Page MenuHomec4science

No OneTemporary

File Metadata

Created
Fri, Sep 27, 19:12
This file is larger than 256 KB, so syntax highlighting was skipped.
This document is not UTF8. It was detected as ISO-8859-1 (Latin 1) and converted to UTF8 for display.
diff --git a/src/allvars.h b/src/allvars.h
index eb235c3..3d12422 100644
--- a/src/allvars.h
+++ b/src/allvars.h
@@ -1,2194 +1,2273 @@
/*! \file allvars.h
* \brief declares global variables.
*
* This file declares all global variables. Further variables should be added here, and declared as
* 'extern'. The actual existence of these variables is provided by the file 'allvars.c'. To produce
* 'allvars.c' from 'allvars.h', do the following:
*
* - Erase all #define's, typedef's, and enum's
* - add #include "allvars.h", delete the #ifndef ALLVARS_H conditional
* - delete all keywords 'extern'
* - delete all struct definitions enclosed in {...}, e.g.
* "extern struct global_data_all_processes {....} All;"
* becomes "struct global_data_all_processes All;"
*/
#ifndef ALLVARS_H
#define ALLVARS_H
#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_spline.h>
#include <gsl/gsl_integration.h>
#include "tags.h"
#define GADGETVERSION "2.0" /*!< code version string */
#define TIMEBASE (1<<28) /*!< The simulated timespan is mapped onto the integer interval [0,TIMESPAN],
* where TIMESPAN needs to be a power of 2. Note that (1<<28) corresponds to 2^29
*/
#define MAXTOPNODES 200000 /*!< Maximum number of nodes in the top-level tree used for domain decomposition */
typedef long long peanokey; /*!< defines the variable type used for Peano-Hilbert keys */
#define BITS_PER_DIMENSION 18 /*!< Bits per dimension available for Peano-Hilbert order.
Note: If peanokey is defined as type int, the allowed maximum is 10.
If 64-bit integers are used, the maximum is 21 */
#define PEANOCELLS (((peanokey)1)<<(3*BITS_PER_DIMENSION)) /*!< The number of different Peano-Hilbert cells */
#define RNDTABLE 3000 /*!< gives the length of a table with random numbers, refreshed at every timestep.
This is used to allow application of random numbers to a specific particle
in a way that is independent of the number of processors used. */
#define MAX_REAL_NUMBER 1e37
#define MIN_REAL_NUMBER 1e-37
#define MAXLEN_FILENAME 100 /*!< Maximum number of characters for filenames (including the full path) */
#ifdef ISOTHERM_EQS
#define GAMMA (1.0) /*!< index for isothermal gas */
#else
#define GAMMA (5.0/3) /*!< adiabatic index of simulated gas */
#endif
#define GAMMA_MINUS1 (GAMMA-1)
#define HYDROGEN_MASSFRAC 0.76 /*!< mass fraction of hydrogen, relevant only for radiative cooling */
/* Some physical constants in cgs units */
#define GRAVITY 6.672e-8 /*!< Gravitational constant (in cgs units) */
#define SOLAR_MASS 1.989e33
#define SOLAR_LUM 3.826e33
#define RAD_CONST 7.565e-15
#define AVOGADRO 6.0222e23
#define BOLTZMANN 1.3806e-16
#define GAS_CONST 8.31425e7
#define C 2.9979e10
#define PLANCK 6.6262e-27
#define CM_PER_MPC 3.085678e24
#define PROTONMASS 1.6726e-24
#define ELECTRONMASS 9.10953e-28
#define THOMPSON 6.65245e-25
#define ELECTRONCHARGE 4.8032e-10
#define HUBBLE 3.2407789e-18 /* in h/sec */
#define YEAR_IN_SECOND 31536000.0 /* year in sec */
#define FEH_SOLAR 0.00181 /* used only if cooling with metal is on and chimie is off */
#define PI 3.1415926535897931
#define TWOPI 6.2831853071795862
/* Some conversion factors */
#define SEC_PER_MEGAYEAR 3.155e13
#define SEC_PER_YEAR 3.155e7
#ifndef ASMTH
#define ASMTH 1.25 /*!< ASMTH gives the scale of the short-range/long-range force split in units of FFT-mesh cells */
#endif
#ifndef RCUT
#define RCUT 4.5 /*!< RCUT gives the maximum distance (in units of the scale used for the force split) out to
which short-range forces are evaluated in the short-range tree walk. */
#endif
#define MAX_NGB 20000 /*!< defines maximum length of neighbour list */
#define MAXLEN_OUTPUTLIST 500 /*!< maxmimum number of entries in list of snapshot output times */
#define DRIFT_TABLE_LENGTH 1000 /*!< length of the lookup table used to hold the drift and kick factors */
#ifdef COSMICTIME
#define COSMICTIME_TABLE_LENGTH 1000 /*!< length of the lookup table used for the cosmic time computation */
#endif
#define MAXITER 1000 /*!< maxmimum number of steps for SPH neighbour iteration */
#ifdef DOUBLEPRECISION /*!< If defined, the variable type FLOAT is set to "double", otherwise to FLOAT */
#define FLOAT double
#else
#define FLOAT float
#endif
#ifndef TWODIMS
#define NUMDIMS 3 /*!< For 3D-normalized kernel */
#define KERNEL_COEFF_1 2.546479089470 /*!< Coefficients for SPH spline kernel and its derivative */
#define KERNEL_COEFF_2 15.278874536822
#define KERNEL_COEFF_3 45.836623610466
#define KERNEL_COEFF_4 30.557749073644
#define KERNEL_COEFF_5 5.092958178941
#define KERNEL_COEFF_6 (-15.278874536822)
#define NORM_COEFF 4.188790204786 /*!< Coefficient for kernel normalization. Note: 4.0/3 * PI = 4.188790204786 */
#else
#define NUMDIMS 2 /*!< For 2D-normalized kernel */
#define KERNEL_COEFF_1 (5.0/7*2.546479089470) /*!< Coefficients for SPH spline kernel and its derivative */
#define KERNEL_COEFF_2 (5.0/7*15.278874536822)
#define KERNEL_COEFF_3 (5.0/7*45.836623610466)
#define KERNEL_COEFF_4 (5.0/7*30.557749073644)
#define KERNEL_COEFF_5 (5.0/7*5.092958178941)
#define KERNEL_COEFF_6 (5.0/7*(-15.278874536822))
#define NORM_COEFF M_PI /*!< Coefficient for kernel normalization. */
#endif
#ifdef MULTIPHASE
#define GAS_SPH 0
#define GAS_STICKY 1
#define GAS_DARK 2
#endif
#if defined(SFR) || defined(STELLAR_PROP)
#define ST 1
#endif
#ifdef CHIMIE
-#define NELEMENTS 6
+#define NELEMENTS 10
#define MAXNELEMENTS 64
#endif
#ifdef COOLING
#define COOLING_NMETALICITIES 9
#define COOLING_NTEMPERATURES 171
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
#define VELOCITY_DISPERSION_SIZE 3
#endif
#ifdef CHIMIE
extern int FE;
extern int METALS;
#endif
extern int SetMinTimeStepForActives;
extern int ThisTask; /*!< the rank of the local processor */
extern int NTask; /*!< number of processors */
extern int PTask; /*!< smallest integer such that NTask <= 2^PTask */
extern int NumPart; /*!< number of particles on the LOCAL processor */
extern int N_gas; /*!< number of gas particles on the LOCAL processor */
#if defined(SFR) || defined(STELLAR_PROP)
extern int N_stars; /*!< number of stars particle on the LOCAL processor */
#endif
#ifdef MULTIPHASE
extern int N_sph;
extern int N_sticky;
extern int N_stickyflaged;
extern int N_dark;
extern int NumColPotLocal; /*!< local number of potentially collisional particles */
extern int NumColPot; /*!< total number of potentially collisional particles */
extern int NumColLocal; /*!< local number of collisions */
extern int NumCol; /*!< total number of collisions */
extern int NumNoColLocal;
extern int NumNoCol;
#endif
#ifdef GAS_ACCRETION
extern int NumPart_acc;
extern int N_gas_acc;
#ifdef STELLAR_PROP
extern int N_stars_acc;
#endif
#endif
extern long long Ntype[6]; /*!< total number of particles of each type */
extern int NtypeLocal[6]; /*!< local number of particles of each type */
extern int NumForceUpdate; /*!< number of active particles on local processor in current timestep */
extern int NumSphUpdate; /*!< number of active SPH particles on local processor in current timestep */
#ifdef CHIMIE
extern int NumStUpdate;
#endif
#ifdef TESSEL
extern int NumPTUpdate;
#endif
extern double CPUThisRun; /*!< Sums the CPU time for the process (current submission only) */
#ifdef SPLIT_DOMAIN_USING_TIME
extern double CPU_Gravity;
#endif
extern int RestartFlag; /*!< taken from command line used to start code. 0 is normal start-up from
initial conditions, 1 is resuming a run from a set of restart files, while 2
marks a restart from a snapshot file. */
extern char *Exportflag; /*!< Buffer used for flagging whether a particle needs to be exported to another process */
extern int *Ngblist; /*!< Buffer to hold indices of neighbours retrieved by the neighbour search routines */
extern int TreeReconstructFlag; /*!< Signals that a new tree needs to be constructed */
#ifdef SFR
extern int RearrangeParticlesFlag;/*!< Signals that particles must be rearanged */
#endif
extern int Flag_FullStep; /*!< This flag signals that the current step involves all particles */
extern gsl_rng *random_generator; /*!< the employed random number generator of the GSL library */
extern double RndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#ifdef SFR
extern double StarFormationRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef FEEDBACK_WIND
extern double FeedbackWindRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef CHIMIE
extern double ChimieRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
extern double ChimieKineticFeedbackRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef GAS_ACCRETION
extern double gasAccretionRndTable[RNDTABLE]; /*!< Hold a table with random numbers, refreshed every timestep */
#endif
#ifdef AB_TURB
//Ornstein-Uhlenbeck variables
extern double StOUVar;
extern double* StOUPhases;
extern gsl_rng* StRng;
//forcing field in fourie space
extern double* StAmpl;
extern double* StAka; //phases (real part)
extern double* StAkb; //phases (imag part)
extern double* StMode;
extern int StNModes;
//integertime StTPrev; (yr : ask ?)
extern int StTPrev;
extern double StSolWeightNorm;
#endif
#ifdef PY_INTERFACE
extern int NumPartQ;
extern int N_gasQ;
extern long long NtypeQ[6]; /*!< total number of particles of each type */
extern int NtypeLocalQ[6]; /*!< local number of particles of each type */
extern double DomainCornerQ[3]; /*!< gives the lower left corner of simulation volume */
extern double DomainCenterQ[3]; /*!< gives the center of simulation volume */
extern double DomainLenQ; /*!< gives the (maximum) side-length of simulation volume */
extern double DomainFacQ; /*!< factor used for converting particle coordinates to a Peano-Hilbert mesh covering the simulation volume */
extern int DomainMyStartQ; /*!< first domain mesh cell that resides on the local processor */
extern int DomainMyLastQ; /*!< last domain mesh cell that resides on the local processor */
extern int *DomainStartListQ; /*!< a table that lists the first domain mesh cell for all processors */
extern int *DomainEndListQ; /*!< a table that lists the last domain mesh cell for all processors */
extern double *DomainWorkQ; /*!< a table that gives the total "work" due to the particles stored by each processor */
extern int *DomainCountQ; /*!< a table that gives the total number of particles held by each processor */
extern int *DomainCountSphQ; /*!< a table that gives the total number of SPH particles held by each processor */
extern int *DomainTaskQ; /*!< this table gives for each leaf of the top-level tree the processor it was assigned to */
extern peanokey *DomainKeyBufQ; /*!< this points to a buffer used during the exchange of particle data */
extern int NTopnodesQ; /*!< total number of nodes in top-level tree */
extern int NTopleavesQ; /*!< number of leaves in top-level tree. Each leaf can be assigned to a different processor */
extern void *CommBufferQ; /*!< points to communication buffer, which is used in the domain decomposition, the
parallel tree-force computation, the SPH routines, etc. */
#endif
extern double DomainCorner[3]; /*!< gives the lower left corner of simulation volume */
extern double DomainCenter[3]; /*!< gives the center of simulation volume */
extern double DomainLen; /*!< gives the (maximum) side-length of simulation volume */
extern double DomainFac; /*!< factor used for converting particle coordinates to a Peano-Hilbert mesh covering the simulation volume */
extern int DomainMyStart; /*!< first domain mesh cell that resides on the local processor */
extern int DomainMyLast; /*!< last domain mesh cell that resides on the local processor */
extern int *DomainStartList; /*!< a table that lists the first domain mesh cell for all processors */
extern int *DomainEndList; /*!< a table that lists the last domain mesh cell for all processors */
extern double *DomainWork; /*!< a table that gives the total "work" due to the particles stored by each processor */
extern int *DomainCount; /*!< a table that gives the total number of particles held by each processor */
extern int *DomainCountSph; /*!< a table that gives the total number of SPH particles held by each processor */
extern int *DomainTask; /*!< this table gives for each leaf of the top-level tree the processor it was assigned to */
extern int *DomainNodeIndex; /*!< this table gives for each leaf of the top-level tree the corresponding node of the gravitational tree */
extern FLOAT *DomainTreeNodeLen; /*!< this table gives for each leaf of the top-level tree the side-length of the corresponding node of the gravitational tree */
extern FLOAT *DomainHmax; /*!< this table gives for each leaf of the top-level tree the maximum SPH smoothing length among the particles of the corresponding node of the gravitational tree */
extern struct DomainNODE
{
FLOAT s[3]; /*!< center-of-mass coordinates */
FLOAT vs[3]; /*!< center-of-mass velocities */
FLOAT mass; /*!< mass of node */
#ifdef STELLAR_FLUX
FLOAT starlum; /*!< star luminosity of node */
#endif
#ifdef UNEQUALSOFTENINGS
#ifndef ADAPTIVE_GRAVSOFT_FORGAS
int bitflags; /*!< this bit-field encodes the particle type with the largest softening among the particles of the nodes, and whether there are particles with different softening in the node */
#else
FLOAT maxsoft; /*!< hold the maximum gravitational softening of particles in the
node if the ADAPTIVE_GRAVSOFT_FORGAS option is selected */
#endif
#endif
}
*DomainMoment; /*!< this table stores for each node of the top-level tree corresponding node data from the gravitational tree */
extern peanokey *DomainKeyBuf; /*!< this points to a buffer used during the exchange of particle data */
extern peanokey *Key; /*!< a table used for storing Peano-Hilbert keys for particles */
extern peanokey *KeySorted; /*!< holds a sorted table of Peano-Hilbert keys for all particles, used to construct top-level tree */
extern int NTopnodes; /*!< total number of nodes in top-level tree */
extern int NTopleaves; /*!< number of leaves in top-level tree. Each leaf can be assigned to a different processor */
extern struct topnode_data
{
int Daughter; /*!< index of first daughter cell (out of 8) of top-level node */
int Pstart; /*!< for the present top-level node, this gives the index of the first node in the concatenated list of topnodes collected from all processors */
int Blocks; /*!< for the present top-level node, this gives the number of corresponding nodes in the concatenated list of topnodes collected from all processors */
int Leaf; /*!< if the node is a leaf, this gives its number when all leaves are traversed in Peano-Hilbert order */
peanokey Size; /*!< number of Peano-Hilbert mesh-cells represented by top-level node */
peanokey StartKey; /*!< first Peano-Hilbert key in top-level node */
long long Count; /*!< counts the number of particles in this top-level node */
}
#ifdef PY_INTERFACE
*TopNodesQ,
#endif
*TopNodes; /*!< points to the root node of the top-level tree */
extern double TimeOfLastTreeConstruction; /*!< holds what it says, only used in connection with FORCETEST */
/* variables for input/output, usually only used on process 0 */
extern char ParameterFile[MAXLEN_FILENAME]; /*!< file name of parameterfile used for starting the simulation */
extern FILE *FdInfo; /*!< file handle for info.txt log-file. */
extern FILE *FdLog; /*!< file handle for log.txt log-file. */
extern FILE *FdEnergy; /*!< file handle for energy.txt log-file. */
#ifdef SYSTEMSTATISTICS
extern FILE *FdSystem;
#endif
extern FILE *FdTimings; /*!< file handle for timings.txt log-file. */
extern FILE *FdCPU; /*!< file handle for cpu.txt log-file. */
#ifdef FORCETEST
extern FILE *FdForceTest; /*!< file handle for forcetest.txt log-file. */
#endif
#ifdef SFR
extern FILE *FdSfr; /*!< file handle for sfr.txt log-file. */
#endif
#ifdef CHIMIE
extern FILE *FdChimie; /*!< file handle for chimie log-file. */
#endif
#ifdef MULTIPHASE
extern FILE *FdPhase; /*!< file handle for pase.txt log-file. */
extern FILE *FdSticky; /*!< file handle for sticky.txt log-file. */
#endif
#ifdef AGN_ACCRETION
extern FILE *FdAccretion; /*!< file handle for accretion.txt log-file. */
#endif
#ifdef BONDI_ACCRETION
extern FILE *FdBondi; /*!< file handle for bondi.txt log-file. */
#endif
#ifdef BUBBLES
extern FILE *FdBubble; /*!< file handle for bubble.txt log-file. */
#endif
#ifdef GAS_ACCRETION
extern FILE *FdGasAccretion; /*!< file handle for gas_accretion.txt log-file. */
#endif
extern double DriftTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological drift factors */
extern double GravKickTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological kick factor for gravitational forces */
extern double HydroKickTable[DRIFT_TABLE_LENGTH]; /*!< table for the cosmological kick factor for hydrodynmical forces */
#ifdef COSMICTIME
extern double CosmicTimeTable[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
extern double FullCosmicTimeTable[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
extern double FullCosmicTimeTableInv[COSMICTIME_TABLE_LENGTH]; /*!< table for the computation of cosmic time */
#endif
extern void *CommBuffer; /*!< points to communication buffer, which is used in the domain decomposition, the
parallel tree-force computation, the SPH routines, etc. */
/*! This structure contains data which is the SAME for all tasks (mostly code parameters read from the
* parameter file). Holding this data in a structure is convenient for writing/reading the restart file, and
* it allows the introduction of new global variables in a simple way. The only thing to do is to introduce
* them into this structure.
