Page MenuHomec4science

No OneTemporary

File Metadata

Created
Sun, Oct 20, 11:32
This document is not UTF8. It was detected as ISO-8859-1 (Latin 1) and converted to UTF8 for display.
diff --git a/src/allocate.c b/src/allocate.c
index e04e59b..5722edb 100644
--- a/src/allocate.c
+++ b/src/allocate.c
@@ -1,258 +1,261 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "allvars.h"
#include "proto.h"
/*! \file allocate.c
* \brief routines for allocating particle and tree storage
*/
/*! Allocates a number of small buffers and arrays, the largest one being
* the communication buffer. The communication buffer itself is mapped
* onto various tables used in the different parts of the force
* algorithms. We further allocate space for the top-level tree nodes, and
* auxiliary arrays for the domain decomposition algorithm.
*/
void allocate_commbuffers(void)
{
size_t bytes;
Exportflag = malloc(NTask * sizeof(char));
DomainStartList = malloc(NTask * sizeof(int));
DomainEndList = malloc(NTask * sizeof(int));
TopNodes = malloc(MAXTOPNODES * sizeof(struct topnode_data));
DomainWork = malloc(MAXTOPNODES * sizeof(double));
DomainCount = malloc(MAXTOPNODES * sizeof(int));
DomainCountSph = malloc(MAXTOPNODES * sizeof(int));
DomainTask = malloc(MAXTOPNODES * sizeof(int));
DomainNodeIndex = malloc(MAXTOPNODES * sizeof(int));
DomainTreeNodeLen = malloc(MAXTOPNODES * sizeof(FLOAT));
DomainHmax = malloc(MAXTOPNODES * sizeof(FLOAT));
DomainMoment = malloc(MAXTOPNODES * sizeof(struct DomainNODE));
if(!(CommBuffer = malloc(bytes = All.BufferSize * 1024 * 1024)))
{
printf("failed to allocate memory for `CommBuffer' (%g MB).\n", bytes / (1024.0 * 1024.0));
endrun(2);
}
All.BunchSizeForce =
(All.BufferSize * 1024 * 1024) / (sizeof(struct gravdata_index) + 2 * sizeof(struct gravdata_in));
if(All.BunchSizeForce & 1)
All.BunchSizeForce -= 1; /* make sure that All.BunchSizeForce is an even number
--> 8-byte alignment for 64bit processors */
GravDataIndexTable = (struct gravdata_index *) CommBuffer;
GravDataIn = (struct gravdata_in *) (GravDataIndexTable + All.BunchSizeForce);
GravDataGet = GravDataIn + All.BunchSizeForce;
GravDataOut = GravDataIn; /* this will overwrite the GravDataIn-Table */
GravDataResult = GravDataGet; /* this will overwrite the GravDataGet-Table */
All.BunchSizeDensity =
(All.BufferSize * 1024 * 1024) / (2 * sizeof(struct densdata_in) + 2 * sizeof(struct densdata_out));
DensDataIn = (struct densdata_in *) CommBuffer;
DensDataGet = DensDataIn + All.BunchSizeDensity;
DensDataResult = (struct densdata_out *) (DensDataGet + All.BunchSizeDensity);
DensDataPartialResult = DensDataResult + All.BunchSizeDensity;
All.BunchSizeHydro =
(All.BufferSize * 1024 * 1024) / (2 * sizeof(struct hydrodata_in) + 2 * sizeof(struct hydrodata_out));
HydroDataIn = (struct hydrodata_in *) CommBuffer;
HydroDataGet = HydroDataIn + All.BunchSizeHydro;
HydroDataResult = (struct hydrodata_out *) (HydroDataGet + All.BunchSizeHydro);
HydroDataPartialResult = HydroDataResult + All.BunchSizeHydro;
#ifdef PY_INTERFACE
All.BunchSizeSph =
(All.BufferSize * 1024 * 1024) / (2 * sizeof(struct sphdata_in) + 2 * sizeof(struct sphdata_out));
SphDataIn = (struct sphdata_in *) CommBuffer;
SphDataGet = SphDataIn + All.BunchSizeSph;
SphDataResult = (struct sphdata_out *) (SphDataGet + All.BunchSizeSph);
SphDataPartialResult = SphDataResult + All.BunchSizeSph;
All.BunchSizeDensitySph =
(All.BufferSize * 1024 * 1024) / (2 * sizeof(struct denssphdata_in) + 2 * sizeof(struct denssphdata_out));
DensSphDataIn = (struct denssphdata_in *) CommBuffer;
DensSphDataGet = DensSphDataIn + All.BunchSizeDensitySph;
DensSphDataResult = (struct denssphdata_out *) (DensSphDataGet + All.BunchSizeDensitySph);
DensSphDataPartialResult = DensSphDataResult + All.BunchSizeDensitySph;
#endif
#ifdef MULTIPHASE
All.BunchSizeSticky =
(All.BufferSize * 1024 * 1024) / (2 * sizeof(struct stickydata_in) + 2 * sizeof(struct stickydata_out));
StickyDataIn = (struct stickydata_in *) CommBuffer;
StickyDataGet = StickyDataIn + All.BunchSizeSticky;
StickyDataResult = (struct stickydata_out *) (StickyDataGet + All.BunchSizeSticky);
StickyDataPartialResult = StickyDataResult + All.BunchSizeSticky;
#endif
#ifdef CHIMIE
All.BunchSizeChimie =
(All.BufferSize * 1024 * 1024) / (2 * sizeof(struct chimiedata_in) + 2 * sizeof(struct chimiedata_out));
ChimieDataIn = (struct chimiedata_in *) CommBuffer;
ChimieDataGet = ChimieDataIn + All.BunchSizeChimie;
ChimieDataResult = (struct chimiedata_out *) (ChimieDataGet + All.BunchSizeChimie);
ChimieDataPartialResult = ChimieDataResult + All.BunchSizeChimie;
All.BunchSizeStarsDensity =
(All.BufferSize * 1024 * 1024) / (2 * sizeof(struct starsdensdata_in) + 2 * sizeof(struct starsdensdata_out));
StarsDensDataIn = (struct starsdensdata_in *) CommBuffer;
StarsDensDataGet = StarsDensDataIn + All.BunchSizeStarsDensity;
StarsDensDataResult = (struct starsdensdata_out *) (StarsDensDataGet + All.BunchSizeStarsDensity);
StarsDensDataPartialResult = StarsDensDataResult + All.BunchSizeStarsDensity;
#endif
#ifdef STELLAR_PROP
All.BunchSizeDomain =
(All.BufferSize * 1024 * 1024) / (sizeof(struct particle_data) + sizeof(struct sph_particle_data) +
sizeof(struct st_particle_data) + sizeof(peanokey));
#else
All.BunchSizeDomain =
(All.BufferSize * 1024 * 1024) / (sizeof(struct particle_data) + sizeof(struct sph_particle_data) +
sizeof(peanokey));
#endif
if(All.BunchSizeDomain & 1)
All.BunchSizeDomain -= 1; /* make sure that All.BunchSizeDomain is even
--> 8-byte alignment of DomainKeyBuf for 64bit processors */
DomainPartBuf = (struct particle_data *) CommBuffer;
DomainSphBuf = (struct sph_particle_data *) (DomainPartBuf + All.BunchSizeDomain);
DomainKeyBuf = (peanokey *) (DomainSphBuf + All.BunchSizeDomain);
#ifdef STELLAR_PROP
DomainStBuf = (struct st_particle_data *) (DomainKeyBuf + All.BunchSizeDomain);
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
All.BunchSizeSynchronizeNgBTimestep =
(All.BufferSize * 1024 * 1024) / (2 * sizeof(struct SynchroinzeNgbTimestepdata_in));
SynchroinzeNgbTimestepDataIn = (struct timedata_in *) CommBuffer;
SynchroinzeNgbTimestepDataGet = SynchroinzeNgbTimestepDataIn + All.BunchSizeSynchronizeNgBTimestep;
#endif
#ifdef TESSEL
All.BunchSizeGhost =
(All.BufferSize * 1024 * 1024) / (2 * sizeof(struct ghostdata_in) + 2 * sizeof(struct ghostdata_out));
#endif
if(ThisTask == 0)
{
printf("\nAllocated %d MByte communication buffer per processor.\n\n", All.BufferSize);
printf("Communication buffer has room for %d particles in gravity computation\n", All.BunchSizeForce);
printf("Communication buffer has room for %d particles in density computation\n", All.BunchSizeDensity);
printf("Communication buffer has room for %d particles in hydro computation\n", All.BunchSizeHydro);
printf("Communication buffer has room for %d particles in domain decomposition\n", All.BunchSizeDomain);
printf("\n");
}
}
/*! This routine allocates memory for particle storage, both the
* collisionless and the SPH particles.
*/
void allocate_memory(void)
{
size_t bytes;
double bytes_tot = 0;
if(All.MaxPart > 0)
{
if(!(P = malloc(bytes = All.MaxPart * sizeof(struct particle_data))))
{
printf("failed to allocate memory for `P' (%g MB).\n", bytes / (1024.0 * 1024.0));
endrun(1);
}
bytes_tot += bytes;
if(ThisTask == 0)
printf("\nAllocated %g MByte for particle storage. %d\n\n", bytes_tot / (1024.0 * 1024.0), sizeof(struct particle_data));
}
if(All.MaxPartSph > 0)
{
bytes_tot = 0;
if(!(SphP = malloc(bytes = All.MaxPartSph * sizeof(struct sph_particle_data))))
{
printf("failed to allocate memory for `SphP' (%g MB) %d.\n", bytes / (1024.0 * 1024.0), sizeof(struct sph_particle_data));
endrun(1);
}
bytes_tot += bytes;
if(ThisTask == 0)
printf("Allocated %g MByte for storage of SPH data. %d\n", bytes_tot / (1024.0 * 1024.0), sizeof(struct sph_particle_data));
}
#ifdef STELLAR_PROP
if(All.MaxPartStars > 0)
{
bytes_tot = 0;
if(!(StP = malloc(bytes = All.MaxPartStars * sizeof(struct st_particle_data))))
{
printf("failed to allocate memory for `StP' (%g MB) %d.\n", bytes / (1024.0 * 1024.0),sizeof(struct st_particle_data));
endrun(1);
}
bytes_tot += bytes;
if(ThisTask == 0)
printf("\nAllocated %g MByte for star properties storage. %d\n\n", bytes_tot / (1024.0 * 1024.0), sizeof(struct st_particle_data));
}
#endif
}
/*! This routine frees the memory for the particle storage. Note: We don't
* actually bother to call it in the code... When the program terminats,
* the memory will be automatically freed by the operating system.
*/
void free_memory(void)
{
#ifdef GAS_ACCRETION
- if(N_acc > 0)
+ if(N_gas_acc > 0)
free(SphAcc);
+
+ if(NumPart_acc > 0)
+ free(Acc);
#endif
#ifdef STELLAR_PROP
if(All.MaxPartStars > 0)
free(StP);
#endif
if(All.MaxPartSph > 0)
free(SphP);
if(All.MaxPart > 0)
free(P);
}
diff --git a/src/allvars.c b/src/allvars.c
index a89acb1..076fe9f 100644
--- a/src/allvars.c
+++ b/src/allvars.c
@@ -1,475 +1,479 @@
/*! \file allvars.c
* \brief provides instances of all global variables.
*/
#include <stdio.h>
#include <gsl/gsl_rng.h>
#include "tags.h"
#include "allvars.h"
int SetMinTimeStepForActives=0;
int ThisTask; /*!< the rank of the local processor */
int NTask; /*!< number of processors */
int PTask; /*!< smallest integer such that NTask <= 2^PTask */
int NumPart; /*!< number of particles on the LOCAL processor */
int N_gas; /*!< number of gas particles on the LOCAL processor */
#if defined(SFR) || defined(STELLAR_PROP)
int N_stars; /*!< number of stars particle on the LOCAL processor */
#endif
#ifdef MULTIPHASE
int N_sph;
int N_sticky;
int N_stickyflaged;
int N_dark;
int NumColPotLocal; /*!< local number of potentially collisional particles */
int NumColPot; /*!< total number of potentially collisional particles */
int NumColLocal; /*!< local number of collisions */
int NumCol; /*!< total number of collisions */
int NumNoColLocal;
int NumNoCol;
#endif
#ifdef GAS_ACCRETION
-int N_acc;
+int NumPart_acc;
+int N_gas_acc;
#endif
long long Ntype[6]; /*!< total number of particles of each type */
int NtypeLocal[6]; /*!< local number of particles of each type */
int NumForceUpdate; /*!< number of active particles on local processor in current timestep */
int NumSphUpdate; /*!< number of active SPH particles on local processor in current timestep */
#ifdef CHIMIE
int NumStUpdate;
#endif
#ifdef TESSEL
int NumPTUpdate;
#endif
double CPUThisRun; /*!< Sums the CPU time for the process (current submission only) */
#ifdef SPLIT_DOMAIN_USING_TIME
double CPU_Gravity;
#endif
int RestartFlag; /*!< taken from command line used to start code. 0 is normal start-up from
initial conditions, 1 is resuming a run from a set of restart files, while 2
marks a restart from a snapshot file. */
char *Exportflag; /*!< Buffer used for flagging whether a particle needs to be exported to another process */
int *Ngblist; /*!< Buffer to hold indices of neighbours retrieved by the neighbour search routines */
int TreeReconstructFlag; /*!< Signals that a new tree needs to be constructed */
#ifdef SFR
int RearrangeParticlesFlag;/*!< Signals that particles must be rearanged */
#endif
int Flag_FullStep; /*!< This flag signals that the current step involves all particles */
gsl_rng *random_generator; /*!< the employed random number generator of the GSL library */
double RndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#ifdef SFR
double StarFormationRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef FEEDBACK_WIND
double FeedbackWindRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef CHIMIE
double ChimieRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double ChimieKineticFeedbackRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef GAS_ACCRETION
double gasAccretionRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef AB_TURB
//Ornstein-Uhlenbeck variables
double StOUVar;
double* StOUPhases;
gsl_rng* StRng;
//forcing field in fourie space
double* StAmpl;
double* StAka; //phases (real part)
double* StAkb; //phases (imag part)
double* StMode;
int StNModes;
//integertime StTPrev; (yr : ask ?)
int StTPrev;
double StSolWeightNorm;
#endif
#ifdef PY_INTERFACE
int NumPartQ;
int N_gasQ;
long long NtypeQ[6]; /*!< total number of particles of each type */
int NtypeLocalQ[6]; /*!< local number of particles of each type */
double DomainCornerQ[3]; /*!< gives the lower left corner of simulation volume */
double DomainCenterQ[3]; /*!< gives the center of simulation volume */
double DomainLenQ; /*!< gives the (maximum) side-length of simulation volume */
double DomainFacQ; /*!< factor used for converting particle coordinates to a Peano-Hilbert mesh covering the simulation volume */
int DomainMyStartQ; /*!< first domain mesh cell that resides on the local processor */
int DomainMyLastQ; /*!< last domain mesh cell that resides on the local processor */
int *DomainStartListQ; /*!< a table that lists the first domain mesh cell for all processors */
int *DomainEndListQ; /*!< a table that lists the last domain mesh cell for all processors */
double *DomainWorkQ; /*!< a table that gives the total "work" due to the particles stored by each processor */
int *DomainCountQ; /*!< a table that gives the total number of particles held by each processor */
int *DomainCountSphQ; /*!< a table that gives the total number of SPH particles held by each processor */
int *DomainTaskQ; /*!< this table gives for each leaf of the top-level tree the processor it was assigned to */
peanokey *DomainKeyBufQ; /*!< this points to a buffer used during the exchange of particle data */
int NTopnodesQ; /*!< total number of nodes in top-level tree */
int NTopleavesQ; /*!< number of leaves in top-level tree. Each leaf can be assigned to a different processor */
void *CommBufferQ; /*!< points to communication buffer, which is used in the domain decomposition, the
parallel tree-force computation, the SPH routines, etc. */
int NTopnodesQ; /*!< total number of nodes in top-level tree */
int NTopleavesQ; /*!< number of leaves in top-level tree. Each leaf can be assigned to a different processor */
#endif
double DomainCorner[3]; /*!< gives the lower left corner of simulation volume */
double DomainCenter[3]; /*!< gives the center of simulation volume */
double DomainLen; /*!< gives the (maximum) side-length of simulation volume */
double DomainFac; /*!< factor used for converting particle coordinates to a Peano-Hilbert mesh covering the simulation volume */
int DomainMyStart; /*!< first domain mesh cell that resides on the local processor */
int DomainMyLast; /*!< last domain mesh cell that resides on the local processor */
int *DomainStartList; /*!< a table that lists the first domain mesh cell for all processors */
int *DomainEndList; /*!< a table that lists the last domain mesh cell for all processors */
double *DomainWork; /*!< a table that gives the total "work" due to the particles stored by each processor */
int *DomainCount; /*!< a table that gives the total number of particles held by each processor */
int *DomainCountSph; /*!< a table that gives the total number of SPH particles held by each processor */
int *DomainTask; /*!< this table gives for each leaf of the top-level tree the processor it was assigned to */
int *DomainNodeIndex; /*!< this table gives for each leaf of the top-level tree the corresponding node of the gravitational tree */
FLOAT *DomainTreeNodeLen; /*!< this table gives for each leaf of the top-level tree the side-length of the corresponding node of the gravitational tree */
FLOAT *DomainHmax; /*!< this table gives for each leaf of the top-level tree the maximum SPH smoothing length among the particles of the corresponding node of the gravitational tree */
struct DomainNODE
*DomainMoment; /*!< this table stores for each node of the top-level tree corresponding node data from the gravitational tree */
peanokey *DomainKeyBuf; /*!< this points to a buffer used during the exchange of particle data */
peanokey *Key; /*!< a table used for storing Peano-Hilbert keys for particles */
peanokey *KeySorted; /*!< holds a sorted table of Peano-Hilbert keys for all particles, used to construct top-level tree */
int NTopnodes; /*!< total number of nodes in top-level tree */
int NTopleaves; /*!< number of leaves in top-level tree. Each leaf can be assigned to a different processor */
struct topnode_data
*TopNodes; /*!< points to the root node of the top-level tree */
#ifdef PY_INTERFACE
struct topnode_data
*TopNodesQ; /*!< points to the root node of the top-level tree */
#endif
double TimeOfLastTreeConstruction; /*!< holds what it says, only used in connection with FORCETEST */
/* variables for input/output, usually only used on process 0 */
char ParameterFile[MAXLEN_FILENAME]; /*!< file name of parameterfile used for starting the simulation */
FILE *FdInfo; /*!< file handle for info.txt log-file. */
FILE *FdLog ; /*!< file handle for log.txt log-file. */
FILE *FdEnergy; /*!< file handle for energy.txt log-file. */
#ifdef SYSTEMSTATISTICS
FILE *FdSystem;
#endif
FILE *FdTimings; /*!< file handle for timings.txt log-file. */
FILE *FdCPU; /*!< file handle for cpu.txt log-file. */
#ifdef FORCETEST
FILE *FdForceTest; /*!< file handle for forcetest.txt log-file. */
#endif
#ifdef SFR
FILE *FdSfr; /*!< file handle for sfr.txt log-file. */
#endif
#ifdef CHIMIE
FILE *FdChimie; /*!< file handle for chimie log-file. */
#endif
#ifdef MULTIPHASE
FILE *FdPhase; /*!< file handle for phase.txt log-file. */
FILE *FdSticky; /*!< file handle for sticky.txt log-file. */
#endif
#ifdef AGN_ACCRETION
FILE *FdAccretion; /*!< file handle for accretion.txt log-file. */
#endif
#ifdef BONDI_ACCRETION
FILE *FdBondi; /*!< file handle for bondi.txt log-file. */
#endif
#ifdef BUBBLES
FILE *FdBubble; /*!< file handle for bubble.txt log-file. */
#endif
#ifdef GAS_ACCRETION
FILE *FdGasAccretion; /*!< file handle for gas_accretion.txt log-file. */
#endif
double DriftTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological drift factors */
double GravKickTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological kick factor for gravitational forces */
double HydroKickTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological kick factor for hydrodynmical forces */
#ifdef COSMICTIME
double CosmicTimeTable[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
double FullCosmicTimeTable[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
double FullCosmicTimeTableInv[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
#endif
void *CommBuffer; /*!< points to communication buffer, which is used in the domain decomposition, the
parallel tree-force computation, the SPH routines, etc. */
/*! This structure contains data which is the SAME for all tasks (mostly code parameters read from the
* parameter file). Holding this data in a structure is convenient for writing/reading the restart file, and
* it allows the introduction of new global variables in a simple way. The only thing to do is to introduce
* them into this structure.
