dims[0]; i++)
rdata[i] = rdata[0] + i * sdim;
memtype = H5Tcopy (H5T_C_S1);
status = H5Tset_size (memtype, sdim);
status = H5Aread (attr, memtype, rdata[0]);
//for (i=0; i<dims[0]; i++)
// printf (">>[%d]: %s<<\n", i, rdata[i]);
/* copy to output */
output = (char **) malloc (dims[0] * sizeof (char *));
output[0] = (char *) malloc (dims[0] * sdim * sizeof (char));
for (i=1; i<dims[0]; i++)
output[i] = output[0] + i * sdim;
for (i=0; i<dims[0]; i++)
memcpy(output[i], rdata[i], sdim);
free (rdata[0]);
free (rdata);
status = H5Aclose (attr);
status = H5Sclose (space);
return output;
}
double * readAttributeAsArrayDouble(hid_t group,char *name)
{
hid_t attr;
hid_t space;
herr_t status;
hsize_t dims[1];
int ndims;
double *rdata;
double *output;
attr = H5Aopen( group , name, H5P_DEFAULT);
space = H5Aget_space (attr);
ndims = H5Sget_simple_extent_dims (space, dims, NULL);
rdata = (double *) malloc (dims[0] * sizeof (double *));
status = H5Aread (attr, H5T_NATIVE_DOUBLE, rdata);
//for (i=0; i<dims[0]; i++)
// printf (">>[%d]: %g<<\n", i, rdata[i]);
/* copy to output */
output = (double *) malloc (dims[0] * sizeof (double *));
memcpy(output, rdata, dims[0]* sizeof (double));
free (rdata);
status = H5Aclose (attr);
status = H5Sclose (space);
return output;
}
double ** readAttributeAsArray2dDouble(hid_t group,char *name)
{
hid_t attr;
hid_t space;
herr_t status;
hsize_t dims[2];
int ndims;
int i;
double **rdata;
double **output;
attr = H5Aopen( group , name, H5P_DEFAULT);
space = H5Aget_space (attr);
ndims = H5Sget_simple_extent_dims (space, dims, NULL);
rdata = (double **) malloc (dims[0] * sizeof (double *));
rdata[0] = (double *) malloc (dims[0] * dims[1] * sizeof (double));
for (i=1; i<dims[0]; i++)
rdata[i] = rdata[0] + i * dims[1];
status = H5Aread (attr, H5T_NATIVE_DOUBLE, rdata[0]);
//for (i=0; i<dims[0]; i++)
// printf (">>[%d]: %g<<\n", i, rdata[i]);
/* copy to output */
output = (double **) malloc (dims[0] * sizeof (double *));
output[0] = (double *) malloc (dims[0] * dims[1] * sizeof (double));
for (i=1; i<dims[0]; i++)
output[i] = output[0] + i * dims[1];
for (i=0; i<dims[0]; i++)
memcpy(output[i], rdata[i], dims[1]);
free (rdata[0]);
free (rdata);
status = H5Aclose (attr);
status = H5Sclose (space);
return output;
}
/*******************************
read Dataset
*******************************/
int readDataSetAsInt(hid_t group,char *name)
{
hid_t attr;
herr_t status;
long output;
attr = H5Dopen( group , name, H5P_DEFAULT);
//status = H5Dread(attr,H5T_STD_I64LE,H5S_ALL, H5S_ALL, H5P_DEFAULT,&output);
status = H5Dread(attr,H5T_NATIVE_INT,H5S_ALL, H5S_ALL, H5P_DEFAULT,&output);
status = H5Dclose(attr);
return (int)output;
}
double readDataSetAsDouble(hid_t group,char *name)
{
hid_t attr;
herr_t status;
double output;
attr = H5Dopen( group , name, H5P_DEFAULT);
status = H5Dread(attr,H5T_IEEE_F64LE,H5S_ALL, H5S_ALL, H5P_DEFAULT,&output);
status = H5Dclose(attr);
return output;
}
double * readDatasetAsArrayDouble(hid_t group,char *name)
{
hid_t dset;
hid_t space;
herr_t status;
hsize_t dims[1];
int ndims;
double *rdata;
double *output;
dset = H5Dopen( group , name, H5P_DEFAULT);
space = H5Dget_space (dset);
ndims = H5Sget_simple_extent_dims (space, dims, NULL);
rdata = (double *) malloc (dims[0] * sizeof (double *));
status = H5Dread (dset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT,rdata);
//for (i=0; i<dims[0]; i++)
// printf (">>[%d]: %g<<\n", i, rdata[i]);
/* copy to output */
output = (double *) malloc (dims[0] * sizeof (double *));
memcpy(output, rdata, dims[0]* sizeof (double));
free (rdata);
status = H5Dclose (dset);
status = H5Sclose (space);
return output;
}
+double ** readDatasetAsArray2DDouble_v0(hid_t group,char *name)
+{
+
+ hid_t dset;
+ hid_t space;
+ herr_t status;
+ hsize_t dims[2];
+ int ndims;
+ int i,j;
+
+ double **rdata;
+ double **output;
+
+
+ dset = H5Dopen( group , name, H5P_DEFAULT);
+
+ space = H5Dget_space (dset);
+ ndims = H5Sget_simple_extent_dims (space, dims, NULL);
+
+
+ rdata = (double **) malloc (dims[0] * sizeof (double *));
+ rdata[0] = (double *) malloc (dims[0] * dims[1] * sizeof (double));
+ for (i=1; i<dims[0]; i++)
+ rdata[i] = rdata[0] + i * dims[1];
+
+
+ status = H5Dread (dset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata[0]);
+
+ //for (i=0; i<dims[0]; i++) {
+ // printf (" [");
+ // for (j=0; j<dims[1]; j++)
+ // printf (" %6.4f", rdata[i][j]);
+ // printf ("]\n");
+ //}
+
+
+ /* copy to output */
+ output = (double **) malloc (dims[0] * sizeof (double *));
+ output[0] = (double *) malloc (dims[0] * dims[1] * sizeof (double));
+ for (i=1; i<dims[0]; i++)
+ output[i] = output[0] + i * dims[1];
+
+
+
+ memcpy(output[0], rdata[0], dims[0] * dims[1] * sizeof (double));
+
+ free (rdata[0]);
+ free (rdata);
+ status = H5Dclose (dset);
+ status = H5Sclose (space);
+
+
+
+ return output;
+
+}
double ** old_readDatasetAsArray2dDouble(hid_t group,char *name,int *idims)
{
hid_t dset;
hid_t space;
herr_t status;
hsize_t dims[2];
int ndims;
int i;
double **rdata;
double **output;
dset = H5Dopen( group , name, H5P_DEFAULT);
space = H5Dget_space (dset);
ndims = H5Sget_simple_extent_dims (space, dims, NULL);
rdata = (double **) malloc (dims[0] * sizeof (double *));
rdata[0] = (double *) malloc (dims[0] * dims[1] * sizeof (double));
for (i=1; i<dims[0]; i++)
rdata[i] = rdata[0] + i * dims[1];
status = H5Dread (dset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata[0]);
//for (i=0; i<dims[0]; i++) {
// printf (" [");
// for (j=0; j<dims[1]; j++)
// printf (" %6.4f", rdata[i][j]);
// printf ("]\n");
//}
/* copy to output */
output = (double **) malloc (dims[0] * sizeof (double *));
output[0] = (double *) malloc (dims[0] * dims[1] * sizeof (double));
for (i=1; i<dims[0]; i++)
output[i] = output[0] + i * dims[1];
memcpy(output[0], rdata[0], dims[0] * dims[1] * sizeof (double));
free (rdata[0]);
free (rdata);
status = H5Dclose (dset);
status = H5Sclose (space);
idims[0]=(int)dims[0];
idims[1]=(int)dims[1];
return output;
}
double *** old_readDatasetAsArray3dDouble(hid_t group,char *name,int *idims)
{
hid_t dset;
hid_t space;
herr_t status;
hsize_t dims[3];
int ndims;
int i,j,k;
//double ***rdata;
double ***output=NULL;
dset = H5Dopen( group , name, H5P_DEFAULT);
space = H5Dget_space (dset);
ndims = H5Sget_simple_extent_dims (space, dims, NULL);
/*
rdata = (double ***) malloc (dims[0] * sizeof (double **));
for (i=0; i<dims[0]; i++)
{
rdata[i] = (double **) malloc (dims[1] * sizeof (double *));
for (j=0; j<dims[1]; j++)
rdata[i][j] = (double *) malloc(dims[2]*sizeof(double));
}
*/
/*
rdata = (double ***) malloc (dims[0] * sizeof (double **));
for(i=0;i<dims[0];i++)
{
rdata[i] = (double **) malloc (dims[1] * sizeof (double *));
rdata[i][0] = (double *) malloc (dims[1] * dims[2] * sizeof (double));
//for (j=1; j<dims[1]; j++)
// rdata[i][j] = rdata[0] + j * dims[1];
}
for(i=0;i<dims[0];i++)
for (j=1; j<dims[1]; j++)
for (j=1; j<dims[1]; j++)
rdata[i][j] = rdata[0] + j * (dims[0]*dims[1]) + k * dims[2];
status = H5Dread (dset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata[0]);
*/
double buf[dims[0]][dims[1]][dims[2]];
//double *buf;
//buf = (double *) malloc (dims[0]*dims[1]*dims[2] * sizeof (double));
status = H5Dread (dset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf);
double** temp1;
double* temp2;
temp1 = (double**)malloc(dims[0]*dims[1]*sizeof(double*));
temp2 = (double*)malloc(dims[0]*dims[1]*dims[2]*sizeof(double));
for(i=0, j=0; i<dims[0]*dims[1]; i++, j++){
temp1[i] = &(temp2[j*dims[2]]);
}