*/
extern struct global_data_all_processes
{
long long TotNumPart; /*!< total particle numbers (global value) */
long long TotN_gas; /*!< total gas particle number (global value) */
#ifdef GAS_ACCRETION
long long TotNumPart_acc;
long long TotN_gas_acc;
#endif
#ifdef PY_INTERFACE
long long TotNumPartQ; /*!< total particle numbers (global value) */
long long TotN_gasQ; /*!< total gas particle number (global value) */
int MaxPartQ; /*!< This gives the maxmimum number of particles that can be stored on one processor. */
int MaxPartSphQ; /*!< This gives the maxmimum number of SPH particles that can be stored on one processor. */
int BunchSizeSph;
int BunchSizeDensitySph;
double ForceSofteningQ;
#endif
#if defined(SFR) || defined(STELLAR_PROP)
long long TotN_stars; /*!< total stars particle number (global value) */
#endif
#ifdef MULTIPHASE
long long TotN_sph; /*!< total sph particle number (global value) */
long long TotN_sticky; /*!< total sticky particle number (global value) */
long long TotN_stickyflaged; /*!< total sticky flaged particle number (global value) */
long long TotN_stickyactive; /*!< total sticky active particle number (global value) */
long long TotN_dark; /*!< total dark particle number (global value) */
#endif
int MaxPart; /*!< This gives the maxmimum number of particles that can be stored on one processor. */
int MaxPartSph; /*!< This gives the maxmimum number of SPH particles that can be stored on one processor. */
#ifdef TESSEL
int MaxgPart;
#endif
#ifdef STELLAR_PROP
int MaxPartStars; /*!< This gives the maxmimum number of Star particles that can be stored on one processor. */
#endif
double BoxSize; /*!< Boxsize in case periodic boundary conditions are used */
int ICFormat; /*!< selects different versions of IC file-format */
int SnapFormat; /*!< selects different versions of snapshot file-formats */
int NumFilesPerSnapshot; /*!< number of files in multi-file snapshot dumps */
int NumFilesWrittenInParallel;/*!< maximum number of files that may be written simultaneously when
writing/reading restart-files, or when writing snapshot files */
int BufferSize; /*!< size of communication buffer in MB */
int BunchSizeForce; /*!< number of particles fitting into the buffer in the parallel tree-force algorithm */
int BunchSizeDensity; /*!< number of particles fitting into the communication buffer in the density computation */
int BunchSizeHydro; /*!< number of particles fitting into the communication buffer in the SPH hydrodynamical force computation */
int BunchSizeDomain; /*!< number of particles fitting into the communication buffer in the domain decomposition */
#ifdef MULTIPHASE
int BunchSizeSticky; /*!< number of particles fitting into the communication buffer in the Chimie computation */
#endif
#ifdef CHIMIE
int BunchSizeChimie; /*!< number of particles fitting into the communication buffer in the Chimie computation */
int BunchSizeStarsDensity; /*!< number of particles fitting into the communication buffer in the star density computation */
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
int BunchSizeSynchronizeNgBTimestep;
#endif
#ifdef DISSIPATION_FORCES
int BunchSizeDissipationForces;
#endif
+#ifdef FOF
+ int BunchSizeFOF;
+#endif
+
#ifdef TESSEL
int BunchSizeGhost;
#endif
double PartAllocFactor; /*!< in order to maintain work-load balance, the particle load will usually
NOT be balanced. Each processor allocates memory for PartAllocFactor times
the average number of particles to allow for that */
double TreeAllocFactor; /*!< Each processor allocates a number of nodes which is TreeAllocFactor times
the maximum(!) number of particles. Note: A typical local tree for N
particles needs usually about ~0.65*N nodes. */
#ifdef SFR
double StarsAllocFactor; /*!< Estimated fraction of gas particles that will form stars during the simulation
This allow to reduce the memory stored for stellar particles */
#endif
/* some SPH parameters */
double DesNumNgb; /*!< Desired number of SPH neighbours */
double MaxNumNgbDeviation; /*!< Maximum allowed deviation neighbour number */
double ArtBulkViscConst; /*!< Sets the parameter \f$\alpha\f$ of the artificial viscosity */
#ifdef ART_CONDUCTIVITY
double ArtCondConst; /*!< Sets the parameter \f$\alpha\f$ of the artificial conductivity */
double ArtCondThreshold;
#endif
double InitGasTemp; /*!< may be used to set the temperature in the IC's */
double MinGasTemp; /*!< may be used to set a floor for the gas temperature */
double MinEgySpec; /*!< the minimum allowed temperature expressed as energy per unit mass */
/* Usefull constants */
double Boltzmann;
double ProtonMass;
double mumh;
#ifdef COOLING
/* Cooling parameters */
double *logT;
double *logL;
gsl_interp_accel *acc_cooling_spline;
gsl_spline *cooling_spline;
double CoolingType;
#ifdef PYCOOL
char * CoolingFile;
#else
char CoolingFile[MAXLEN_FILENAME]; /*!< cooling file */
#endif
double CutofCoolingTemperature;
/*
new metal dependent cooling
*/
double CoolingParameters_zmin;
double CoolingParameters_zmax;
double CoolingParameters_slz;
double CoolingParameters_tmin;
double CoolingParameters_tmax;
double CoolingParameters_slt;
double CoolingParameters_FeHSolar;
double CoolingParameters_cooling_data_max;
double CoolingParameters_cooling_data[COOLING_NMETALICITIES][COOLING_NTEMPERATURES];
int CoolingParameters_p;
int CoolingParameters_q;
#ifdef COOLING_WIERSMA
char CoolingDirectory[MAXLEN_FILENAME]; /*!< cooling directory */
#endif
#ifdef COOLING_FCT_FROM_HDF5
// cooling tables loaded from HDF5 files
// (dimensions depend on the presence of nHe)
float*** COOLING_TABLES_METAL_FREE;
float** COOLING_TABLES_TOTAL_METAL;
float*** ELECTRON_DENSITY_OVER_N_H_TABLES;
float** ELECTRON_DENSITY_OVER_N_H_TABLES_SOLAR;
float* HYDROGEN_TABLES;
float* TEMPERATURE_TABLES;
float* HELIUM_ABOUNDANCE_TABLES;
//corresponding sizes
int SIZE_HYDROGEN_TABLES;
int SIZE_TEMPERATURE_TABLES;
int SIZE_HELIUM_ABOUNDANCE_TABLES;
// current redshift value determining the cooling file
// from which the data is interpolated
float CURRENT_TABLE_REDSHIFT;
#endif
#endif
#ifdef CHIMIE
int ChimieNumberOfParameterFiles;
#ifdef PYCHEM
char * ChimieParameterFile;
#else
char ChimieParameterFile[MAXLEN_FILENAME]; /*!< chimie parameter file */
#endif
double ChimieSupernovaEnergy;
double ChimieKineticFeedbackFraction;
double ChimieWindSpeed;
double ChimieWindTime;
double ChimieSNIaThermalTime;
double ChimieSNIIThermalTime;
double ChimieMaxSizeTimestep;
#ifdef CHIMIE_ONE_SN_ONLY /*!< explode only one sn>*/
int ChimieOneSN;
#endif
#endif
#if defined (CHIMIE) || defined (COOLING)
double InitGasMetallicity;
#endif
#if !defined (HEATING_PE)
double HeatingPeElectronFraction;
#endif
#if !defined (HEATING_PE) || defined (STELLAR_FLUX) || defined (EXTERNAL_FLUX)
double HeatingPeSolarEnergyDensity;
#endif
#if !defined (HEATING_PE) || defined (STELLAR_FLUX)
double HeatingPeLMRatioGas;
double HeatingPeLMRatioHalo;
double HeatingPeLMRatioDisk;
double HeatingPeLMRatioBulge;
double HeatingPeLMRatioStars;
double HeatingPeLMRatioBndry;
double HeatingPeLMRatio[6];
#endif
#ifdef EXTERNAL_FLUX
double HeatingExternalFLuxEnergyDensity;
#endif
#ifdef MULTIPHASE
double CriticalTemperature;
double CriticalEgySpec;
double CriticalNonCollisionalTemperature;
double CriticalNonCollisionalEgySpec;
#ifdef COLDGAS_CYCLE
double ColdGasCycleTransitionTime;
double ColdGasCycleTransitionParameter;
#endif
#endif
#ifdef MULTIPHASE
/* some STICKY parameters */
int StickyUseGridForCollisions;
double StickyTime; /*!< Cooling time of sticky particle collision */
double StickyCollisionTime;
double StickyLastCollisionTime;
double StickyIdleTime;
double StickyMinVelocity;
double StickyMaxVelocity;
int StickyGridNx;
int StickyGridNy;
int StickyGridNz;
double StickyGridXmin;
double StickyGridXmax;
double StickyGridYmin;
double StickyGridYmax;
double StickyGridZmin;
double StickyGridZmax;
double StickyLambda;
double StickyDensity;
double StickyDensityPower;
double StickyBetaR;
double StickyBetaT;
double StickyRsphFact; /*!< Fraction of the sph radius used in sticky particle */
#endif
#ifdef OUTERPOTENTIAL
#ifdef NFW
double HaloConcentration;
double HaloMass;
double GasMassFraction;
double NFWPotentialCte;
double Rs;
#endif
#ifdef PLUMMER
double PlummerMass;
double PlummerSoftenning;
double PlummerPotentialCte;
#endif
#ifdef MIYAMOTONAGAI
double MiyamotoNagaiMass;
double MiyamotoNagaiHr;
double MiyamotoNagaiHz;
double MiyamotoNagaiPotentialCte;
#endif
#ifdef PISOTHERM
double Rho0;
double Rc;
double PisothermPotentialCte;
double GasMassFraction;
double PotentialInf;
gsl_function PotentialF;
gsl_integration_workspace *Potentialw;
#endif
#ifdef CORIOLIS
double CoriolisOmegaX;
double CoriolisOmegaY;
double CoriolisOmegaZ;
double CoriolisOmegaX0;
double CoriolisOmegaY0;
double CoriolisOmegaZ0;
#endif
#endif
#ifdef SFR
int StarFormationNStarsFromGas;
double StarFormationStarMass;
double StarFormationMgMsFraction;
int StarFormationType;
double StarFormationCstar;
double StarFormationTime;
double StarFormationDensity;
double StarFormationTemperature;
double ThresholdDensity;
#endif
#ifdef FEEDBACK
double SupernovaTime;
#endif
#ifdef FEEDBACK_WIND
double SupernovaWindEgySpecPerMassUnit;
double SupernovaWindFractionInEgyKin;
double SupernovaWindParameter;
double SupernovaWindSpeed;
double SupernovaWindIntAccuracy;
#endif
#ifdef AGN_ACCRETION
double TimeBetAccretion;
double AccretionRadius;
double AGNFactor;
double MinMTotInRa;
double TimeLastAccretion;
double LastMTotInRa;
double MTotInRa;
double dMTotInRa;
#endif
#ifdef BUBBLES
char BubblesInitFile[MAXLEN_FILENAME]; /*!< bubble file */
double *BubblesTime;
double *BubblesD;
double *BubblesR;
double *BubblesE;
double *BubblesA;
double *BubblesB;
int BubblesIndex;
double BubblesAlpha;
double BubblesBeta;
double BubblesDelta;
double BubblesRadiusFactor;
double EnergyBubbles;
#endif
#ifdef AGN_HEATING
double AGNHeatingPower;
double AGNHeatingRmax;
#endif
#ifdef BONDI_ACCRETION
double BondiEfficiency;
double BondiBlackHoleMass;
double BondiHsmlFactor;
double BondiPower;
double BondiTimeBet;
double BondiTimeLast;
#endif
#if defined (AGN_ACCRETION) || defined (BONDI_ACCRETION)
double LightSpeed;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
double ArtBulkViscConstMin;
double ArtBulkViscConstMax;
double ArtBulkViscConstL;
#endif
#ifdef AB_TURB
double StDecay;
double StEnergy;
double StDtFreq;
double StKmin;
double StKmax;
double StSolWeight;
double StAmplFac;
int StSpectForm;
int StSeed;
#endif
#ifdef GAS_ACCRETION
double AccretionParticleMass[6];
#endif
#ifdef SYNCHRONIZE_NGB_TIMESTEP
int NgbFactorTimestep;
#endif
/* some force counters */
long long TotNumOfForces; /*!< counts total number of force computations */
long long NumForcesSinceLastDomainDecomp; /*!< count particle updates since last domain decomposition */
/* system of units */
double G; /*!< Gravity-constant in internal units */
double UnitTime_in_s; /*!< factor to convert internal time unit to seconds/h */
double UnitMass_in_g; /*!< factor to convert internal mass unit to grams/h */
double UnitVelocity_in_cm_per_s; /*!< factor to convert intqernal velocity unit to cm/sec */
double UnitLength_in_cm; /*!< factor to convert internal length unit to cm/h */
double UnitPressure_in_cgs; /*!< factor to convert internal pressure unit to cgs units (little 'h' still around!) */
double UnitDensity_in_cgs; /*!< factor to convert internal length unit to g/cm^3*h^2 */
double UnitCoolingRate_in_cgs; /*!< factor to convert internal cooling rate to cgs units */
double UnitEnergy_in_cgs; /*!< factor to convert internal energy to cgs units */
double UnitTime_in_Megayears; /*!< factor to convert internal time to megayears/h */
double GravityConstantInternal; /*!< If set to zero in the parameterfile, the internal value of the
gravitational constant is set to the Newtonian value based on the system of
units specified. Otherwise the value provided is taken as internal gravity constant G. */
/* Cosmological parameters */
double Hubble; /*!< Hubble-constant in internal units */
double Omega0; /*!< matter density in units of the critical density (at z=0)*/
double OmegaLambda; /*!< vaccum energy density relative to crictical density (at z=0) */
double OmegaBaryon; /*!< baryon density in units of the critical density (at z=0)*/
double HubbleParam; /*!< little `h', i.e. Hubble constant in units of 100 km/s/Mpc. Only needed to get absolute physical values for cooling physics */
/* Code options */
int ComovingIntegrationOn; /*!< flags that comoving integration is enabled */
int PeriodicBoundariesOn; /*!< flags that periodic boundaries are enabled */
int ResubmitOn; /*!< flags that automatic resubmission of job to queue system is enabled */
int TypeOfOpeningCriterion; /*!< determines tree cell-opening criterion: 0 for Barnes-Hut, 1 for relative criterion */
int TypeOfTimestepCriterion; /*!< gives type of timestep criterion (only 0 supported right now - unlike gadget-1.1) */
int OutputListOn; /*!< flags that output times are listed in a specified file */
/* Parameters determining output frequency */
int SnapshotFileCount; /*!< number of snapshot that is written next */
double TimeBetSnapshot; /*!< simulation time interval between snapshot files */
double TimeOfFirstSnapshot; /*!< simulation time of first snapshot files */
double CpuTimeBetRestartFile; /*!< cpu-time between regularly generated restart files */