*/
struct global_data_all_processes
All;
/*! This structure holds all the information that is
* stored for each particle of the simulation.
*/
struct particle_data
*P, /*!< holds particle data on local processor */
*DomainPartBuf; /*!< buffer for particle data used in domain decomposition */
#ifdef PY_INTERFACE
struct particle_data
*Q, /*!< holds particle data on local processor */
*DomainPartBufQ; /*!< buffer for particle data used in domain decomposition */
#endif
/* the following struture holds data that is stored for each SPH particle in addition to the collisionless
* variables.
*/
struct sph_particle_data
*SphP, /*!< holds SPH particle data on local processor */
*DomainSphBuf; /*!< buffer for SPH particle data in domain decomposition */
#ifdef GAS_ACCRETION
struct acc_particle_data
+ *Acc;
+
+struct gas_acc_particle_data
*SphAcc;
#endif
#ifdef PY_INTERFACE
struct sph_particle_data
*SphQ, /*!< holds SPH particle data on local processor */
*DomainSphBufQ; /*!< buffer for SPH particle data in domain decomposition */
#endif
#ifdef STELLAR_PROP
/* the following struture holds data that is stored for each SPH particle in addition to the collisionless
* variables.
*/
struct st_particle_data
*StP, /*!< holds ST particle data on local processor */
*DomainStBuf; /*!< buffer for ST particle data in domain decomposition */
#endif
/* Variables for Tree
*/
int MaxNodes; /*!< maximum allowed number of internal nodes */
int Numnodestree; /*!< number of (internal) nodes in each tree */
struct NODE
*Nodes_base, /*!< points to the actual memory allocted for the nodes */
*Nodes; /*!< this is a pointer used to access the nodes which is shifted such that Nodes[All.MaxPart]
gives the first allocated node */
int *Nextnode; /*!< gives next node in tree walk */
int *Father; /*!< gives parent node in tree */
struct extNODE /*!< this structure holds additional tree-node information which is not needed in the actual gravity computation */
*Extnodes_base, /*!< points to the actual memory allocted for the extended node information */
*Extnodes; /*!< provides shifted access to extended node information, parallel to Nodes/Nodes_base */
/*! Header for the standard file format.
*/
struct io_header
header; /*!< holds header for snapshot files */
#ifdef CHIMIE_EXTRAHEADER
/*! Header for the chimie part.
*/
struct io_chimie_extraheader
chimie_extraheader;
#endif
char Tab_IO_Labels[IO_NBLOCKS][4]; /*<! This table holds four-byte character tags used for fileformat 2 */
/* global state of system, used for global statistics
*/
struct state_of_system
SysState; /*<! Structure for storing some global statistics about the simulation. */
/*! This structure contains data related to the energy budget.
These values are different for each task. It need to be stored
in the restart flag.
*/
struct local_state_of_system
LocalSysState; /*<! Structure for storing some local statistics about the simulation. */
/* Various structures for communication
*/
struct gravdata_in
*GravDataIn, /*!< holds particle data to be exported to other processors */
*GravDataGet, /*!< holds particle data imported from other processors */
*GravDataResult, /*!< holds the partial results computed for imported particles. Note: We use GravDataResult = GravDataGet, such that the result replaces the imported data */
*GravDataOut; /*!< holds partial results received from other processors. This will overwrite the GravDataIn array */
struct gravdata_index
*GravDataIndexTable; /*!< the particles to be exported are grouped by task-number. This table allows the results to be disentangled again and to be assigned to the correct particle */
struct densdata_in
*DensDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*DensDataGet; /*!< holds imported particle data for SPH density computation */
struct densdata_out
*DensDataResult, /*!< stores the locally computed SPH density results for imported particles */
*DensDataPartialResult; /*!< imported partial SPH density results from other processors */
struct hydrodata_in
*HydroDataIn, /*!< holds particle data for SPH hydro-force computation to be exported to other processors */
*HydroDataGet; /*!< holds imported particle data for SPH hydro-force computation */
struct hydrodata_out
*HydroDataResult, /*!< stores the locally computed SPH hydro results for imported particles */
*HydroDataPartialResult; /*!< imported partial SPH hydro-force results from other processors */
#ifdef MULTIPHASE
struct stickydata_in
*StickyDataIn,
*StickyDataGet;
struct stickydata_out
*StickyDataResult,
*StickyDataPartialResult;
struct Sticky_index *StickyIndex;
#endif
#ifdef CHIMIE
struct chimiedata_in
*ChimieDataIn, /*!< holds particle data for Chimie computation to be exported to other processors */
*ChimieDataGet; /*!< holds imported particle data for Chimie computation */
struct chimiedata_out
*ChimieDataResult, /*!< stores the locally computed Chimie results for imported particles */
*ChimieDataPartialResult; /*!< imported partial Chimie results from other processors */
struct starsdensdata_in
*StarsDensDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*StarsDensDataGet; /*!< holds imported particle data for SPH density computation */
struct starsdensdata_out
*StarsDensDataResult, /*!< stores the locally computed SPH density results for imported particles */
*StarsDensDataPartialResult; /*!< imported partial SPH density results from other processors */
#endif
#ifdef TESSEL
struct ghostdata_in
*GhostDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*GhostDataGet; /*!< holds imported particle data for SPH density computation */
struct ghostdata_out
*GhostDataResult, /*!< stores the locally computed SPH density results for imported particles */
*GhostDataPartialResult; /*!< imported partial SPH density results from other processors */
//struct ghost_particle_data
// *gP;
int NumgPart;
#endif /* TESSEL */
#ifdef SYNCHRONIZE_NGB_TIMESTEP
struct SynchroinzeNgbTimestepdata_in
*SynchroinzeNgbTimestepDataIn,
*SynchroinzeNgbTimestepDataGet;
#endif
#ifdef PY_INTERFACE
struct sphdata_in
*SphDataIn,
*SphDataGet;
struct sphdata_out
*SphDataResult,
*SphDataPartialResult;
struct denssphdata_in
*DensSphDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*DensSphDataGet; /*!< holds imported particle data for SPH density computation */
struct denssphdata_out
*DensSphDataResult, /*!< stores the locally computed SPH density results for imported particles */
*DensSphDataPartialResult; /*!< imported partial SPH density results from other processors */
#endif
diff --git a/src/allvars.h b/src/allvars.h
index d7d76db..2fc721a 100644
--- a/src/allvars.h
+++ b/src/allvars.h
@@ -1,2076 +1,2095 @@
/*! \file allvars.h
* \brief declares global variables.
*
* This file declares all global variables. Further variables should be added here, and declared as
* 'extern'. The actual existence of these variables is provided by the file 'allvars.c'. To produce
* 'allvars.c' from 'allvars.h', do the following:
*
* - Erase all #define's, typedef's, and enum's
* - add #include "allvars.h", delete the #ifndef ALLVARS_H conditional
* - delete all keywords 'extern'
* - delete all struct definitions enclosed in {...}, e.g.
* "extern struct global_data_all_processes {....} All;"
* becomes "struct global_data_all_processes All;"
*/
#ifndef ALLVARS_H
#define ALLVARS_H
#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_spline.h>
#include <gsl/gsl_integration.h>
#include "tags.h"
#define GADGETVERSION "2.0" /*!< code version string */
#define TIMEBASE (1<<28) /*!< The simulated timespan is mapped onto the integer interval [0,TIMESPAN],
* where TIMESPAN needs to be a power of 2. Note that (1<<28) corresponds to 2^29
*/
#define MAXTOPNODES 200000 /*!< Maximum number of nodes in the top-level tree used for domain decomposition */
typedef long long peanokey; /*!< defines the variable type used for Peano-Hilbert keys */
#define BITS_PER_DIMENSION 18 /*!< Bits per dimension available for Peano-Hilbert order.
Note: If peanokey is defined as type int, the allowed maximum is 10.
If 64-bit integers are used, the maximum is 21 */
#define PEANOCELLS (((peanokey)1)<<(3*BITS_PER_DIMENSION)) /*!< The number of different Peano-Hilbert cells */
#define RNDTABLE 3000 /*!< gives the length of a table with random numbers, refreshed at every timestep.
This is used to allow application of random numbers to a specific particle
in a way that is independent of the number of processors used. */
#define MAX_REAL_NUMBER 1e37
#define MIN_REAL_NUMBER 1e-37
#define MAXLEN_FILENAME 100 /*!< Maximum number of characters for filenames (including the full path) */
#ifdef ISOTHERM_EQS
#define GAMMA (1.0) /*!< index for isothermal gas */
#else
#define GAMMA (5.0/3) /*!< adiabatic index of simulated gas */
#endif
#define GAMMA_MINUS1 (GAMMA-1)
#define HYDROGEN_MASSFRAC 0.76 /*!< mass fraction of hydrogen, relevant only for radiative cooling */
/* Some physical constants in cgs units */
#define GRAVITY 6.672e-8 /*!< Gravitational constant (in cgs units) */
#define SOLAR_MASS 1.989e33
#define SOLAR_LUM 3.826e33
#define RAD_CONST 7.565e-15
#define AVOGADRO 6.0222e23
#define BOLTZMANN 1.3806e-16
#define GAS_CONST 8.31425e7
#define C 2.9979e10
#define PLANCK 6.6262e-27
#define CM_PER_MPC 3.085678e24
#define PROTONMASS 1.6726e-24
#define ELECTRONMASS 9.10953e-28
#define THOMPSON 6.65245e-25
#define ELECTRONCHARGE 4.8032e-10
#define HUBBLE 3.2407789e-18 /* in h/sec */
#define YEAR_IN_SECOND 31536000.0 /* year in sec */
#define FEH_SOLAR 0.00181 /* used only if cooling with metal is on and chimie is off */
#define PI 3.1415926535897931
#define TWOPI 6.2831853071795862
/* Some conversion factors */
#define SEC_PER_MEGAYEAR 3.155e13
#define SEC_PER_YEAR 3.155e7
#ifndef ASMTH
#define ASMTH 1.25 /*!< ASMTH gives the scale of the short-range/long-range force split in units of FFT-mesh cells */
#endif
#ifndef RCUT
#define RCUT 4.5 /*!< RCUT gives the maximum distance (in units of the scale used for the force split) out to
which short-range forces are evaluated in the short-range tree walk. */
#endif
#define MAX_NGB 20000 /*!< defines maximum length of neighbour list */
#define MAXLEN_OUTPUTLIST 500 /*!< maxmimum number of entries in list of snapshot output times */
#define DRIFT_TABLE_LENGTH 1000 /*!< length of the lookup table used to hold the drift and kick factors */
#ifdef COSMICTIME
#define COSMICTIME_TABLE_LENGTH 1000 /*!< length of the lookup table used for the cosmic time computation */
#endif
#define MAXITER 1000 /*!< maxmimum number of steps for SPH neighbour iteration */
#ifdef DOUBLEPRECISION /*!< If defined, the variable type FLOAT is set to "double", otherwise to FLOAT */
#define FLOAT double
#else
#define FLOAT float
#endif
#ifndef TWODIMS
#define NUMDIMS 3 /*!< For 3D-normalized kernel */
#define KERNEL_COEFF_1 2.546479089470 /*!< Coefficients for SPH spline kernel and its derivative */
#define KERNEL_COEFF_2 15.278874536822
#define KERNEL_COEFF_3 45.836623610466
#define KERNEL_COEFF_4 30.557749073644
#define KERNEL_COEFF_5 5.092958178941
#define KERNEL_COEFF_6 (-15.278874536822)
#define NORM_COEFF 4.188790204786 /*!< Coefficient for kernel normalization. Note: 4.0/3 * PI = 4.188790204786 */
#else
#define NUMDIMS 2 /*!< For 2D-normalized kernel */
#define KERNEL_COEFF_1 (5.0/7*2.546479089470) /*!< Coefficients for SPH spline kernel and its derivative */
#define KERNEL_COEFF_2 (5.0/7*15.278874536822)
#define KERNEL_COEFF_3 (5.0/7*45.836623610466)
#define KERNEL_COEFF_4 (5.0/7*30.557749073644)
#define KERNEL_COEFF_5 (5.0/7*5.092958178941)
#define KERNEL_COEFF_6 (5.0/7*(-15.278874536822))
#define NORM_COEFF M_PI /*!< Coefficient for kernel normalization. */
#endif
#ifdef MULTIPHASE
#define GAS_SPH 0
#define GAS_STICKY 1
#define GAS_DARK 2
#endif
#if defined(SFR) || defined(STELLAR_PROP)
#define ST 1
#endif
#ifdef CHIMIE
#define NELEMENTS 6
#define MAXNELEMENTS 64
#define FIRST_ELEMENT "Fe"
#define FE 0
#endif
#ifdef COOLING
#define COOLING_NMETALICITIES 9
#define COOLING_NTEMPERATURES 171
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
#define VELOCITY_DISPERSION_SIZE 3
#endif
extern int SetMinTimeStepForActives;
extern int ThisTask; /*!< the rank of the local processor */
extern int NTask; /*!< number of processors */
extern int PTask; /*!< smallest integer such that NTask <= 2^PTask */
extern int NumPart; /*!< number of particles on the LOCAL processor */
extern int N_gas; /*!< number of gas particles on the LOCAL processor */
#if defined(SFR) || defined(STELLAR_PROP)
extern int N_stars; /*!< number of stars particle on the LOCAL processor */
#endif
#ifdef MULTIPHASE
extern int N_sph;
extern int N_sticky;
extern int N_stickyflaged;
extern int N_dark;
extern int NumColPotLocal; /*!< local number of potentially collisional particles */
extern int NumColPot; /*!< total number of potentially collisional particles */
extern int NumColLocal; /*!< local number of collisions */
extern int NumCol; /*!< total number of collisions */
extern int NumNoColLocal;
extern int NumNoCol;
#endif
#ifdef GAS_ACCRETION
-extern int N_acc;
+extern int NumPart_acc;
+extern int N_gas_acc;
#endif
extern long long Ntype[6]; /*!< total number of particles of each type */
extern int NtypeLocal[6]; /*!< local number of particles of each type */
extern int NumForceUpdate; /*!< number of active particles on local processor in current timestep */
extern int NumSphUpdate; /*!< number of active SPH particles on local processor in current timestep */
#ifdef CHIMIE
extern int NumStUpdate;
#endif
#ifdef TESSEL
extern int NumPTUpdate;
#endif
extern double CPUThisRun; /*!< Sums the CPU time for the process (current submission only) */
#ifdef SPLIT_DOMAIN_USING_TIME
extern double CPU_Gravity;
#endif
extern int RestartFlag; /*!< taken from command line used to start code. 0 is normal start-up from
initial conditions, 1 is resuming a run from a set of restart files, while 2
marks a restart from a snapshot file. */
extern char *Exportflag; /*!< Buffer used for flagging whether a particle needs to be exported to another process */
extern int *Ngblist; /*!< Buffer to hold indices of neighbours retrieved by the neighbour search routines */
extern int TreeReconstructFlag; /*!< Signals that a new tree needs to be constructed */
#ifdef SFR
extern int RearrangeParticlesFlag;/*!< Signals that particles must be rearanged */
#endif
extern int Flag_FullStep; /*!< This flag signals that the current step involves all particles */
extern gsl_rng *random_generator; /*!< the employed random number generator of the GSL library */
extern double RndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#ifdef SFR
extern double StarFormationRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef FEEDBACK_WIND
extern double FeedbackWindRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef CHIMIE
extern double ChimieRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
extern double ChimieKineticFeedbackRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef GAS_ACCRETION
extern double gasAccretionRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef AB_TURB
//Ornstein-Uhlenbeck variables
extern double StOUVar;
extern double* StOUPhases;
extern gsl_rng* StRng;
//forcing field in fourie space
extern double* StAmpl;
extern double* StAka; //phases (real part)
extern double* StAkb; //phases (imag part)
extern double* StMode;
extern int StNModes;
//integertime StTPrev; (yr : ask ?)