output = (double***)malloc(dims[0]*sizeof(double**));
for(i=0, j=0; j<dims[0]; i++, j++){
output[i] = &(temp1[j*dims[1]]);
}
for(i=0; i<dims[0]; i++){
for(j=0; j<dims[1]; j++){
for(k=0; k<dims[2]; k++){
output[i][j][k] = buf[i][j][k];
}
}
}
//for (i=0; i<dims[0]; i++) {
// printf (" [");
// for (j=0; j<dims[1]; j++)
// printf (" %6.4f", rdata[i][j]);
// printf ("]\n");
//}
//free (rdata[0]);
//free (rdata);
status = H5Dclose (dset);
status = H5Sclose (space);
idims[0]=(int)dims[0];
idims[1]=(int)dims[1];
idims[2]=(int)dims[2];
return output;
}
int readDatasetAsArray2dDouble(hid_t group,char *name,int *idims,double output[MAXX2D][MAXY2D])
{
hid_t dset;
hid_t space;
herr_t status;
hsize_t dims[2];
int ndims;
int i,j;
//double **rdata;
//double **output;
dset = H5Dopen( group , name, H5P_DEFAULT);
space = H5Dget_space (dset);
ndims = H5Sget_simple_extent_dims (space, dims, NULL);
double buf[dims[0]][dims[1]];
status = H5Dread (dset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf);
for(i=0; i<dims[0]; i++){
for(j=0; j<dims[1]; j++){
output[i][j] = buf[i][j];
}
}
//for (i=0; i<dims[0]; i++) {
// printf (" [");
// for (j=0; j<dims[1]; j++)
// printf (" %6.4f", rdata[i][j]);
// printf ("]\n");
//}
//free (rdata[0]);
//free (rdata);
status = H5Dclose (dset);
status = H5Sclose (space);
idims[0]=(int)dims[0];
idims[1]=(int)dims[1];
return 0;
}
int readDatasetAsArray3dDouble(hid_t group,char *name,int *idims, double output[MAXX3D][MAXY3D][MAXZ3D])
{
hid_t dset;
hid_t space;
herr_t status;
hsize_t dims[3];
int ndims;
int i,j,k;
//double ***rdata;
//double ***output=NULL;
dset = H5Dopen( group , name, H5P_DEFAULT);
space = H5Dget_space (dset);
ndims = H5Sget_simple_extent_dims (space, dims, NULL);
/*
rdata = (double ***) malloc (dims[0] * sizeof (double **));
for (i=0; i<dims[0]; i++)
{
rdata[i] = (double **) malloc (dims[1] * sizeof (double *));
for (j=0; j<dims[1]; j++)
rdata[i][j] = (double *) malloc(dims[2]*sizeof(double));
}
*/
/*
rdata = (double ***) malloc (dims[0] * sizeof (double **));
for(i=0;i<dims[0];i++)
{
rdata[i] = (double **) malloc (dims[1] * sizeof (double *));
rdata[i][0] = (double *) malloc (dims[1] * dims[2] * sizeof (double));
//for (j=1; j<dims[1]; j++)
// rdata[i][j] = rdata[0] + j * dims[1];
}
for(i=0;i<dims[0];i++)
for (j=1; j<dims[1]; j++)
for (j=1; j<dims[1]; j++)
rdata[i][j] = rdata[0] + j * (dims[0]*dims[1]) + k * dims[2];
status = H5Dread (dset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata[0]);
*/
double buf[dims[0]][dims[1]][dims[2]];
status = H5Dread (dset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf);
for(i=0; i<dims[0]; i++){
for(j=0; j<dims[1]; j++){
for(k=0; k<dims[2]; k++){
output[i][j][k] = buf[i][j][k];
}
}
}
//for (i=0; i<dims[0]; i++) {
// printf (" [");
// for (j=0; j<dims[1]; j++)
// printf (" %6.4f", rdata[i][j]);
// printf ("]\n");
//}
//free (rdata[0]);
//free (rdata);
status = H5Dclose (dset);
status = H5Sclose (space);
idims[0]=(int)dims[0];
idims[1]=(int)dims[1];
idims[2]=(int)dims[2];
return 0;
}
/*******************************
read group
*******************************/
struct ElementsDataStruct readGroupAsElementsData(hid_t parent,char *name)
{
struct ElementsDataStruct Edata;
hid_t group;
herr_t status;
group = H5Gopen( parent , name, H5P_DEFAULT);
Edata.nelts = readAttributeAsInt(group,"nelts");
Edata.elts = readAttributeAsArrayString(group,"elts");
Edata.data = readAttributeAsArrayDouble(group,"data");
status = H5Gclose (group);
return Edata;
}
diff --git a/src/hdf5io.h b/src/hdf5io.h
index 72c41c6..21d3b25 100644
--- a/src/hdf5io.h
+++ b/src/hdf5io.h
@@ -1,58 +1,61 @@
#include <hdf5.h>
#include <stdio.h>
#define MAXX1D 1000
#define MAXX2D 400
#define MAXY2D 100
#define MAXX3D 10
#define MAXY3D 400
#define MAXZ3D 100
struct ElementsDataStruct
{
int nelts;
char ** elts;
double * data;
};
/*******************************
read Attribute
*******************************/
char * readAttributeAsString(hid_t group,char *name);
int readAttributeAsInt(hid_t group,char *name);
double readAttributeAsDouble(hid_t group,char *name);
char ** readAttributeAsArrayString(hid_t group,char *name);
double * readAttributeAsArrayDouble(hid_t group,char *name);
double ** readAttributeAsArray2dDouble(hid_t group,char *name);
/*******************************
read Dataset
*******************************/
int readDataSetAsInt(hid_t group,char *name);
double readDataSetAsDouble(hid_t group,char *name);
double * readDatasetAsArrayDouble(hid_t group,char *name);
+
+
+double ** readDatasetAsArray2DDouble_v0(hid_t group,char *name);
//double ** readDatasetAsArray2dDouble(hid_t group,char *name,int *idims);
//double *** readDatasetAsArray3dDouble(hid_t group,char *name,int *idims);
int readDatasetAsArray2dDouble(hid_t group,char *name,int *idims,double output[MAXX2D][MAXY2D]);
int readDatasetAsArray3dDouble(hid_t group,char *name,int *idims,double output[MAXX3D][MAXY3D][MAXZ3D]);
/*******************************
read group
*******************************/
struct ElementsDataStruct readGroupAsElementsData(hid_t parent,char *name);
diff --git a/src/lt3d.c b/src/lt3d.c
index 49717e2..e942fd4 100644
--- a/src/lt3d.c
+++ b/src/lt3d.c
@@ -1,381 +1,371 @@
#include <stdlib.h>
#include <math.h>
#include <mpi.h>
#include <dirent.h>
#include "lt3d.h"
struct lt3d_RegularBinning lt3d_initRegularBinning(void)
{
struct lt3d_RegularBinning v;
v.name = "";
v.n = 0;
v.x0 = 0;
v.dx = 0;
return v;
}
void lt3d_printRegularBinning(struct lt3d_RegularBinning v,char *space)
{
printf("\n");
printf("%s name = %s\n",space,v.name);
printf("%s n = %d\n",space,v.n);
printf("%s x0 = %g\n",space,v.x0);
printf("%s dx = %g\n",space,v.dx);
printf("\n");
}
double * lt3d_getVectorFromRegularBinning(struct lt3d_RegularBinning v)
{
double *data;
int i;
data = malloc(v.n * sizeof(double));
for(i=0;i<v.n;i++)
data[i] = v.x0 + i*v.dx;
return data;
}
void lt3d_printRegularTable1D(struct lt3d_RegularTable1D t,char *space)
{
int i=0;
printf("\n");
printf("%s name = %s\n",space,t.name);
printf("%s ndim = %d\n",space,1);
for(i=0;i<1;i++)
printf("%s dim%d = %d\n",space,i,t.dims[i]);
lt3d_printRegularBinning(t.x,"\t\t");
printf("\n");
}
void lt3d_printRegularTable2D(struct lt3d_RegularTable2D t,char *space)
{
int i=0;
printf("\n");
printf("%s name = %s\n",space,t.name);
printf("%s ndim = %d\n",space,2);
for(i=0;i<2;i++)
printf("%s dim%d = %d\n",space,i,t.dims[i]);
lt3d_printRegularBinning(t.x,"\t\t");
lt3d_printRegularBinning(t.y,"\t\t");
printf("\n");
}
void lt3d_printRegularTable3D(struct lt3d_RegularTable3D t,char *space)
{
int i=0;
printf("\n");
printf("%s name = %s\n",space,t.name);
printf("%s ndim = %d\n",space,3);
for(i=0;i<3;i++)
printf("%s dim%d = %d\n",space,i,t.dims[i]);
lt3d_printRegularBinning(t.x,"\t\t");
lt3d_printRegularBinning(t.y,"\t\t");
lt3d_printRegularBinning(t.z,"\t\t");
printf("\n");
}
-double lt3d_getInterpolationFromRegularTable2D(struct lt3d_RegularTable2D t,double x, double y)
+double lt3d_getInterpolationFromRegularTable2D(struct lt3d_RegularTable2D *t,double x, double y)
{
int ix0,ix1;
int iy0,iy1;
int nx;
int ny;
double xs;
double ys;
double dx;
double dy;
double xd;
double yd;
double x0,x1;
double y0,y1;
double c0,c1,c;
/* find x index */
- nx = t.x.n;
- dx = t.x.dx;
- xs = t.x.x0;
+ nx = t->x.n;
+ dx = t->x.dx;
+ xs = t->x.x0;
ix0 = round( (x-xs)/dx );
ix1 = ix0+1;
if (ix0<0) /* below */
{
ix0 = 0;
ix1 = 0;
x0 = xs + ix0*dx;
x1 = xs + ix1*dx;
xd = 1;
}
else
{
if (ix0>=nx-1) /* above */
{
ix0 = nx-1;
ix1 = nx-1;
x0 = xs + ix0*dx;
x1 = xs + ix1*dx;
xd = 1;
}
else /* in between */
{