double TimeLastRestartFile; /*!< cpu-time when last restart-file was written */
double TimeBetStatistics; /*!< simulation time interval between computations of energy statistics */
double TimeLastStatistics; /*!< simulation time when the energy statistics was computed the last time */
int NumCurrentTiStep; /*!< counts the number of system steps taken up to this point */
/* Current time of the simulation, global step, and end of simulation */
double Time; /*!< current time of the simulation */
double TimeBegin; /*!< time of initial conditions of the simulation */
double TimeStep; /*!< difference between current times of previous and current timestep */
double TimeMax; /*!< marks the point of time until the simulation is to be evolved */
/* variables for organizing discrete timeline */
double Timebase_interval; /*!< factor to convert from floating point time interval to integer timeline */
int Ti_Current; /*!< current time on integer timeline */
int Ti_nextoutput; /*!< next output time on integer timeline */
#ifdef FLEXSTEPS
int PresentMinStep; /*!< If FLEXSTEPS is used, particle timesteps are chosen as multiples of the present minimum timestep. */
int PresentMaxStep; /*!< If FLEXSTEPS is used, this is the maximum timestep in timeline units, rounded down to the next power 2 division */
#endif
#ifdef PMGRID
int PM_Ti_endstep; /*!< begin of present long-range timestep */
int PM_Ti_begstep; /*!< end of present long-range timestep */
#endif
/* Placement of PM grids */
#ifdef PMGRID
double Asmth[2]; /*!< Gives the scale of the long-range/short-range split (in mesh-cells), both for the coarse and the high-res mesh */
double Rcut[2]; /*!< Gives the maximum radius for which the short-range force is evaluated with the tree (in mesh-cells), both for the coarse and the high-res mesh */
double Corner[2][3]; /*!< lower left corner of coarse and high-res PM-mesh */
double UpperCorner[2][3]; /*!< upper right corner of coarse and high-res PM-mesh */
double Xmintot[2][3]; /*!< minimum particle coordinates both for coarse and high-res PM-mesh */
double Xmaxtot[2][3]; /*!< maximum particle coordinates both for coarse and high-res PM-mesh */
double TotalMeshSize[2]; /*!< total extension of coarse and high-res PM-mesh */
#endif
/* Variables that keep track of cumulative CPU consumption */
double TimeLimitCPU; /*!< CPU time limit as defined in parameterfile */
double CPU_TreeConstruction; /*!< time spent for constructing the gravitational tree */
double CPU_TreeWalk; /*!< actual time spent for pure tree-walks */
double CPU_Gravity; /*!< cumulative time used for gravity computation (tree-algorithm only) */
double CPU_Potential; /*!< time used for computing gravitational potentials */
double CPU_Domain; /*!< cumulative time spent for domain decomposition */
double CPU_Snapshot; /*!< time used for writing snapshot files */
double CPU_Total; /*!< cumulative time spent for domain decomposition */
double CPU_CommSum; /*!< accumulated time used for communication, and for collecting partial results, in tree-gravity */
double CPU_Imbalance; /*!< cumulative time lost accross all processors as work-load imbalance in gravitational tree */
double CPU_HydCompWalk; /*!< time used for actual SPH computations, including neighbour search */
double CPU_HydCommSumm; /*!< cumulative time used for communication in SPH, and for collecting partial results */
double CPU_HydImbalance; /*!< cumulative time lost due to work-load imbalance in SPH */
double CPU_Hydro; /*!< cumulative time spent for SPH related computations */
#ifdef SFR
double CPU_StarFormation; /*!< cumulative time spent for star formation computations */
#endif
#ifdef CHIMIE
double CPU_Chimie; /*!< cumulative time spent for chimie computations */
double CPU_ChimieDensCompWalk;
double CPU_ChimieDensCommSumm;
double CPU_ChimieDensImbalance;
double CPU_ChimieDensEnsureNgb;
double CPU_ChimieCompWalk;
double CPU_ChimieCommSumm;
double CPU_ChimieImbalance;
#endif
#ifdef MULTIPHASE
double CPU_Sticky; /*!< cumulative time spent for sticky computations */
#endif
double CPU_EnsureNgb; /*!< time needed to iterate on correct neighbour numbers */
double CPU_Predict; /*!< cumulative time to drift the system forward in time, including dynamic tree updates */
double CPU_TimeLine; /*!< time used for determining new timesteps, and for organizing the timestepping, including kicks of active particles */
double CPU_PM; /*!< time used for long-range gravitational force */
double CPU_Peano; /*!< time required to establish Peano-Hilbert order */
#ifdef DETAILED_CPU_DOMAIN
double CPU_Domain_findExtend;
double CPU_Domain_determineTopTree;
double CPU_Domain_sumCost;
double CPU_Domain_findSplit;
double CPU_Domain_shiftSplit;
double CPU_Domain_countToGo;
double CPU_Domain_exchange;
#endif
#ifdef DETAILED_CPU_GRAVITY
double CPU_Gravity_TreeWalk1;
double CPU_Gravity_TreeWalk2;
double CPU_Gravity_CommSum1;
double CPU_Gravity_CommSum2;
double CPU_Gravity_Imbalance1;
double CPU_Gravity_Imbalance2;
#endif
#ifdef COOLING
double CPU_Cooling;
#endif
#ifdef DETAILED_CPU
double CPU_Leapfrog;
double CPU_Physics;
double CPU_Residual;
double CPU_Accel;
double CPU_Begrun;
#endif
/* tree code opening criterion */
double ErrTolTheta; /*!< BH tree opening angle */
double ErrTolForceAcc; /*!< parameter for relative opening criterion in tree walk */
/* adjusts accuracy of time-integration */
double ErrTolIntAccuracy; /*!< accuracy tolerance parameter \f$ \eta \f$ for timestep criterion. The
timestep is \f$ \Delta t = \sqrt{\frac{2 \eta eps}{a}} \f$ */
double MinSizeTimestep; /*!< minimum allowed timestep. Normally, the simulation terminates if the
timestep determined by the timestep criteria falls below this limit. */
double MaxSizeTimestep; /*!< maximum allowed timestep */
double MaxRMSDisplacementFac; /*!< this determines a global timestep criterion for cosmological simulations
in comoving coordinates. To this end, the code computes the rms velocity
of all particles, and limits the timestep such that the rms displacement
is a fraction of the mean particle separation (determined from the
particle mass and the cosmological parameters). This parameter specifies
this fraction. */
double CourantFac; /*!< SPH-Courant factor */
/* frequency of tree reconstruction/domain decomposition */
double TreeDomainUpdateFrequency; /*!< controls frequency of domain decompositions */
/* Gravitational and hydrodynamical softening lengths (given in terms of an `equivalent' Plummer softening length).
* Five groups of particles are supported 0="gas", 1="halo", 2="disk", 3="bulge", 4="stars", 5="bndry"
*/
double MinGasHsmlFractional; /*!< minimum allowed SPH smoothing length in units of SPH gravitational softening length */
double MinGasHsml; /*!< minimum allowed SPH smoothing length */
double SofteningGas; /*!< comoving gravitational softening lengths for type 0 */
double SofteningHalo; /*!< comoving gravitational softening lengths for type 1 */
double SofteningDisk; /*!< comoving gravitational softening lengths for type 2 */
double SofteningBulge; /*!< comoving gravitational softening lengths for type 3 */
double SofteningStars; /*!< comoving gravitational softening lengths for type 4 */
double SofteningBndry; /*!< comoving gravitational softening lengths for type 5 */
double SofteningGasMaxPhys; /*!< maximum physical softening length for type 0 */
double SofteningHaloMaxPhys; /*!< maximum physical softening length for type 1 */
double SofteningDiskMaxPhys; /*!< maximum physical softening length for type 2 */
double SofteningBulgeMaxPhys; /*!< maximum physical softening length for type 3 */
double SofteningStarsMaxPhys; /*!< maximum physical softening length for type 4 */
double SofteningBndryMaxPhys; /*!< maximum physical softening length for type 5 */
double SofteningTable[6]; /*!< current (comoving) gravitational softening lengths for each particle type */
double ForceSoftening[6]; /*!< the same, but multiplied by a factor 2.8 - at that scale the force is Newtonian */
double MassTable[6]; /*!< Table with particle masses for particle types with equal mass.
If particle masses are all equal for one type, the corresponding entry in MassTable
is set to this value, allowing the size of the snapshot files to be reduced. */
/* some filenames */
char InitCondFile[MAXLEN_FILENAME]; /*!< filename of initial conditions */
char OutputDir[MAXLEN_FILENAME]; /*!< output directory of the code */
char SnapshotFileBase[MAXLEN_FILENAME]; /*!< basename to construct the names of snapshotf files */
char EnergyFile[MAXLEN_FILENAME]; /*!< name of file with energy statistics */
#ifdef SYSTEMSTATISTICS
char SystemFile[MAXLEN_FILENAME];
#endif
char CpuFile[MAXLEN_FILENAME]; /*!< name of file with cpu-time statistics */
char InfoFile[MAXLEN_FILENAME]; /*!< name of log-file with a list of the timesteps taken */
char LogFile[MAXLEN_FILENAME]; /*!< name of log-file with varied info */
#ifdef SFR
char SfrFile[MAXLEN_FILENAME]; /*!< name of file with sfr records */
#endif
#ifdef CHIMIE
char ChimieFile[MAXLEN_FILENAME]; /*!< name of file with chimie records */
#endif
#ifdef MULTIPHASE
char PhaseFile[MAXLEN_FILENAME]; /*!< name of file with phase records */
char StickyFile[MAXLEN_FILENAME]; /*!< name of file with sticky records */
#endif
#ifdef AGN_ACCRETION
char AccretionFile[MAXLEN_FILENAME]; /*!< name of file with accretion records */
#endif
#ifdef BONDI_ACCRETION
char BondiFile[MAXLEN_FILENAME]; /*!< name of file with bondi records */
#endif
#ifdef BUBBLES
char BubbleFile[MAXLEN_FILENAME]; /*!< name of file with bubble records */
#endif
#ifdef GAS_ACCRETION
char GasAccretionFile[MAXLEN_FILENAME]; /*!< name of file with sfr records */
#endif
char TimingsFile[MAXLEN_FILENAME]; /*!< name of file with performance metrics of gravitational tree algorithm */
char RestartFile[MAXLEN_FILENAME]; /*!< basename of restart-files */
char ResubmitCommand[MAXLEN_FILENAME]; /*!< name of script-file that will be executed for automatic restart */
char OutputListFilename[MAXLEN_FILENAME]; /*!< name of file with list of desired output times */
double OutputListTimes[MAXLEN_OUTPUTLIST]; /*!< table with desired output times */
int OutputListLength; /*!< number of output times stored in the table of desired output times */
#ifdef RANDOMSEED_AS_PARAMETER
int RandomSeed; /*!< initial random seed >*/
#endif
}
All; /*!< a container variable for global variables that are equal on all processors */
/*! This structure holds all the information that is
* stored for each particle of the simulation.
*/
extern struct particle_data
{
FLOAT Pos[3]; /*!< particle position at its current time */
FLOAT Mass; /*!< particle mass */
FLOAT Vel[3]; /*!< particle velocity at its current time */
FLOAT GravAccel[3]; /*!< particle acceleration due to gravity */
#ifdef PMGRID
FLOAT GravPM[3]; /*!< particle acceleration due to long-range PM gravity force*/
#endif
#ifdef FORCETEST
FLOAT GravAccelDirect[3]; /*!< particle acceleration when computed with direct summation */
#endif
FLOAT Potential; /*!< gravitational potential */
FLOAT OldAcc; /*!< magnitude of old gravitational force. Used in relative opening criterion */
#ifndef LONGIDS
unsigned int ID; /*!< particle identifier */
#else
unsigned long long ID; /*!< particle identifier */
#endif
int Type; /*!< flags particle type. 0=gas, 1=halo, 2=disk, 3=bulge, 4=stars, 5=bndry */
int Ti_endstep; /*!< marks start of current timestep of particle on integer timeline */
int Ti_begstep; /*!< marks end of current timestep of particle on integer timeline */
#ifdef SYNCHRONIZE_NGB_TIMESTEP
int Old_Ti_endstep; /*!< marks start of old current timestep of particle on integer timeline */
int Old_Ti_begstep; /*!< marks end of old current timestep of particle on integer timeline */
#endif
#ifdef FLEXSTEPS
int FlexStepGrp; /*!< a random 'offset' on the timeline to create a smooth groouping of particles */
#endif
float GravCost; /*!< weight factor used for balancing the work-load */
#ifdef PSEUDOSYMMETRIC
float AphysOld; /*!< magnitude of acceleration in last timestep. Used to make a first order
prediction of the change of acceleration expected in the future, thereby
allowing to guess whether a decrease/increase of the timestep should occur
in the timestep that is started. */
#endif
#ifdef PARTICLE_FLAG
float Flag;
#endif
#ifdef STELLAR_PROP
unsigned int StPIdx; /*!< index to the corresponding StP particle */
#endif
#ifdef TESSEL
int iT; /*!< index of a triangle to which the point belong to */
int IsDone;
int IsAdded; /*!< if the point has already be added in the tesselation */
int ivPoint; /*!< index of first voronoi point */
int nvPoints; /*!< number of voronoi points */
int iMedian;
int nMedians;
double Volume;
double Density;
double Pressure;
double Entropy;
double rSearch; /*!< radius in which particles must search for ngbs */
int iPref; /*!< for a ghost point, index of the reference point */
FLOAT tesselAccel[3];
#endif
# ifdef SYNCHRONIZE_NGB_TIMESTEP
int Ti_step;
#endif
#ifdef VANISHING_PARTICLES
int VanishingFlag;
#endif
}
*P, /*!< holds particle data on local processor */
#ifdef PY_INTERFACE
*Q,
*DomainPartBufQ, /*!< buffer for particle data used in domain decomposition */
#endif
*DomainPartBuf; /*!< buffer for particle data used in domain decomposition */
/* the following struture holds data that is stored for each SPH particle in addition to the collisionless
* variables.