extern int StTPrev;
extern double StSolWeightNorm;
#endif
#ifdef PY_INTERFACE
extern int NumPartQ;
extern int N_gasQ;
extern long long NtypeQ[6]; /*!< total number of particles of each type */
extern int NtypeLocalQ[6]; /*!< local number of particles of each type */
extern double DomainCornerQ[3]; /*!< gives the lower left corner of simulation volume */
extern double DomainCenterQ[3]; /*!< gives the center of simulation volume */
extern double DomainLenQ; /*!< gives the (maximum) side-length of simulation volume */
extern double DomainFacQ; /*!< factor used for converting particle coordinates to a Peano-Hilbert mesh covering the simulation volume */
extern int DomainMyStartQ; /*!< first domain mesh cell that resides on the local processor */
extern int DomainMyLastQ; /*!< last domain mesh cell that resides on the local processor */
extern int *DomainStartListQ; /*!< a table that lists the first domain mesh cell for all processors */
extern int *DomainEndListQ; /*!< a table that lists the last domain mesh cell for all processors */
extern double *DomainWorkQ; /*!< a table that gives the total "work" due to the particles stored by each processor */
extern int *DomainCountQ; /*!< a table that gives the total number of particles held by each processor */
extern int *DomainCountSphQ; /*!< a table that gives the total number of SPH particles held by each processor */
extern int *DomainTaskQ; /*!< this table gives for each leaf of the top-level tree the processor it was assigned to */
extern peanokey *DomainKeyBufQ; /*!< this points to a buffer used during the exchange of particle data */
extern int NTopnodesQ; /*!< total number of nodes in top-level tree */
extern int NTopleavesQ; /*!< number of leaves in top-level tree. Each leaf can be assigned to a different processor */
extern void *CommBufferQ; /*!< points to communication buffer, which is used in the domain decomposition, the
parallel tree-force computation, the SPH routines, etc. */
#endif
extern double DomainCorner[3]; /*!< gives the lower left corner of simulation volume */
extern double DomainCenter[3]; /*!< gives the center of simulation volume */
extern double DomainLen; /*!< gives the (maximum) side-length of simulation volume */
extern double DomainFac; /*!< factor used for converting particle coordinates to a Peano-Hilbert mesh covering the simulation volume */
extern int DomainMyStart; /*!< first domain mesh cell that resides on the local processor */
extern int DomainMyLast; /*!< last domain mesh cell that resides on the local processor */
extern int *DomainStartList; /*!< a table that lists the first domain mesh cell for all processors */
extern int *DomainEndList; /*!< a table that lists the last domain mesh cell for all processors */
extern double *DomainWork; /*!< a table that gives the total "work" due to the particles stored by each processor */
extern int *DomainCount; /*!< a table that gives the total number of particles held by each processor */
extern int *DomainCountSph; /*!< a table that gives the total number of SPH particles held by each processor */
extern int *DomainTask; /*!< this table gives for each leaf of the top-level tree the processor it was assigned to */
extern int *DomainNodeIndex; /*!< this table gives for each leaf of the top-level tree the corresponding node of the gravitational tree */
extern FLOAT *DomainTreeNodeLen; /*!< this table gives for each leaf of the top-level tree the side-length of the corresponding node of the gravitational tree */
extern FLOAT *DomainHmax; /*!< this table gives for each leaf of the top-level tree the maximum SPH smoothing length among the particles of the corresponding node of the gravitational tree */
extern struct DomainNODE
{
FLOAT s[3]; /*!< center-of-mass coordinates */
FLOAT vs[3]; /*!< center-of-mass velocities */
FLOAT mass; /*!< mass of node */
#ifdef STELLAR_FLUX
FLOAT starlum; /*!< star luminosity of node */
#endif
#ifdef UNEQUALSOFTENINGS
#ifndef ADAPTIVE_GRAVSOFT_FORGAS
int bitflags; /*!< this bit-field encodes the particle type with the largest softening among the particles of the nodes, and whether there are particles with different softening in the node */
#else
FLOAT maxsoft; /*!< hold the maximum gravitational softening of particles in the
node if the ADAPTIVE_GRAVSOFT_FORGAS option is selected */
#endif
#endif
}
*DomainMoment; /*!< this table stores for each node of the top-level tree corresponding node data from the gravitational tree */
extern peanokey *DomainKeyBuf; /*!< this points to a buffer used during the exchange of particle data */
extern peanokey *Key; /*!< a table used for storing Peano-Hilbert keys for particles */
extern peanokey *KeySorted; /*!< holds a sorted table of Peano-Hilbert keys for all particles, used to construct top-level tree */
extern int NTopnodes; /*!< total number of nodes in top-level tree */
extern int NTopleaves; /*!< number of leaves in top-level tree. Each leaf can be assigned to a different processor */
extern struct topnode_data
{
int Daughter; /*!< index of first daughter cell (out of 8) of top-level node */
int Pstart; /*!< for the present top-level node, this gives the index of the first node in the concatenated list of topnodes collected from all processors */
int Blocks; /*!< for the present top-level node, this gives the number of corresponding nodes in the concatenated list of topnodes collected from all processors */
int Leaf; /*!< if the node is a leaf, this gives its number when all leaves are traversed in Peano-Hilbert order */
peanokey Size; /*!< number of Peano-Hilbert mesh-cells represented by top-level node */
peanokey StartKey; /*!< first Peano-Hilbert key in top-level node */
long long Count; /*!< counts the number of particles in this top-level node */
}
#ifdef PY_INTERFACE
*TopNodesQ,
#endif
*TopNodes; /*!< points to the root node of the top-level tree */
extern double TimeOfLastTreeConstruction; /*!< holds what it says, only used in connection with FORCETEST */
/* variables for input/output, usually only used on process 0 */
extern char ParameterFile[MAXLEN_FILENAME]; /*!< file name of parameterfile used for starting the simulation */
extern FILE *FdInfo; /*!< file handle for info.txt log-file. */
extern FILE *FdLog; /*!< file handle for log.txt log-file. */
extern FILE *FdEnergy; /*!< file handle for energy.txt log-file. */
#ifdef SYSTEMSTATISTICS
extern FILE *FdSystem;
#endif
extern FILE *FdTimings; /*!< file handle for timings.txt log-file. */
extern FILE *FdCPU; /*!< file handle for cpu.txt log-file. */
#ifdef FORCETEST
extern FILE *FdForceTest; /*!< file handle for forcetest.txt log-file. */
#endif
#ifdef SFR
extern FILE *FdSfr; /*!< file handle for sfr.txt log-file. */
#endif
#ifdef CHIMIE
extern FILE *FdChimie; /*!< file handle for chimie log-file. */
#endif
#ifdef MULTIPHASE
extern FILE *FdPhase; /*!< file handle for pase.txt log-file. */
extern FILE *FdSticky; /*!< file handle for sticky.txt log-file. */
#endif
#ifdef AGN_ACCRETION
extern FILE *FdAccretion; /*!< file handle for accretion.txt log-file. */
#endif
#ifdef BONDI_ACCRETION
extern FILE *FdBondi; /*!< file handle for bondi.txt log-file. */
#endif
#ifdef BUBBLES
extern FILE *FdBubble; /*!< file handle for bubble.txt log-file. */
#endif
#ifdef GAS_ACCRETION
extern FILE *FdGasAccretion; /*!< file handle for gas_accretion.txt log-file. */
#endif
extern double DriftTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological drift factors */
extern double GravKickTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological kick factor for gravitational forces */
extern double HydroKickTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological kick factor for hydrodynmical forces */
#ifdef COSMICTIME
extern double CosmicTimeTable[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
extern double FullCosmicTimeTable[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
extern double FullCosmicTimeTableInv[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
#endif
extern void *CommBuffer; /*!< points to communication buffer, which is used in the domain decomposition, the
parallel tree-force computation, the SPH routines, etc. */
/*! This structure contains data which is the SAME for all tasks (mostly code parameters read from the
* parameter file). Holding this data in a structure is convenient for writing/reading the restart file, and
* it allows the introduction of new global variables in a simple way. The only thing to do is to introduce
* them into this structure.
*/
extern struct global_data_all_processes
{
long long TotNumPart; /*!< total particle numbers (global value) */
long long TotN_gas; /*!< total gas particle number (global value) */
#ifdef GAS_ACCRETION
- long long TotN_acc;
+ long long TotNumPart_acc;
+ long long TotN_gas_acc;
#endif
#ifdef PY_INTERFACE
long long TotNumPartQ; /*!< total particle numbers (global value) */
long long TotN_gasQ; /*!< total gas particle number (global value) */
int MaxPartQ; /*!< This gives the maxmimum number of particles that can be stored on one processor. */
int MaxPartSphQ; /*!< This gives the maxmimum number of SPH particles that can be stored on one processor. */
int BunchSizeSph;
int BunchSizeDensitySph;
double ForceSofteningQ;
#endif
#if defined(SFR) || defined(STELLAR_PROP)
long long TotN_stars; /*!< total stars particle number (global value) */
#endif
#ifdef MULTIPHASE
long long TotN_sph; /*!< total sph particle number (global value) */
long long TotN_sticky; /*!< total sticky particle number (global value) */
long long TotN_stickyflaged; /*!< total sticky flaged particle number (global value) */
long long TotN_stickyactive; /*!< total sticky active particle number (global value) */
long long TotN_dark; /*!< total dark particle number (global value) */
#endif
int MaxPart; /*!< This gives the maxmimum number of particles that can be stored on one processor. */
int MaxPartSph; /*!< This gives the maxmimum number of SPH particles that can be stored on one processor. */
#ifdef TESSEL
int MaxgPart;
#endif
#ifdef STELLAR_PROP
int MaxPartStars; /*!< This gives the maxmimum number of Star particles that can be stored on one processor. */
#endif
double BoxSize; /*!< Boxsize in case periodic boundary conditions are used */
int ICFormat; /*!< selects different versions of IC file-format */
int SnapFormat; /*!< selects different versions of snapshot file-formats */
int NumFilesPerSnapshot; /*!< number of files in multi-file snapshot dumps */
int NumFilesWrittenInParallel;/*!< maximum number of files that may be written simultaneously when
writing/reading restart-files, or when writing snapshot files */
int BufferSize; /*!< size of communication buffer in MB */
int BunchSizeForce; /*!< number of particles fitting into the buffer in the parallel tree-force algorithm */
int BunchSizeDensity; /*!< number of particles fitting into the communication buffer in the density computation */
int BunchSizeHydro; /*!< number of particles fitting into the communication buffer in the SPH hydrodynamical force computation */
int BunchSizeDomain; /*!< number of particles fitting into the communication buffer in the domain decomposition */
#ifdef MULTIPHASE
int BunchSizeSticky; /*!< number of particles fitting into the communication buffer in the Chimie computation */
#endif
#ifdef CHIMIE
int BunchSizeChimie; /*!< number of particles fitting into the communication buffer in the Chimie computation */
int BunchSizeStarsDensity; /*!< number of particles fitting into the communication buffer in the star density computation */
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
int BunchSizeSynchronizeNgBTimestep;
#endif
#ifdef TESSEL
int BunchSizeGhost;
#endif
double PartAllocFactor; /*!< in order to maintain work-load balance, the particle load will usually
NOT be balanced. Each processor allocates memory for PartAllocFactor times
the average number of particles to allow for that */
double TreeAllocFactor; /*!< Each processor allocates a number of nodes which is TreeAllocFactor times
the maximum(!) number of particles. Note: A typical local tree for N
particles needs usually about ~0.65*N nodes. */
#ifdef SFR
double StarsAllocFactor; /*!< Estimated fraction of gas particles that will form stars during the simulation
This allow to reduce the memory stored for stellar particles */
#endif
/* some SPH parameters */
double DesNumNgb; /*!< Desired number of SPH neighbours */
double MaxNumNgbDeviation; /*!< Maximum allowed deviation neighbour number */
double ArtBulkViscConst; /*!< Sets the parameter \f$\alpha\f$ of the artificial viscosity */
#ifdef ART_CONDUCTIVITY
double ArtCondConst; /*!< Sets the parameter \f$\alpha\f$ of the artificial conductivity */
double ArtCondThreshold;
#endif
double InitGasTemp; /*!< may be used to set the temperature in the IC's */
double MinGasTemp; /*!< may be used to set a floor for the gas temperature */
double MinEgySpec; /*!< the minimum allowed temperature expressed as energy per unit mass */
/* Usefull constants */
double Boltzmann;
double ProtonMass;
double mumh;
#ifdef COOLING
/* Cooling parameters */
double *logT;
double *logL;
gsl_interp_accel *acc_cooling_spline;
gsl_spline *cooling_spline;
double CoolingType;
#ifdef PYCOOL
char * CoolingFile;
#else
char CoolingFile[MAXLEN_FILENAME]; /*!< cooling file */
#endif
double CutofCoolingTemperature;
/*
new metal dependent cooling
*/
double CoolingParameters_zmin;
double CoolingParameters_zmax;
double CoolingParameters_slz;
double CoolingParameters_tmin;
double CoolingParameters_tmax;
double CoolingParameters_slt;
double CoolingParameters_FeHSolar;
double CoolingParameters_cooling_data_max;
double CoolingParameters_cooling_data[COOLING_NMETALICITIES][COOLING_NTEMPERATURES];
int CoolingParameters_p;
int CoolingParameters_q;
#ifdef LAMBDA_DEPRAZ
float*** COOLING_TABLES_METAL_FREE;
float** COOLING_TABLES_TOTAL_METAL;
float*** ELECTRON_DENSITY_OVER_N_H_TABLES;
float** ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR;
float* HYDROGEN_TABLES;
float* TEMPERATURE_TABLES;
float* HELIUM_ABOUNDANCE_TABLES;
//corresponding sizes
int SIZE_HYDROGEN_TABLES;
int SIZE_TEMPERATURE_TABLES;
int SIZE_HELIUM_ABOUNDANCE_TABLES;
// current redshift value determining the cooling file
// from which the data is interpolated
float CURRENT_TABLE_REDSHIFT;
#endif
#endif
#ifdef CHIMIE
int ChimieNumberOfParameterFiles;
#ifdef PYCHEM
char * ChimieParameterFile;
#else
char ChimieParameterFile[MAXLEN_FILENAME]; /*!< chimie parameter file */
#endif
double ChimieSupernovaEnergy;
double ChimieKineticFeedbackFraction;
double ChimieWindSpeed;
double ChimieWindTime;
double ChimieSNIaThermalTime;
double ChimieSNIIThermalTime;
double ChimieMaxSizeTimestep;
#ifdef CHIMIE_ONE_SN_ONLY /*!< explode only one sn>*/
int ChimieOneSN;
#endif
#endif
#if defined (CHIMIE) || defined (COOLING)
double InitGasMetallicity;
#endif
#if !defined (HEATING_PE)
double HeatingPeElectronFraction;
#endif
#if !defined (HEATING_PE) || defined (STELLAR_FLUX) || defined (EXTERNAL_FLUX)
double HeatingPeSolarEnergyDensity;
#endif
#if !defined (HEATING_PE) || defined (STELLAR_FLUX)
double HeatingPeLMRatioGas;
double HeatingPeLMRatioHalo;
double HeatingPeLMRatioDisk;
double HeatingPeLMRatioBulge;
double HeatingPeLMRatioStars;
double HeatingPeLMRatioBndry;
double HeatingPeLMRatio[6];
#endif
#ifdef EXTERNAL_FLUX
double HeatingExternalFLuxEnergyDensity;
#endif
#ifdef MULTIPHASE
double CriticalTemperature;
double CriticalEgySpec;
double CriticalNonCollisionalTemperature;
double CriticalNonCollisionalEgySpec;
#ifdef COLDGAS_CYCLE
double ColdGasCycleTransitionTime;
double ColdGasCycleTransitionParameter;
#endif
#endif
#ifdef MULTIPHASE
/* some STICKY parameters */
int StickyUseGridForCollisions;
double StickyTime; /*!< Cooling time of sticky particle collision */
double StickyCollisionTime;
double StickyLastCollisionTime;
double StickyIdleTime;
double StickyMinVelocity;
double StickyMaxVelocity;
int StickyGridNx;
int StickyGridNy;
int StickyGridNz;
double StickyGridXmin;
double StickyGridXmax;
double StickyGridYmin;
double StickyGridYmax;
double StickyGridZmin;
double StickyGridZmax;
double StickyLambda;
double StickyDensity;
double StickyDensityPower;
double StickyBetaR;
double StickyBetaT;
double StickyRsphFact; /*!< Fraction of the sph radius used in sticky particle */
#endif
#ifdef OUTERPOTENTIAL
#ifdef NFW
double HaloConcentration;
double HaloMass;
double GasMassFraction;
double NFWPotentialCte;
double Rs;
#endif
#ifdef PLUMMER
double PlummerMass;
double PlummerSoftenning;
double PlummerPotentialCte;
#endif
#ifdef MIYAMOTONAGAI
double MiyamotoNagaiMass;
double MiyamotoNagaiHr;
double MiyamotoNagaiHz;
double MiyamotoNagaiPotentialCte;
#endif
#ifdef PISOTHERM
double Rho0;
double Rc;
double PisothermPotentialCte;
double GasMassFraction;
double PotentialInf;
gsl_function PotentialF;
gsl_integration_workspace *Potentialw;
#endif
#ifdef CORIOLIS
double CoriolisOmegaX;
double CoriolisOmegaY;
double CoriolisOmegaZ;
double CoriolisOmegaX0;
double CoriolisOmegaY0;
double CoriolisOmegaZ0;
#endif
#endif
#ifdef SFR
int StarFormationNStarsFromGas;
double StarFormationStarMass;
double StarFormationMgMsFraction;
int StarFormationType;
double StarFormationCstar;
double StarFormationTime;
double StarFormationDensity;
double StarFormationTemperature;
double ThresholdDensity;
#endif
#ifdef FEEDBACK
double SupernovaTime;
#endif
#ifdef FEEDBACK_WIND
double SupernovaWindEgySpecPerMassUnit;
double SupernovaWindFractionInEgyKin;
double SupernovaWindParameter;