x0 = xs + ix0*dx;
x1 = xs + ix1*dx;
xd = (x-x0)/dx;
}
}
/* find y index */
- ny = t.y.n;
- dy = t.y.dx;
- ys = t.y.x0;
+ ny = t->y.n;
+ dy = t->y.dx;
+ ys = t->y.x0;
iy0 = round( (y-ys)/dy );
iy1 = iy0+1;
if (iy0<0) /* below */
{
iy0 = 0;
iy1 = 0;
y0 = ys + iy0*dy;
y1 = ys + iy1*dy;
yd = 1;
}
else
{
if (iy0>=ny-1) /* above */
{
iy0 = ny-1;
iy1 = ny-1;
y0 = ys + iy0*dy;
y1 = ys + iy1*dy;
yd = 1;
}
else /* in between */
{
y0 = ys + iy0*dy;
y1 = ys + iy1*dy;
yd = (y-y0)/dy;
}
}
- c0 = (t.data[ix0][iy0] * (1-xd)) + (t.data[ix1][iy0] * xd);
- c1 = (t.data[ix0][iy1] * (1-xd)) + (t.data[ix1][iy1] * xd);
+ c0 = (t->data[ix0][iy0] * (1-xd)) + (t->data[ix1][iy0] * xd);
+ c1 = (t->data[ix0][iy1] * (1-xd)) + (t->data[ix1][iy1] * xd);
c = c0*(1-yd) + c1*yd;
return c;
}
-double lt3d_getInterpolationFromRegularTable3D(struct lt3d_RegularTable3D t,double x, double y, double z)
+double lt3d_getInterpolationFromRegularTable3D(struct lt3d_RegularTable3D *t,double x, double y, double z)
{
int ix0,ix1;
int iy0,iy1;
int iz0,iz1;
int nx;
int ny;
int nz;
double xs;
double ys;
double zs;
double dx;
double dy;
double dz;
double xd;
double yd;
double zd;
double x0,x1;
double y0,y1;
double z0,z1;
double c,c0,c1,c00,c01,c10,c11;
/* find x index */
- nx = t.x.n;
- dx = t.x.dx;
- xs = t.x.x0;
+ nx = t->x.n;
+ dx = t->x.dx;
+ xs = t->x.x0;
ix0 = round( (x-xs)/dx );
ix1 = ix0+1;
if (ix0<0) /* below */
{
ix0 = 0;
ix1 = 0;
x0 = xs + ix0*dx;
x1 = xs + ix1*dx;
xd = 1;
}
else
{
if (ix0>=nx-1) /* above */
{
ix0 = nx-1;
ix1 = nx-1;
x0 = xs + ix0*dx;
x1 = xs + ix1*dx;
xd = 1;
}
else /* in between */
{
x0 = xs + ix0*dx;
x1 = xs + ix1*dx;
xd = (x-x0)/dx;
}
}
/* find y index */
- ny = t.y.n;
- dy = t.y.dx;
- ys = t.y.x0;
+ ny = t->y.n;
+ dy = t->y.dx;
+ ys = t->y.x0;
iy0 = round( (y-ys)/dy );
iy1 = iy0+1;
if (iy0<0) /* below */
{
iy0 = 0;
iy1 = 0;
y0 = ys + iy0*dy;
y1 = ys + iy1*dy;
yd = 1;
}
else
{
if (iy0>=ny-1) /* above */
{
iy0 = ny-1;
iy1 = ny-1;
y0 = ys + iy0*dy;
y1 = ys + iy1*dy;
yd = 1;
}
else /* in between */
{
y0 = ys + iy0*dy;
y1 = ys + iy1*dy;
yd = (y-y0)/dy;
}
}
/* find z index */
- nz = t.z.n;
- dz = t.z.dx;
- zs = t.z.x0;
+ nz = t->z.n;
+ dz = t->z.dx;
+ zs = t->z.x0;
iz0 = round( (z-zs)/dz );
iz1 = iz0+1;
if (iz0<0) /* below */
{
iz0 = 0;
iz1 = 0;
z0 = zs + iz0*dz;
z1 = zs + iz1*dz;
zd = 1;
}
else
{
if (iz0>=nz-1) /* above */
{
iz0 = nz-1;
iz1 = nz-1;
z0 = zs + iz0*dz;
z1 = zs + iz1*dz;
zd = 1;
}
else /* in between */
{
z0 = zs + iz0*dz;
z1 = zs + iz1*dz;
zd = (z-z0)/dz;
}
}
- c00 = (t.data[ix0][iy0][iz0] * (1-xd)) + (t.data[ix1][iy0][iz0] * xd);
- c10 = (t.data[ix0][iy1][iz0] * (1-xd)) + (t.data[ix1][iy1][iz0] * xd);
- c01 = (t.data[ix0][iy0][iz1] * (1-xd)) + (t.data[ix1][iy0][iz1] * xd);
- c11 = (t.data[ix0][iy1][iz1] * (1-xd)) + (t.data[ix1][iy1][iz1] * xd);
+ c00 = (t->data[ix0][iy0][iz0] * (1-xd)) + (t->data[ix1][iy0][iz0] * xd);
+ c10 = (t->data[ix0][iy1][iz0] * (1-xd)) + (t->data[ix1][iy1][iz0] * xd);
+ c01 = (t->data[ix0][iy0][iz1] * (1-xd)) + (t->data[ix1][iy0][iz1] * xd);
+ c11 = (t->data[ix0][iy1][iz1] * (1-xd)) + (t->data[ix1][iy1][iz1] * xd);
c0 = c00*(1-yd) + (c10*yd);
c1 = c01*(1-yd) + (c11*yd);
c = c0*(1-zd) + c1*zd;
return c;
}
int lt3d_FreeRegularTable1D(struct lt3d_RegularTable1D t)
{
//free(t.data);
return 0;
}
int lt3d_FreeRegularTable2D(struct lt3d_RegularTable2D t)
{
//free(t.data);
return 0;
}
int lt3d_FreeRegularTable3D(struct lt3d_RegularTable3D t)
{
//free(t.data);
return 0;
}
-
-
-
-
-
-
-
-
-
-
diff --git a/src/lt3d.h b/src/lt3d.h
index 7b878c6..320b309 100644
--- a/src/lt3d.h
+++ b/src/lt3d.h
@@ -1,82 +1,82 @@
#include <stdio.h>
#define MAXX1D 1000
#define MAXX2D 400
#define MAXY2D 100
#define MAXX3D 10
#define MAXY3D 400
#define MAXZ3D 100
#define MAXCHARSIZE 128
struct lt3d_RegularBinning
{
char * name; /* name */
int n; /* number of points */
double x0; /* first value */
double dx; /* bin size */
};
struct lt3d_RegularTable1D
{
//char * name;
char name[MAXCHARSIZE];
//double *data;
double data[MAXX1D];
int dims[1];
struct lt3d_RegularBinning x;
};
struct lt3d_RegularTable2D
{
//char * name;
char name[MAXCHARSIZE];
//double **data;
double data[MAXX2D][MAXY2D];
int dims[2];
struct lt3d_RegularBinning x;
struct lt3d_RegularBinning y;
};
struct lt3d_RegularTable3D
{
//char * name;
char name[MAXCHARSIZE];
//double ***data;
double data[MAXX3D][MAXY3D][MAXZ3D];
int dims[3];
struct lt3d_RegularBinning x;
struct lt3d_RegularBinning y;
struct lt3d_RegularBinning z;
};
struct lt3d_RegularBinning lt3d_initRegularBinning(void);
void lt3d_printRegularBinning(struct lt3d_RegularBinning v,char *space);
double * lt3d_getVectorFromRegularBinning(struct lt3d_RegularBinning v);
void lt3d_printRegularTable1D(struct lt3d_RegularTable1D t,char *space);
void lt3d_printRegularTable2D(struct lt3d_RegularTable2D t,char *space);
void lt3d_printRegularTable3D(struct lt3d_RegularTable3D t,char *space);
-double lt3d_getInterpolationFromRegularTable2D(struct lt3d_RegularTable2D t,double x, double y);
-double lt3d_getInterpolationFromRegularTable3D(struct lt3d_RegularTable3D t,double x, double y, double z);
+double lt3d_getInterpolationFromRegularTable2D(struct lt3d_RegularTable2D *t,double x, double y);
+double lt3d_getInterpolationFromRegularTable3D(struct lt3d_RegularTable3D *t,double x, double y, double z);
int lt3d_FreeRegularTable1D(struct lt3d_RegularTable1D t);
int lt3d_FreeRegularTable2D(struct lt3d_RegularTable2D t);
int lt3d_FreeRegularTable3D(struct lt3d_RegularTable3D t);
diff --git a/src/proto.h b/src/proto.h
index f68210f..32301c4 100644
--- a/src/proto.h
+++ b/src/proto.h
@@ -1,606 +1,613 @@
/*! \file proto.h
* \brief this file contains all function prototypes of the code
*/
#ifndef ALLVARS_H
#include "allvars.h"
#endif
#ifdef HAVE_HDF5
#include <hdf5.h>
#endif
#ifdef COOLING_FCT_FROM_HDF5
#include <hdf5.h>
#endif
void advance_and_find_timesteps(void);
void allocate_commbuffers(void);
void allocate_memory(void);
void begrun(void);
int blockpresent(enum iofields blocknr);
#ifdef BLOCK_SKIPPING
int blockabsent(enum iofields blocknr);
#endif
void catch_abort(int sig);
void catch_fatal(int sig);
void check_omega(void);
void close_outputfiles(void);
int compare_key(const void *a, const void *b);
void compute_accelerations(int mode);
void compute_global_quantities_of_system(void);
void compute_potential(void);
int dens_compare_key(const void *a, const void *b);
void density(int mode);
void density_decouple(void);
void density_evaluate(int i, int mode);
#ifdef CHIMIE
int stars_dens_compare_key(const void *a, const void *b);
void stars_density(void);
void stars_density_evaluate(int i, int mode);
#endif
void distribute_file(int nfiles, int firstfile, int firsttask, int lasttask, int *filenr, int *master, int *last);
double dmax(double, double);
double dmin(double, double);
void do_box_wrapping(void);
void domain_Decomposition(void);
int domain_compare_key(const void *a, const void *b);
int domain_compare_key(const void *a, const void *b);
int domain_compare_toplist(const void *a, const void *b);
void domain_countToGo(void);
void domain_decompose(void);
void domain_determineTopTree(void);
void domain_exchangeParticles(int partner, int sphflag, int send_count, int recv_count);
void domain_findExchangeNumbers(int task, int partner, int sphflag, int *send, int *recv);
void domain_findExtent(void);
int domain_findSplit(int cpustart, int ncpu, int first, int last);
int domain_findSplityr(int cpustart, int ncpu, int first, int last);
void domain_shiftSplit(void);
void domain_shiftSplityr(void);
void domain_sumCost(void);