*/
extern struct sph_particle_data
{
FLOAT Entropy; /*!< current value of entropy (actually entropic function) of particle */
FLOAT Density; /*!< current baryonic mass density of particle */
FLOAT Hsml; /*!< current smoothing length */
FLOAT Left; /*!< lower bound in iterative smoothing length search */
FLOAT Right; /*!< upper bound in iterative smoothing length search */
FLOAT NumNgb; /*!< weighted number of neighbours found */
#ifdef AVOIDNUMNGBPROBLEM
FLOAT OldNumNgb;
#endif
FLOAT Pressure; /*!< current pressure */
FLOAT DtEntropy; /*!< rate of change of entropy */
#ifdef COOLING
//FLOAT EntropyRad; /*!< current value of entropy resulting from the cooling */
FLOAT DtEntropyRad; /*!< rate of change of entropy due to cooling */
FLOAT DtEnergyRad;
#endif
#ifdef STELLAR_FLUX
FLOAT EnergyFlux; /*!< current value of local energy flux - Sph particles */
#endif
#ifdef AGN_HEATING
FLOAT EgySpecAGNHeat; /*!< current value of specific energy radiated of particle - Sph particles */
FLOAT DtEgySpecAGNHeat; /*!< rate of change of specific radiated energy - Sph particles */
FLOAT DtEntropyAGNHeat;
#endif
#ifdef MULTIPHASE
FLOAT StickyTime;
int StickyFlag;
#ifdef COUNT_COLLISIONS
float StickyCollisionNumber;
#endif
#endif
#ifdef FEEDBACK
FLOAT EgySpecFeedback;
FLOAT DtEgySpecFeedback;
FLOAT EnergySN;
FLOAT EnergySNrem;
FLOAT TimeSN;
FLOAT FeedbackVel[3]; /*!< kick due to feedback force */
#endif
#ifdef FEEDBACK_WIND
FLOAT FeedbackWindVel[3]; /*!< kick due to feedback force */
#endif
FLOAT HydroAccel[3]; /*!< acceleration due to hydrodynamical force */
FLOAT VelPred[3]; /*!< predicted SPH particle velocity at the current time */
FLOAT DivVel; /*!< local velocity divergence */
FLOAT CurlVel; /*!< local velocity curl */
FLOAT Rot[3]; /*!< local velocity curl */
FLOAT DhsmlDensityFactor; /*!< correction factor needed in the equation of motion of the conservative entropy formulation of SPH */
FLOAT MaxSignalVel; /*!< maximum "signal velocity" occuring for this particle */
#ifdef MULTIPHASE
int Phase;
int StickyIndex;
int StickyNgb;
int StickyMaxID;
float StickyMaxFs;
FLOAT StickyNewVel[3];
#endif
#ifdef OUTPUTOPTVAR1
FLOAT OptVar1; /*!< optional variable 1 */
#endif
#ifdef OUTPUTOPTVAR2
FLOAT OptVar2; /*!< optional variable 2 */
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
FLOAT VelocityDispersion[VELOCITY_DISPERSION_SIZE]; /*!< velocity dispersion */
#endif
#ifdef CHIMIE
FLOAT Metal[NELEMENTS];
#ifdef CHIMIE_SMOOTH_METALS
FLOAT MassMetal[NELEMENTS]; /*!< old metal estimation (ratio of masses) */
FLOAT RhoMetal[NELEMENTS]; /*!< metal density of the particle */
#endif
FLOAT dMass; /*!< mass variation due to mass transfere */
#ifdef CHIMIE_THERMAL_FEEDBACK
FLOAT DeltaEgySpec;
FLOAT SNIaThermalTime; /*!< flag particles that got energy from SNIa */
FLOAT SNIIThermalTime; /*!< flag particles that got energy from SNII */
double NumberOfSNIa;
double NumberOfSNII;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
FLOAT WindTime; /*!< flag particles that belongs to the wind */
unsigned int WindFlag; /*!< flag particles that will be part of the wind */
#endif
#endif /*CHIMIE*/
#ifdef ENTROPYPRED
FLOAT EntropyPred; /*!< predicted entropy at the current time */
#endif
#ifdef ART_CONDUCTIVITY
FLOAT EnergyIntPred;
FLOAT GradEnergyInt[3];
#endif
#ifdef AB_TURB
FLOAT TurbAccel[3];
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
double ArtBulkViscConst;
#ifdef ART_VISCO_CD
double DmatCD[3][3];
double TmatCD[3][3];
double DiVelAccurate;
double DiVelTemp;
double ArtBulkViscConstOld;
double R_CD;
FLOAT MaxSignalVelCD;
#endif
#endif
#ifdef GAS_ACCRETION
int ActiveFlag;
#endif
#ifdef DISSIPATION_FORCES
FLOAT EnergyDissipationForces;
FLOAT DtEnergyDissipationForces;
FLOAT DissipationForcesAccel[3];
#endif
#if PY_INTERFACE
FLOAT Observable;
FLOAT ObsMoment0;
FLOAT ObsMoment1;
FLOAT GradObservable[3];
#endif
# ifdef SYNCHRONIZE_NGB_TIMESTEP
int Ti_minNgbStep;
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
FLOAT FeedbackUpdatedAccel[3]; /*!< acceleration after feedback injection */
FLOAT MaxSignalVelFeedbackUpdated;
#endif
#ifdef DENSITY_INDEPENDENT_SPH
FLOAT EgyWtDensity; /*!< 'effective' rho to use in hydro equations */
FLOAT EntVarPred; /*!< predicted entropy variable */
FLOAT DhsmlEgyDensityFactor; /*!< correction factor for density-independent entropy formulation */
#endif
+#ifdef FOF
+ int FOF_CPUHead; /*!< cpu ID of the first particle of the chain */
+ int FOF_CPUTail; /*!< cpu ID of the last particle of the chain */
+ int FOF_CPUNext; /*!< cpu ID of the next particle of the chain */
+ int FOF_CPUPrev; /*!< cpu ID of the previous particle of the chain */
+
+ int FOF_Head; /*!< first particle of the chain */
+ int FOF_Tail; /*!< last particle of the chain */
+ int FOF_Next; /*!< next particle in the chain */
+ int FOF_Prev; /*!< previous particle in the chain */
+
+
+ int FOF_Len; /*!< length of the chain */
+ int FOF_Done; /*!< the particle is done (used for pseudo heads) */
+
+ FLOAT FOF_DensMax;
+#endif
+
+#ifdef METAL_DIFFUSION
+ FLOAT RmsSpeed;
+ FLOAT MetalDiffusionCoeff;
+ FLOAT MetalDiffusionA;
+ FLOAT MetalDiffusionB[NELEMENTS];
+#endif
}
*SphP, /*!< holds SPH particle data on local processor */
#ifdef PY_INTERFACE
*SphQ,
*DomainSphBufQ, /*!< buffer for SPH particle data in domain decomposition */
#endif
*DomainSphBuf; /*!< buffer for SPH particle data in domain decomposition */
#ifdef GAS_ACCRETION
extern struct acc_particle_data
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Mass;
FLOAT Time;
int Type;
int ID;
}
*Acc;
extern struct gas_acc_particle_data
{
FLOAT Entropy;
#ifdef CHIMIE
FLOAT Metal[NELEMENTS];
#endif
}
*SphAcc;
#endif
#ifdef STELLAR_PROP
/* the following struture holds data that is stored for each SPH particle in addition to the collisionless
* variables.
*/
extern struct st_particle_data
{
#ifdef CHECK_ID_CORRESPONDENCE
unsigned int ID; /*!< particle identifier (must be the same as P[].ID) only used to check ID correspondance */
#endif
FLOAT FormationTime; /*!< star formation time of particle */
FLOAT InitialMass; /*!< initial stellar mass */
#ifndef LONGIDS
unsigned int IDProj; /*!< id of projenitor particle */
#else
unsigned long long IDProj; /*!< id of projenitor particle */
#endif
FLOAT Metal[NELEMENTS];
FLOAT Density; /*!< current baryonic mass density of particle */
FLOAT Volume; /*!< current volume of particle */
FLOAT Hsml; /*!< current smoothing length */
FLOAT Left; /*!< lower bound in iterative smoothing length search */
FLOAT Right; /*!< upper bound in iterative smoothing length search */
FLOAT NumNgb; /*!< weighted number of neighbours found */
unsigned int PIdx; /*!< index to the corresponding particle */
#ifdef AVOIDNUMNGBPROBLEM
FLOAT OldNumNgb;
#endif
FLOAT DhsmlDensityFactor; /*!< correction factor needed in the equation of motion of the conservative entropy formulation of SPH */
double TotalEjectedGasMass;
double TotalEjectedEltMass[NELEMENTS];
double TotalEjectedEgySpec;
double NumberOfSNIa;
double NumberOfSNII;
#ifdef CHIMIE_KINETIC_FEEDBACK
double NgbMass; /*!< mass of neighbours */
#endif
#ifdef CHIMIE
unsigned int Flag;
#endif
}
*StP, /*!< holds ST particle data on local processor */
*DomainStBuf; /*!< buffer for ST particle data in domain decomposition */
#endif
/* Variables for Tree
*/
extern int MaxNodes; /*!< maximum allowed number of internal nodes */
extern int Numnodestree; /*!< number of (internal) nodes in each tree */
extern struct NODE
{
FLOAT len; /*!< sidelength of treenode */
FLOAT center[3]; /*!< geometrical center of node */
#ifdef ADAPTIVE_GRAVSOFT_FORGAS
FLOAT maxsoft; /*!< hold the maximum gravitational softening of particles in the
node if the ADAPTIVE_GRAVSOFT_FORGAS option is selected */
#endif
#ifdef STELLAR_FLUX
FLOAT starlum ; /*!< star luminosity of node */
#endif
union
{
int suns[8]; /*!< temporary pointers to daughter nodes */
struct
{
FLOAT s[3]; /*!< center of mass of node */
FLOAT mass; /*!< mass of node */
int bitflags; /*!< a bit-field with various information on the node */
int sibling; /*!< this gives the next node in the walk in case the current node can be used */
int nextnode; /*!< this gives the next node in case the current node needs to be opened */
int father; /*!< this gives the parent node of each node (or -1 if we have the root node) */
}
d;
}
u;
}
*Nodes_base, /*!< points to the actual memory allocted for the nodes */
*Nodes; /*!< this is a pointer used to access the nodes which is shifted such that Nodes[All.MaxPart]
gives the first allocated node */
extern int *Nextnode; /*!< gives next node in tree walk */
extern int *Father; /*!< gives parent node in tree */
extern struct extNODE /*!< this structure holds additional tree-node information which is not needed in the actual gravity computation */
{
FLOAT hmax; /*!< maximum SPH smoothing length in node. Only used for gas particles */
FLOAT vs[3]; /*!< center-of-mass velocity */
}
*Extnodes_base, /*!< points to the actual memory allocted for the extended node information */
*Extnodes; /*!< provides shifted access to extended node information, parallel to Nodes/Nodes_base */
/*! Header for the standard file format.
*/
extern struct io_header
{
int npart[6]; /*!< number of particles of each type in this file */
double mass[6]; /*!< mass of particles of each type. If 0, then the masses are explicitly
stored in the mass-block of the snapshot file, otherwise they are omitted */
double time; /*!< time of snapshot file */
double redshift; /*!< redshift of snapshot file */
int flag_sfr; /*!< flags whether the simulation was including star formation */
int flag_feedback; /*!< flags whether feedback was included (obsolete) */
unsigned int npartTotal[6]; /*!< total number of particles of each type in this snapshot. This can be
different from npart if one is dealing with a multi-file snapshot. */
int flag_cooling; /*!< flags whether cooling was included */
int num_files; /*!< number of files in multi-file snapshot */
double BoxSize; /*!< box-size of simulation in case periodic boundaries were used */
double Omega0; /*!< matter density in units of critical density */
double OmegaLambda; /*!< cosmological constant parameter */
double HubbleParam; /*!< Hubble parameter in units of 100 km/sec/Mpc */
int flag_stellarage; /*!< flags whether the file contains formation times of star particles */
int flag_metals; /*!< flags whether the file contains metallicity values for gas and star particles */
unsigned int npartTotalHighWord[6]; /*!< High word of the total number of particles of each type */
int flag_entropy_instead_u; /*!< flags that IC-file contains entropy instead of u */
int flag_chimie_extraheader; /*!< flags that IC-file contains extra-header for chimie */
#ifdef MULTIPHASE
double critical_energy_spec;
#ifdef MESOMACHINE
char fill[38];
#else
char fill[48]; /* use 42 with regor... */
#endif
#else
char fill[56]; /*!< fills to 256 Bytes */
#endif
}
header; /*!< holds header for snapshot files */
#ifdef CHIMIE_EXTRAHEADER
/*! Header for the chimie part.
*/
extern struct io_chimie_extraheader
{
int nelts; /*!< number of chemical element followed */
float SolarMassAbundances[NELEMENTS];
char labels[256-4-4*(NELEMENTS)];
}
chimie_extraheader;
#endif
#define IO_NBLOCKS 24 /*!< total number of defined information blocks for snapshot files.
Must be equal to the number of entries in "enum iofields" */
enum iofields /*!< this enumeration lists the defined output blocks in snapshot files. Not all of them need to be present. */
{
IO_POS,
IO_VEL,
IO_ID,
IO_MASS,
IO_U,
IO_RHO,
IO_HSML,
IO_POT,
IO_ACCEL,
IO_DTENTR,
IO_TSTP,
IO_ERADSPH,
IO_ERADSTICKY,
IO_ERADFEEDBACK,
IO_ENERGYFLUX,
IO_METALS,
IO_STAR_FORMATIONTIME,
IO_INITIAL_MASS,
IO_STAR_IDPROJ,
IO_STAR_RHO,
IO_STAR_HSML,
IO_STAR_METALS,
IO_OPTVAR1,
IO_OPTVAR2
};
extern char Tab_IO_Labels[IO_NBLOCKS][4]; /*<! This table holds four-byte character tags used for fileformat 2 */
/* global state of system, used for global statistics
*/
extern struct state_of_system
{
double Mass;
double EnergyKin;
double EnergyPot;
double EnergyInt;
#ifdef COOLING
double EnergyRadSph;
#endif
#ifdef AGN_HEATING
double EnergyAGNHeat;
#endif
#ifdef DISSIPATION_FORCES
double EnergyDissipationForces;
#endif
#ifdef MULTIPHASE
double EnergyRadSticky;
#endif
#ifdef FEEDBACK_WIND
double EnergyFeedbackWind;
#endif
#ifdef BUBBLES
double EnergyBubbles;
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
double EnergyThermalFeedback;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double EnergyKineticFeedback;
#endif
#ifdef INTEGRAL_CONSERVING_DISSIPATION
double EnergyICDissipation;
#endif
double EnergyTot;
double Momentum[4];
double AngMomentum[4];
double CenterOfMass[4];
double MassComp[6];
double EnergyKinComp[6];
double EnergyPotComp[6];
double EnergyIntComp[6];
#ifdef COOLING
double EnergyRadSphComp[6];
#endif
#ifdef AGN_HEATING
double EnergyAGNHeatComp[6];
#endif
#ifdef MULTIPHASE
double EnergyRadStickyComp[6];
#endif
#ifdef FEEDBACK_WIND
double EnergyFeedbackWindComp[6];
#endif
#ifdef BUBBLES
double EnergyBubblesComp[6];
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
double EnergyThermalFeedbackComp[6];
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double EnergyKineticFeedbackComp[6];
#endif
double EnergyTotComp[6];
double MomentumComp[6][4];
double AngMomentumComp[6][4];
double CenterOfMassComp[6][4];
#ifdef DISSIPATION_FORCES
double EnergyDissipationForcesComp[6];
#endif
#ifdef INTEGRAL_CONSERVING_DISSIPATION
double EnergyICDissipationComp[6];
#endif
}
SysState; /*<! Structure for storing some global statistics about the simulation. */
/*! This structure contains data related to the energy budget.
These values are different for each task. It need to be stored
in the restart flag.