double SupernovaWindSpeed;
double SupernovaWindIntAccuracy;
#endif
#ifdef AGN_ACCRETION
double TimeBetAccretion;
double AccretionRadius;
double AGNFactor;
double MinMTotInRa;
double TimeLastAccretion;
double LastMTotInRa;
double MTotInRa;
double dMTotInRa;
#endif
#ifdef BUBBLES
char BubblesInitFile[MAXLEN_FILENAME]; /*!< bubble file */
double *BubblesTime;
double *BubblesD;
double *BubblesR;
double *BubblesE;
double *BubblesA;
double *BubblesB;
int BubblesIndex;
double BubblesAlpha;
double BubblesBeta;
double BubblesDelta;
double BubblesRadiusFactor;
double EnergyBubbles;
#endif
#ifdef AGN_HEATING
double AGNHeatingPower;
double AGNHeatingRmax;
#endif
#ifdef BONDI_ACCRETION
double BondiEfficiency;
double BondiBlackHoleMass;
double BondiHsmlFactor;
double BondiPower;
double BondiTimeBet;
double BondiTimeLast;
#endif
#if defined (AGN_ACCRETION) || defined (BONDI_ACCRETION)
double LightSpeed;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
double ArtBulkViscConstMin;
double ArtBulkViscConstMax;
double ArtBulkViscConstL;
#endif
#ifdef AB_TURB
double StDecay;
double StEnergy;
double StDtFreq;
double StKmin;
double StKmax;
double StSolWeight;
double StAmplFac;
int StSpectForm;
int StSeed;
#endif
#ifdef GAS_ACCRETION
- double GasAccretionParticleMass;
+ double AccretionParticleMass[6];
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
int NgbFactorTimestep;
#endif
/* some force counters */
long long TotNumOfForces; /*!< counts total number of force computations */
long long NumForcesSinceLastDomainDecomp; /*!< count particle updates since last domain decomposition */
/* system of units */
double G; /*!< Gravity-constant in internal units */
double UnitTime_in_s; /*!< factor to convert internal time unit to seconds/h */
double UnitMass_in_g; /*!< factor to convert internal mass unit to grams/h */
double UnitVelocity_in_cm_per_s; /*!< factor to convert intqernal velocity unit to cm/sec */
double UnitLength_in_cm; /*!< factor to convert internal length unit to cm/h */
double UnitPressure_in_cgs; /*!< factor to convert internal pressure unit to cgs units (little 'h' still around!) */
double UnitDensity_in_cgs; /*!< factor to convert internal length unit to g/cm^3*h^2 */
double UnitCoolingRate_in_cgs; /*!< factor to convert internal cooling rate to cgs units */
double UnitEnergy_in_cgs; /*!< factor to convert internal energy to cgs units */
double UnitTime_in_Megayears; /*!< factor to convert internal time to megayears/h */
double GravityConstantInternal; /*!< If set to zero in the parameterfile, the internal value of the
gravitational constant is set to the Newtonian value based on the system of
units specified. Otherwise the value provided is taken as internal gravity constant G. */
/* Cosmological parameters */
double Hubble; /*!< Hubble-constant in internal units */
double Omega0; /*!< matter density in units of the critical density (at z=0)*/
double OmegaLambda; /*!< vaccum energy density relative to crictical density (at z=0) */
double OmegaBaryon; /*!< baryon density in units of the critical density (at z=0)*/
double HubbleParam; /*!< little `h', i.e. Hubble constant in units of 100 km/s/Mpc. Only needed to get absolute physical values for cooling physics */
/* Code options */
int ComovingIntegrationOn; /*!< flags that comoving integration is enabled */
int PeriodicBoundariesOn; /*!< flags that periodic boundaries are enabled */
int ResubmitOn; /*!< flags that automatic resubmission of job to queue system is enabled */
int TypeOfOpeningCriterion; /*!< determines tree cell-opening criterion: 0 for Barnes-Hut, 1 for relative criterion */
int TypeOfTimestepCriterion; /*!< gives type of timestep criterion (only 0 supported right now - unlike gadget-1.1) */
int OutputListOn; /*!< flags that output times are listed in a specified file */
/* Parameters determining output frequency */
int SnapshotFileCount; /*!< number of snapshot that is written next */
double TimeBetSnapshot; /*!< simulation time interval between snapshot files */
double TimeOfFirstSnapshot; /*!< simulation time of first snapshot files */
double CpuTimeBetRestartFile; /*!< cpu-time between regularly generated restart files */
double TimeLastRestartFile; /*!< cpu-time when last restart-file was written */
double TimeBetStatistics; /*!< simulation time interval between computations of energy statistics */
double TimeLastStatistics; /*!< simulation time when the energy statistics was computed the last time */
int NumCurrentTiStep; /*!< counts the number of system steps taken up to this point */
/* Current time of the simulation, global step, and end of simulation */
double Time; /*!< current time of the simulation */
double TimeBegin; /*!< time of initial conditions of the simulation */
double TimeStep; /*!< difference between current times of previous and current timestep */
double TimeMax; /*!< marks the point of time until the simulation is to be evolved */
/* variables for organizing discrete timeline */
double Timebase_interval; /*!< factor to convert from floating point time interval to integer timeline */
int Ti_Current; /*!< current time on integer timeline */
int Ti_nextoutput; /*!< next output time on integer timeline */
#ifdef FLEXSTEPS
int PresentMinStep; /*!< If FLEXSTEPS is used, particle timesteps are chosen as multiples of the present minimum timestep. */
int PresentMaxStep; /*!< If FLEXSTEPS is used, this is the maximum timestep in timeline units, rounded down to the next power 2 division */
#endif
#ifdef PMGRID
int PM_Ti_endstep; /*!< begin of present long-range timestep */
int PM_Ti_begstep; /*!< end of present long-range timestep */
#endif
/* Placement of PM grids */
#ifdef PMGRID
double Asmth[2]; /*!< Gives the scale of the long-range/short-range split (in mesh-cells), both for the coarse and the high-res mesh */
double Rcut[2]; /*!< Gives the maximum radius for which the short-range force is evaluated with the tree (in mesh-cells), both for the coarse and the high-res mesh */
double Corner[2][3]; /*!< lower left corner of coarse and high-res PM-mesh */
double UpperCorner[2][3]; /*!< upper right corner of coarse and high-res PM-mesh */
double Xmintot[2][3]; /*!< minimum particle coordinates both for coarse and high-res PM-mesh */
double Xmaxtot[2][3]; /*!< maximum particle coordinates both for coarse and high-res PM-mesh */
double TotalMeshSize[2]; /*!< total extension of coarse and high-res PM-mesh */
#endif
/* Variables that keep track of cumulative CPU consumption */
double TimeLimitCPU; /*!< CPU time limit as defined in parameterfile */
double CPU_TreeConstruction; /*!< time spent for constructing the gravitational tree */
double CPU_TreeWalk; /*!< actual time spent for pure tree-walks */
double CPU_Gravity; /*!< cumulative time used for gravity computation (tree-algorithm only) */
double CPU_Potential; /*!< time used for computing gravitational potentials */
double CPU_Domain; /*!< cumulative time spent for domain decomposition */
double CPU_Snapshot; /*!< time used for writing snapshot files */
double CPU_Total; /*!< cumulative time spent for domain decomposition */
double CPU_CommSum; /*!< accumulated time used for communication, and for collecting partial results, in tree-gravity */
double CPU_Imbalance; /*!< cumulative time lost accross all processors as work-load imbalance in gravitational tree */
double CPU_HydCompWalk; /*!< time used for actual SPH computations, including neighbour search */
double CPU_HydCommSumm; /*!< cumulative time used for communication in SPH, and for collecting partial results */
double CPU_HydImbalance; /*!< cumulative time lost due to work-load imbalance in SPH */
double CPU_Hydro; /*!< cumulative time spent for SPH related computations */
#ifdef SFR
double CPU_StarFormation; /*!< cumulative time spent for star formation computations */
#endif
#ifdef CHIMIE
double CPU_Chimie; /*!< cumulative time spent for chimie computations */
double CPU_ChimieDensCompWalk;
double CPU_ChimieDensCommSumm;
double CPU_ChimieDensImbalance;
double CPU_ChimieDensEnsureNgb;
double CPU_ChimieCompWalk;
double CPU_ChimieCommSumm;
double CPU_ChimieImbalance;
#endif
#ifdef MULTIPHASE
double CPU_Sticky; /*!< cumulative time spent for sticky computations */
#endif
double CPU_EnsureNgb; /*!< time needed to iterate on correct neighbour numbers */
double CPU_Predict; /*!< cumulative time to drift the system forward in time, including dynamic tree updates */
double CPU_TimeLine; /*!< time used for determining new timesteps, and for organizing the timestepping, including kicks of active particles */
double CPU_PM; /*!< time used for long-range gravitational force */
double CPU_Peano; /*!< time required to establish Peano-Hilbert order */
#ifdef DETAILED_CPU_DOMAIN
double CPU_Domain_findExtend;
double CPU_Domain_determineTopTree;
double CPU_Domain_sumCost;
double CPU_Domain_findSplit;
double CPU_Domain_shiftSplit;
double CPU_Domain_countToGo;
double CPU_Domain_exchange;
#endif
#ifdef DETAILED_CPU_GRAVITY
double CPU_Gravity_TreeWalk1;
double CPU_Gravity_TreeWalk2;
double CPU_Gravity_CommSum1;
double CPU_Gravity_CommSum2;
double CPU_Gravity_Imbalance1;
double CPU_Gravity_Imbalance2;
#endif
#ifdef COOLING
double CPU_Cooling;
#endif
#ifdef DETAILED_CPU
double CPU_Leapfrog;
double CPU_Physics;
double CPU_Residual;
double CPU_Accel;
double CPU_Begrun;
#endif
/* tree code opening criterion */
double ErrTolTheta; /*!< BH tree opening angle */
double ErrTolForceAcc; /*!< parameter for relative opening criterion in tree walk */
/* adjusts accuracy of time-integration */
double ErrTolIntAccuracy; /*!< accuracy tolerance parameter \f$ \eta \f$ for timestep criterion. The
timestep is \f$ \Delta t = \sqrt{\frac{2 \eta eps}{a}} \f$ */
double MinSizeTimestep; /*!< minimum allowed timestep. Normally, the simulation terminates if the
timestep determined by the timestep criteria falls below this limit. */
double MaxSizeTimestep; /*!< maximum allowed timestep */
double MaxRMSDisplacementFac; /*!< this determines a global timestep criterion for cosmological simulations
in comoving coordinates. To this end, the code computes the rms velocity
of all particles, and limits the timestep such that the rms displacement
is a fraction of the mean particle separation (determined from the
particle mass and the cosmological parameters). This parameter specifies
this fraction. */
double CourantFac; /*!< SPH-Courant factor */
/* frequency of tree reconstruction/domain decomposition */
double TreeDomainUpdateFrequency; /*!< controls frequency of domain decompositions */
/* Gravitational and hydrodynamical softening lengths (given in terms of an `equivalent' Plummer softening length).
* Five groups of particles are supported 0="gas", 1="halo", 2="disk", 3="bulge", 4="stars", 5="bndry"
*/
double MinGasHsmlFractional; /*!< minimum allowed SPH smoothing length in units of SPH gravitational softening length */
double MinGasHsml; /*!< minimum allowed SPH smoothing length */
double SofteningGas; /*!< comoving gravitational softening lengths for type 0 */
double SofteningHalo; /*!< comoving gravitational softening lengths for type 1 */
double SofteningDisk; /*!< comoving gravitational softening lengths for type 2 */
double SofteningBulge; /*!< comoving gravitational softening lengths for type 3 */
double SofteningStars; /*!< comoving gravitational softening lengths for type 4 */
double SofteningBndry; /*!< comoving gravitational softening lengths for type 5 */
double SofteningGasMaxPhys; /*!< maximum physical softening length for type 0 */
double SofteningHaloMaxPhys; /*!< maximum physical softening length for type 1 */
double SofteningDiskMaxPhys; /*!< maximum physical softening length for type 2 */
double SofteningBulgeMaxPhys; /*!< maximum physical softening length for type 3 */
double SofteningStarsMaxPhys; /*!< maximum physical softening length for type 4 */
double SofteningBndryMaxPhys; /*!< maximum physical softening length for type 5 */
double SofteningTable[6]; /*!< current (comoving) gravitational softening lengths for each particle type */
double ForceSoftening[6]; /*!< the same, but multiplied by a factor 2.8 - at that scale the force is Newtonian */
double MassTable[6]; /*!< Table with particle masses for particle types with equal mass.
If particle masses are all equal for one type, the corresponding entry in MassTable
is set to this value, allowing the size of the snapshot files to be reduced. */
/* some filenames */
char InitCondFile[MAXLEN_FILENAME]; /*!< filename of initial conditions */
char OutputDir[MAXLEN_FILENAME]; /*!< output directory of the code */
char SnapshotFileBase[MAXLEN_FILENAME]; /*!< basename to construct the names of snapshotf files */
char EnergyFile[MAXLEN_FILENAME]; /*!< name of file with energy statistics */
#ifdef SYSTEMSTATISTICS
char SystemFile[MAXLEN_FILENAME];
#endif
char CpuFile[MAXLEN_FILENAME]; /*!< name of file with cpu-time statistics */
char InfoFile[MAXLEN_FILENAME]; /*!< name of log-file with a list of the timesteps taken */
char LogFile[MAXLEN_FILENAME]; /*!< name of log-file with varied info */
#ifdef SFR
char SfrFile[MAXLEN_FILENAME]; /*!< name of file with sfr records */
#endif
#ifdef CHIMIE
char ChimieFile[MAXLEN_FILENAME]; /*!< name of file with chimie records */
#endif
#ifdef MULTIPHASE
char PhaseFile[MAXLEN_FILENAME]; /*!< name of file with phase records */
char StickyFile[MAXLEN_FILENAME]; /*!< name of file with sticky records */
#endif
#ifdef AGN_ACCRETION
char AccretionFile[MAXLEN_FILENAME]; /*!< name of file with accretion records */
#endif
#ifdef BONDI_ACCRETION
char BondiFile[MAXLEN_FILENAME]; /*!< name of file with bondi records */
#endif
#ifdef BUBBLES
char BubbleFile[MAXLEN_FILENAME]; /*!< name of file with bubble records */
#endif
#ifdef GAS_ACCRETION
char GasAccretionFile[MAXLEN_FILENAME]; /*!< name of file with sfr records */
#endif
char TimingsFile[MAXLEN_FILENAME]; /*!< name of file with performance metrics of gravitational tree algorithm */
char RestartFile[MAXLEN_FILENAME]; /*!< basename of restart-files */
char ResubmitCommand[MAXLEN_FILENAME]; /*!< name of script-file that will be executed for automatic restart */
char OutputListFilename[MAXLEN_FILENAME]; /*!< name of file with list of desired output times */
double OutputListTimes[MAXLEN_OUTPUTLIST]; /*!< table with desired output times */
int OutputListLength; /*!< number of output times stored in the table of desired output times */
#ifdef RANDOMSEED_AS_PARAMETER
int RandomSeed; /*!< initial random seed >*/
#endif
}
All; /*!< a container variable for global variables that are equal on all processors */
/*! This structure holds all the information that is
* stored for each particle of the simulation.
*/
extern struct particle_data
{
FLOAT Pos[3]; /*!< particle position at its current time */
FLOAT Mass; /*!< particle mass */
FLOAT Vel[3]; /*!< particle velocity at its current time */
FLOAT GravAccel[3]; /*!< particle acceleration due to gravity */
#ifdef PMGRID
FLOAT GravPM[3]; /*!< particle acceleration due to long-range PM gravity force*/
#endif
#ifdef FORCETEST
FLOAT GravAccelDirect[3]; /*!< particle acceleration when computed with direct summation */
#endif
FLOAT Potential; /*!< gravitational potential */
FLOAT OldAcc; /*!< magnitude of old gravitational force. Used in relative opening criterion */
#ifndef LONGIDS
unsigned int ID; /*!< particle identifier */
#else
unsigned long long ID; /*!< particle identifier */
#endif
int Type; /*!< flags particle type. 0=gas, 1=halo, 2=disk, 3=bulge, 4=stars, 5=bndry */
int Ti_endstep; /*!< marks start of current timestep of particle on integer timeline */
int Ti_begstep; /*!< marks end of current timestep of particle on integer timeline */
#ifdef SYNCHRONIZE_NGB_TIMESTEP
int Old_Ti_endstep; /*!< marks start of old current timestep of particle on integer timeline */
int Old_Ti_begstep; /*!< marks end of old current timestep of particle on integer timeline */
#endif
#ifdef FLEXSTEPS
int FlexStepGrp; /*!< a random 'offset' on the timeline to create a smooth groouping of particles */
#endif
float GravCost; /*!< weight factor used for balancing the work-load */
#ifdef PSEUDOSYMMETRIC
float AphysOld; /*!< magnitude of acceleration in last timestep. Used to make a first order
prediction of the change of acceleration expected in the future, thereby
allowing to guess whether a decrease/increase of the timestep should occur
in the timestep that is started. */
#endif
#ifdef PARTICLE_FLAG
float Flag;
#endif
#ifdef STELLAR_PROP
unsigned int StPIdx; /*!< index to the corresponding StP particle */
#endif
#ifdef TESSEL
int iT; /*!< index of a triangle to which the point belong to */
int IsDone;
int IsAdded; /*!< if the point has already be added in the tesselation */
int ivPoint; /*!< index of first voronoi point */
int nvPoints; /*!< number of voronoi points */
int iMedian;
int nMedians;
double Volume;
double Density;
double Pressure;
double Entropy;
double rSearch; /*!< radius in which particles must search for ngbs */
int iPref; /*!< for a ghost point, index of the reference point */
FLOAT tesselAccel[3];
#endif
# ifdef SYNCHRONIZE_NGB_TIMESTEP
int Ti_step;
#endif
}
*P, /*!< holds particle data on local processor */
#ifdef PY_INTERFACE
*Q,
*DomainPartBufQ, /*!< buffer for particle data used in domain decomposition */
#endif
*DomainPartBuf; /*!< buffer for particle data used in domain decomposition */
/* the following struture holds data that is stored for each SPH particle in addition to the collisionless
* variables.