void domain_topsplit(int node, peanokey startkey);
void domain_topsplit_local(int node, peanokey startkey);
double drift_integ(double a, void *param);
void dump_particles(void);
void empty_read_buffer(enum iofields blocknr, int offset, int pc, int type);
void endrun(int);
void energy_statistics(void);
#ifdef ADVANCEDSTATISTICS
void advanced_energy_statistics(void);
#endif
void every_timestep_stuff(void);
void ewald_corr(double dx, double dy, double dz, double *fper);
void ewald_force(int ii, int jj, int kk, double x[3], double force[3]);
void ewald_init(void);
double ewald_pot_corr(double dx, double dy, double dz);
double ewald_psi(double x[3]);
void fill_Tab_IO_Labels(void);
void fill_write_buffer(enum iofields blocknr, int *pindex, int pc, int type);
void find_dt_displacement_constraint(double hfac);
int find_files(char *fname);
int find_next_outputtime(int time);
void find_next_sync_point_and_drift(void);
void force_create_empty_nodes(int no, int topnode, int bits, int x, int y, int z, int *nodecount, int *nextfree);
void force_exchange_pseudodata(void);
void force_flag_localnodes(void);
void force_insert_pseudo_particles(void);
void force_setupnonrecursive(int no);
void force_treeallocate(int maxnodes, int maxpart);
int force_treebuild(int npart);
int force_treebuild_single(int npart);
int force_treeevaluate(int target, int mode, double *ewaldcountsum);
int force_treeevaluate_direct(int target, int mode);
int force_treeevaluate_ewald_correction(int target, int mode, double pos_x, double pos_y, double pos_z, double aold);
void force_treeevaluate_potential(int target, int type);
void force_treeevaluate_potential_shortrange(int target, int mode);
int force_treeevaluate_shortrange(int target, int mode);
void force_treefree(void);
void force_treeupdate_pseudos(void);
void force_update_hmax(void);
void force_update_len(void);
void force_update_node(int no, int flag);
void force_update_node_hmax_local(void);
void force_update_node_hmax_toptree(void);
void force_update_node_len_local(void);
void force_update_node_len_toptree(void);
void force_update_node_recursive(int no, int sib, int father);
void force_update_pseudoparticles(void);
void force_update_size_of_parent_node(int no);
void free_memory(void);
int get_bytes_per_blockelement(enum iofields blocknr);
void get_dataset_name(enum iofields blocknr, char *buf);
int get_datatype_in_block(enum iofields blocknr);
double get_drift_factor(int time0, int time1);
double get_gravkick_factor(int time0, int time1);
double get_hydrokick_factor(int time0, int time1);
int get_particles_in_block(enum iofields blocknr, int *typelist);
double get_random_number(int id);
#ifdef SFR
double get_StarFormation_random_number(int id);
#endif
#ifdef FEEDBACK_WIND
double get_FeedbackWind_random_number(int id);
#endif
#ifdef CHIMIE
double get_Chimie_random_number(int id);
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double get_ChimieKineticFeedback_random_number(int id);
#endif
#ifdef GAS_ACCRETION
double get_gasAccretion_random_number(int id);
void update_entropy_for_accreated_particles(void);
void allocate_gas_accretion(void);
#endif
#ifdef VANISHING_PARTICLES
void vanishing_particles(void);
void vanishing_particles_flag(void);
void vanishing_particles_remove(void);
#endif
int get_timestep(int p, double *a, int flag);
int get_values_per_blockelement(enum iofields blocknr);
#ifdef SYNCHRONIZE_NGB_TIMESTEP
void synchronize_ngb_timestep();
int synchronize_ngb_timestep_evaluate(int target, int mode);
int synchronize_ngb_timestep_compare_key(const void *a, const void *b);
#endif
int grav_tree_compare_key(const void *a, const void *b);
void gravity_forcetest(void);
void gravity_tree(void);
void gravity_tree_shortrange(void);
double gravkick_integ(double a, void *param);
int hydro_compare_key(const void *a, const void *b);
void hydro_evaluate(int target, int mode);
void hydro_force(void);
double hydrokick_integ(double a, void *param);
int imax(int, int);
int imin(int, int);
void init(void);
void init_drift_table(void);
void init_peano_map(void);
#ifdef COSMICTIME
void init_cosmictime_table(void);
double get_cosmictime_difference(int time0, int time1);
void init_full_cosmictime_table(void);
double get_CosmicTime_from_a(double a);
double get_a_from_CosmicTime(double t);
double get_Redshift_from_a(double a);
double get_a_from_Redshift(double z);
#endif
void long_range_force(void);
void long_range_init(void);
void long_range_init_regionsize(void);
void move_particles(int time0, int time1);
size_t my_fread(void *ptr, size_t size, size_t nmemb, FILE * stream);
size_t my_fwrite(void *ptr, size_t size, size_t nmemb, FILE * stream);
int ngb_clear_buf(FLOAT searchcenter[3], FLOAT hguess, int numngb);
void ngb_treeallocate(int npart);
void ngb_treebuild(void);
int ngb_treefind_pairs(FLOAT searchcenter[3], FLOAT hsml, int phase, int *startnode);
#ifdef MULTIPHASE
int ngb_treefind_phase_pairs(FLOAT searchcenter[3], FLOAT hsml, int phase, int *startnode);
int ngb_treefind_sticky_collisions(FLOAT searchcenter[3], FLOAT hguess, int phase, int *startnode);
#endif
int ngb_treefind_variable(FLOAT searchcenter[3], FLOAT hguess, int phase, int *startnode);
#ifdef CHIMIE
int ngb_treefind_variable_for_chimie(FLOAT searchcenter[3], FLOAT hguess, int *startnode);
#endif
void ngb_treefree(void);
void ngb_treesearch(int);
void ngb_treesearch_pairs(int);
void ngb_update_nodes(void);
void open_outputfiles(void);
peanokey peano_hilbert_key(int x, int y, int z, int bits);
void peano_hilbert_order(void);
void pm_init_nonperiodic(void);
void pm_init_nonperiodic_allocate(int dimprod);
void pm_init_nonperiodic_free(void);
void pm_init_periodic(void);
void pm_init_periodic_allocate(int dimprod);
void pm_init_periodic_free(void);
void pm_init_regionsize(void);
void pm_setup_nonperiodic_kernel(void);
int pmforce_nonperiodic(int grnr);
void pmforce_periodic(void);
int pmpotential_nonperiodic(int grnr);
void pmpotential_periodic(void);
double pow(double, double); /* on some old DEC Alphas, the correct prototype for pow() is missing, even when math.h is included */
void read_file(char *fname, int readTask, int lastTask);
void read_header_attributes_in_hdf5(char *fname);
void read_ic(char *fname);
int read_outputlist(char *fname);
void read_parameter_file(char *fname);
void readjust_timebase(double TimeMax_old, double TimeMax_new);
void reorder_gas(void);
void reorder_particles(void);
#ifdef STELLAR_PROP
void reorder_stars(void);
void reorder_st(void);
#endif
void restart(int mod);
void run(void);
void savepositions(int num);
double second(void);
void seed_glass(void);
void set_random_numbers(void);
void set_softenings(void);
void set_units(void);
void init_local_sys_state(void);
void setup_smoothinglengths(void);
#ifdef CHIMIE
void stars_setup_smoothinglengths(void);
#endif
void statistics(void);
void terminate_processes(void);
double timediff(double t0, double t1);
#ifdef HAVE_HDF5
void write_header_attributes_in_hdf5(hid_t handle);
#endif
void write_file(char *fname, int readTask, int lastTask);
void write_pid_file(void);
#ifdef COOLING
int init_cooling(FLOAT metallicity);
int init_cooling_with_metals();
double cooling_function(double temperature);
double cooling_function_with_metals(double temperature,double metal);
void init_from_new_redshift(double Redshift);
double J_0();
double J_nu(double e);
double sigma_rad_HI(double e);
double sigma_rad_HeI(double e);
double sigma_rad_HeII(double e);
double cooling_bremstrahlung_HI(double T);
double cooling_bremstrahlung_HeI(double T);