*/
extern struct local_state_of_system
{
double EnergyTest;
double EnergyInt1;
double EnergyInt2;
double EnergyKin1;
double EnergyKin2;
#ifdef COOLING
double RadiatedEnergy;
#endif
#ifdef SFR
double StarEnergyInt;
#ifdef FEEDBACK
double StarEnergyFeedback;
#endif
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
double EnergyThermalFeedback;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
double EnergyKineticFeedback;
#endif
#ifdef MULTIPHASE
double EnergyRadSticky;
#endif
#ifdef FEEDBACK_WIND
double EnergyFeedbackWind;
#endif
#ifdef INTEGRAL_CONSERVING_DISSIPATION
double EnergyICDissipation;
#endif
}
LocalSysState; /*<! Structure for storing some local statistics about the simulation. */
/* Various structures for communication
*/
extern struct gravdata_in
{
union
{
FLOAT Pos[3];
FLOAT Acc[3];
FLOAT Potential;
}
u;
#if defined(UNEQUALSOFTENINGS) || defined(STELLAR_FLUX)
int Type;
#ifdef ADAPTIVE_GRAVSOFT_FORGAS
FLOAT Soft;
#endif
#endif
#ifdef STELLAR_FLUX
FLOAT EnergyFlux;
#endif
union
{
FLOAT OldAcc;
int Ninteractions;
}
w;
}
*GravDataIn, /*!< holds particle data to be exported to other processors */
*GravDataGet, /*!< holds particle data imported from other processors */
*GravDataResult, /*!< holds the partial results computed for imported particles. Note: We use GravDataResult = GravDataGet, such that the result replaces the imported data */
*GravDataOut; /*!< holds partial results received from other processors. This will overwrite the GravDataIn array */
extern struct gravdata_index
{
int Task;
int Index;
int SortIndex;
}
*GravDataIndexTable; /*!< the particles to be exported are grouped by task-number. This table allows the results to be disentangled again and to be assigned to the correct particle */
extern struct densdata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
#ifdef MULTIPHASE
int Phase;
#endif
int Index;
int Task;
#ifdef ART_CONDUCTIVITY
FLOAT EnergyIntPred;
#endif
}
*DensDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*DensDataGet; /*!< holds imported particle data for SPH density computation */
extern struct densdata_out
{
FLOAT Rho;
FLOAT Div, Rot[3];
FLOAT DhsmlDensity;
FLOAT Ngb;
#ifdef ART_CONDUCTIVITY
FLOAT GradEnergyInt[3];
#endif
#ifdef DENSITY_INDEPENDENT_SPH
FLOAT EgyRho;
FLOAT DhsmlEgyDensity;
#endif
#ifdef CHIMIE_SMOOTH_METALS
FLOAT RhoMetal[NELEMENTS];
#endif
+#ifdef METAL_DIFFUSION
+ FLOAT RmsSpeed;
+#endif
+
}
*DensDataResult, /*!< stores the locally computed SPH density results for imported particles */
*DensDataPartialResult; /*!< imported partial SPH density results from other processors */
extern struct hydrodata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
#ifdef FEEDBACK
FLOAT EnergySN;
#endif
#ifdef MULTIPHASE
int Phase;
FLOAT Entropy;
int StickyFlag;
#endif
FLOAT Mass;
FLOAT Density;
FLOAT Pressure;
FLOAT F1;
FLOAT DhsmlDensityFactor;
int Timestep;
int Task;
int Index;
#ifdef WITH_ID_IN_HYDRA
int ID;
#endif
#ifdef ART_CONDUCTIVITY
FLOAT NormGradEnergyInt;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
double ArtBulkViscConst;
#endif
#ifdef DENSITY_INDEPENDENT_SPH
FLOAT EgyRho;
FLOAT EntVarPred;
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
FLOAT PressureFeedbackUpdated;
FLOAT F1FeedbackUpdated;
#endif
+
+#ifdef METAL_DIFFUSION
+ FLOAT MetalDiffusionCoeff;
+#endif
}
*HydroDataIn, /*!< holds particle data for SPH hydro-force computation to be exported to other processors */
*HydroDataGet; /*!< holds imported particle data for SPH hydro-force computation */
extern struct hydrodata_out
{
FLOAT Acc[3];
FLOAT DtEntropy;
#ifdef FEEDBACK
FLOAT DtEgySpecFeedback;
FLOAT FeedbackAccel[3]; /*!< acceleration due to feedback force */
#endif
FLOAT MaxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
FLOAT VelocityDispersion[VELOCITY_DISPERSION_SIZE];
#endif
#ifdef MULTIPHASE
FLOAT StickyDVel[3]; /*!< differences in velocities induced by sticky collisions */
#endif
#ifdef OUTPUT_CONDUCTIVITY
FLOAT OptVar2;
#endif
#ifdef ART_VISCO_CD
double DmatCD[3][3];
double TmatCD[3][3];
double R_CD;
FLOAT MaxSignalVelCD;
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
FLOAT AccFeedbackUpdated[3];
FLOAT maxSignalVelFeedbackUpdated;
#endif
+
+#ifdef METAL_DIFFUSION
+ FLOAT MetalDiffusionA;
+ FLOAT MetalDiffusionB[NELEMENTS];
+#endif
}
*HydroDataResult, /*!< stores the locally computed SPH hydro results for imported particles */
*HydroDataPartialResult; /*!< imported partial SPH hydro-force results from other processors */
#ifdef MULTIPHASE
extern struct stickydata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Mass;
FLOAT Hsml;
int ID;
int StickyMaxID;
int StickyNgb;
float StickyMaxFs;
int Task;
int Index;
}
*StickyDataIn, /*!< holds particle data for sticky computation to be exported to other processors */
*StickyDataGet; /*!< holds imported particle data for sticky computation */
extern struct stickydata_out
{
int StickyMaxID;
int StickyNgb;
float StickyMaxFs;
FLOAT StickyNewVel[3];
}
*StickyDataResult, /*!< stores the locally computed sticky results for imported particles */
*StickyDataPartialResult; /*!< imported partial sticky results from other processors */
extern struct Sticky_index
{
int Index;
int CellIndex;
int Flag;
}
*StickyIndex;
#endif
#ifdef CHIMIE
extern struct chimiedata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
#ifndef LONGIDS
unsigned int ID; /*!< particle identifier */
#else
unsigned long long ID; /*!< particle identifier */
#endif
FLOAT Hsml;
#ifdef FEEDBACK
FLOAT EnergySN;
#endif
#ifdef MULTIPHASE
int Phase;
FLOAT Entropy;
int StickyFlag;
#endif
FLOAT Density;
FLOAT Volume;
FLOAT Pressure;
FLOAT F1;
FLOAT DhsmlDensityFactor;
int Timestep;
int Task;
int Index;
double TotalEjectedGasMass;
double TotalEjectedEltMass[NELEMENTS];
double TotalEjectedEgySpec;
double NumberOfSNIa;
double NumberOfSNII;
#ifdef CHIMIE_KINETIC_FEEDBACK
FLOAT NgbMass;
#endif
}
*ChimieDataIn, /*!< holds particle data for Chimie computation to be exported to other processors */
*ChimieDataGet; /*!< holds imported particle data for Chimie computation */
extern struct chimiedata_out
{
FLOAT Acc[3];
FLOAT DtEntropy;
#ifdef FEEDBACK
FLOAT DtEgySpecFeedback;
FLOAT FeedbackAccel[3]; /*!< acceleration due to feedback force */
#endif
FLOAT MaxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
FLOAT VelocityDispersion[VELOCITY_DISPERSION_SIZE];
#endif
#ifdef MULTIPHASE
FLOAT StickyDVel[3]; /*!< differences in velocities induced by sticky collisions */
#endif
}
*ChimieDataResult, /*!< stores the locally computed Chimie results for imported particles */
*ChimieDataPartialResult; /*!< imported partial Chimie results from other processors */
extern struct starsdensdata_in
{
FLOAT Pos[3];
FLOAT Hsml;
int Index;
int Task;
}
*StarsDensDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*StarsDensDataGet; /*!< holds imported particle data for SPH density computation */
extern struct starsdensdata_out
{
FLOAT Rho;
FLOAT Volume;
FLOAT DhsmlDensity;
FLOAT Ngb;
#ifdef CHIMIE_KINETIC_FEEDBACK
FLOAT NgbMass;
#endif
}
*StarsDensDataResult, /*!< stores the locally computed SPH density results for imported particles */
*StarsDensDataPartialResult; /*!< imported partial SPH density results from other processors */
#endif /*CHIMIE*/
#ifdef DISSIPATION_FORCES
extern struct dissipationforcesdata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
FLOAT Mass;
FLOAT Density;
int Task;
int Index;
}
*DissipationForcesDataIn, /*!< holds particle data for SPH hydro-force computation to be exported to other processors */
*DissipationForcesDataGet; /*!< holds imported particle data for SPH hydro-force computation */
extern struct dissipationforcesdata_out
{
FLOAT Acc[3];
FLOAT DtEnergy;
}
*DissipationForcesDataResult, /*!< stores the locally computed SPH hydro results for imported particles */
*DissipationForcesDataPartialResult; /*!< imported partial SPH hydro-force results from other processors */
#endif /* DISSIPATION_FORCES */
+#ifdef FOF
+
+extern struct FOFdata_in
+{
+ FLOAT Pos[3];
+ FLOAT Hsml;
+ FLOAT Density;
+ int ID;
+
+ int FOF_Head;
+ int FOF_Tail;
+ int FOF_Prev;
+ int FOF_Next;
+ int FOF_CPUHead; /*!< index of the particle in its local proc */
+ int FOF_CPUPrev; /*!< index of the particle in its local proc */
+ int FOF_idx;
+
+ FLOAT FOF_DensMax;
+
+ int Task;
+ int Index;
+}
+ *FOFDataIn, /*!< holds particle data for SPH hydro-force computation to be exported to other processors */
+ *FOFDataGet; /*!< holds imported particle data for SPH hydro-force computation */
+
+extern struct FOFdata_out
+{
+ int FOF_Head;
+ int FOF_Prev;
+ FLOAT FOF_DensMax;
+ int FOF_CPUHead;
+ int FOF_CPUPrev;
+ int FOF_Done;
+}
+ *FOFDataResult, /*!< stores the locally computed SPH hydro results for imported particles */
+ *FOFDataPartialResult; /*!< imported partial SPH hydro-force results from other processors */
+
+#endif /* FOF */
#ifdef TESSEL
extern struct ghostdata_in
{
FLOAT Pos[3];
FLOAT rSearch;
int Index;
int Task;
}
*GhostDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*GhostDataGet; /*!< holds imported particle data for SPH density computation */
extern struct ghostdata_out
{
FLOAT Value;
}
*GhostDataResult, /*!< stores the locally computed SPH density results for imported particles */
*GhostDataPartialResult; /*!< imported partial SPH density results from other processors */
/* ghost particles */
//extern struct ghost_particle_data
//{
// FLOAT Pos[3]; /*!< particle position at its current time */
// FLOAT Mass; /*!< particle mass */
//}
// *gP;
extern int NumgPart;
#endif /* TESSEL */
#ifdef SYNCHRONIZE_NGB_TIMESTEP
extern struct SynchroinzeNgbTimestepdata_in
{
FLOAT Pos[3];
FLOAT Hsml;
int Ti_step;
int Ti_endstep;
int Index;
int Task;
#ifdef MULTIPHASE
int Phase;
#endif
}
*SynchroinzeNgbTimestepDataIn,
*SynchroinzeNgbTimestepDataGet;
#endif
#ifdef PY_INTERFACE
extern struct denssphdata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
FLOAT Density;
FLOAT DhsmlDensityFactor;
int Index;
int Task;
FLOAT Observable;
}
*DensSphDataIn, /*!< holds particle data for SPH density computation to be exported to other processors */
*DensSphDataGet; /*!< holds imported particle data for SPH density computation */
extern struct denssphdata_out
{
FLOAT Rho;
FLOAT Div, Rot[3];
FLOAT DhsmlDensity;
FLOAT Ngb;
FLOAT GradObservable[3];
}
*DensSphDataResult, /*!< stores the locally computed SPH density results for imported particles */
*DensSphDataPartialResult; /*!< imported partial SPH density results from other processors */
extern struct sphdata_in
{
FLOAT Pos[3];
FLOAT Vel[3];
FLOAT Hsml;
FLOAT Density;
FLOAT DhsmlDensityFactor;
FLOAT ObsMoment0;
FLOAT ObsMoment1;
FLOAT Observable;
int Task;
int Index;
}
*SphDataIn, /*!< holds particle data for SPH hydro-force computation to be exported to other processors */
*SphDataGet; /*!< holds imported particle data for SPH hydro-force computation */
extern struct sphdata_out
{
FLOAT ObsMoment0;
FLOAT ObsMoment1;
FLOAT GradObservable[3];
}
*SphDataResult, /*!< stores the locally computed SPH hydro results for imported particles */
*SphDataPartialResult; /*!< imported partial SPH hydro-force results from other processors */
#endif /*PY_INTERFACE*/
#endif
diff --git a/src/chimie.c b/src/chimie.c
index 9c3d6c8..c31cec6 100644
--- a/src/chimie.c
+++ b/src/chimie.c
@@ -1,7534 +1,7536 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include <gsl/gsl_math.h>
#include "allvars.h"
#include "proto.h"
#ifdef CHIMIE
#ifdef CHIMIE_FROM_HDF5
#include <hdf5.h>
#include "hdf5io.h"
#endif
#ifdef PYCHEM
#include <Python.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <numpy/arrayobject.h>
/*
****************************************************
these variables are already defined in Gadget (or not needed)
****************************************************
*/
#define TO_DOUBLE(a) ( (PyArrayObject*) PyArray_CastToType(a, PyArray_DescrFromType(NPY_DOUBLE) ,0) )
#endif /* PYCHEM */
const char *get_filename_ext(const char *filename) {
const char *dot = strrchr(filename, '.');
if(!dot || dot == filename) return "";
return dot + 1;
}
/****************************************************************************************/
/*
/*
/*
/* COMMON CHIMIE PART
/*
/*
/*
/****************************************************************************************/
#define MAXPTS 10
#define MAXDATASIZE 200
#define MAXDATAZSIZE 110
#define KPC_IN_CM 3.085e+21
/********************************************************