*/
extern struct sph_particle_data
{
FLOAT Entropy; /*!< current value of entropy (actually entropic function) of particle */
FLOAT Density; /*!< current baryonic mass density of particle */
FLOAT Hsml; /*!< current smoothing length */
FLOAT Left; /*!< lower bound in iterative smoothing length search */
FLOAT Right; /*!< upper bound in iterative smoothing length search */
FLOAT NumNgb; /*!< weighted number of neighbours found */
#ifdef AVOIDNUMNGBPROBLEM
FLOAT OldNumNgb;
#endif
FLOAT Pressure; /*!< current pressure */
FLOAT DtEntropy; /*!< rate of change of entropy */
#ifdef COOLING
//FLOAT EntropyRad; /*!< current value of entropy resulting from the cooling */
FLOAT DtEntropyRad; /*!< rate of change of entropy due to cooling */
FLOAT DtEnergyRad;
#endif
#ifdef STELLAR_FLUX
FLOAT EnergyFlux; /*!< current value of local energy flux - Sph particles */
#endif
#ifdef AGN_HEATING
FLOAT EgySpecAGNHeat; /*!< current value of specific energy radiated of particle - Sph particles */
FLOAT DtEgySpecAGNHeat; /*!< rate of change of specific radiated energy - Sph particles */
FLOAT DtEntropyAGNHeat;
#endif
#ifdef MULTIPHASE
FLOAT StickyTime;
int StickyFlag;
#ifdef COUNT_COLLISIONS
float StickyCollisionNumber;
#endif
#endif
#ifdef FEEDBACK
FLOAT EgySpecFeedback;
FLOAT DtEgySpecFeedback;
FLOAT EnergySN;
FLOAT EnergySNrem;
FLOAT TimeSN;
FLOAT FeedbackVel[3]; /*!< kick due to feedback force */
#endif
#ifdef FEEDBACK_WIND
FLOAT FeedbackWindVel[3]; /*!< kick due to feedback force */
#endif
FLOAT HydroAccel[3]; /*!< acceleration due to hydrodynamical force */
FLOAT VelPred[3]; /*!< predicted SPH particle velocity at the current time */
FLOAT DivVel; /*!< local velocity divergence */
FLOAT CurlVel; /*!< local velocity curl */
FLOAT Rot[3]; /*!< local velocity curl */
FLOAT DhsmlDensityFactor; /*!< correction factor needed in the equation of motion of the conservative entropy formulation of SPH */
FLOAT MaxSignalVel; /*!< maximum "signal velocity" occuring for this particle */
#ifdef MULTIPHASE
int Phase;
int StickyIndex;
int StickyNgb;
int StickyMaxID;
float StickyMaxFs;
FLOAT StickyNewVel[3];
#endif
#ifdef OUTPUTOPTVAR1
FLOAT OptVar1; /*!< optional variable 1 */
#endif
#ifdef OUTPUTOPTVAR2
FLOAT OptVar2; /*!< optional variable 2 */
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
FLOAT VelocityDispersion[VELOCITY_DISPERSION_SIZE]; /*!< velocity dispersion */
#endif
#ifdef CHIMIE
FLOAT Metal[NELEMENTS];
FLOAT dMass; /*!< mass variation due to mass transfere */
#ifdef CHIMIE_THERMAL_FEEDBACK
FLOAT DeltaEgySpec;
FLOAT SNIaThermalTime; /*!< flag particles that got energy from SNIa */
FLOAT SNIIThermalTime; /*!< flag particles that got energy from SNII */
double NumberOfSNIa;
double NumberOfSNII;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
FLOAT WindTime; /*!< flag particles that belongs to the wind */
unsigned int WindFlag; /*!< flag particles that will be part of the wind */
#endif
#endif /*CHIMIE*/
#ifdef ENTROPYPRED
FLOAT EntropyPred; /*!< predicted entropy at the current time */
#endif
#ifdef ART_CONDUCTIVITY
FLOAT EnergyIntPred;
FLOAT GradEnergyInt[3];
#endif
#ifdef AB_TURB
FLOAT TurbAccel[3];
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
double ArtBulkViscConst;
#ifdef ART_VISCO_CD
double DmatCD[3][3];
double TmatCD[3][3];
double DiVelAccurate;
double DiVelTemp;
double ArtBulkViscConstOld;
double R_CD;
FLOAT MaxSignalVelCD;
#endif
#endif
#ifdef GAS_ACCRETION
int ActiveFlag;
#endif
#if PY_INTERFACE
FLOAT Observable;
FLOAT ObsMoment0;
FLOAT ObsMoment1;
FLOAT GradObservable[3];
#endif
# ifdef SYNCHRONIZE_NGB_TIMESTEP
int Ti_minNgbStep;
#endif
#ifdef TIMESTEP_UPDATE_FOR_FEEDBACK
FLOAT FeedbackUpdatedAccel[3]; /*!< acceleration after feedback injection */
#endif
#ifdef DENSITY_INDEPENDENT_SPH
FLOAT EgyWtDensity; /*!< 'effective' rho to use in hydro equations */
FLOAT EntVarPred; /*!< predicted entropy variable */
FLOAT DhsmlEgyDensityFactor; /*!< correction factor for density-independent entropy formulation */
#endif
}
*SphP, /*!< holds SPH particle data on local processor */
#ifdef PY_INTERFACE
*SphQ,
*DomainSphBufQ, /*!< buffer for SPH particle data in domain decomposition */
#endif
*DomainSphBuf; /*!< buffer for SPH particle data in domain decomposition */
+
+
#ifdef GAS_ACCRETION
extern struct acc_particle_data
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Mass;
FLOAT Time;
- FLOAT Entropy;
+ int Type;
int ID;
+}
+ *Acc;
+
+
+ extern struct gas_acc_particle_data
+{
+ FLOAT Entropy;
+#ifdef CHIMIE
FLOAT Metal[NELEMENTS];
+#endif
}
*SphAcc;
#endif
+
+
+
+
+
+
#ifdef STELLAR_PROP
/* the following struture holds data that is stored for each SPH particle in addition to the collisionless
* variables.
*/
extern struct st_particle_data
{
#ifdef CHECK_ID_CORRESPONDENCE
unsigned int ID; /*!< particle identifier (must be the same as P[].ID) only used to check ID correspondance */
#endif
FLOAT FormationTime; /*!< star formation time of particle */
FLOAT InitialMass; /*!< initial stellar mass */
#ifndef LONGIDS
unsigned int IDProj; /*!< id of projenitor particle */
#else
unsigned long long IDProj; /*!< id of projenitor particle */
#endif
FLOAT Metal[NELEMENTS];
FLOAT Density; /*!< current baryonic mass density of particle */
FLOAT Volume; /*!< current volume of particle */
FLOAT Hsml; /*!< current smoothing length */
FLOAT Left; /*!< lower bound in iterative smoothing length search */
FLOAT Right; /*!< upper bound in iterative smoothing length search */
FLOAT NumNgb; /*!< weighted number of neighbours found */
unsigned int PIdx; /*!< index to the corresponding particle */
#ifdef AVOIDNUMNGBPROBLEM
FLOAT OldNumNgb;
#endif
FLOAT DhsmlDensityFactor; /*!< correction factor needed in the equation of motion of the conservative entropy formulation of SPH */
double TotalEjectedGasMass;
double TotalEjectedEltMass[NELEMENTS];
double TotalEjectedEgySpec;
double NumberOfSNIa;
double NumberOfSNII;
#ifdef CHIMIE_KINETIC_FEEDBACK
double NgbMass; /*!< mass of neighbours */
#endif
#ifdef CHIMIE
unsigned int Flag;
#endif
}
*StP, /*!< holds ST particle data on local processor */
*DomainStBuf; /*!< buffer for ST particle data in domain decomposition */
#endif
/* Variables for Tree
*/
extern int MaxNodes; /*!< maximum allowed number of internal nodes */
extern int Numnodestree; /*!< number of (internal) nodes in each tree */
extern struct NODE
{
FLOAT len; /*!< sidelength of treenode */
FLOAT center[3]; /*!< geometrical center of node */
#ifdef ADAPTIVE_GRAVSOFT_FORGAS
FLOAT maxsoft; /*!< hold the maximum gravitational softening of particles in the
node if the ADAPTIVE_GRAVSOFT_FORGAS option is selected */
#endif
#ifdef STELLAR_FLUX
FLOAT starlum ; /*!< star luminosity of node */
#endif
union
{
int suns[8]; /*!< temporary pointers to daughter nodes */
struct
{
FLOAT s[3]; /*!< center of mass of node */
FLOAT mass; /*!< mass of node */
int bitflags; /*!< a bit-field with various information on the node */
int sibling; /*!< this gives the next node in the walk in case the current node can be used */
int nextnode; /*!< this gives the next node in case the current node needs to be opened */
int father; /*!< this gives the parent node of each node (or -1 if we have the root node) */
}
d;
}
u;
}
*Nodes_base, /*!< points to the actual memory allocted for the nodes */
*Nodes; /*!< this is a pointer used to access the nodes which is shifted such that Nodes[All.MaxPart]
gives the first allocated node */
extern int *Nextnode; /*!< gives next node in tree walk */
extern int *Father; /*!< gives parent node in tree */
extern struct extNODE /*!< this structure holds additional tree-node information which is not needed in the actual gravity computation */
{
FLOAT hmax; /*!< maximum SPH smoothing length in node. Only used for gas particles */
FLOAT vs[3]; /*!< center-of-mass velocity */
}
*Extnodes_base, /*!< points to the actual memory allocted for the extended node information */
*Extnodes; /*!< provides shifted access to extended node information, parallel to Nodes/Nodes_base */
/*! Header for the standard file format.
*/
extern struct io_header
{
int npart[6]; /*!< number of particles of each type in this file */
double mass[6]; /*!< mass of particles of each type. If 0, then the masses are explicitly
stored in the mass-block of the snapshot file, otherwise they are omitted */
double time; /*!< time of snapshot file */
double redshift; /*!< redshift of snapshot file */
int flag_sfr; /*!< flags whether the simulation was including star formation */
int flag_feedback; /*!< flags whether feedback was included (obsolete) */
unsigned int npartTotal[6]; /*!< total number of particles of each type in this snapshot. This can be
different from npart if one is dealing with a multi-file snapshot. */
int flag_cooling; /*!< flags whether cooling was included */
int num_files; /*!< number of files in multi-file snapshot */
double BoxSize; /*!< box-size of simulation in case periodic boundaries were used */
double Omega0; /*!< matter density in units of critical density */
double OmegaLambda; /*!< cosmological constant parameter */
double HubbleParam; /*!< Hubble parameter in units of 100 km/sec/Mpc */
int flag_stellarage; /*!< flags whether the file contains formation times of star particles */
int flag_metals; /*!< flags whether the file contains metallicity values for gas and star particles */
unsigned int npartTotalHighWord[6]; /*!< High word of the total number of particles of each type */
int flag_entropy_instead_u; /*!< flags that IC-file contains entropy instead of u */
int flag_chimie_extraheader; /*!< flags that IC-file contains extra-header for chimie */
#ifdef MULTIPHASE
double critical_energy_spec;
#ifdef MESOMACHINE
char fill[38];
#else
char fill[48]; /* use 42 with regor... */
#endif
#else
char fill[56]; /*!< fills to 256 Bytes */
#endif
}
header; /*!< holds header for snapshot files */
#ifdef CHIMIE_EXTRAHEADER
/*! Header for the chimie part.
*/
extern struct io_chimie_extraheader
{
int nelts; /*!< number of chemical element followed */
float SolarAbundances[NELEMENTS];
char labels[256-4-4*(NELEMENTS)];
}
chimie_extraheader;
#endif
#define IO_NBLOCKS 24 /*!< total number of defined information blocks for snapshot files.
Must be equal to the number of entries in "enum iofields" */
enum iofields /*!< this enumeration lists the defined output blocks in snapshot files. Not all of them need to be present. */
{
IO_POS,
IO_VEL,
IO_ID,
IO_MASS,
IO_U,
IO_RHO,
IO_HSML,
IO_POT,
IO_ACCEL,
IO_DTENTR,
IO_TSTP,
IO_ERADSPH,
IO_ERADSTICKY,
IO_ERADFEEDBACK,
IO_ENERGYFLUX,
IO_METALS,
IO_STAR_FORMATIONTIME,
IO_INITIAL_MASS,
IO_STAR_IDPROJ,
IO_STAR_RHO,
IO_STAR_HSML,
IO_STAR_METALS,
IO_OPTVAR1,
IO_OPTVAR2
};
extern char Tab_IO_Labels[IO_NBLOCKS][4]; /*<! This table holds four-byte character tags used for fileformat 2 */
/* global state of system, used for global statistics
*/
extern struct state_of_system
{
double Mass;
double EnergyKin;
double EnergyPot;
double EnergyInt;
#ifdef COOLING
double EnergyRadSph;
#endif
#ifdef AGN_HEATING
double EnergyAGNHeat;
#endif
#ifdef MULTIPHASE
double EnergyRadSticky;
#endif
#ifdef FEEDBACK_WIND
double EnergyFeedbackWind;
#endif
#ifdef BUBBLES
double EnergyBubbles;
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
double EnergyThermalFeedback;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double EnergyKineticFeedback;
#endif
double EnergyTot;
double Momentum[4];
double AngMomentum[4];
double CenterOfMass[4];
double MassComp[6];
double EnergyKinComp[6];
double EnergyPotComp[6];
double EnergyIntComp[6];
#ifdef COOLING
double EnergyRadSphComp[6];
#endif
#ifdef AGN_HEATING
double EnergyAGNHeatComp[6];
#endif
#ifdef MULTIPHASE
double EnergyRadStickyComp[6];
#endif
#ifdef FEEDBACK_WIND
double EnergyFeedbackWindComp[6];
#endif
#ifdef BUBBLES
double EnergyBubblesComp[6];
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
double EnergyThermalFeedbackComp[6];
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double EnergyKineticFeedbackComp[6];
#endif
double EnergyTotComp[6];
double MomentumComp[6][4];
double AngMomentumComp[6][4];
double CenterOfMassComp[6][4];
}
SysState; /*<! Structure for storing some global statistics about the simulation. */
/*! This structure contains data related to the energy budget.
These values are different for each task. It need to be stored
in the restart flag.
*/
extern struct local_state_of_system
{
double EnergyTest;
double EnergyInt1;
double EnergyInt2;
double EnergyKin1;
double EnergyKin2;
#ifdef COOLING
double RadiatedEnergy;
#endif
#ifdef SFR
double StarEnergyInt;
#ifdef FEEDBACK
double StarEnergyFeedback;
#endif
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
double EnergyThermalFeedback;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double EnergyKineticFeedback;
#endif
#ifdef MULTIPHASE
double EnergyRadSticky;
#endif
#ifdef FEEDBACK_WIND
double EnergyFeedbackWind;
#endif
}
LocalSysState; /*<! Structure for storing some local statistics about the simulation. */
/* Various structures for communication
*/
extern struct gravdata_in
{
union
{
FLOAT Pos[3];
FLOAT Acc[3];
FLOAT Potential;
}
u;
#if defined(UNEQUALSOFTENINGS) || defined(STELLAR_FLUX)
int Type;
#ifdef ADAPTIVE_GRAVSOFT_FORGAS
FLOAT Soft;
#endif
#endif
#ifdef STELLAR_FLUX
FLOAT EnergyFlux;
#endif
union
{
FLOAT OldAcc;
int Ninteractions;
}
w;
}
*GravDataIn, /*!< holds particle data to be exported to other processors */
*GravDataGet, /*!< holds particle data imported from other processors */
*GravDataResult, /*!< holds the partial results computed for imported particles. Note: We use GravDataResult = GravDataGet, such that the result replaces the imported data */
*GravDataOut; /*!< holds partial results received from other processors. This will overwrite the GravDataIn array */
extern struct gravdata_index
{
int Task;
int Index;
int SortIndex;
}
*GravDataIndexTable; /*!< the particles to be exported are grouped by task-number. This table allows the results to be disentangled again and to be assigned to the correct particle */
extern struct densdata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
#ifdef MULTIPHASE
int Phase;
#endif
int Index;
int Task;
#ifdef ART_CONDUCTIVITY
FLOAT EnergyIntPred;
#endif
}
*DensDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*DensDataGet; /*!< holds imported particle data for SPH density computation */
extern struct densdata_out
{
FLOAT Rho;
FLOAT Div, Rot[3];
FLOAT DhsmlDensity;
FLOAT Ngb;
#ifdef ART_CONDUCTIVITY
FLOAT GradEnergyInt[3];
#endif
#ifdef DENSITY_INDEPENDENT_SPH
FLOAT EgyRho;
FLOAT DhsmlEgyDensity;
#endif
}
*DensDataResult, /*!< stores the locally computed SPH density results for imported particles */
*DensDataPartialResult; /*!< imported partial SPH density results from other processors */
extern struct hydrodata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
#ifdef FEEDBACK
FLOAT EnergySN;
#endif
#ifdef MULTIPHASE
int Phase;
FLOAT Entropy;
int StickyFlag;
#endif
FLOAT Mass;
FLOAT Density;
FLOAT Pressure;
FLOAT F1;
FLOAT DhsmlDensityFactor;
int Timestep;
int Task;
int Index;
#ifdef WITH_ID_IN_HYDRA
int ID;
#endif
#ifdef ART_CONDUCTIVITY
FLOAT NormGradEnergyInt;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
double ArtBulkViscConst;
#endif
#ifdef DENSITY_INDEPENDENT_SPH
FLOAT EgyRho;
FLOAT EntVarPred;
#endif
}
*HydroDataIn, /*!< holds particle data for SPH hydro-force computation to be exported to other processors */
*HydroDataGet; /*!< holds imported particle data for SPH hydro-force computation */
extern struct hydrodata_out
{
FLOAT Acc[3];
FLOAT DtEntropy;
#ifdef FEEDBACK
FLOAT DtEgySpecFeedback;
FLOAT FeedbackAccel[3]; /*!< acceleration due to feedback force */
#endif
FLOAT MaxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
FLOAT VelocityDispersion[VELOCITY_DISPERSION_SIZE];
#endif
#ifdef MULTIPHASE
FLOAT StickyDVel[3]; /*!< differences in velocities induced by sticky collisions */
#endif
#ifdef OUTPUT_CONDUCTIVITY
FLOAT OptVar2;
#endif
#ifdef ART_VISCO_CD
double DmatCD[3][3];
double TmatCD[3][3];
double R_CD;
FLOAT MaxSignalVelCD;
#endif
}
*HydroDataResult, /*!< stores the locally computed SPH hydro results for imported particles */
*HydroDataPartialResult; /*!< imported partial SPH hydro-force results from other processors */
#ifdef MULTIPHASE
extern struct stickydata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Mass;
FLOAT Hsml;
int ID;
int StickyMaxID;
int StickyNgb;
float StickyMaxFs;
int Task;
int Index;
}
*StickyDataIn, /*!< holds particle data for sticky computation to be exported to other processors */
*StickyDataGet; /*!< holds imported particle data for sticky computation */
extern struct stickydata_out
{
int StickyMaxID;
int StickyNgb;
float StickyMaxFs;
FLOAT StickyNewVel[3];
}
*StickyDataResult, /*!< stores the locally computed sticky results for imported particles */
*StickyDataPartialResult; /*!< imported partial sticky results from other processors */
extern struct Sticky_index
{
int Index;
int CellIndex;
int Flag;
}
*StickyIndex;
#endif
#ifdef CHIMIE
extern struct chimiedata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
#ifndef LONGIDS
unsigned int ID; /*!< particle identifier */
#else
unsigned long long ID; /*!< particle identifier */
#endif
FLOAT Hsml;
#ifdef FEEDBACK
FLOAT EnergySN;
#endif
#ifdef MULTIPHASE
int Phase;
FLOAT Entropy;
int StickyFlag;
#endif
FLOAT Density;
FLOAT Volume;
FLOAT Pressure;
FLOAT F1;
FLOAT DhsmlDensityFactor;
int Timestep;
int Task;
int Index;
double TotalEjectedGasMass;
double TotalEjectedEltMass[NELEMENTS];
double TotalEjectedEgySpec;
double NumberOfSNIa;
double NumberOfSNII;
#ifdef CHIMIE_KINETIC_FEEDBACK
FLOAT NgbMass;
#endif
}
*ChimieDataIn, /*!< holds particle data for Chimie computation to be exported to other processors */
*ChimieDataGet; /*!< holds imported particle data for Chimie computation */
extern struct chimiedata_out
{
FLOAT Acc[3];
FLOAT DtEntropy;
#ifdef FEEDBACK
FLOAT DtEgySpecFeedback;
FLOAT FeedbackAccel[3]; /*!< acceleration due to feedback force */
#endif
FLOAT MaxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
FLOAT VelocityDispersion[VELOCITY_DISPERSION_SIZE];
#endif
#ifdef MULTIPHASE
FLOAT StickyDVel[3]; /*!< differences in velocities induced by sticky collisions */
#endif
}
*ChimieDataResult, /*!< stores the locally computed Chimie results for imported particles */
*ChimieDataPartialResult; /*!< imported partial Chimie results from other processors */
extern struct starsdensdata_in
{
FLOAT Pos[3];
FLOAT Hsml;
int Index;
int Task;
}
*StarsDensDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*StarsDensDataGet; /*!< holds imported particle data for SPH density computation */
extern struct starsdensdata_out
{
FLOAT Rho;
FLOAT Volume;
FLOAT DhsmlDensity;
FLOAT Ngb;
#ifdef CHIMIE_KINETIC_FEEDBACK
FLOAT NgbMass;
#endif
}
*StarsDensDataResult, /*!< stores the locally computed SPH density results for imported particles */
*StarsDensDataPartialResult; /*!< imported partial SPH density results from other processors */
#endif /*CHIMIE*/
#ifdef TESSEL
extern struct ghostdata_in
{
FLOAT Pos[3];
FLOAT rSearch;
int Index;
int Task;
}
*GhostDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*GhostDataGet; /*!< holds imported particle data for SPH density computation */
extern struct ghostdata_out
{
FLOAT Value;
}
*GhostDataResult, /*!< stores the locally computed SPH density results for imported particles */
*GhostDataPartialResult; /*!< imported partial SPH density results from other processors */
/* ghost particles */
//extern struct ghost_particle_data
//{
// FLOAT Pos[3]; /*!< particle position at its current time */
// FLOAT Mass; /*!< particle mass */
//}
// *gP;
extern int NumgPart;
#endif /* TESSEL */
#ifdef SYNCHRONIZE_NGB_TIMESTEP
extern struct SynchroinzeNgbTimestepdata_in
{
FLOAT Pos[3];
FLOAT Hsml;
int Ti_step;
int Ti_endstep;
int Index;
int Task;
#ifdef MULTIPHASE
int Phase;
#endif
}
*SynchroinzeNgbTimestepDataIn,
*SynchroinzeNgbTimestepDataGet;
#endif
#ifdef PY_INTERFACE
extern struct denssphdata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
FLOAT Density;
FLOAT DhsmlDensityFactor;
int Index;
int Task;
FLOAT Observable;
}
*DensSphDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*DensSphDataGet; /*!< holds imported particle data for SPH density computation */
extern struct denssphdata_out
{
FLOAT Rho;
FLOAT Div, Rot[3];
FLOAT DhsmlDensity;
FLOAT Ngb;
FLOAT GradObservable[3];
}
*DensSphDataResult, /*!< stores the locally computed SPH density results for imported particles */
*DensSphDataPartialResult; /*!< imported partial SPH density results from other processors */
extern struct sphdata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
FLOAT Density;
FLOAT DhsmlDensityFactor;
FLOAT ObsMoment0;
FLOAT ObsMoment1;
FLOAT Observable;
int Task;
int Index;
}
*SphDataIn, /*!< holds particle data for SPH hydro-force computation to be exported to other processors */
*SphDataGet; /*!< holds imported particle data for SPH hydro-force computation */
extern struct sphdata_out
{
FLOAT ObsMoment0;
FLOAT ObsMoment1;
FLOAT GradObservable[3];
}
*SphDataResult, /*!< stores the locally computed SPH hydro results for imported particles */
*SphDataPartialResult; /*!< imported partial SPH hydro-force results from other processors */
#endif /*PY_INTERFACE*/
#endif
diff --git a/src/gas_accretion.c b/src/gas_accretion.c
index ed59c83..c60e8d5 100644
--- a/src/gas_accretion.c
+++ b/src/gas_accretion.c
@@ -1,429 +1,1153 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include "allvars.h"
#include "proto.h"
#ifdef GAS_ACCRETION
-static double hubble_a,a3inv,a3;
+static struct mass_data
+{
+ FLOAT key;
+ int index;
+}
+ *mp;
+static int *Id;
/*! This is a comparison kernel for a sort routine, which is used to group
* particles that are going to be exported to the same CPU.