double cooling_bremstrahlung_HeII(double T);
double cooling_ionization_HI(double T);
double cooling_ionization_HeI(double T);
double cooling_ionization_HeII(double T);
double cooling_recombination_HI(double T);
double cooling_recombination_HeI(double T);
double cooling_recombination_HeII(double T);
double cooling_dielectric_recombination(double T);
double cooling_excitation_HI(double T);
double cooling_excitation_HII(double T);
double cooling_compton(double T);
double A_HII(double T);
double A_HeIId(double T);
double A_HeII(double T);
double A_HeIII(double T);
double G_HI(double T);
double G_HeI(double T);
double G_HeII(double T);
double G_gHI();
double G_gHeI();
double G_gHeII();
double G_gHI_t(double J0);
double G_gHeI_t(double J0);
double G_gHeII_t(double J0);
double G_gHI_w();
double G_gHeI_w();
double G_gHeII_w();
double heating_radiative_HI();
double heating_radiative_HeI();
double heating_radiative_HeII();
double heating_radiative_HI_t(double J0);
double heating_radiative_HeI_t(double J0);
double heating_radiative_HeII_t(double J0);
double heating_radiative_HI_w();
double heating_radiative_HeI_w();
double heating_radiative_HeII_w();
double heating_compton();
void print_cooling(double T,double c1,double c2,double c3,double c4,double c5,double c6,double c7,double c8,double c9,double c10,double c11,double c12,double c13,double h1, double h2, double h3, double h4);
void compute_densities(double T,double X,double* n_H, double* n_HI,double* n_HII,double* n_HEI,double* n_HEII,double* n_HEIII,double* n_E,double* mu);
void compute_cooling_from_T_and_Nh(double T,double X,double n_H,double *c1,double *c2,double *c3,double *c4,double *c5,double *c6,double *c7,double *c8,double *c9,double *c10,double *c11,double *c12,double *c13,double *h1, double *h2, double *h3, double *h4);
double compute_cooling_from_Egyspec_and_Density(double Egyspec,double Density, double *MeanWeight);
double DoCooling(FLOAT Density,FLOAT Entropy,int Phase,int i,FLOAT DtEntropyVisc, double dt, double hubble_a);
void CoolingForOne(int i,int t0,int t1,int ti_step,double dt_entr3,double a3inv,double hubble_a);
void cooling();
double lambda(FLOAT density,FLOAT egyspec,FLOAT Metal, int phase, int i);
#endif
#ifdef HEATING
void heating();
double gamma_fct(FLOAT Density,FLOAT Entropy,int i);
#endif
#ifdef AGN_HEATING
void agn_heating();
double gamma_fct(FLOAT density,double r, double SpecPower);
double HeatingRadialDependency(double r);
#endif
#ifdef MULTIPHASE
void update_phase(void);
void init_sticky(void);
void sticky(void);
void sticky_compute_energy_kin(int mode);
void sticky_collisions(void);
void sticky_collisions2(int loop);
void sticky_evaluate(int target, int mode, int loop);
int sticky_compare_key(const void *a, const void *b);
#endif
#ifdef FEEDBACK_WIND
void feedbackwind_compute_energy_kin(int mode);
#endif
#ifdef CHIMIE
void init_chimie(void);
void check_chimie(void);
void chimie(void);
void do_chimie(void);
void chimie_evaluate(int target, int mode);
int chimie_compare_key(const void *a, const void *b);
int get_nelts();
char* get_Element(i);
float get_SolarMassAbundance(i);
#if defined(CHIMIE_THERMAL_FEEDBACK) && defined(CHIMIE_COMPUTE_THERMAL_FEEDBACK_ENERGY)
void chimie_compute_energy_int(int mode);
#endif
#if defined(CHIMIE_KINETIC_FEEDBACK) && defined(CHIMIE_COMPUTE_KINETIC_FEEDBACK_ENERGY)
void chimie_compute_energy_kin(int mode);
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
void chimie_apply_wind(void);
#endif
#endif
#ifdef OUTERPOTENTIAL
void init_outer_potential(void);
void outer_forces(void);
void outer_potential(void);
#ifdef NFW
void init_outer_potential_nfw(void);
void outer_forces_nfw(void);
void outer_potential_nfw(void);
#endif
#ifdef PLUMMER
void init_outer_potential_plummer(void);
void outer_forces_plummer(void);
void outer_potential_plummer(void);
#endif
#ifdef PISOTHERM
void init_outer_potential_pisotherm(void);
void outer_forces_pisotherm(void);
void outer_potential_pisotherm(void);
double potential_f(double r, void * params);
double get_potential(double r);
#endif
#ifdef CORIOLIS
void init_outer_potential_coriolis(void);
void set_outer_potential_coriolis(void);
void outer_forces_coriolis(void);
void outer_potential_coriolis(void);
#endif
#endif
#ifdef SFR
void star_formation(void);
void rearrange_particle_sequence(void);
void sfr_compute_energy_int(int mode);
void sfr_check_number_of_stars(int mode);
#endif
#ifdef AGN_ACCRETION
void compute_agn_accretion(void);
#endif
#ifdef BUBBLES
void init_bubble(void);
void make_bubble(void);
void create_bubble(int sign);
#endif
#ifdef BONDI_ACCRETION
void bondi_accretion(void);
#endif
#ifdef PNBODY
void init_pnbody();
void finalize_pnbody();
void compute_pnbody();
#endif
#ifdef AB_TURB
void init_turb();
#endif
double artificial_viscosity(double r,double vdotr2,double soundspeed_i,double soundspeed_j,double dwk_i,double dwk_j,int timestep,int j,FLOAT mass,FLOAT rho,FLOAT f1,double *maxSignalVel);
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO)
double artificial_viscosity_improved(double r,double vdotr2,double soundspeed_i,double soundspeed_j,double dwk_i,double dwk_j,double h_i,int timestep,int j,FLOAT mass,FLOAT rho,FLOAT f1,double *maxSignalVel);
#endif
#if defined(ART_VISCO_CD)
double artificial_viscosity_CD(double r,double vdotr2,double soundspeed_i,double soundspeed_j,double dwk_i,double dwk_j,int timestep,int j,FLOAT mass,FLOAT rho,FLOAT f1,double *maxSignalVel);
double artificial_viscosity_CD_prediction(double r,double vdotr2,double soundspeed_i,double soundspeed_j,double dwk_i,double dwk_j,int timestep,int j,FLOAT mass,FLOAT rho,FLOAT f1,double *maxSignalVel);
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
void move_art_visc(int i,double dt_drift);
#ifdef ART_VISCO_CD
void art_visc_allocate();
void art_visc_free();
void compute_art_visc(int i);
#endif
#endif
#ifdef TIMESTEP_UPDATE_FOR_FEEDBACK
void get_sigvel(void);
void get_sigvel_evaluate(int target, int mode);
FLOAT updated_pressure(FLOAT EntropyPred,FLOAT Density,FLOAT DeltaEgySpec);
FLOAT updated_pressure_hydra(FLOAT EntropyPred,FLOAT Density,FLOAT DeltaEgySpec);
void make_particle_active(int target);
void kickback(int i,int tstart,int tend);
#endif
#ifdef GAS_ACCRETION
void init_gas_accretion(void);
void gas_accretion(void);
#endif
#ifdef COOLING_FCT_FROM_HDF5
float computeLambda(float rho_H_in, float T_in, float nHe_in, float metalicity);
int endsWith(const char *str, const char *suffix);
void closestMatch1D(float* TABLE, int SIZE, float input, float match[2], int index[2]);
void checkRedshiftForUpdate();
int updateCoolingTable();
void loadDataInTable1D(hid_t table, char* table_key, float** TABLE, int* SIZE);
void loadDataInTable2D(hid_t table, char* table_key, float*** TABLE);
void loadDataInTable3D(hid_t table, char* table_key, float**** TABLE);
void BroadcastTablesToAllFromMaster();
int freeMemory();
#endif
+#ifdef COOLING_WIERSMA
+int InitWiersmaCooling(char * TablesDirectory);
+int setTablesFromRedshift(double RedShift);
+double compute_LambdaTotal(double T,double nH,double HeMfrac,double Z, double Zsol);
+#endif
+
+
#ifdef TESSEL
void ConstructDelaunay();
void ComputeVoronoi();
void setup_searching_radius();
int ngb_treefind_variable_for_tessel(FLOAT searchcenter[3], FLOAT hsml, int phase, int *startnode);
void ghost();
void tessel_compute_accelerations();
void tessel_convert_energy_to_entropy();
void tessel_kick(float dt_kick);
void tessel_drift(float dt_drift);
double tessel_get_timestep();
int CheckCompletenessForThisPoint(int i);