hdf5 reading routines
*********************************************************/
#ifdef CHIMIE_FROM_HDF5
#define HEADER_GRP "/Header"
#define DATA_GRP "/Data"
/********************************************************
Chemistry functions
*********************************************************/
struct ChemistryHeaderStruct
{
char * version;
char * author;
char * date;
};
struct ChemistryDataAttributesStruct
{
int nelts;
char **elts;
double *SolarMassAbundances;
double MeanWDMass;
char *SNIIYieldsFile;
char *SNIIHeliumCoreFile;
char *DYINYieldsFile;
char *DYINHeliumCoreFile;
char *SNIaFile;
char *SolarAbundancesFile;
};
struct ChemistryYieldsTableStruct
{
int nbins;
double min;
double step;
char *label;
double *data;
};
struct ChemistryYieldsTable2DStruct
{
int nx;
int ny;
double x0;
double y0;
double dx;
double dy;
char *label;
double **data;
};
struct ChemistryLiveTimesStruct
{
int nx;
int ny;
double **coeff_z;
};
struct ChemistryIMFStruct
{
int n;
double *ms;
double *as;
char *bs;
double Mmin;
double Mmax;
};
struct ChemistrySNIaStruct
{
double Mpl;
double Mpu;
double a;
double Mdl1;
double Mdu1;
double bb1;
double Mdl2;
double Mdu2;
double bb2;
struct ElementsDataStruct Metals;
};
struct ChemistrySNIIStruct
{
double Mmin;
double Mmax;
int npts;
int nelts;
char **elts;
struct ChemistryYieldsTableStruct *table;
};
struct ChemistryDYINStruct
{
double Mmin;
double Mmax;
int npts;
int nelts;
char **elts;
struct ChemistryYieldsTableStruct *table;
struct ChemistryYieldsTable2DStruct *tableZ;
int Zflag;
int nptZs;
};
/*! Read a table containing yields
* stored in the dataset named "name"
*/
struct ChemistryYieldsTableStruct readYieldsTable(hid_t group,char *name)
{
struct ChemistryYieldsTableStruct table;
hid_t dset;
herr_t status;
table.data = readDatasetAsArrayDouble(group,name);
/* read attributes */
dset = H5Dopen( group , name, H5P_DEFAULT);
table.nbins = readAttributeAsInt(dset,"nbins");
table.min = readAttributeAsDouble(dset,"min");
table.step = readAttributeAsDouble(dset,"step");
table.label = readAttributeAsString(dset,"label");
//printYieldsTable(table);
status = H5Dclose(dset);
return table;
}
/*! Read a table containing 2d yields
* stored in the dataset named "name"
*/
struct ChemistryYieldsTable2DStruct readYieldsTable2D(hid_t group,char *name)
{
struct ChemistryYieldsTable2DStruct table;
hid_t dset;
herr_t status;
table.data = readDatasetAsArray2DDouble_v0(group,name);
/* read attributes */
dset = H5Dopen( group , name, H5P_DEFAULT);
table.nx = readAttributeAsInt(dset,"nx");
table.ny = readAttributeAsInt(dset,"ny");
table.x0 = readAttributeAsDouble(dset,"x0");
table.y0 = readAttributeAsDouble(dset,"y0");
table.dx = readAttributeAsDouble(dset,"dx");
table.dy = readAttributeAsDouble(dset,"dy");
table.label = readAttributeAsString(dset,"label");
//printYieldsTable(table);
status = H5Dclose(dset);
return table;
}
/*! Read the attributes linked to the data group
*/
int readDataAttributes(hid_t table,struct ChemistryDataAttributesStruct *Param)
{
hid_t group;
herr_t status;
group = H5Gopen(table, DATA_GRP,H5P_DEFAULT);
Param->nelts = readAttributeAsInt(group,"nelts");
Param->elts = readAttributeAsArrayString(group,"elts");
Param->SolarMassAbundances = readAttributeAsArrayDouble(group,"SolarMassAbundances");
Param->MeanWDMass = readAttributeAsDouble(group,"MeanWDMass");
Param->elts = readAttributeAsArrayString(group,"elts");
Param->SNIIYieldsFile = readAttributeAsString(group,"SNIIYieldsFile");
Param->SNIIHeliumCoreFile = readAttributeAsString(group,"SNIIHeliumCoreFile");
Param->DYINYieldsFile = readAttributeAsString(group,"DYINYieldsFile");
Param->DYINHeliumCoreFile = readAttributeAsString(group,"DYINHeliumCoreFile");
Param->SNIaFile = readAttributeAsString(group,"SNIaFile");
Param->SolarAbundancesFile = readAttributeAsString(group,"SolarAbundancesFile");
status = H5Gclose (group);
return 0;
}
/*! Print the attributes linked to the data group
*/
int printDataAttributes(struct ChemistryDataAttributesStruct Parameters)
{
int i;
printf("\n");
printf("Data attribute content:\n\n");
printf("\t nelts = %d\n",Parameters.nelts);
printf("\t elts = ");
for (i=0; i<Parameters.nelts; i++)
printf ("%s ",Parameters.elts[i]);
printf ("\n");
printf("\t SolarMassAbundances = ");
for (i=0; i<Parameters.nelts; i++)
printf ("%g ",Parameters.SolarMassAbundances[i]);
printf ("\n");
printf("\t MeanWDMass = %g\n",Parameters.MeanWDMass);
printf("\n");
printf("\t SNIIYieldsFile = %s\n",Parameters.SNIIYieldsFile);
printf("\t SNIIHeliumCoreFile = %s\n",Parameters.SNIIHeliumCoreFile);
printf("\n");
printf("\t DYINYieldsFile = %s\n",Parameters.DYINYieldsFile);
printf("\t DYINHeliumCoreFile = %s\n",Parameters.DYINHeliumCoreFile);
printf("\n");
printf("\t SNIaFile = %s\n",Parameters.SNIaFile);
printf("\t SolarAbundancesFile = %s\n",Parameters.SolarAbundancesFile);
printf("\n");
return 0;
}
/*! Read the attributes linked to the header group
*/
int readHeader(hid_t table,struct ChemistryHeaderStruct *Header)
{
hid_t group;
herr_t status;
group = H5Gopen(table, HEADER_GRP,H5P_DEFAULT);
/* read attribute */
Header->version = readAttributeAsString(group,"version");
Header->author = readAttributeAsString(group,"author");
Header->date = readAttributeAsString(group,"date");
status = H5Gclose (group);
return 0;
}
/*! Print the attributes linked to the header group
*/
int printHeader(struct ChemistryHeaderStruct Header)
{
printf("\n");
printf("Header content:\n\n");
printf("\t version = %s\n",Header.version);
printf("\t author = %s\n",Header.author);
printf("\t date = %s\n",Header.date);
printf("\n");
return 0;
}
/*! Print the content of a yield table
*/
int printYieldsTable(struct ChemistryYieldsTableStruct table,char * space)
{
int i;
printf("%s%s:\n\n",space,table.label);
printf("%s\t nbins = %d\n",space,table.nbins);
printf("%s\t min = %g\n",space,table.min);
printf("%s\t step = %g\n",space,table.step);
printf("%s\t label = %s\n",space,table.label);
printf("\n");
for(i=0;i<3;i++)
printf("%s\t [%d] %g\n",space,i,table.data[i]);
printf("%s\t ...\n",space);
for(i=table.nbins-3;i<table.nbins;i++)
printf("%s\t [%d] %g\n",space,i,table.data[i]);
printf("\n");
return 0;
}
/*! Print the content of a yield table
*/
int printYieldsTable2D(struct ChemistryYieldsTable2DStruct table,char * space)
{
int i,j;
printf("%s%s:\n\n",space,table.label);
printf("%s\t nx = %d\n",space,table.nx);
printf("%s\t x0 = %g\n",space,table.x0);
printf("%s\t dx = %g\n",space,table.dx);
printf("%s\t ny = %d\n",space,table.ny);
printf("%s\t y0 = %g\n",space,table.y0);
printf("%s\t dy = %g\n",space,table.dy);
printf("%s\t label = %s\n",space,table.label);
printf("\n");
for(i=0;i<3;i++)
{
printf("%s\t [%d] ",space,i);
for (j=0;j<table.ny;j++)
printf("%g ",table.data[i][j]);
printf("\n");
}
printf("%s\t ...\n",space);
for(i=table.nx-3;i<table.nx;i++)
{
printf("%s\t [%d] ",space,i);
for (j=0;j<table.ny;j++)
printf("%g ",table.data[i][j]);
printf("\n");
}
printf("\n");
return 0;
}
int readLiveTimes(hid_t table,struct ChemistryLiveTimesStruct *livetimes)
{
hid_t group;
hid_t subgroup;
hid_t dset;
herr_t status;
group = H5Gopen(table, DATA_GRP,H5P_DEFAULT);
subgroup = H5Gopen(group,"LiveTimes",H5P_DEFAULT);
livetimes->coeff_z = readDatasetAsArray2DDouble_v0(subgroup,"coeff_z");
dset = H5Dopen( subgroup , "coeff_z", H5P_DEFAULT);
livetimes->nx = readAttributeAsInt(dset,"nx");
livetimes->ny = readAttributeAsInt(dset,"ny");
status = H5Dclose (dset);
status = H5Gclose (subgroup);
status = H5Gclose (group);
return 0;
}
/*! Print the content of an LiveTimes struct
*/
int printLiveTimes(struct ChemistryLiveTimesStruct livetimes)
{
int i,j;
printf("Output from LiveTimes:\n\n");
printf("\t coeff_z = \n");
for (i=0; i<livetimes.nx; i++) {
printf ("\t\t [");
for (j=0; j<livetimes.ny; j++)
printf (" %6.4f", livetimes.coeff_z[i][j]);
printf ("]\n");
}
printf("\n");
}
int readIMF(hid_t table,struct ChemistryIMFStruct *imf)
{
hid_t group;
hid_t subgroup;
herr_t status;
group = H5Gopen(table, DATA_GRP,H5P_DEFAULT);
subgroup = H5Gopen(group,"IMF",H5P_DEFAULT);
imf->Mmin = readAttributeAsDouble(subgroup,"Mmin");
imf->Mmax = readAttributeAsDouble(subgroup,"Mmax");
imf->n = readAttributeAsInt(subgroup,"n");
imf->ms = readAttributeAsArrayDouble(subgroup,"ms");
imf->as = readAttributeAsArrayDouble(subgroup,"as");
status = H5Gclose (subgroup);
status = H5Gclose (group);
return 0;
}
/*! Print the content of an IMF
*/
int printIMF(struct ChemistryIMFStruct imf)
{
int i;
printf("Output from IMF:\n\n");
printf("\t n = %d\n",imf.n);
printf("\t Mmin = %g\n",imf.Mmin);
printf("\t Mmax = %g\n",imf.Mmax);
printf("\t as = ");
for (i=0; i<imf.n+1; i++)
printf ("%g ",imf.as[i]);
printf ("\n");
//printf("\t bs = ");
//for (i=0; i<imf.n+1; i++)
// printf ("%g ",imf.bs[i]);
//printf ("\n");
printf("\t ms = ");
for (i=0; i<imf.n; i++)
printf ("%g ",imf.ms[i]);
printf ("\n");
printf("\n");
}
int readSNIa(hid_t table,struct ChemistrySNIaStruct *snia)
{
hid_t group;
hid_t subgroup;
herr_t status;
group = H5Gopen(table, DATA_GRP,H5P_DEFAULT);
subgroup = H5Gopen(group,"SNIa",H5P_DEFAULT);
snia->Mpl = readAttributeAsDouble(subgroup,"Mpl");
snia->Mpu = readAttributeAsDouble(subgroup,"Mpu");
snia->a = readAttributeAsDouble(subgroup,"a");
snia->Mdl1 = readAttributeAsDouble(subgroup,"Mdl1");
snia->Mdu1 = readAttributeAsDouble(subgroup,"Mdu1");
snia->bb1 = readAttributeAsDouble(subgroup,"bb1");
snia->Mdl2 = readAttributeAsDouble(subgroup,"Mdl2");
snia->Mdu2 = readAttributeAsDouble(subgroup,"Mdu2");
snia->bb2 = readAttributeAsDouble(subgroup,"bb2");
snia->Metals = readGroupAsElementsData(subgroup,"Metals");
status = H5Gclose (subgroup);
status = H5Gclose (group);
return 0;
}
/*! Print the content of an SNIa struct
*/
int printSNIa(struct ChemistrySNIaStruct snia)
{
int i;
printf("Output from SNIa:\n\n");
printf("\t Mpl = %g\n",snia.Mpl );
printf("\t Mpu = %g\n",snia.Mpu );
printf("\t a = %g\n",snia.a );
printf("\t Mdl1 = %g\n",snia.Mdl1);
printf("\t Mdu1 = %g\n",snia.Mdu1);
printf("\t bb1 = %g\n",snia.bb1 );
printf("\t Mdl2 = %g\n",snia.Mdl2);
printf("\t Mdu2 = %g\n",snia.Mdu2);
printf("\t bb2 = %g\n",snia.bb2 );
printf("\n");
printf("\t Metals:\n\n");
for (i=0; i<snia.Metals.nelts; i++)
printf ("\t\t %s\t= %g\n",snia.Metals.elts[i],snia.Metals.data[i]);
printf("\n");
}
int readSNII(hid_t table,struct ChemistrySNIIStruct *snii)
{
hid_t group;
hid_t subgroup;
herr_t status;
int i;
group = H5Gopen(table, DATA_GRP,H5P_DEFAULT);
subgroup = H5Gopen(group,"SNII",H5P_DEFAULT);
snii->Mmin = readAttributeAsDouble(subgroup,"Mmin");
snii->Mmax = readAttributeAsDouble(subgroup,"Mmax");
snii->npts = readAttributeAsInt(subgroup,"npts");
snii->nelts = readAttributeAsInt(subgroup,"nelts");
snii->elts = readAttributeAsArrayString(subgroup,"elts");
snii->table = malloc( snii->nelts * sizeof(struct ChemistryYieldsTableStruct) );
/* read the yields */
for(i=0;i<snii->nelts;i++)
snii->table[i]=readYieldsTable(subgroup,snii->elts[i]);
status = H5Gclose (subgroup);
status = H5Gclose (group);
return 0;
}
/*! Print the content of an SNII struct
*/
int printSNII(struct ChemistrySNIIStruct snii)
{
int i;
printf("Output from SNII:\n\n");
printf("\t Mmin = %g\n",snii.Mmin);
printf("\t Mmax = %g\n",snii.Mmax);
printf("\t npts = %d\n",snii.npts);
printf("\t nelts = %d\n",snii.nelts);
printf("\t elts = ");
for (i=0; i<snii.nelts; i++)
printf ("%s ",snii.elts[i]);
printf ("\n");
printf("\n");
printf("\t Metals:\n\n");
for(i=0;i<snii.nelts;i++)
printYieldsTable(snii.table[i],"\t\t");
}
int readDYIN(hid_t table,struct ChemistryDYINStruct *dyin)
{
hid_t group;
hid_t subgroup;
hid_t subsubgroup;
herr_t status;
int i;
group = H5Gopen(table, DATA_GRP,H5P_DEFAULT);
subgroup = H5Gopen(group,"DYIN",H5P_DEFAULT);
dyin->Mmin = readAttributeAsDouble(subgroup,"Mmin");
dyin->Mmax = readAttributeAsDouble(subgroup,"Mmax");
dyin->npts = readAttributeAsInt(subgroup,"npts");
dyin->nelts = readAttributeAsInt(subgroup,"nelts");
dyin->elts = readAttributeAsArrayString(subgroup,"elts");
dyin->table = malloc( dyin->nelts * sizeof(struct ChemistryYieldsTableStruct) );
/* read the yields */
for(i=0;i<dyin->nelts;i++)
dyin->table[i]=readYieldsTable(subgroup,dyin->elts[i]);
dyin->Zflag = readAttributeAsInt(subgroup,"Zflag");
if (dyin->Zflag==1)
{
/* read data with Z dependences */
subsubgroup = H5Gopen(subgroup,"MetallicityDependent",H5P_DEFAULT);
dyin->nptZs = readAttributeAsInt(subsubgroup,"nptZs");
dyin->tableZ = malloc( dyin->nelts * sizeof(struct ChemistryYieldsTable2DStruct) );