*/
+//int compare_mass(const void *a, const void *b)
+//{
+// if(((struct particle_data *) a)->Mass < (((struct particle_data *) b)->Mass))
+// return +1;
+// if(((struct particle_data *) a)->Mass > (((struct particle_data *) b)->Mass))
+// return -1;
+// return 0;
+//}
+
int compare_mass(const void *a, const void *b)
{
- if(((struct particle_data *) a)->Mass < (((struct particle_data *) b)->Mass))
- return +1;
- if(((struct particle_data *) a)->Mass > (((struct particle_data *) b)->Mass))
- return -1;
+
+ /* perfom the comparison, only if particles have negative masses */
+
+ if((((struct mass_data *) a)->key < 0) && ((((struct mass_data *) b)->key < 0 )))
+ {
+
+ if(((struct mass_data *) a)->key < (((struct mass_data *) b)->key))
+ return +1;
+
+ if(((struct mass_data *) a)->key > (((struct mass_data *) b)->key))
+ return -1;
+ }
+
+
+ if((((struct mass_data *) a)->key < 0) && ((((struct mass_data *) b)->key > 0 )))
+ {
+ return -1;
+ }
+
+ if((((struct mass_data *) a)->key > 0) && ((((struct mass_data *) b)->key < 0 )))
+ {
+ return +1;
+ }
+
+
+
return 0;
}
+
+
+
+/*! This function brings the gas particles into the same order as the sorted
+ * keys. (The sort is first done only on the keys themselves and done
+ * directly on the gas particles in order to reduce the amount of data that
+ * needs to be moved in memory. Only once the order is established, the gas
+ * particles are rearranged, such that each particle has to be moved at most
+ * once.)
+ */
+void reorder_gas_using_mass(void)
+{
+ int i;
+ struct particle_data Psave, Psource;
+ struct sph_particle_data SphPsave, SphPsource;
+
+ int idsource, idsave, dest;
+
+ for(i = 0; i < N_gas; i++)
+ {
+ if(Id[i] != i)
+ {
+ Psource = P[i];
+ SphPsource = SphP[i];
+
+ idsource = Id[i];
+ dest = Id[i];
+
+ do
+ {
+ Psave = P[dest];
+ SphPsave = SphP[dest];
+ idsave = Id[dest];
+
+ P[dest] = Psource;
+ SphP[dest] = SphPsource;
+ Id[dest] = idsource;
+
+ if(dest == i)
+ break;
+
+ Psource = Psave;
+ SphPsource = SphPsave;
+ idsource = idsave;
+
+ dest = idsource;
+ }
+ while(1);
+ }
+ }
+}
+
+#ifdef STELLAR_PROP
+/*! This function brings the stars into the same order as
+ * the sorted keys. (The sort is first done only on the keys themselves and
+ * done directly on the particles in order to reduce the amount of data that
+ * needs to be moved in memory. Only once the order is established, the
+ * particles are rearranged, such that each particle has to be moved at most
+ * once.)
+ */
+void reorder_stars_using_mass(void)
+{
+ int i;
+ struct particle_data Psave, Psource;
+ int idsource, idsave, dest;
+
+ for(i = N_gas; i < N_gas+N_stars; i++)
+ {
+ if(Id[i] != i)
+ {
+ Psource = P[i];
+ idsource = Id[i];
+
+ dest = Id[i];
+
+ do
+ {
+ Psave = P[dest];
+ idsave = Id[dest];
+
+ P[dest] = Psource;
+ Id[dest] = idsource;
+
+ /* restore the link with Stp */
+ StP[ P[dest].StPIdx ].PIdx = dest;
+
+ if(dest == i)
+ break;
+
+ Psource = Psave;
+ idsource = idsave;
+
+ dest = idsource;
+ }
+ while(1);
+ }
+ }
+}
+
+
+void reorder_st_using_mass(void)
+{
+ int i;
+ struct st_particle_data StPsave, StPsource;
+ int idsource, idsave, dest;
+
+
+ for(i = 0; i < N_stars; i++)
+ {
+ if(Id[i] != i)
+ {
+ StPsource = StP[i];
+ idsource = Id[i];
+
+ dest = Id[i];
+
+ do
+ {
+ StPsave = StP[dest];
+ idsave = Id[dest];
+
+ StP[dest] = StPsource;
+ Id[dest] = idsource;
+
+ /* restore the link with P */
+ P[ StP[dest].PIdx ].StPIdx = dest;
+
+ if(dest == i)
+ break;
+
+ StPsource = StPsave;
+ idsource = idsave;
+
+ dest = idsource;
+ }
+ while(1);
+ }
+ }
+
+
+
+}
+#endif
+
+
+/*! This function brings the collisionless particles into the same order as
+ * the sorted keys. (The sort is first done only on the keys themselves and
+ * done directly on the particles in order to reduce the amount of data that
+ * needs to be moved in memory. Only once the order is established, the
+ * particles are rearranged, such that each particle has to be moved at most
+ * once.)
+ */
+void reorder_particles_using_mass(void)
+{
+ int i;
+ struct particle_data Psave, Psource;
+ int idsource, idsave, dest;
+
+#ifdef STELLAR_PROP
+ for(i = N_gas+N_stars; i < NumPart; i++)
+#else
+ for(i = N_gas; i < NumPart; i++)
+#endif
+ {
+ if(Id[i] != i)
+ {
+ Psource = P[i];
+ idsource = Id[i];
+
+ dest = Id[i];
+
+ do
+ {
+ Psave = P[dest];
+ idsave = Id[dest];
+
+ P[dest] = Psource;
+ Id[dest] = idsource;
+
+ if(dest == i)
+ break;
+
+ Psource = Psave;
+ idsource = idsave;
+
+ dest = idsource;
+ }
+ while(1);
+ }
+ }
+}
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+/*! This function sorts particles
+ * according to their mass. Since gas particles need to
+ * stay at the beginning of
+ * the particle list, they are sorted as a separate block.
+ */
+void order_particles_using_mass(void)
+{
+ int i;
+
+
+ if(N_gas)
+ {
+ mp = malloc(sizeof(struct mass_data) * N_gas);
+ Id = malloc(sizeof(int) * N_gas);
+
+ for(i = 0; i < N_gas; i++)
+ {
+ mp[i].index = i;
+ mp[i].key = P[i].Mass;
+ }
+
+ qsort(mp, N_gas, sizeof(struct mass_data), compare_mass);
+
+
+ for(i = 0; i < N_gas; i++)
+ Id[mp[i].index] = i;
+
+ reorder_gas_using_mass();
+
+ free(Id);
+ free(mp);
+ }
+
+
+
+
+
+
+#ifdef STELLAR_PROP
+ if(N_stars>0)
+ {
+ mp = malloc(sizeof(struct mass_data) * (N_stars));
+ mp -= (N_gas);
+
+ Id = malloc(sizeof(int) * (N_stars));
+ Id -= (N_gas);
+
+ for(i = N_gas; i < N_gas+N_stars; i++)
+ {
+ mp[i].index = i;
+ mp[i].key = P[i].Mass;
+ }
+
+ qsort(mp + N_gas, N_stars, sizeof(struct mass_data), compare_mass);
+
+ for(i = N_gas; i < N_gas+N_stars; i++)
+ Id[mp[i].index] = i;
+
+ reorder_stars_using_mass();
+
+ Id += N_gas;
+ free(Id);
+ mp += N_gas;
+ free(mp);
+ }
+
+ if(NumPart - N_gas - N_stars > 0)
+ {
+ mp = malloc(sizeof(struct mass_data) * (NumPart - N_gas - N_stars));
+ mp -= (N_gas+N_stars);
+
+ Id = malloc(sizeof(int) * (NumPart - N_gas - N_stars));
+ Id -= (N_gas+N_stars);
+
+ for(i = N_gas+N_stars; i < NumPart; i++)
+ {
+ mp[i].index = i;
+ mp[i].key = P[i].Mass;
+ }
+
+ qsort(mp + N_gas+N_stars, NumPart - N_gas - N_stars, sizeof(struct mass_data), compare_mass);
+
+ for(i = N_gas+N_stars; i < NumPart; i++)
+ Id[mp[i].index] = i;
+
+ reorder_particles_using_mass();
+
+ Id += N_gas+N_stars;
+ free(Id);
+
+
+
+
+
+
+
+
+
+
+
+
+
+ mp += N_gas+N_stars;
+ free(mp);
+ }
+
+
+ if(N_stars>0)
+ {
+ Id = malloc(sizeof(int) * (N_stars));
+
+ for(i = N_gas; i < N_gas+N_stars; i++)
+ {
+ Id[P[i].StPIdx] = i - N_gas;
+ }
+
+ reorder_st_using_mass();
+ free(Id);
+ }
+
+
+
+#else
+
+
+
+ if(NumPart - N_gas > 0)
+ {
+ mp = malloc(sizeof(struct mass_data) * (NumPart - N_gas));
+ mp -= (N_gas);
+
+ Id = malloc(sizeof(int) * (NumPart - N_gas));
+ Id -= (N_gas);
+
+ for(i = N_gas; i < NumPart; i++)
+ {
+ mp[i].index = i;
+ mp[i].key = Key[i];
+ }
+
+ qsort(mp + N_gas, NumPart - N_gas, sizeof(struct mass_data), compare_mass);
+
+ for(i = N_gas; i < NumPart; i++)
+ Id[mp[i].index] = i;
+
+ reorder_particles_using_mass();
+
+ Id += N_gas;
+ free(Id);
+ mp += N_gas;
+ free(mp);
+ }
+
+
+#endif
+
+
+
+
+#ifdef CHECK_ID_CORRESPONDENCE
+
+ if (ThisTask==0)
+ printf("Check id correspondence after mass order...\n");
+
+ for(i = N_gas; i < N_gas+N_stars; i++)
+ {
+
+ //printf("-> i=%d ID=%d P[i].StPIdx=%d StP[P[i].StPIdx].PIdx=%d\n",i,P[i].ID,P[i].StPIdx,StP[P[i].StPIdx].PIdx);
+
+ if(P[i].ID != StP[i-N_gas].ID)
+ {
+ printf("\nP/StP ID correspondance error\n");
+ printf("(%d) (in mass) N_stars=%d N_gas=%d i=%d id=%d P[i].StPIdx=%d StP[P[i].StPIdx].PIdx=%d StP[P[i].StPIdx].ID=%d\n\n",ThisTask,N_stars,N_gas,i,P[i].ID,P[i].StPIdx,StP[P[i].StPIdx].PIdx,StP[P[i].StPIdx].ID);
+ endrun(1212001);
+ }
+
+
+ if( StP[P[i].StPIdx].PIdx != i )
+ {
+ printf("\nP/StP correspondance error\n");
+ printf("(%d) (in gas accretion) N_stars=%d N_gas=%d i=%d id=%d P[i].StPIdx=%d StP[P[i].StPIdx].PIdx=%d\n\n",ThisTask,N_stars,N_gas,i,P[i].ID,P[i].StPIdx,StP[P[i].StPIdx].PIdx);
+ endrun(1212001);
+ }
+
+
+ if(StP[P[i].StPIdx].ID != P[i].ID)
+ {
+ printf("\nP/StP correspondance error\n");
+ printf("(%d) (in gas accretion) N_gas=%d N_stars=%d i=%d Type=%d P.Id=%d P[i].StPIdx=%d StP[P[i].StPIdx].ID=%d \n\n",ThisTask,N_gas,N_stars,i,P[i].Type,P[i].ID, P[i].StPIdx, StP[P[i].StPIdx].ID);
+ endrun(1212002);
+ }
+ }
+
+ if (ThisTask==0)
+ printf("Check id correspondence after mass order...\n");
+
+#endif
+
+
+
+}
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
void allocate_gas_accretion(void)
{
size_t bytes;
double bytes_tot = 0;
- if(N_acc > 0)
+
+ if(NumPart_acc > 0)
+ {
+ bytes_tot = 0;
+
+ if(!(Acc = malloc(bytes = NumPart_acc * sizeof(struct acc_particle_data))))
+ {
+ printf("failed to allocate memory for `Acc' (%g MB) %d.\n", bytes / (1024.0 * 1024.0),sizeof(struct acc_particle_data));
+ endrun(1);
+ }
+ bytes_tot += bytes;
+
+ if(ThisTask == 0)
+ printf("\nAllocated %g MByte for accretion storage. %d\n\n", bytes_tot / (1024.0 * 1024.0), sizeof(struct acc_particle_data));
+ }
+
+
+
+ if(N_gas_acc > 0)
{
bytes_tot = 0;
- if(!(SphAcc = malloc(bytes = N_acc * sizeof(struct acc_particle_data))))
+ if(!(SphAcc = malloc(bytes = N_gas_acc * sizeof(struct gas_acc_particle_data))))
{
- printf("failed to allocate memory for `StP' (%g MB) %d.\n", bytes / (1024.0 * 1024.0),sizeof(struct acc_particle_data));
+ printf("failed to allocate memory for `SphAcc' (%g MB) %d.\n", bytes / (1024.0 * 1024.0),sizeof(struct gas_acc_particle_data));
endrun(1);
}
bytes_tot += bytes;
if(ThisTask == 0)
- printf("\nAllocated %g MByte for gas accretion storage. %d\n\n", bytes_tot / (1024.0 * 1024.0), sizeof(struct acc_particle_data));
+ printf("\nAllocated %g MByte for gas accretion storage. %d\n\n", bytes_tot / (1024.0 * 1024.0), sizeof(struct gas_acc_particle_data));
}
+
+
+
+
}
/*
* This routine compute the accretion of gas
*/
void init_gas_accretion(void)
{
int i,j,k;
+ int type;
int *temp;
- double MaxGasMass;
+ double MaxMass[6];
if(ThisTask == 0)
{
printf("Init gas accretion...\n");
fflush(stdout);
}
-
-
- if(All.ComovingIntegrationOn)
- {
- if(ThisTask==0)
- printf("gas accretion will fail if cosmological integration is used\nThis is due to the usage of dt in gas_accretion(). This should be changed.\n");
-
- endrun(75463);
- }
-
/*
- here, we need to initialize SphAcc
+
+ As we do not have the value for the mass, we take
+ the maximum of the particle class.