int ghost_compare_key(const void *a, const void *b);
void CheckTriangles();
void AddGhostPoints(int istart,int nadd);
void dump_triangles(char *filename);
void dump_voronoi(char *filename);
#ifdef PY_INTERFACE
#include <Python.h>
PyObject *gadget_GetAllDelaunayTriangles(self, args);
PyObject *gadget_GetAllvPoints(self, args);
PyObject *gadget_GetAllvDensities(PyObject* self);
PyObject *gadget_GetAllvVolumes(PyObject* self);
PyObject *gadget_GetAllvPressures(PyObject* self);
PyObject *gadget_GetAllvEnergySpec(PyObject* self);
PyObject *gadget_GetAllvAccelerations(PyObject* self);
PyObject *gadget_GetvPointsForOnePoint(self, args);
PyObject *gadget_GetNgbPointsForOnePoint(self, args);
PyObject *gadget_GetNgbPointsAndFacesForOnePoint(self, args);
PyObject *gadget_GetAllGhostPositions(PyObject* self);
PyObject *gadget_GetAllGhostvDensities(PyObject* self);
PyObject *gadget_GetAllGhostvVolumes(PyObject* self);
#endif
#endif
#ifdef PY_INTERFACE
#include <Python.h>
void allocate_commbuffersQ(void);
void density_sub(void);
void density_evaluate_sub(int i, int mode);
void do_box_wrappingQ(void);
void domain_DecompositionQ(void);
void domain_decomposeQ(void);
int domain_findSplitQ(int cpustart, int ncpu, int first, int last);
void domain_shiftSplitQ(void);
void domain_findExchangeNumbersQ(int task, int partner, int sphflag, int *send, int *recv);
void domain_exchangeParticlesQ(int partner, int sphflag, int send_count, int recv_count);
void domain_countToGoQ(void);
void domain_walktoptreeQ(int no);
void domain_sumCostQ(void);
void domain_findExtentQ(void);
void domain_determineTopTreeQ(void);
void domain_topsplit_localQ(int node, peanokey startkey);
void domain_topsplitQ(int node, peanokey startkey);
int force_treeevaluate_sub(int target, int mode, double *ewaldcountsum);
void force_treeevaluate_potential_sub(int target, int type);
void force_treeevaluate_potential_shortrange_sub(int target, int mode);
int force_treeevaluate_shortrange_sub(int target, int mode);
void gravity_tree_sub(void);
void sph(void);
void sph_evaluate(int target, int mode);
void sph_sub(void);
void sph_evaluate_sub(int target, int mode);
void sph_thermal_conductivity(void);
void sph_evaluate_thermal_conductivity(int target, int mode);
int sph_compare_key(const void *a, const void *b);
void peano_hilbert_orderQ(void);
void reorder_gasQ(void);
void reorder_particlesQ(void);
void setup_smoothinglengths_sub(void);
#ifdef SFR
PyObject * sfr_SetParameters(PyObject *self, PyObject *args);
PyObject * sfr_GetParameters();
#endif
#endif
diff --git a/src/run.c b/src/run.c
index 585988f..d819aec 100644
--- a/src/run.c
+++ b/src/run.c
@@ -1,850 +1,856 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include <unistd.h>
#include "allvars.h"
#include "proto.h"
/*! \file run.c
* \brief iterates over timesteps, main loop
*/
/*! This routine contains the main simulation loop that iterates over single
* timesteps. The loop terminates when the cpu-time limit is reached, when a
* `stop' file is found in the output directory, or when the simulation ends
* because we arrived at TimeMax.
*/
void run(void)
{
FILE *fd;
int stopflag = 0;
char stopfname[200], contfname[200];
double t0, t1;
#ifdef DETAILED_CPU
double tstart,tend;
#endif
sprintf(stopfname, "%sstop", All.OutputDir);
sprintf(contfname, "%scont", All.OutputDir);
unlink(contfname);
do /* main loop */
{
t0 = second();
find_next_sync_point_and_drift(); /* find next synchronization point and drift particles to this time.
* If needed, this function will also write an output file
* at the desired time.
*/
every_timestep_stuff(); /* write some info to log-files */
#ifdef PNBODY
compute_pnbody();
#endif
#ifdef OUTPUT_EVERY_TIMESTEP
savepositions(All.SnapshotFileCount++); /* write snapshot file */
#endif
#ifdef DETAILED_CPU
tstart = second();
#endif
#ifdef AGN_ACCRETION
compute_agn_accretion(); /* compute accretion */
#endif
#ifdef BONDI_ACCRETION
compute_bondi_accretion(); /* compute bondi accretion */
#endif
#ifdef BUBBLES
make_bubble(); /* create a bubble */
#endif
#ifdef MULTIPHASE
update_phase(); /* allow particles to change their phase */
#endif
#ifdef CORIOLIS
set_outer_potential_coriolis(); /* coriolis */
#endif
#ifdef CHIMIE
chimie();
#endif
#ifdef COOLING_FCT_FROM_HDF5
checkRedshiftForUpdate();
#endif
+#ifdef COOLING_WIERSMA
+ float a = get_a_from_CosmicTime(All.Time);
+ float Redshift = get_Redshift_from_a(a);
+ setTablesFromRedshift(Redshift);
+#endif
+
#ifdef SFR
#ifdef COMPUTE_SFR_ENERGY
density(1);
force_update_hmax();
sfr_compute_energy_int(1);
#endif
star_formation(); /* starformation */
#endif
#ifdef GAS_ACCRETION
gas_accretion();
#endif
#ifdef VANISHING_PARTICLES
vanishing_particles();
#endif
#ifdef MULTIPHASE
sticky();
#endif
#ifdef DETAILED_CPU
tend = second();
All.CPU_Physics += timediff(tstart, tend);
#endif
domain_Decomposition(); /* do domain decomposition if needed */
compute_accelerations(0); /* compute accelerations for
* the particles that are to be advanced
*/
#if defined(SFR) && defined(COMPUTE_SFR_ENERGY)
#ifdef DETAILED_CPU
tstart = second();
#endif
//sfr_compute_energy_int(2);
#ifdef DETAILED_CPU
tend = second();
All.CPU_Physics += timediff(tstart, tend);
#endif
#endif
/* check whether we want a full energy statistics */
if((All.Time - All.TimeLastStatistics) >= All.TimeBetStatistics)
{
#ifdef COMPUTE_POTENTIAL_ENERGY
compute_potential();
#endif
#ifndef ADVANCEDSTATISTICS
energy_statistics(); /* compute and output energy statistics */
#else
advanced_energy_statistics(); /* compute and output energy statistics */
#endif
All.TimeLastStatistics += All.TimeBetStatistics;
}
advance_and_find_timesteps(); /* 'kick' active particles in
* momentum space and compute new
* timesteps for them
*/
All.NumCurrentTiStep++;
/* Check whether we need to interrupt the run */
if(ThisTask == 0)
{
/* Is the stop-file present? If yes, interrupt the run. */
if((fd = fopen(stopfname, "r")))
{
fclose(fd);
stopflag = 1;
unlink(stopfname);
}
/* are we running out of CPU-time ? If yes, interrupt run. */
//if(CPUThisRun > 0.85 * All.TimeLimitCPU)
if(CPUThisRun > 1.0 * All.TimeLimitCPU)
{
printf("reaching time-limit. stopping.\n");
stopflag = 2;
}
}
MPI_Bcast(&stopflag, 1, MPI_INT, 0, MPI_COMM_WORLD);
if(stopflag)
{
restart(0); /* write restart file */
MPI_Barrier(MPI_COMM_WORLD);
if(stopflag == 2 && ThisTask == 0)
{
if((fd = fopen(contfname, "w")))
fclose(fd);
}
if(stopflag == 2 && All.ResubmitOn && ThisTask == 0)
{
close_outputfiles();
system(All.ResubmitCommand);
}
return;
}
/* is it time to write a regular restart-file? (for security) */
if(ThisTask == 0)
{
if((CPUThisRun - All.TimeLastRestartFile) >= All.CpuTimeBetRestartFile)
{
All.TimeLastRestartFile = CPUThisRun;
stopflag = 3;
}
else
stopflag = 0;
}
MPI_Bcast(&stopflag, 1, MPI_INT, 0, MPI_COMM_WORLD);
if(stopflag == 3)
{
restart(0); /* write an occasional restart file */
stopflag = 0;
}
t1 = second();
All.CPU_Total += timediff(t0, t1);
CPUThisRun += timediff(t0, t1);
}
while(All.Ti_Current < TIMEBASE && All.Time <= All.TimeMax);
restart(0);
savepositions(All.SnapshotFileCount++); /* write a last snapshot
* file at final time (will
* be overwritten if
* All.TimeMax is increased
* and the run is continued)
*/
}
/*! This function finds the next synchronization point of the system (i.e. the
* earliest point of time any of the particles needs a force computation),
* and drifts the system to this point of time. If the system drifts over
* the desired time of a snapshot file, the function will drift to this
* moment, generate an output, and then resume the drift.