/* read the yields */
for(i=0;i<dyin->nelts;i++)
dyin->tableZ[i]=readYieldsTable2D(subsubgroup,dyin->elts[i]);
status = H5Gclose (subsubgroup);
/* end read data with Z dependences */
}
status = H5Gclose (subgroup);
status = H5Gclose (group);
return 0;
}
/*! Print the content of an DYIN struct
*/
int printDYIN(struct ChemistryDYINStruct dyin)
{
int i;
printf("Output from DYIN:\n\n");
printf("\t Mmin = %g\n",dyin.Mmin);
printf("\t Mmax = %g\n",dyin.Mmax);
printf("\t npts = %d\n",dyin.npts);
printf("\t nelts = %d\n",dyin.nelts);
if (dyin.Zflag==1)
printf("\t nptZs = %d\n",dyin.nptZs);
printf("\t elts = ");
for (i=0; i<dyin.nelts; i++)
printf ("%s ",dyin.elts[i]);
printf ("\n");
printf("\n");
printf("\t Metals:\n\n");
for(i=0;i<dyin.nelts;i++)
printYieldsTable(dyin.table[i],"\t\t");
if (dyin.Zflag==1)
{
printf("\t Metals Z:\n\n");
for(i=0;i<dyin.nelts;i++)
printYieldsTable2D(dyin.tableZ[i],"\t\t");
}
}
#endif // CHIMIE_FROM_HDF5
/********************************************************
endof hdf5 reading routines
*********************************************************/
static int verbose=0;
static double *MassFracSNII;
static double *MassFracSNIa;
static double *MassFracDYIN;
static double *SingleMassFracSNII;
static double *SingleMassFracSNIa;
static double *SingleMassFracDYIN;
static double *EjectedMass;
static double *SingleEjectedMass;
static double **MassFracSNIIs;
static double **MassFracSNIas;
static double **MassFracDYINs;
static double **SingleMassFracSNIIs;
static double **SingleMassFracSNIas;
static double **SingleMassFracDYINs;
static double **EjectedMasss;
static double **SingleEjectedMasss;
/* intern global variables */
static struct local_params_chimie
{
float coeff_z[3][3];
float Mmin,Mmax;
int n;
float ms[MAXPTS];
float as[MAXPTS+1];
float bs[MAXPTS+1];
float fs[MAXPTS];
double imf_Ntot;
float SNII_Mmin;
float SNII_Mmax;
//float SNII_cte;
//float SNII_a;
float SNIa_Mpl;
float SNIa_Mpu;
float SNIa_a;
float SNIa_cte;
float SNIa_Mdl1;
float SNIa_Mdu1;
float SNIa_a1;
float SNIa_b1;
float SNIa_cte1;
float SNIa_bb1;
float SNIa_Mdl2;
float SNIa_Mdu2;
float SNIa_a2;
float SNIa_b2;
float SNIa_cte2;
float SNIa_bb2;
float DYIN_Mmin;
float DYIN_Mmax;
//float DYIN_cte;
//float DYIN_a;
float Mco;
int nptsSNII; /* number of division in mass SNII */
int nptsDYIN; /* number of division in mass DYIN */
int nptZsSNII; /* number of division in Z SNII */
int nptZsDYIN; /* number of division in Z DYIN */
int nelts;
int DYIN_Zflag;
}
*Cps,*Cp;
static struct local_elts_chimie
{
/* SNII */
float MminSNII; /* minimal mass */
float StepSNII; /* log of mass step */
float ArraySNII[MAXDATASIZE]; /* data */
float MetalSNII[MAXDATASIZE]; /* data */
/* DYIN */
float MminDYIN; /* minimal mass */
float StepDYIN; /* log of mass step */
float ArrayDYIN[MAXDATASIZE]; /* data */
float MetalDYIN[MAXDATASIZE]; /* data */
float MminZDYIN; /* minimal Z */
float StepZDYIN; /* step in Z */
float ArrayZDYIN[MAXDATASIZE][MAXDATAZSIZE]; /* data Z */
float MetalZDYIN[MAXDATASIZE][MAXDATAZSIZE]; /* data Z */
float MSNIa;
float SolarMassAbundance;
char label[72];
}
**Elts,*Elt;
/*! This function allocate all varaiables related to the chemistry
*/
void allocate_chimie()
{
int j;
/* allocate Cp */
Cps = malloc((All.ChimieNumberOfParameterFiles) * sizeof(struct local_params_chimie));
/* allocate elts */
Elts = malloc((All.ChimieNumberOfParameterFiles) * sizeof(struct local_elts_chimie));
//for (j=0;j<All.ChimieNumberOfParameterFiles;j++)
// Elt[j] = malloc((nelts) * sizeof(struct local_elts_chimie));
MassFracSNIIs = malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
MassFracSNIas = malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
MassFracDYINs = malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
EjectedMasss = malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
SingleMassFracSNIIs= malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
SingleMassFracSNIas= malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
SingleMassFracDYINs= malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
SingleEjectedMasss = malloc((All.ChimieNumberOfParameterFiles) * sizeof(double));
}
/*! Set the chemistry table to use
*/
void set_table(int i)
{
if (i>=All.ChimieNumberOfParameterFiles)
{
printf("\n set_table : i>= %d !!!\n\n",All.ChimieNumberOfParameterFiles);
endrun(88809);
}
else
{
Cp = &Cps[i];
Elt = Elts[i];
MassFracSNII = MassFracSNIIs[i]; /* all this is useless, no ?*/
MassFracSNIa = MassFracSNIas[i];
MassFracDYIN = MassFracDYINs[i];
SingleMassFracSNII = SingleMassFracSNIIs[i];
SingleMassFracSNIa = SingleMassFracSNIas[i];
SingleMassFracDYIN = SingleMassFracDYINs[i];
EjectedMass = EjectedMasss[i];
SingleEjectedMass = SingleEjectedMasss[i];
}
}
/*! Read the chemistry table (hdf5 format)
*/
#ifdef CHIMIE_FROM_HDF5
void read_chimie_h5(char * filename,int it)
{
hid_t table;
herr_t status;
struct ChemistryHeaderStruct ChemistryHeader;
struct ChemistryDataAttributesStruct ChemistryBasicParameters;
struct ChemistryLiveTimesStruct ChemistryLiveTimes;
struct ChemistryIMFStruct ChemistryIMF;
struct ChemistrySNIaStruct ChemistrySNIa;
struct ChemistrySNIIStruct ChemistrySNII;
struct ChemistryDYINStruct ChemistryDYIN;
table = H5Fopen(filename, H5F_ACC_RDONLY, H5P_DEFAULT);
readHeader(table,&ChemistryHeader);
if (verbose && ThisTask==0)
printHeader(ChemistryHeader);
readDataAttributes(table,&ChemistryBasicParameters);
if (verbose && ThisTask==0)
printDataAttributes(ChemistryBasicParameters);
readLiveTimes(table,&ChemistryLiveTimes);
if (verbose && ThisTask==0)
printLiveTimes(ChemistryLiveTimes);
readIMF(table,&ChemistryIMF);
if (verbose && ThisTask==0)
printIMF(ChemistryIMF);
readSNIa(table,&ChemistrySNIa);
if (verbose && ThisTask==0)
printSNIa(ChemistrySNIa);
readSNII(table,&ChemistrySNII);
if (verbose && ThisTask==0)
printSNII(ChemistrySNII);
readDYIN(table,&ChemistryDYIN);
if (verbose && ThisTask==0)
printDYIN(ChemistryDYIN);
status = H5Fclose(table);
/* convert to chimie struct */
int i,j,k;
/* Livetimes */
for(i=0;i<3;i++)
for(j=0;j<3;j++)
Cps[it].coeff_z[i][j] = ChemistryLiveTimes.coeff_z[i][j];
/* IMF Parameters */
Cps[it].Mmin = ChemistryIMF.Mmin;
Cps[it].Mmax = ChemistryIMF.Mmax;
Cps[it].n = ChemistryIMF.n;
if (Cps[it].n>0)
for (i=0;i<Cps[it].n;i++)
Cps[it].ms[i] = ChemistryIMF.ms[i];
for (i=0;i<Cps[it].n+1;i++)
Cps[it].as[i]= ChemistryIMF.as[i];
/* Parameters for SNII Rates */
Cps[it].SNII_Mmin = ChemistrySNII.Mmin;
Cps[it].SNII_Mmax = ChemistrySNII.Mmax;
/* Parameters for DYIN Rates */
Cps[it].DYIN_Mmin = ChemistryDYIN.Mmin;
Cps[it].DYIN_Mmax = ChemistryDYIN.Mmax;
Cps[it].DYIN_Zflag= ChemistryDYIN.Zflag;
/* Parameters for SNIa Rates */
Cps[it].SNIa_Mpl = ChemistrySNIa.Mpl;
Cps[it].SNIa_Mpu = ChemistrySNIa.Mpu;
Cps[it].SNIa_a = ChemistrySNIa.a;
Cps[it].SNIa_Mdl1 = ChemistrySNIa.Mdl1;
Cps[it].SNIa_Mdu1 = ChemistrySNIa.Mdu1;
Cps[it].SNIa_bb1 = ChemistrySNIa.bb1;
Cps[it].SNIa_Mdl2 = ChemistrySNIa.Mdl2;
Cps[it].SNIa_Mdu2 = ChemistrySNIa.Mdu2;
Cps[it].SNIa_bb2 = ChemistrySNIa.bb2;
/* Metal injection SNII */
Cps[it].nptsSNII = ChemistrySNII.npts;
//if (Cps[it].SNII_Zflag==1)
// Cps[it].nptZsSNII = ChemistrySNII.nptZs;
/* Metal injection DYIN */
Cps[it].nptsDYIN = ChemistryDYIN.npts;
if (Cps[it].DYIN_Zflag==1)
Cps[it].nptZsDYIN = ChemistryDYIN.nptZs;
Cps[it].nelts = ChemistryBasicParameters.nelts;
/* allocate memory for elts */
if ((Cps[it].nptsSNII<=MAXDATASIZE)&&(Cps[it].nptsDYIN<=MAXDATASIZE))
{
Elts[it] = malloc((Cps[it].nelts+2) * sizeof(struct local_elts_chimie));
}
else
{
printf("\n Cps[it].nptsSNII = %d > MAXDATASIZE = %d !!!\n\n",Cps[it].nptsSNII,MAXDATASIZE);
printf("\n Cps[it].nptsDYIN = %d > MAXDATASIZE = %d !!!\n\n",Cps[it].nptsDYIN,MAXDATASIZE);
endrun(88800);
}
/* allocate memory */
MassFracSNIIs[it] = malloc((Cps[it].nelts+2) * sizeof(double)); /* really needed ? */
MassFracSNIas[it] = malloc((Cps[it].nelts+2) * sizeof(double));
MassFracDYINs[it] = malloc((Cps[it].nelts+2) * sizeof(double));
EjectedMasss[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleMassFracSNIIs[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleMassFracSNIas[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleMassFracDYINs[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleEjectedMasss[it] = malloc((Cps[it].nelts+2) * sizeof(double));
/**/
/* injected metals SNII */
/**/
for (i=0;i<Cps[it].nelts+2;i++)
{
//printf("%s\n",ChemistrySNII.table[i].label);
strcpy(Elts[it][i].label,ChemistrySNII.table[i].label);
Elts[it][i].MminSNII = ChemistrySNII.table[i].min;
Elts[it][i].StepSNII = ChemistrySNII.table[i].step;
for (j=0;j<Cps[it].nptsSNII;j++)
Elts[it][i].MetalSNII[j] = ChemistrySNII.table[i].data[j];
}
/* integral of injected metals SNII */
for (i=0;i<Cps[it].nelts+2;i++)
{
//printf("%s\n",ChemistrySNII.table[i+Cps[it].nelts+2].label);
for (j=0;j<Cps[it].nptsSNII;j++)
Elts[it][i].ArraySNII[j] = ChemistrySNII.table[i+Cps[it].nelts+2].data[j];
}
/**/
/* injected metals DYIN */
/**/
for (i=0;i<Cps[it].nelts+2;i++)
{
//printf("%s\n",ChemistryDYIN.table[i].label);
strcpy(Elts[it][i].label,ChemistryDYIN.table[i].label);
Elts[it][i].MminDYIN = ChemistryDYIN.table[i].min;
Elts[it][i].StepDYIN = ChemistryDYIN.table[i].step;
for (j=0;j<Cps[it].nptsDYIN;j++)
Elts[it][i].MetalDYIN[j] = ChemistryDYIN.table[i].data[j];
}
/* integral of injected metals DYIN */
for (i=0;i<Cps[it].nelts+2;i++)
{
//printf("%s\n",ChemistryDYIN.table[i+Cps[it].nelts+2].label);
for (j=0;j<Cps[it].nptsDYIN;j++)
Elts[it][i].ArrayDYIN[j] = ChemistryDYIN.table[i+Cps[it].nelts+2].data[j];
}
/* metallicity dependent table */
if (Cps[it].DYIN_Zflag==1)
{
for (i=0;i<Cps[it].nelts+2;i++)
{
Elts[it][i].MminZDYIN = ChemistryDYIN.tableZ[i].y0;
Elts[it][i].StepZDYIN = ChemistryDYIN.tableZ[i].dy;
for (j=0;j<Cps[it].nptsDYIN;j++)
for (k=0;k<Cps[it].nptZsDYIN;k++)
{
Elts[it][i].MetalZDYIN[j][k] = ChemistryDYIN.tableZ[i].data[j][k];
Elts[it][i].ArrayZDYIN[j][k] = ChemistryDYIN.tableZ[i+Cps[it].nelts+2].data[j][k];
}
}
}
/* Metal injection SNIa */
Cps[it].Mco = ChemistryBasicParameters.MeanWDMass;
/* for each elt in */
for (i=0;i<Cps[it].nelts+2;i++)
{
if (strcmp(Elts[it][i].label,ChemistrySNIa.Metals.elts[i])!=0)
{
printf("%s != %s\n",Elts[it][i].label,ChemistrySNIa.Metals.elts[i]);
endrun(888012);
}
Elts[it][i].MSNIa = ChemistrySNIa.Metals.data[i];
}
/* Solar Mass Abundances */
for (i=0;i<Cps[it].nelts;i++)
{
if (strcmp(Elts[it][i+2].label,ChemistryBasicParameters.elts[i])!=0)
{
printf("%s != %s\n",Elts[it][i+2].label,ChemistryBasicParameters.elts[i]);
endrun(888013);
}
Elts[it][i+2].SolarMassAbundance = ChemistryBasicParameters.SolarMassAbundances[i];
}
//if (verbose && ThisTask==0)
// info(it);
}
#endif // CHIMIE_FROM_HDF5
/*! Read the chemistry table
*/
void read_chimie(char * filename,int it)
{
char line[72],buffer[72];
FILE *fd;
int i,j;
if (verbose && ThisTask==0)
printf("reading %s ...\n",filename);
fd = fopen(filename,"r");
/* read Lifetime */
/* #### Livetime #### */
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%g %g %g\n", &Cps[it].coeff_z[0][0],&Cps[it].coeff_z[0][1],&Cps[it].coeff_z[0][2]);
fscanf(fd, "%g %g %g\n", &Cps[it].coeff_z[1][0],&Cps[it].coeff_z[1][1],&Cps[it].coeff_z[1][2]);
fscanf(fd, "%g %g %g\n", &Cps[it].coeff_z[2][0],&Cps[it].coeff_z[2][1],&Cps[it].coeff_z[2][2]);
fgets(line, sizeof(line), fd);
/* IMF Parameters */
/* #### IMF Parameters #### */
fgets(line, sizeof(line), fd);
fscanf(fd, "%g %g\n",&Cps[it].Mmin,&Cps[it].Mmax);
fscanf(fd, "%d\n",&Cps[it].n);
if (Cps[it].n>0)
for (i=0;i<Cps[it].n;i++)
fscanf(fd,"%g",&Cps[it].ms[i]);
else
fgets(line, sizeof(line), fd);
for (i=0;i<Cps[it].n+1;i++)
fscanf(fd,"%g",&Cps[it].as[i]);
fgets(line, sizeof(line), fd);
/* Parameters for SNII Rates */
/* #### SNII Parameters #### */
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%g \n",&Cps[it].SNII_Mmin);
fgets(line, sizeof(line), fd);
/* Parameters for SNIa Rates */
/* #### SNIa Parameters #### */
fgets(line, sizeof(line), fd);
fscanf(fd, "%g %g\n",&Cps[it].SNIa_Mpl,&Cps[it].SNIa_Mpu);
fscanf(fd, "%g \n",&Cps[it].SNIa_a);
fscanf(fd, "%g %g %g\n",&Cps[it].SNIa_Mdl1,&Cps[it].SNIa_Mdu1,&Cps[it].SNIa_bb1);
fscanf(fd, "%g %g %g\n",&Cps[it].SNIa_Mdl2,&Cps[it].SNIa_Mdu2,&Cps[it].SNIa_bb2);
fgets(line, sizeof(line), fd);
/* Metal injection SNII */
/* #### Metal Parameters ####*/
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%d %d\n",&Cps[it].nptsSNII,&Cps[it].nelts);
/* allocate memory for elts */
if (Cps[it].nptsSNII<=MAXDATASIZE)