+
*/
- for(i = 0, N_acc = 0; i < N_gas; i++)
+ for(i = 0, N_gas_acc = 0, NumPart_acc; i < NumPart; i++)
{
-
- MaxGasMass = dmax(MaxGasMass,P[i].Mass);
+
+ type = P[i].Type;
+ MaxMass[type] = dmax(MaxMass[type],P[i].Mass);
if (P[i].Mass <= 0)
- N_acc++;
-
- SphP[i].ActiveFlag=0;
+ {
+ NumPart_acc++;
+ if (type==0)
+ {
+ N_gas_acc++;
+ SphP[i].ActiveFlag=0;
+ }
+ }
+
}
- printf("(%d) N_acc=%d\n",ThisTask,N_acc);
+ printf("(%d) NumPart_acc=%d N_gas_acc=%d\n",ThisTask,NumPart_acc,N_gas_acc);
-
- MPI_Allreduce(&MaxGasMass, &All.GasAccretionParticleMass, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
+ MPI_Allreduce(&MaxMass, &All.AccretionParticleMass, 6, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
if(ThisTask == 0)
{
- printf("(%d) GasAccretionParticleMass=%g\n",ThisTask,All.GasAccretionParticleMass);
+ printf("(%d) AccretionParticleMass[0]=%g\n",ThisTask,All.AccretionParticleMass[0]);
+ printf("(%d) AccretionParticleMass[1]=%g\n",ThisTask,All.AccretionParticleMass[1]);
+ printf("(%d) AccretionParticleMass[2]=%g\n",ThisTask,All.AccretionParticleMass[2]);
+ printf("(%d) AccretionParticleMass[3]=%g\n",ThisTask,All.AccretionParticleMass[3]);
+ printf("(%d) AccretionParticleMass[4]=%g\n",ThisTask,All.AccretionParticleMass[4]);
+ printf("(%d) AccretionParticleMass[5]=%g\n",ThisTask,All.AccretionParticleMass[5]);
fflush(stdout);
}
/* because ntot_type_all[] is of type `long long', we cannot do a simple
* MPI_Allreduce() to sum the total particle numbers
*/
+ temp = malloc(NTask * sizeof(int));
+ MPI_Allgather(&NumPart_acc, 1, MPI_INT, temp, 1, MPI_INT, MPI_COMM_WORLD);
+
+ for(i = 0, All.TotNumPart_acc=0; i < NTask; i++)
+ All.TotNumPart_acc += temp[i];
+
temp = malloc(NTask * sizeof(int));
- MPI_Allgather(&N_acc, 1, MPI_INT, temp, 1, MPI_INT, MPI_COMM_WORLD);
+ MPI_Allgather(&N_gas_acc, 1, MPI_INT, temp, 1, MPI_INT, MPI_COMM_WORLD);
- for(i = 0, All.TotN_acc=0; i < NTask; i++)
- All.TotN_acc += temp[i];
+ for(i = 0, All.TotN_gas_acc=0; i < NTask; i++)
+ All.TotN_gas_acc += temp[i];
+
+
if(ThisTask == 0)
{
- printf("Number of gas accretion particles found : %6d%09d \n",(int) (All.TotN_acc / 1000000000), (int) (All.TotN_acc % 1000000000));
+ printf("Number of accretion particles found : %6d%09d \n",(int) (All.TotNumPart_acc / 1000000000), (int) (All.TotNumPart_acc % 1000000000));
+ printf("Number of gas accretion particles found : %6d%09d \n",(int) (All.TotN_gas_acc / 1000000000), (int) (All.TotN_gas_acc % 1000000000));
printf("gas accretion init done.\n\n");
fflush(stdout);
}
allocate_gas_accretion();
+
+
+ /*
+
+ ---> ok, jusque ici c'est bon
+
+
+ pour la suite:
+
+ 1) on trie toutes les particules selon leur masse, par type...
+ ---> un peu embetant si on utilise Stp... mais bon, comme dans peano (peano_hilbert_order)
+
+ -> est la suite est simple
+
+
+ 2) - on extrait les particules sans les trier
+ - on fait une quantité de memshift (mais c'est pas trops grave)
+ - on trie uniquement Acc et SphAcc ....
+
+ */
+
- /* sort gas particles according to their Mass */
- qsort(P, N_gas, sizeof(struct particle_data), compare_mass);
-
-
- /* copy accretion particles to the right place */
+ /* sort gas particles according to their Mass (blocks are respected) */
+ /* negative mass are first */
+ order_particles_using_mass();
+
+
+ if (ThisTask==0)
+ printf("mass order done.\n");
+
+
+
+ //for(i=0;i<NumPart;i++)
+ // printf("(%d) i=%d type=%d m=%g \n",ThisTask,i,P[i].Type,P[i].Mass);
+
- for(i = 0, j = 0; i < N_gas; i++)
+
+
+ /* copy the particles to Acc and SphAcc*/
+ for(i = 0, j = 0; i < NumPart; i++)
{
if (P[i].Mass <= 0)
{
- SphAcc[j].Pos[0] = P[i].Pos[0];
- SphAcc[j].Pos[1] = P[i].Pos[1];
- SphAcc[j].Pos[2] = P[i].Pos[2];
+ Acc[j].Pos[0] = P[i].Pos[0];
+ Acc[j].Pos[1] = P[i].Pos[1];
+ Acc[j].Pos[2] = P[i].Pos[2];
- SphAcc[j].Vel[0] = P[i].Vel[0];
- SphAcc[j].Vel[1] = P[i].Vel[1];
- SphAcc[j].Vel[2] = P[i].Vel[2];
+ Acc[j].Vel[0] = P[i].Vel[0];
+ Acc[j].Vel[1] = P[i].Vel[1];
+ Acc[j].Vel[2] = P[i].Vel[2];
- SphAcc[j].Mass = MaxGasMass;
+ Acc[j].Mass = All.AccretionParticleMass[P[i].Type];
- SphAcc[j].ID = P[i].ID;
+ Acc[j].ID = P[i].ID;
+ Acc[j].Type = P[i].Type;
- SphAcc[j].Time = -P[i].Mass;
- SphAcc[j].Entropy = SphP[i].Entropy;
+ Acc[j].Time = -P[i].Mass;
+
+
+ /* gas particle */
+ if (P[i].Type==0)
+ {
+ SphAcc[j].Entropy = SphP[i].Entropy;
#ifdef CHIMIE
- for(k=0;k<NELEMENTS;k++)
- SphAcc[j].Metal[k] = SphP[i].Metal[k];
+ for(k=0;k<NELEMENTS;k++)
+ SphAcc[j].Metal[k] = SphP[i].Metal[k];
#endif
+ }
j++;
}
}
-
-
- /* reduce */
+
+ //printf("test 0\n");
+ //for(i=0;i<NumPart;i++)
+ // printf("(%d) i=%d id=%d m=%g type=%d\n",ThisTask,i,P[i].ID,P[i].Mass,P[i].Type);
- /* now we can shift */
- memmove(&P[N_gas-N_acc],&P[N_gas],(NumPart-N_gas)*sizeof(struct particle_data));
-
-
-
+ /* shift gas */
+ memmove(&P[0],&P[N_gas_acc],(NumPart-(N_gas-N_gas_acc))*sizeof(struct particle_data));
+ memmove(&SphP[0],&SphP[N_gas_acc],(N_gas-(N_gas-N_gas_acc))*sizeof(struct sph_particle_data));
+
+ N_gas = N_gas-N_gas_acc;
+ NumPart = NumPart-N_gas_acc;
+ All.TotN_gas=All.TotN_gas - All.TotN_gas_acc;
+ All.TotNumPart = All.TotNumPart - All.TotN_gas_acc;
- N_gas = N_gas-N_acc;
- NumPart = NumPart-N_acc;
-
- All.TotN_gas=All.TotN_gas - All.TotN_acc;
- All.TotNumPart = All.TotNumPart - All.TotN_acc;
+#ifdef STELLAR_PROP
+ if (N_stars>0)
+ {
+ printf("gas_accretion: this is not implemented\n");
+ endrun(6612345);
+ }
+ /* shift stars */
+ /* not implemented */
+
+ /* shift particles */
+ memmove(&P[N_gas+N_stars],&P[N_gas+N_stars+(NumPart_acc-N_gas_acc)],(NumPart-(N_gas+N_stars+(NumPart_acc-N_gas_acc)))*sizeof(struct particle_data));
+
+ NumPart = NumPart-(NumPart_acc-N_gas_acc);
+ All.TotNumPart = All.TotNumPart - (All.TotNumPart_acc-All.TotN_gas_acc);
+
+
+#else
+
+ /* shift particles */
+ memmove(&P[N_gas],&P[N_gas+(NumPart_acc-N_gas_acc)],(NumPart-(N_gas+(NumPart_acc-N_gas_acc)))*sizeof(struct particle_data));
+
+ NumPart = NumPart-(NumPart_acc-N_gas_acc);
+ All.TotNumPart = All.TotNumPart - (All.TotNumPart_acc-All.TotN_gas_acc);
+#endif
+
+
+
+ //printf("test 1\n");
+ //for(i=0;i<NumPart;i++)
+ // printf("(%d) i=%d id=%d m=%g type=%d\n",ThisTask,i,P[i].ID,P[i].Mass,P[i].Type);
+
+
+
for (i=0;i<NumPart;i++)
if (P[i].Mass<=0)
endrun(12453243);
- for (i=0;i<N_acc;i++)
- printf("ID=%d Accretion Time=%g xyz=(%g %g %g)\n ",SphAcc[i].ID,SphAcc[i].Time,SphAcc[i].Pos[0],SphAcc[i].Pos[1],SphAcc[i].Pos[2]);
-}
+ for (i=0;i<NumPart_acc;i++)
+ {
+ printf("(%d) i=%06d ID=%d Accretion Time=%10.5g Type=%d xyz=(%g %g %g)\n ",ThisTask,i,Acc[i].ID,Acc[i].Time,Acc[i].Type,Acc[i].Pos[0],Acc[i].Pos[1],Acc[i].Pos[2]);
+ }
+
-/*
- * This routine compute the accretion of gas
- */
-double gas_accretion_rate(float t)
-{
-
- double dMdt;
-
- /* accretion rate in Msol/yr (including little h) */
- dMdt = 1; /* [Msol/yr] */
-
- /* return the value in code units (this is independent of h) */
- return dMdt * (SOLAR_MASS/All.UnitMass_in_g) / (31536000/All.UnitTime_in_s);
}
+
+
/*
* This routine compute the accretion of gas
*/
void gas_accretion(void)
{
- int i,j;
- int N,Nacc,Nacctot;
+ int i,j,p;
+ int np,ng;
+ int accNumPart,accN_gas,accN_stars;
+ int accTotNumPart,accTotN_gas,accTotN_stars;
int *temp;
- float Macc,Macctot;
+ float accM,accTotM;
+ int DomainDecompFlag,DomainDecompFlagMax;
+
if(ThisTask == 0)
{
printf("Start gas accretion...\n");
fflush(stdout);
}
- /* */
- Nacc=0;
- Macc=0;
- Macctot=0;
- Nacctot=0;
+ /* init */
+
+ accNumPart=accN_gas=accN_stars=0;
+ accTotNumPart=accTotN_gas=accTotN_stars=0;
+ accM=accTotM=0;
+
- for(i = 0; i < N_acc; i++)
+ for(i = 0; i < NumPart_acc; i++)
{
- if (SphAcc[i].Time<All.Time)
+ if (Acc[i].Time<All.Time)
{
- Nacc++;
- Macc+=SphAcc[i].Mass;
- //printf("(%d) ++ %g %g\n",ThisTask,All.Time,SphAcc[i].Time);
+ accNumPart++;
+ accM+=Acc[i].Mass;
+ printf(" (%d) time=%g acreting i=%d id=%d time=%g type=%d\n",ThisTask,All.Time,i,Acc[i].ID,Acc[i].Time,Acc[i].Type);
+
+
+ if (Acc[i].Type==0)
+ accN_gas++;
+
+
+#ifdef STELLAR_PROP
+ if (Acc[i].Type==1)
+ accN_stars++;
+#endif
+
}
- else
- {
- //printf("(%d) -- %g %g\n",ThisTask,All.Time,SphAcc[i].Time);
- break;
- }
+
+ //else
+ // {
+ // //printf("(%d) -- %g %g\n",ThisTask,All.Time,Acc[i].Time);
+ // break;
+ // }
+
}
+
temp = malloc(NTask * sizeof(int));
- MPI_Allgather(&Nacc, 1, MPI_INT, temp, 1, MPI_INT, MPI_COMM_WORLD);
+ MPI_Allgather(&accNumPart, 1, MPI_INT, temp, 1, MPI_INT, MPI_COMM_WORLD);
for(i = 0; i < NTask; i++)
- Nacctot += temp[i];
+ accTotNumPart += temp[i];
free(temp);
+
+
+ temp = malloc(NTask * sizeof(int));
+ MPI_Allgather(&accN_gas, 1, MPI_INT, temp, 1, MPI_INT, MPI_COMM_WORLD);
+
+ for(i = 0; i < NTask; i++)
+ accTotN_gas += temp[i];
+
+ free(temp);
+
+#ifdef STELLAR_PROP
+ temp = malloc(NTask * sizeof(int));
+ MPI_Allgather(&accN_stars, 1, MPI_INT, temp, 1, MPI_INT, MPI_COMM_WORLD);
+
+ for(i = 0; i < NTask; i++)
+ accTotN_stars += temp[i];
+
+ free(temp);
+#endif
if(ThisTask == 0)
{
- printf("Number of gas accretion particles this time : %9d \n",Nacctot);
+ printf("Number of accretion particles this time : %9d \n",accTotNumPart);
+ printf("Number of gas accretion particles this time : %9d \n",accTotN_gas);
+ printf("Number of other accretion particles this time : %9d \n",accTotNumPart-accTotN_gas);
+
fflush(stdout);
}
- if (Nacctot>0)
- {
+ DomainDecompFlag=0;
-
- if (NumPart + Nacc > All.MaxPart)
+ if (accNumPart>0)
+ {
+
+ if (NumPart + accNumPart > All.MaxPart)
{
- printf("No memory left for new gas particle : NumPart + Nacc=%d All.MaxPart=%d\n\n",NumPart + Nacc,All.MaxPart);
+ printf("No memory left for new particle : NumPart + accNumPart=%d All.MaxPart=%d\n\n",NumPart + accNumPart,All.MaxPart);
endrun(877001);
}
-
- /* shift particles */
- memmove(&P[Nacc], &P[0], NumPart * sizeof(struct particle_data));
- memmove(&SphP[Nacc], &SphP[0], N_gas * sizeof(struct sph_particle_data));
-
-
-
- N_gas = N_gas + Nacc;
- NumPart = NumPart + Nacc;
+ /* need to insert particles */
+
+ if (accNumPart-accN_gas>0)
+ {
+
+ /* shift */
+#ifndef STELLAR_PROP
+ memmove(&P[N_gas+(accNumPart-accN_gas)], &P[N_gas], (NumPart-N_gas) * sizeof(struct particle_data));
+ NumPart = NumPart + (accNumPart-accN_gas);
+#else
+ memmove(&P[N_gas+N_stars+(accNumPart-accN_gas)], &P[N_gas+N_stars], (NumPart-N_gas-N_stars) * sizeof(struct particle_data));
+ NumPart = NumPart + (accNumPart-accN_gas);
+#endif
+ }
+
+
+ /* need to insert gas */
+ if (accN_gas>0)
+ {
+
+
+ if (N_gas + accN_gas > All.MaxPartSph)
+ {
+ printf("No memory left for new gas particle : N_gas + accN_gas=%d All.MaxPartSph=%d\n\n",N_gas + accN_gas,All.MaxPartSph);
+ endrun(877002);
+ }
+
+ memmove(&P[accN_gas], &P[0], (NumPart) * sizeof(struct particle_data));
+ NumPart = NumPart + accN_gas;
+
+ memmove(&SphP[accN_gas], &SphP[0], (N_gas) * sizeof(struct sph_particle_data));
+ N_gas = N_gas + accN_gas;
- MPI_Allreduce(&Nacc, &Nacctot, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
- MPI_Allreduce(&Macc, &Macctot, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
-
- All.TotN_gas += Nacctot;
- All.TotNumPart += Nacctot;
+
+ }
+
+ All.TotN_gas += accTotN_gas;
+ All.TotNumPart += accTotNumPart;
#ifdef STELLAR_PROP
/* recover the link between P and StP */
for(i = N_gas; i < N_gas+N_stars; i++)
StP[P[i].StPIdx].PIdx=i;
- #endif
-
-#ifdef CHECK_ID_CORRESPONDENCE
- if (ThisTask==0)
- printf("Check id correspondence after memmove in gas_accretion...\n");
-
- rearrange_particle_sequence();
+#endif
- for(i = N_gas; i < N_gas+N_stars; i++)
- {
- if( StP[P[i].StPIdx].PIdx != i )
- {
- printf("\nP/StP correspondance error\n");
- printf("(%d) (in domain before) N_stars=%d N_gas=%d i=%d id=%d P[i].StPIdx=%d StP[P[i].StPIdx].PIdx=%d\n\n",ThisTask,N_stars,N_gas,i,P[i].ID,P[i].StPIdx,StP[P[i].StPIdx].PIdx);
- endrun(877002);
- }
-
-
- if(StP[P[i].StPIdx].ID != P[i].ID)
- {
- printf("\nP/StP correspondance error\n");
- printf("(%d) (in domain before) N_gas=%d N_stars=%d i=%d Type=%d P.Id=%d P[i].StPIdx=%d StP[P[i].StPIdx].ID=%d \n\n",ThisTask,N_gas,N_stars,i,P[i].Type,P[i].ID, P[i].StPIdx, StP[P[i].StPIdx].ID);
- endrun(877003);
- }
- }
- if (ThisTask==0)
- printf("Check id correspondence after memmove in gas_accretion done.\n");
-#endif
-
-
-
- for (i=0;i<Nacc;i++)
+ /*
+ now, insert particles
+
+ i = index of Acc and SphAcc
+ p = index in P and SphP
+
+ */
+
+ ng=0; /* index of first gaseous particle */
+
+#ifndef STELLAR_PROP
+ np=N_gas; /* index of first other particle */
+#else
+ np=N_gas+N_stars; /* index of first other particle */
+#endif
+
+
+
+ for(i = 0; i < NumPart_acc; i++) /* particles are not in the correct order */
+ //for (i=0;i<accNumPart;i++)
{
+ if (Acc[i].Time<All.Time)
+ {
+
+
+ if (Acc[i].Type==0)
+ {
+ p=ng;
+ ng++;
+ }
+ else
+ {
+ p=np;
+ np++;
+ }
- P[i].ID = SphAcc[i].ID;
-
- for (j=0;j<3;j++)
- P[i].Pos[j] = SphAcc[i].Pos[j];
-
- for (j=0;j<3;j++)
- P[i].Vel[j] = SphAcc[i].Vel[j];
-
- P[i].Mass = SphAcc[i].Mass;
- P[i].Type = 0;
-
- /* forte to be active */
- P[i].Ti_endstep=All.Ti_Current;
-
- SphP[i].Entropy = SphAcc[i].Entropy; /* initial internal energy*/
- SphP[i].Hsml=All.SofteningTable[P[i].Type]; /* this can be better */
- SphP[i].ActiveFlag=1;
-
+
+ P[p].ID = Acc[i].ID;
+
+ for (j=0;j<3;j++)
+ P[p].Pos[j] = Acc[i].Pos[j];
+
+ for (j=0;j<3;j++)
+ P[p].Vel[j] = Acc[i].Vel[j];
+
+ P[p].Mass = Acc[i].Mass;
+ P[p].Type = Acc[i].Type;
+
+ /* force to be active */
+ P[p].Ti_endstep=All.Ti_Current;
+
+
+ if (Acc[i].Type==0)
+ {
+ SphP[p].ActiveFlag=1;
+
+ SphP[p].Entropy = SphAcc[i].Entropy; /* initial internal energy*/
+ SphP[p].Hsml=All.SofteningTable[P[p].Type]; /* this can be better */
+
+
#ifdef CHIMIE
- for(j=0;j<NELEMENTS;j++)
- {
- SphP[i].Metal[j] = SphAcc[i].Metal[j];
- }
+ for(j=0;j<NELEMENTS;j++)
+ {
+ SphP[p].Metal[j] = SphAcc[i].Metal[j];
+ }
#endif