*/
void find_next_sync_point_and_drift(void)
{
int n, min, min_glob, flag, *temp;
double timeold;
double t0, t1;
#ifdef DETAILED_CPU
double tstart,tend;
#endif
t0 = second();
#ifdef DETAILED_CPU
tstart = t0;
#endif
timeold = All.Time;
for(n = 1, min = P[0].Ti_endstep; n < NumPart; n++)
if(min > P[n].Ti_endstep)
min = P[n].Ti_endstep;
MPI_Allreduce(&min, &min_glob, 1, MPI_INT, MPI_MIN, MPI_COMM_WORLD);
/* We check whether this is a full step where all particles are synchronized */
flag = 1;
for(n = 0; n < NumPart; n++)
if(P[n].Ti_endstep > min_glob)
flag = 0;
MPI_Allreduce(&flag, &Flag_FullStep, 1, MPI_INT, MPI_MIN, MPI_COMM_WORLD);
#ifdef PMGRID
if(min_glob >= All.PM_Ti_endstep)
{
min_glob = All.PM_Ti_endstep;
Flag_FullStep = 1;
}
#endif
/* Determine 'NumForceUpdate', i.e. the number of particles on this processor that are going to be active */
for(n = 0, NumForceUpdate = 0; n < NumPart; n++)
{
if(P[n].Ti_endstep == min_glob)
#ifdef SELECTIVE_NO_GRAVITY
if(!((1 << P[n].Type) & (SELECTIVE_NO_GRAVITY)))
#endif
NumForceUpdate++;
}
/* note: NumForcesSinceLastDomainDecomp has type "long long" */
temp = malloc(NTask * sizeof(int));
MPI_Allgather(&NumForceUpdate, 1, MPI_INT, temp, 1, MPI_INT, MPI_COMM_WORLD);
for(n = 0; n < NTask; n++)
All.NumForcesSinceLastDomainDecomp += temp[n];
#ifdef COUNT_ACTIVE_PARTICLES
long long NumActivePatricles;
NumActivePatricles=0;
for(n = 0; n < NTask; n++)
NumActivePatricles+=temp[n];
#endif
free(temp);
t1 = second();
All.CPU_Predict += timediff(t0, t1);
while(min_glob >= All.Ti_nextoutput && All.Ti_nextoutput >= 0)
{
move_particles(All.Ti_Current, All.Ti_nextoutput);
All.Ti_Current = All.Ti_nextoutput;
if(All.ComovingIntegrationOn)
All.Time = All.TimeBegin * exp(All.Ti_Current * All.Timebase_interval);
else
All.Time = All.TimeBegin + All.Ti_Current * All.Timebase_interval;
#ifdef OUTPUTPOTENTIAL
All.NumForcesSinceLastDomainDecomp = 1 + All.TotNumPart * All.TreeDomainUpdateFrequency;
domain_Decomposition();
compute_potential();
#endif
#ifndef OUTPUT_EVERY_TIMESTEP
savepositions(All.SnapshotFileCount++); /* write snapshot file */
#endif
All.Ti_nextoutput = find_next_outputtime(All.Ti_nextoutput + 1);
}
move_particles(All.Ti_Current, min_glob);
All.Ti_Current = min_glob;
if(All.ComovingIntegrationOn)
All.Time = All.TimeBegin * exp(All.Ti_Current * All.Timebase_interval);
else
All.Time = All.TimeBegin + All.Ti_Current * All.Timebase_interval;
All.TimeStep = All.Time - timeold;
#ifdef COUNT_ACTIVE_PARTICLES
if (ThisTask==0)
{
fprintf(FdTimings,"===========================================================================================\n");
fprintf(FdTimings,"Step = %06d Time = %g \n\n",All.NumCurrentTiStep,All.Time);
fprintf(FdTimings,"%g %g : Total number of active particles : %d%09d\n\n",All.Time,All.TimeStep,(int) (NumActivePatricles / 1000000000), (int) (NumActivePatricles % 1000000000));
}
int *numpartlist;
int i;
int tot;
numpartlist = malloc(sizeof(int) * NTask*6);
MPI_Gather(&N_gas, 1, MPI_INT, &numpartlist[NTask*0], 1, MPI_INT, 0, MPI_COMM_WORLD);
#ifdef STELLAR_PROP
MPI_Gather(&N_stars, 1, MPI_INT, &numpartlist[NTask*1], 1, MPI_INT, 0, MPI_COMM_WORLD);
#endif
MPI_Gather(&NumPart, 1, MPI_INT, &numpartlist[NTask*2], 1, MPI_INT, 0, MPI_COMM_WORLD);
if (ThisTask==0)
{
tot = 0;
fprintf(FdTimings,"gas ");
for (i=0;i<NTask;i++)
{
fprintf(FdTimings, "%12d ",numpartlist[NTask*0+i]); /* nombre de part par proc */
tot += numpartlist[NTask*0+i];
}
fprintf(FdTimings, " : %12d ",tot);
fprintf(FdTimings,"\n");
tot = 0;
fprintf(FdTimings,"stars ");
for (i=0;i<NTask;i++)
{
fprintf(FdTimings, "%12d ",numpartlist[NTask*1+i]); /* nombre de part par proc */
tot += numpartlist[NTask*1+i];
}
fprintf(FdTimings, " : %12d ",tot);
fprintf(FdTimings,"\n");
tot = 0;
fprintf(FdTimings,"remaining ");
for (i=0;i<NTask;i++)
{
fprintf(FdTimings, "%12d ",numpartlist[NTask*2+i]-numpartlist[NTask*1+i]-numpartlist[NTask*0+i]); /* nombre de part par proc */
tot += numpartlist[NTask*2+i]-numpartlist[NTask*1+i]-numpartlist[NTask*0+i];
}
fprintf(FdTimings, " : %12d ",tot);
fprintf(FdTimings,"\n\n");
tot = 0;
fprintf(FdTimings,"total ");
for (i=0;i<NTask;i++)
{
fprintf(FdTimings, "%12d ",numpartlist[NTask*2+i]); /* nombre de part par proc */
tot += numpartlist[NTask*2+i];
}
fprintf(FdTimings, " : %12d ",tot);
fprintf(FdTimings,"\n\n");
fflush(FdTimings);
}
free(numpartlist);
#endif
#ifdef DETAILED_CPU
tend = second();
All.CPU_Leapfrog += timediff(tstart, tend);
#endif
}
/*! this function returns the next output time that is equal or larger to
* ti_curr
*/
int find_next_outputtime(int ti_curr)
{
int i, ti, ti_next, iter = 0;
double next, time;
ti_next = -1;
if(All.OutputListOn)
{
for(i = 0; i < All.OutputListLength; i++)
{
time = All.OutputListTimes[i];
if(time >= All.TimeBegin && time <= All.TimeMax)
{
if(All.ComovingIntegrationOn)
ti = log(time / All.TimeBegin) / All.Timebase_interval;
else
ti = (time - All.TimeBegin) / All.Timebase_interval;
if(ti >= ti_curr)
{
if(ti_next == -1)
ti_next = ti;
if(ti_next > ti)
ti_next = ti;
}
}
}
}
else
{
if(All.ComovingIntegrationOn)
{
if(All.TimeBetSnapshot <= 1.0)
{
printf("TimeBetSnapshot > 1.0 required for your simulation.\n");
endrun(13123);
}
}
else
{
if(All.TimeBetSnapshot <= 0.0)
{
printf("TimeBetSnapshot > 0.0 required for your simulation.\n");
endrun(13123);
}
}
time = All.TimeOfFirstSnapshot;
iter = 0;
while(time < All.TimeBegin)
{
if(All.ComovingIntegrationOn)
time *= All.TimeBetSnapshot;
else
time += All.TimeBetSnapshot;
iter++;
if(iter > 1000000)
{
printf("Can't determine next output time.\n");
endrun(110);
}
}
while(time <= All.TimeMax)
{
if(All.ComovingIntegrationOn)
ti = log(time / All.TimeBegin) / All.Timebase_interval;
else
ti = (time - All.TimeBegin) / All.Timebase_interval;
if(ti >= ti_curr)
{
ti_next = ti;
break;
}
if(All.ComovingIntegrationOn)
time *= All.TimeBetSnapshot;
else
time += All.TimeBetSnapshot;
iter++;
if(iter > 1000000)
{
printf("Can't determine next output time.\n");
endrun(111);
}
}
}
if(ti_next == -1)
{
ti_next = 2 * TIMEBASE; /* this will prevent any further output */
if(ThisTask == 0)
printf("\nThere is no valid time for a further snapshot file.\n");
}
else
{
if(All.ComovingIntegrationOn)
next = All.TimeBegin * exp(ti_next * All.Timebase_interval);
else
next = All.TimeBegin + ti_next * All.Timebase_interval;
if(ThisTask == 0)
printf("\nSetting next time for snapshot file to Time_next= %g\n\n", next);
}
return ti_next;
}
/*! This routine writes one line for every timestep to two log-files. In
* FdInfo, we just list the timesteps that have been done, while in FdCPU the
* cumulative cpu-time consumption in various parts of the code is stored.