- //printf("(%d)ACCRETION : id=%d x=%g y=%g z=%g\n",ThisTask,P[i].ID,P[i].Pos[0],P[i].Pos[1],P[i].Pos[2]);
-
-
+ }
+
+
+ //printf("(%d)ACCRETION : id=%d x=%g y=%g z=%g\n",ThisTask,P[p].ID,P[p].Pos[0],P[p].Pos[1],P[p].Pos[2]);
+
+
+ }
+
+
}
-
-
- /* shift accreated particles */
- memmove(&SphAcc[0],&SphAcc[Nacc],(N_acc-Nacc)*sizeof(struct acc_particle_data));
- N_acc = N_acc - Nacc;
+
+
+ /*
+ finally, shift Acc and SphAcc
+ */
+
+
+ if (accNumPart-accN_gas>0)
+ {
+ /* shift accreated particles */
+ memmove(&Acc[N_gas_acc],&Acc[N_gas_acc+(accNumPart-accN_gas)],(NumPart_acc-N_gas_acc-(accNumPart-accN_gas))*sizeof(struct acc_particle_data));
+ NumPart_acc = NumPart_acc - (accNumPart-accN_gas);
+ }
+
+ if (accN_gas>0)
+ {
+ /* shift accreated gas particles */
+ memmove(&Acc[0],&Acc[accN_gas],(NumPart_acc-accN_gas)*sizeof(struct acc_particle_data));
+ NumPart_acc = NumPart_acc - accN_gas;
+
+ memmove(&SphAcc[0],&SphAcc[accN_gas],(N_gas_acc-accN_gas)*sizeof(struct gas_acc_particle_data));
+ N_gas_acc = N_gas_acc - accN_gas;
+ }
/* force to update the domain and build the tree */
- //TreeReconstructFlag=1; /* seems not to be sufficent */
- All.NumForcesSinceLastDomainDecomp = All.TotNumPart * All.TreeDomainUpdateFrequency + 1;
+ DomainDecompFlag=1;
-
}
+ /* gather flags */
+ MPI_Allreduce(&DomainDecompFlag, &DomainDecompFlagMax, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD);
+
+ if (DomainDecompFlagMax>0)
+ All.NumForcesSinceLastDomainDecomp = All.TotNumPart * All.TreeDomainUpdateFrequency + 1;
+
+ /* some checks */
+
+
+#ifdef CHECK_ID_CORRESPONDENCE
+ if (ThisTask==0)
+ printf("Check id correspondence after memmove in gas_accretion...\n");
+
+ rearrange_particle_sequence();
+
+ for(i = N_gas; i < N_gas+N_stars; i++)
+ {
+ if( StP[P[i].StPIdx].PIdx != i )
+ {
+ printf("\nP/StP correspondance error\n");
+ printf("(%d) (in domain before) N_stars=%d N_gas=%d i=%d id=%d P[i].StPIdx=%d StP[P[i].StPIdx].PIdx=%d\n\n",ThisTask,N_stars,N_gas,i,P[i].ID,P[i].StPIdx,StP[P[i].StPIdx].PIdx);
+ endrun(877003);
+ }
+
+
+ if(StP[P[i].StPIdx].ID != P[i].ID)
+ {
+ printf("\nP/StP correspondance error\n");
+ printf("(%d) (in domain before) N_gas=%d N_stars=%d i=%d Type=%d P.Id=%d P[i].StPIdx=%d StP[P[i].StPIdx].ID=%d \n\n",ThisTask,N_gas,N_stars,i,P[i].Type,P[i].ID, P[i].StPIdx, StP[P[i].StPIdx].ID);
+ endrun(877004);
+ }
+ }
+ if (ThisTask==0)
+ printf("Check id correspondence after memmove in gas_accretion done.\n");
+#endif
+
+
+
+#ifdef CHECK_BLOCK_ORDER
+ int typenow;
+ typenow = 0;
+ for(i = 0; i < NumPart; i++)
+ {
+
+ if ((P[i].Type<typenow)&&(typenow<=ST))
+ {
+ printf("\nBlock order error\n");
+ printf("(%d) i=%d id=%d Type=%d typenow=%d\n\n",ThisTask,i,P[i].ID,P[i].Type,typenow);
+ endrun(877005);
+ }
+
+ typenow = P[i].Type;
+ }
+#endif
+
+
+
+
/* some info */
if (ThisTask==0)
{
- fprintf(FdGasAccretion, "%15g %15g %09d %g\n", All.Time,All.TimeStep, Nacctot,Macctot);
+ fprintf(FdGasAccretion, "%15g %15g %09d %g\n", All.Time,All.TimeStep, accTotNumPart,accTotM);
fflush(FdGasAccretion);
}
if(ThisTask == 0)
{
printf("gas accretion done.\n");
fflush(stdout);
}
+
+
+ printf("(%d) gas accretion done.\n",ThisTask);
}
/*
* This routine compute the accretion of gas
*/
void update_entropy_for_accreated_particles(void)
{
int i;
for (i=0;i<N_gas;i++)
if (SphP[i].ActiveFlag)
{
//printf("------------------------ end of density id=%d rho=%g Hsml=%g entr=%g %g\n",P[i].ID,SphP[i].Density,SphP[i].Hsml,SphP[i].Entropy,P[i].Mass);
- SphP[i].Entropy = GAMMA_MINUS1 * SphP[i].Entropy / pow(SphP[i].Density / a3, GAMMA_MINUS1);
+ SphP[i].Entropy = GAMMA_MINUS1 * SphP[i].Entropy / pow(SphP[i].Density / 1, GAMMA_MINUS1);
//printf("------------------------ end of density id=%d rho=%g Hsml=%g entr=%g %g\n",P[i].ID,SphP[i].Density,SphP[i].Hsml,SphP[i].Entropy,P[i].Mass);
SphP[i].ActiveFlag=0;
}
}
#endif /* GAS_ACCRETION */
diff --git a/src/restart.c b/src/restart.c
index ee3a3eb..ff5318e 100644
--- a/src/restart.c
+++ b/src/restart.c
@@ -1,419 +1,425 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/file.h>
#include <unistd.h>
#include <gsl/gsl_rng.h>
#include "allvars.h"
#include "proto.h"
/*! \file restart.c
* \brief Code for reading and writing restart files
*/
static FILE *fd,*fd_bak;
static void in(int *x, int modus);
static void byten(void *x, size_t n, int modus);
/*! This function reads or writes the restart files. Each processor writes
* its own restart file, with the I/O being done in parallel. To avoid
* congestion of the disks you can tell the program to restrict the number of
* files that are simultaneously written to NumFilesWrittenInParallel.
*
* If modus>0 the restart()-routine reads, if modus==0 it writes a restart
* file.
*/
void restart(int modus)
{
char buf[200], buf_bak[200], buf_mv[500];
double save_PartAllocFactor, save_TreeAllocFactor;
int i, nprocgroup, masterTask, groupTask, old_MaxPart, old_MaxNodes;
struct global_data_all_processes all_task0;
sprintf(buf, "%s%s.%d", All.OutputDir, All.RestartFile, ThisTask);
sprintf(buf_bak, "%s%s.%d.bak", All.OutputDir, All.RestartFile, ThisTask);
sprintf(buf_mv, "mv %s %s", buf, buf_bak);
if((NTask < All.NumFilesWrittenInParallel))
{
printf
("Fatal error.\nNumber of processors must be a smaller or equal than `NumFilesWrittenInParallel'.\n");
endrun(2131);
}
nprocgroup = NTask / All.NumFilesWrittenInParallel;
if((NTask % All.NumFilesWrittenInParallel))
{
nprocgroup++;
}
masterTask = (ThisTask / nprocgroup) * nprocgroup;
for(groupTask = 0; groupTask < nprocgroup; groupTask++)
{
if(ThisTask == (masterTask + groupTask)) /* ok, it's this processor's turn */
{
if(modus)
{
if(!(fd = fopen(buf, "r")))
{
printf("Restart file '%s' not found.\n", buf);
endrun(7870);
}
}
else
{
system(buf_mv); /* move old restart files to .bak files */
/*
/* move old restart files to .bak files */
/*
system(buf_mv);
This does not work !!!
fd = fopen(buf,"r");
fd_bak = fopen(buf_bak,"w");
while(1)
{
fgets(buf, 200, fd);
if (feof(fd)) break;
fprintf(fd_bak, buf, 200);
}
fclose(fd);
fclose(fd_bak);
*/
if(!(fd = fopen(buf, "w")))
{
printf("Restart file '%s' cannot be opened.\n", buf);
endrun(7878);
}
}
save_PartAllocFactor = All.PartAllocFactor;
save_TreeAllocFactor = All.TreeAllocFactor;
/* common data */
byten(&All, sizeof(struct global_data_all_processes), modus);
if(ThisTask == 0 && modus > 0)
all_task0 = All;
if(modus > 0 && groupTask == 0) /* read */
{
MPI_Bcast(&all_task0, sizeof(struct global_data_all_processes), MPI_BYTE, 0, MPI_COMM_WORLD);
}
old_MaxPart = All.MaxPart;
old_MaxNodes = All.TreeAllocFactor * All.MaxPart;
if(modus) /* read */
{
if(All.PartAllocFactor != save_PartAllocFactor)
{
All.PartAllocFactor = save_PartAllocFactor;
All.MaxPart = All.PartAllocFactor * (All.TotNumPart / NTask);
All.MaxPartSph = All.PartAllocFactor * (All.TotN_gas / NTask);
#ifdef STELLAR_PROP
All.MaxPartStars = All.PartAllocFactor * (All.TotN_stars / NTask); /* existing star particles */
#ifdef SFR
All.MaxPartStars = All.MaxPartStars = + All.StarFormationNStarsFromGas*All.MaxPartSph; /* potental star particles */
#endif
#endif
save_PartAllocFactor = -1;
}
if(All.TreeAllocFactor != save_TreeAllocFactor)
{
All.TreeAllocFactor = save_TreeAllocFactor;
save_TreeAllocFactor = -1;
}
if(all_task0.Time != All.Time)
{
printf("The restart file on task=%d is not consistent with the one on task=0\n", ThisTask);
fflush(stdout);
endrun(16);
}
allocate_memory();
}
in(&NumPart, modus);
if(NumPart > All.MaxPart)
{
printf
("it seems you have reduced(!) 'PartAllocFactor' below the value of %g needed to load the restart file.\n",
NumPart / (((double) All.TotNumPart) / NTask));
printf("fatal error\n");
endrun(22);
}
/* Particle data */
byten(&P[0], NumPart * sizeof(struct particle_data), modus);
in(&N_gas, modus);
if(N_gas > 0)
{
if(N_gas > All.MaxPartSph)
{
printf
("SPH: it seems you have reduced(!) 'PartAllocFactor' below the value of %g needed to load the restart file.\n",
N_gas / (((double) All.TotN_gas) / NTask));
printf("fatal error\n");
endrun(222);
}
/* Sph-Particle data */
byten(&SphP[0], N_gas * sizeof(struct sph_particle_data), modus);
}
#ifdef SFR
in(&N_stars, modus);
#ifdef STELLAR_PROP
if(N_stars > 0)
{
if(N_stars > All.MaxPartStars)
{
printf
("StP : it seems you have reduced(!) 'PartAllocFactor' below the value of %g needed to load the restart file.\n",
N_stars / (((double) All.TotN_stars) / NTask));
printf("fatal error\n");
endrun(2222);
}
/* Particle data */
byten(&StP[0], N_stars * sizeof(struct st_particle_data), modus);
}
/* this is a test, in case the restart fails */
//for(i=0;i<N_stars;i++)
// {
// printf("(%d) %d %15g %15g \n",ThisTask,N_stars,StP[i].FormationTime,StP[i].Hsml);
// }
#endif
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
in(&SetMinTimeStepForActives, modus);
#endif
#ifdef AB_TURB
byten(gsl_rng_state(StRng), gsl_rng_size(StRng), modus);
byten(&StNModes, sizeof(StNModes), modus);
byten(&StOUVar, sizeof(StOUVar),modus);
byten(StOUPhases, StNModes*6*sizeof(double),modus);
byten(StAmpl, StNModes*sizeof(double),modus);
byten(StAka, StNModes*3*sizeof(double),modus);
byten(StAkb, StNModes*3*sizeof(double),modus);
byten(StMode, StNModes*3*sizeof(double),modus);
byten(&StTPrev, sizeof(StTPrev),modus);
byten(&StSolWeightNorm, sizeof(StSolWeightNorm),modus);
#endif
#ifdef GAS_ACCRETION
- in(&N_acc, modus);
+ in(&NumPart_acc, modus);
+ in(&N_gas_acc, modus);
if(modus) /* read */
allocate_gas_accretion();
+
+ if(NumPart_acc > 0)
+ {
+ /* Particle data */
+ byten(&Acc[0], NumPart_acc * sizeof(struct acc_particle_data), modus);
+ }
-
- if(N_acc > 0)
+ if(N_gas_acc > 0)
{
/* Particle data */
- byten(&SphAcc[0], N_acc * sizeof(struct acc_particle_data), modus);
+ byten(&SphAcc[0], N_gas_acc * sizeof(struct gas_acc_particle_data), modus);
}
#endif
/* write state of random number generator */
byten(gsl_rng_state(random_generator), gsl_rng_size(random_generator), modus);
/* now store relevant data for tree */
if(modus) /* read */
{
ngb_treeallocate(MAX_NGB);
force_treeallocate(All.TreeAllocFactor * All.MaxPart, All.MaxPart);
}
in(&Numnodestree, modus);
in(&NTopleaves, modus); /* yr : Thu Mar 17 16:54:34 CET 2011 */
if(Numnodestree > MaxNodes)
{
printf
("Tree storage: it seems you have reduced(!) 'PartAllocFactor' below the value needed to load the restart file (task=%d). "
"Numnodestree=%d MaxNodes=%d\n", ThisTask, Numnodestree, MaxNodes);
endrun(221);
}
byten(Nodes_base, Numnodestree * sizeof(struct NODE), modus);
byten(Extnodes_base, Numnodestree * sizeof(struct extNODE), modus);
byten(Father, NumPart * sizeof(int), modus);
byten(Nextnode, NumPart * sizeof(int), modus);
byten(Nextnode + All.MaxPart, MAXTOPNODES * sizeof(int), modus);
byten(DomainStartList, NTask * sizeof(int), modus);
byten(DomainEndList, NTask * sizeof(int), modus);
byten(DomainTask, MAXTOPNODES * sizeof(int), modus);
byten(DomainNodeIndex, MAXTOPNODES * sizeof(int), modus);
byten(DomainTreeNodeLen, MAXTOPNODES * sizeof(FLOAT), modus);
byten(DomainHmax, MAXTOPNODES * sizeof(FLOAT), modus);
byten(DomainMoment, MAXTOPNODES * sizeof(struct DomainNODE), modus);
byten(DomainCorner, 3 * sizeof(double), modus);
byten(DomainCenter, 3 * sizeof(double), modus);
byten(&DomainLen, sizeof(double), modus);
byten(&DomainFac, sizeof(double), modus);
byten(&DomainMyStart, sizeof(int), modus);
byten(&DomainMyLast, sizeof(int), modus);
if(modus) /* read */
if(All.PartAllocFactor != save_PartAllocFactor || All.TreeAllocFactor != save_TreeAllocFactor)
{
for(i = 0; i < NumPart; i++)
Father[i] += (All.MaxPart - old_MaxPart);
for(i = 0; i < NumPart; i++)
if(Nextnode[i] >= old_MaxPart)
{
if(Nextnode[i] >= old_MaxPart + old_MaxNodes)
Nextnode[i] += (All.MaxPart - old_MaxPart) + (MaxNodes - old_MaxPart);
else
Nextnode[i] += (All.MaxPart - old_MaxPart);
}
for(i = 0; i < Numnodestree; i++)
{
if(Nodes_base[i].u.d.sibling >= old_MaxPart)
{
if(Nodes_base[i].u.d.sibling >= old_MaxPart + old_MaxNodes)
Nodes_base[i].u.d.sibling +=
(All.MaxPart - old_MaxPart) + (MaxNodes - old_MaxNodes);
else
Nodes_base[i].u.d.sibling += (All.MaxPart - old_MaxPart);
}
if(Nodes_base[i].u.d.father >= old_MaxPart)
{
if(Nodes_base[i].u.d.father >= old_MaxPart + old_MaxNodes)
Nodes_base[i].u.d.father += (All.MaxPart - old_MaxPart) + (MaxNodes - old_MaxNodes);
else
Nodes_base[i].u.d.father += (All.MaxPart - old_MaxPart);
}
if(Nodes_base[i].u.d.nextnode >= old_MaxPart)
{
if(Nodes_base[i].u.d.nextnode >= old_MaxPart + old_MaxNodes)
Nodes_base[i].u.d.nextnode +=
(All.MaxPart - old_MaxPart) + (MaxNodes - old_MaxNodes);
else
Nodes_base[i].u.d.nextnode += (All.MaxPart - old_MaxPart);
}
}
for(i = 0; i < MAXTOPNODES; i++)
if(Nextnode[i + All.MaxPart] >= old_MaxPart)
{
if(Nextnode[i + All.MaxPart] >= old_MaxPart + old_MaxNodes)
Nextnode[i + All.MaxPart] += (All.MaxPart - old_MaxPart) + (MaxNodes - old_MaxNodes);
else
Nextnode[i + All.MaxPart] += (All.MaxPart - old_MaxPart);
}
for(i = 0; i < MAXTOPNODES; i++)
if(DomainNodeIndex[i] >= old_MaxPart)
{
if(DomainNodeIndex[i] >= old_MaxPart + old_MaxNodes)
DomainNodeIndex[i] += (All.MaxPart - old_MaxPart) + (MaxNodes - old_MaxNodes);
else
DomainNodeIndex[i] += (All.MaxPart - old_MaxPart);
}
}
/* local system state (yr) */
if (sizeof(struct local_state_of_system))
byten(&LocalSysState, sizeof(struct local_state_of_system), modus);
fclose(fd);
}
else /* wait inside the group */
{
if(modus > 0 && groupTask == 0) /* read */
{
MPI_Bcast(&all_task0, sizeof(struct global_data_all_processes), MPI_BYTE, 0, MPI_COMM_WORLD);
}
}
MPI_Barrier(MPI_COMM_WORLD);
}
}
/*! reads/writes n bytes in restart routine
*/
void byten(void *x, size_t n, int modus)
{
if(modus)
my_fread(x, n, 1, fd);
else
my_fwrite(x, n, 1, fd);
}
/*! reads/writes one `int' variable in restart routine
*/
void in(int *x, int modus)
{
if(modus)
my_fread(x, 1, sizeof(int), fd);
else
my_fwrite(x, 1, sizeof(int), fd);
}

Event Timeline