*/
void every_timestep_stuff(void)
{
double z;
#ifdef DETAILED_CPU
double tstart,tend;
tstart = second();
#endif
if(ThisTask == 0)
{
if(All.ComovingIntegrationOn)
{
z = 1.0 / (All.Time) - 1;
fprintf(FdInfo, "\nBegin Step %d, Time: %g, Redshift: %g, Systemstep: %g, Dloga: %g\n",
All.NumCurrentTiStep, All.Time, z, All.TimeStep,
log(All.Time) - log(All.Time - All.TimeStep));
printf("\nBegin Step %d, Time: %g, Redshift: %g, Systemstep: %g, Dloga: %g\n", All.NumCurrentTiStep,
All.Time, z, All.TimeStep, log(All.Time) - log(All.Time - All.TimeStep));
fflush(FdInfo);
}
else
{
fprintf(FdInfo, "\nBegin Step %d, Time: %g, Systemstep: %g\n", All.NumCurrentTiStep, All.Time,
All.TimeStep);
printf("\nBegin Step %d, Time: %g, Systemstep: %g\n", All.NumCurrentTiStep, All.Time, All.TimeStep);
fflush(FdInfo);
}
printf("-------------------------------------------------------------\n");
fflush(stdout);
#ifdef ADVANCEDCPUSTATISTICS
fprintf(FdCPU, "%d ", All.NumCurrentTiStep);
fprintf(FdCPU, "%g ", All.Time);
fprintf(FdCPU, "%d ", NTask);
fprintf(FdCPU,"%10.2f ",All.CPU_Total);
#ifdef DETAILED_CPU
fprintf(FdCPU,"%10.2f ",All.CPU_Leapfrog);
fprintf(FdCPU,"%10.2f ",All.CPU_Physics);
fprintf(FdCPU,"%10.2f ",All.CPU_Residual);
fprintf(FdCPU,"%10.2f ",All.CPU_Accel);
fprintf(FdCPU,"%10.2f ",All.CPU_Begrun);
#endif
fprintf(FdCPU,"%10.2f ",All.CPU_Gravity);
fprintf(FdCPU,"%10.2f ",All.CPU_Hydro);
#ifdef COOLING
fprintf(FdCPU,"%10.2f ",All.CPU_Cooling);
#endif
#ifdef SFR
fprintf(FdCPU,"%10.2f ",All.CPU_StarFormation);
#endif
#ifdef CHIMIE
fprintf(FdCPU,"%10.2f ",All.CPU_Chimie);
#endif
#ifdef MULTIPHASE
fprintf(FdCPU,"%10.2f ",All.CPU_Sticky);
#endif
fprintf(FdCPU,"%10.2f ",All.CPU_Domain);
fprintf(FdCPU,"%10.2f ",All.CPU_Potential);
fprintf(FdCPU,"%10.2f ",All.CPU_Predict);
fprintf(FdCPU,"%10.2f ",All.CPU_TimeLine);
fprintf(FdCPU,"%10.2f ",All.CPU_Snapshot);
fprintf(FdCPU,"%10.2f ",All.CPU_TreeWalk);
fprintf(FdCPU,"%10.2f ",All.CPU_TreeConstruction);
fprintf(FdCPU,"%10.2f ",All.CPU_CommSum);
fprintf(FdCPU,"%10.2f ",All.CPU_Imbalance);
fprintf(FdCPU,"%10.2f ",All.CPU_HydCompWalk);
fprintf(FdCPU,"%10.2f ",All.CPU_HydCommSumm);
fprintf(FdCPU,"%10.2f ",All.CPU_HydImbalance);
fprintf(FdCPU,"%10.2f ",All.CPU_EnsureNgb);
fprintf(FdCPU,"%10.2f ",All.CPU_PM);
fprintf(FdCPU,"%10.2f ",All.CPU_Peano);
#ifdef DETAILED_CPU_DOMAIN
fprintf(FdCPU,"%10.2f ",All.CPU_Domain_findExtend);
fprintf(FdCPU,"%10.2f ",All.CPU_Domain_determineTopTree);
fprintf(FdCPU,"%10.2f ",All.CPU_Domain_sumCost);
fprintf(FdCPU,"%10.2f ",All.CPU_Domain_findSplit);
fprintf(FdCPU,"%10.2f ",All.CPU_Domain_shiftSplit);
fprintf(FdCPU,"%10.2f ",All.CPU_Domain_countToGo);
fprintf(FdCPU,"%10.2f ",All.CPU_Domain_exchange);
#endif
#ifdef DETAILED_CPU_GRAVITY
fprintf(FdCPU,"%10.2f ",All.CPU_Gravity_TreeWalk1);
fprintf(FdCPU,"%10.2f ",All.CPU_Gravity_TreeWalk2);
fprintf(FdCPU,"%10.2f ",All.CPU_Gravity_CommSum1);
fprintf(FdCPU,"%10.2f ",All.CPU_Gravity_CommSum2);
fprintf(FdCPU,"%10.2f ",All.CPU_Gravity_Imbalance1);
fprintf(FdCPU,"%10.2f ",All.CPU_Gravity_Imbalance2);
#endif
fprintf(FdCPU,"\n");
fflush(FdCPU);
#else
fprintf(FdCPU, "Step %d, Time: %g, CPUs: %d\n", All.NumCurrentTiStep, All.Time, NTask);
fprintf(FdCPU,
"%10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f %10.2f\n",
All.CPU_Total, All.CPU_Gravity, All.CPU_Hydro, All.CPU_Domain, All.CPU_Potential,
All.CPU_Predict, All.CPU_TimeLine, All.CPU_Snapshot, All.CPU_TreeWalk, All.CPU_TreeConstruction,
All.CPU_CommSum, All.CPU_Imbalance, All.CPU_HydCompWalk, All.CPU_HydCommSumm,
All.CPU_HydImbalance, All.CPU_EnsureNgb, All.CPU_PM, All.CPU_Peano);
fflush(FdCPU);
#endif
}
set_random_numbers();
#ifdef DETAILED_CPU
tend = second();
All.CPU_Residual += timediff(tstart, tend);
#endif
}
/*! This routine first calls a computation of various global quantities of the
* particle distribution, and then writes some statistics about the energies
* in the various particle components to the file FdEnergy.
*/
void energy_statistics(void)
{
compute_global_quantities_of_system();
if(ThisTask == 0)
{
fprintf(FdEnergy,
"%g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g\n",
All.Time, SysState.EnergyInt, SysState.EnergyPot, SysState.EnergyKin, SysState.EnergyIntComp[0],
SysState.EnergyPotComp[0], SysState.EnergyKinComp[0], SysState.EnergyIntComp[1],
SysState.EnergyPotComp[1], SysState.EnergyKinComp[1], SysState.EnergyIntComp[2],
SysState.EnergyPotComp[2], SysState.EnergyKinComp[2], SysState.EnergyIntComp[3],
SysState.EnergyPotComp[3], SysState.EnergyKinComp[3], SysState.EnergyIntComp[4],
SysState.EnergyPotComp[4], SysState.EnergyKinComp[4], SysState.EnergyIntComp[5],
SysState.EnergyPotComp[5], SysState.EnergyKinComp[5], SysState.MassComp[0],
SysState.MassComp[1], SysState.MassComp[2], SysState.MassComp[3], SysState.MassComp[4],
SysState.MassComp[5]);
fflush(FdEnergy);
}
}
/*! This routine first calls a computation of various global quantities of the
* particle distribution, and then writes some statistics about the energies
* in the various particle components to the file FdEnergy.
*/
#ifdef ADVANCEDSTATISTICS
void advanced_energy_statistics(void)
{
int i;
#ifdef DETAILED_CPU
double tstart,tend;
tstart = second();
#endif
compute_global_quantities_of_system();
if(ThisTask == 0)
{
/**************/
/* energy */
/**************/
/* time */
fprintf(FdEnergy,"%g ",All.Time);
/* total */
fprintf(FdEnergy,"%g %g %g ",SysState.EnergyInt, SysState.EnergyPot, SysState.EnergyKin);
#ifdef COOLING
fprintf(FdEnergy,"%g ",SysState.EnergyRadSph);
#endif
#ifdef AGN_HEATING
fprintf(FdEnergy,"%g ",SysState.EnergyAGNHeat);
#endif
#ifdef MULTIPHASE
fprintf(FdEnergy,"%g ",SysState.EnergyRadSticky);
#endif
#ifdef FEEDBACK_WIND
fprintf(FdEnergy,"%g ",SysState.EnergyFeedbackWind);
#endif
#ifdef BUBBLES
fprintf(FdEnergy,"%g ",SysState.EnergyBubbles);
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
fprintf(FdEnergy,"%g ",SysState.EnergyThermalFeedback);
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
fprintf(FdEnergy,"%g ",SysState.EnergyKineticFeedback);
#endif
/* comp */
for (i=0;i<6;i++)
{
fprintf(FdEnergy,"%g %g %g ",SysState.EnergyIntComp[i],SysState.EnergyPotComp[i], SysState.EnergyKinComp[i]);
#ifdef COOLING
fprintf(FdEnergy,"%g ",SysState.EnergyRadSphComp[i]);
#endif
#ifdef AGN_HEATING
fprintf(FdEnergy,"%g ",SysState.EnergyAGNHeatComp[i]);
#endif
#ifdef MULTIPHASE
fprintf(FdEnergy,"%g ",SysState.EnergyRadStickyComp[i]);
#endif
#ifdef FEEDBACK_WIND
fprintf(FdEnergy,"%g ",SysState.EnergyFeedbackWindComp[i]);
#endif
#ifdef BUBBLES
fprintf(FdEnergy,"%g ",SysState.EnergyBubblesComp[i]);
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
fprintf(FdEnergy,"%g ",SysState.EnergyThermalFeedbackComp[i]);
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
fprintf(FdEnergy,"%g ",SysState.EnergyKineticFeedbackComp[i]);
#endif
}
/* mass */
for (i=0;i<6;i++)
{
fprintf(FdEnergy,"%g ",SysState.MassComp[i]);
}
/* return */
fprintf(FdEnergy,"\n");
fflush(FdEnergy);
#ifdef SYSTEMSTATISTICS
/**************/
/* system */
/**************/
fprintf(FdSystem,"%g %g %g %g %g %g %g %g %g %g %g %g %g\n",
All.Time,
SysState.Momentum[0], SysState.Momentum[1], SysState.Momentum[2], SysState.Momentum[3],
SysState.AngMomentum[0], SysState.AngMomentum[1], SysState.AngMomentum[2], SysState.AngMomentum[3],
SysState.CenterOfMass[0], SysState.CenterOfMass[1], SysState.CenterOfMass[2], SysState.CenterOfMass[3]);
fflush(FdSystem);
#endif
}
#ifdef DETAILED_CPU
tend = second();
All.CPU_Residual += timediff(tstart, tend);
#endif
}
#endif

Event Timeline