{
Elts[it] = malloc((Cps[it].nelts+2) * sizeof(struct local_elts_chimie));
}
else
{
printf("\n Cps[it].nptsSNII = %d > MAXDATASIZE = %d !!!\n\n",Cps[it].nptsSNII,MAXDATASIZE);
endrun(88800);
}
/* allocate memory */
MassFracSNIIs[it] = malloc((Cps[it].nelts+2) * sizeof(double)); /* really needed ? */
MassFracSNIas[it] = malloc((Cps[it].nelts+2) * sizeof(double));
MassFracDYINs[it] = malloc((Cps[it].nelts+2) * sizeof(double));
EjectedMasss[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleMassFracSNIIs[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleMassFracSNIas[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleMassFracDYINs[it] = malloc((Cps[it].nelts+2) * sizeof(double));
SingleEjectedMasss[it] = malloc((Cps[it].nelts+2) * sizeof(double));
/* injected metals */
for (i=0;i<Cps[it].nelts+2;i++)
{
fgets(line, sizeof(line), fd);
/* strip trailing line */
for (j = 0; j < strlen(line); j++)
if ( line[j] == '\n' || line[j] == '\r' )
line[j] = '\0';
/* copy labels */
strcpy(Elts[it][i].label,line);
/* probleme */
strcpy(buffer,&Elts[it][i].label[2]);
strcpy(Elts[it][i].label,buffer);
fgets(line, sizeof(line), fd);
fscanf(fd, "%g %g\n",&Elts[it][i].MminSNII,&Elts[it][i].StepSNII);
for (j=0;j<Cps[it].nptsSNII;j++)
{
fscanf(fd, "%g\n",&Elts[it][i].MetalSNII[j]);
}
}
/* integrals of injected metals */
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%d %d\n",&Cps[it].nptsSNII,&Cps[it].nelts);
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
/* integrals of injected metals */
for (i=0;i<Cps[it].nelts+2;i++)
{
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%g %g\n",&Elts[it][i].MminSNII,&Elts[it][i].StepSNII);
for (j=0;j<Cps[it].nptsSNII;j++)
{
fscanf(fd, "%g\n",&Elts[it][i].ArraySNII[j]);
}
}
/* Metal injection SNIa */
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%g\n",&Cps[it].Mco);
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
int nelts;
char label[72];
fscanf(fd, "%d\n",&nelts);
/* check */
if (nelts != Cps[it].nelts)
{
printf("\nThe number of elements in SNII (=%d) is not identical to the on of SNIa (=%d) !!!\n\n",Cps[it].nelts,nelts);
printf("This is not supported by the current implementation !!!\n");
endrun(88805);
}
for (i=0;i<Cps[it].nelts+2;i++)
{
fgets(line, sizeof(line), fd); /* label */
/* check label */
/* strip trailing line */
for (j = 0; j < strlen(line); j++)
if ( line[j] == '\n' || line[j] == '\r' )
line[j] = '\0';
strcpy(label,line);
strcpy(buffer,&label[2]);
strcpy(label,buffer);
if (strcmp(label,Elts[it][i].label)!=0)
{
printf("\nLabel of SNII element %d (=%s) is different from the SNIa one (=%s) !!!\n\n",i,Elts[it][i].label,label);
endrun(88806);
}
//fgets(line, sizeof(line), fd);
fscanf(fd, "%g\n",&Elts[it][i].MSNIa);
}
/* Solar Mass Abundances */
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fgets(line, sizeof(line), fd);
fscanf(fd, "%d\n",&nelts);
/* check */
if (nelts != Cps[it].nelts)
{
printf("\nThe number of elements in SolarMassAbundances (=%d) is not identical to the on of SNIa (=%d) !!!\n\n",Cps[it].nelts,nelts);
printf("This is not supported by the current implementation !!!\n");
endrun(88805);
}
for (i=0;i<Cps[it].nelts;i++)
{
fgets(line, sizeof(line), fd); /* label */
/* check label */
/* strip trailing line */
for (j = 0; j < strlen(line); j++)
if ( line[j] == '\n' || line[j] == '\r' )
line[j] = '\0';
strcpy(label,line);
strcpy(buffer,&label[2]);
strcpy(label,buffer);
if (strcmp(label,Elts[it][i+2].label)!=0)
{
printf("\nLabel of SNII element %d (=%s) is different from the SNIa one (=%s) !!!\n\n",i,Elts[it][i+2].label,label);
endrun(88806);
}
//fgets(line, sizeof(line), fd);
fscanf(fd, "%g\n",&Elts[it][i+2].SolarMassAbundance);
}
fclose(fd);
if (verbose && ThisTask==0)
info(it);
}
/*! This function returns the mass fraction of a star of mass m
* using the current IMF
*/
static double get_imf(double m)
{
int i;
int n;
n = Cp->n;
/* convert m in msol */
m = m*All.UnitMass_in_g / SOLAR_MASS;
if (n==0)
return Cp->bs[0]* pow(m,Cp->as[0]);
else
{
for (i=0;i<n;i++)
if (m < Cp->ms[i])
return Cp->bs[i]* pow(m,Cp->as[i]);
return Cp->bs[n]* pow(m,Cp->as[n]);
}
}
/*! This function returns the mass fraction between m1 and m2
* per mass unit, using the current IMF
*/
static double get_imf_M(double m1, double m2)
{
int i;
int n;
double p;
double integral=0;
double mmin,mmax;
n = Cp->n;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
if (n==0)
{
p = Cp->as[0]+1;
integral = (Cp->bs[0]/p) * ( pow(m2,p) - pow(m1,p) );
//printf("--> %g %g %g %g int=%g\n",m1,m2,pow(m2,p), pow(m1,p),integral);
}
else
{
integral = 0;
/* first */
if (m1<Cp->ms[0])
{
mmin = m1;
mmax = dmin(Cp->ms[0],m2);
p = Cp->as[0] + 1;
integral += (Cp->bs[0]/p) * ( pow(mmax,p) - pow(mmin,p) );
}
/* last */
if (m2>Cp->ms[n-1])
{
mmin = dmax(Cp->ms[n-1],m1);
mmax = m2;
p = Cp->as[n] + 1;
integral += (Cp->bs[n]/p) * ( pow(mmax,p) - pow(mmin,p) );
}
/* loop over other segments */
for (i=0;i<n-1;i++)
{
mmin = dmax(Cp->ms[i ],m1);
mmax = dmin(Cp->ms[i+1],m2);
if (mmin<mmax)
{
p = Cp->as[i+1] + 1;
integral += (Cp->bs[i+1]/p) * ( pow(mmax,p) - pow(mmin,p) );
}
}
}
/* convert into mass unit mass unit */
/* integral = integral * SOLAR_MASS/All.UnitMass_in_g;*/
return integral;
}
/*! This function returns the number fraction between m1 and m2
* per mass unit, using the current IMF
*/
static double get_imf_N(double m1, double m2)
{
int i;
int n;
double p;
double integral=0;
double mmin,mmax;
n = Cp->n;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
if (n==0)
{
p = Cp->as[0];
integral = (Cp->bs[0]/p) * ( pow(m2,p) - pow(m1,p) );
}
else
{
integral = 0;
/* first */
if (m1<Cp->ms[0])
{
mmin = m1;
mmax = dmin(Cp->ms[0],m2);
p = Cp->as[0];
integral += (Cp->bs[0]/p) * ( pow(mmax,p) - pow(mmin,p) );
}
/* last */
if (m2>Cp->ms[n-1])
{
mmin = dmax(Cp->ms[n-1],m1);
mmax = m2;
p = Cp->as[n];
integral += (Cp->bs[n]/p) * ( pow(mmax,p) - pow(mmin,p) );
}
/* loop over other segments */
for (i=0;i<n-1;i++)
{
mmin = dmax(Cp->ms[i ],m1);
mmax = dmin(Cp->ms[i+1],m2);
if (mmin<mmax)
{
p = Cp->as[i+1];
integral += (Cp->bs[i+1]/p) * ( pow(mmax,p) - pow(mmin,p) );
}
}
}
/* convert into mass unit mass unit */
integral = integral / SOLAR_MASS*All.UnitMass_in_g;
return integral;
}
/*! Sample the imf using monte carlo approach
*/
static double imf_sampling()
{
int i;
int n;
double m;
double f;
double pmin,pmax;
n = Cp->n;
/* init random */
//srandom(irand);
f = (double)random()/(double)RAND_MAX;
if (n==0)
{
pmin = pow(Cp->Mmin,Cp->as[0]);
pmax = pow(Cp->Mmax,Cp->as[0]);
m = pow(f*(pmax - pmin) + pmin ,1./Cp->as[0]);
return m* SOLAR_MASS/All.UnitMass_in_g;
}
else
{
if (f<Cp->fs[0])
{
pmin = pow(Cp->Mmin ,Cp->as[0]);
m = pow(Cp->imf_Ntot*Cp->as[0]/Cp->bs[0]* (f-0) + pmin ,1./Cp->as[0]);
return m* SOLAR_MASS/All.UnitMass_in_g;
}
for (i=0;i<n-1;i++)
{
if (f<Cp->fs[i+1])
{
pmin = pow(Cp->ms[i] ,Cp->as[i+1]);
m = pow(Cp->imf_Ntot*Cp->as[i+1]/Cp->bs[i+1]* (f-Cp->fs[i]) + pmin ,1./Cp->as[i+1]);
return m* SOLAR_MASS/All.UnitMass_in_g;
}
}
/* last portion */
pmin = pow(Cp->ms[n-1] ,Cp->as[n]);
m = pow(Cp->imf_Ntot*Cp->as[n]/Cp->bs[n]* (f-Cp->fs[n-1]) + pmin ,1./Cp->as[n]);
return m* SOLAR_MASS/All.UnitMass_in_g;
}
}
/*! This function initializes the imf parameters
defined in the chemistry file
*/
void init_imf(void)
{
float integral = 0;
float p;
float cte;
int i,n;
double mmin,mmax;
n = Cp->n;
if (n==0)
{
p = Cp->as[0]+1;
integral = integral + ( pow(Cp->Mmax,p)-pow(Cp->Mmin,p))/(p) ;
Cp->bs[0] = 1./integral ;
}
else
{
cte = 1.0;
if (Cp->Mmin < Cp->ms[0])
{
p = Cp->as[0]+1;
integral = integral + (pow(Cp->ms[0],p) - pow(Cp->Mmin,p))/p;
}
for (i=0;i<n-1;i++)
{
cte = cte* pow( Cp->ms[i],( Cp->as[i] - Cp->as[i+1] ));
p = Cp->as[i+1]+1;
integral = integral + cte*(pow(Cp->ms[i+1],p) - pow(Cp->ms[i],p))/p;
}
if (Cp->Mmax > Cp->ms[-1])
{
cte = cte* pow( Cp->ms[n-1] , ( Cp->as[n-1] - Cp->as[n] ) );
p = Cp->as[n]+1;
integral = integral + cte*(pow(Cp->Mmax,p) - pow(Cp->ms[n-1],p))/p;
}
/* compute all b */
Cp->bs[0] = 1./integral;
for (i=0;i<n;i++)
{
Cp->bs[i+1] = Cp->bs[i] * pow( Cp->ms[i],( Cp->as[i] - Cp->as[i+1] ));
}
}
//if (verbose && ThisTask==0)
// {
// printf("-- bs -- \n");
// for (i=0;i<n+1;i++)
// printf("%g ",Cp->bs[i]);
// printf("\n");
// }
mmin = Cp->Mmin / All.UnitMass_in_g * SOLAR_MASS; /* in mass unit */
mmax = Cp->Mmax / All.UnitMass_in_g * SOLAR_MASS; /* in mass unit */
Cp->imf_Ntot = get_imf_N(mmin,mmax) *SOLAR_MASS/All.UnitMass_in_g;
/* init fs : mass fraction at ms */
if (n>0)
{
for (i=0;i<n+1;i++)
{
mmax = Cp->ms[i] / All.UnitMass_in_g * SOLAR_MASS; /* in mass unit */
Cp->fs[i] = SOLAR_MASS/All.UnitMass_in_g*get_imf_N(mmin,mmax)/Cp->imf_Ntot;
}
}
}
/*! This function initializes the chemistry parameters
*/
void init_chimie(void)
{
int i,nf;
double u_lt;
double UnitLength_in_kpc;
double UnitMass_in_Msol;
char filename[500];
char ext[100];
/* check some flags */
#ifndef COSMICTIME
if (All.ComovingIntegrationOn)
{
if(ThisTask == 0)
printf("Code wasn't compiled with COSMICTIME support enabled!\n");
endrun(-88800);
}
#endif
UnitLength_in_kpc = All.UnitLength_in_cm / KPC_IN_CM;
UnitMass_in_Msol = All.UnitMass_in_g / SOLAR_MASS;
//u_lt = -log10( 4.7287e11*sqrt(pow(UnitLength_in_kpc,3)/UnitMass_in_Msol));
/*Sat Dec 25 23:27:10 CET 2010 */
u_lt = -log10(All.UnitTime_in_Megayears*1e6);
allocate_chimie();
for (nf=0;nf<All.ChimieNumberOfParameterFiles;nf++)
{
if (All.ChimieNumberOfParameterFiles==1)
sprintf(filename,"%s",All.ChimieParameterFile);
else
sprintf(filename,"%s.%d",All.ChimieParameterFile,nf);
/* check the file extension and read */
#ifdef CHIMIE_FROM_HDF5
if ( (strcmp("h5",get_filename_ext(filename))==0) || (strcmp("hdf5",get_filename_ext(filename))==0))
read_chimie_h5(filename,nf);
else
#endif //CHIMIE_FROM_HDF5
read_chimie(filename,nf);
/* set the table */
set_table(nf);
/* Conversion into program time unit */
Cp->coeff_z[2][2] = Cp->coeff_z[2][2] + u_lt;
for (i=0;i<3;i++)
Cp->coeff_z[1][i] = Cp->coeff_z[1][i]/2.0;
/* init imf parameters */
init_imf();
/* init SNII parameters */
//if (Cp->n==0)
// {
// //Cp->SNII_cte[0] = Cp->bs[0]/Cp->as[0];
// Cp->SNII_cte = Cp->bs[0]/Cp->as[0];
// Cp->SNII_a = Cp->as[0];
// }
//else
// {
// //for (i=0;i<Cp->n+1;i++) /* if multiple power law in the SNII mass range */
// // Cp->SNII_cte[i] = Cp->bs[i]/Cp->as[i];
// Cp->SNII_cte = Cp->bs[Cp->n]/Cp->as[Cp->n];
// Cp->SNII_a = Cp->as[Cp->n];
// }
/* init DYIN parameters */
//if (Cp->n==0)
// {
// //Cp->DYIN_cte[0] = Cp->bs[0]/Cp->as[0];
// Cp->DYIN_cte = Cp->bs[0]/Cp->as[0];
// Cp->DYIN_a = Cp->as[0];
// }
//else
// {
// //for (i=0;i<Cp->n+1;i++) /* if multiple power law in the DYIN mass range */
// // Cp->DYIN_cte[i] = Cp->bs[i]/Cp->as[i];
// Cp->DYIN_cte = Cp->bs[Cp->n]/Cp->as[Cp->n];
// Cp->DYIN_a = Cp->as[Cp->n];
// }
/* init SNIa parameters */
Cp->SNIa_a1 = Cp->SNIa_a;
Cp->SNIa_b1 = (Cp->SNIa_a1+1)/(pow(Cp->SNIa_Mdu1,Cp->SNIa_a1+1)-pow(Cp->SNIa_Mdl1,Cp->SNIa_a1+1));
Cp->SNIa_cte1 = Cp->SNIa_b1/Cp->SNIa_a1;
Cp->SNIa_a2 = Cp->SNIa_a;
Cp->SNIa_b2 = (Cp->SNIa_a2+1)/(pow(Cp->SNIa_Mdu2,Cp->SNIa_a2+1)-pow(Cp->SNIa_Mdl2,Cp->SNIa_a2+1));
Cp->SNIa_cte2 = Cp->SNIa_b2/Cp->SNIa_a2;
/* init SNIa parameters */
if (Cp->n==0)
{
Cp->SNIa_cte = Cp->bs[0]/Cp->as[0];
Cp->SNIa_a = Cp->as[0];
}
else
{
Cp->SNIa_cte = Cp->bs[Cp->n]/Cp->as[Cp->n];
Cp->SNIa_a = Cp->as[Cp->n];
}
//for (i=0;i<Cp->nelts+2;i++)
// Elt[i].MminSNII = log10(Elt[i].MminSNII);
//
//for (i=0;i<Cp->nelts+2;i++)
// Elt[i].MminDYIN = log10(Elt[i].MminDYIN);
/* output info */
//if (verbose && ThisTask==0)
// {
// //printf("-- SNII_cte -- \n");
// //for (i=0;i<Cp->n+1;i++)
// // printf("%g ",Cp->SNII_cte[i]);
// //printf("%g ",Cp->SNII_cte);
//
// printf("\n");
//}
/* output info */
//if (verbose && ThisTask==0)
// {
// printf("-- DYIN_cte -- \n");
// //for (i=0;i<Cp->n+1;i++)
// // printf("%g ",Cp->DYIN_cte[i]);
// //printf("%g ",Cp->DYIN_cte);
//
// printf("\n");
// }
/* check that the masses are higher than the last IMF elbow */
if (Cp->n>0)
{
if (Cp->SNIa_Mpl < Cp->ms[Cp->n-1])
{
printf("\nSNIa_Mpl = %g < ms[n-1] = %g !!!\n\n",Cp->SNIa_Mpl,Cp->ms[Cp->n-1]);
printf("This is not supported by the current implementation !!!\n");
endrun(88801);
}
if (Cp->SNIa_Mpu < Cp->ms[Cp->n-1])
{
printf("\nSNIa_Mpu = %g < ms[n-1] = %g !!!\n\n",Cp->SNIa_Mpu,Cp->ms[Cp->n-1]);
printf("This is not supported by the current implementation !!!\n");
endrun(88802);
}
if (Cp->SNII_Mmin < Cp->ms[Cp->n-1])
{
printf("\nSNII_Mmin = %g < ms[n-1] = %g !!!\n\n",Cp->SNII_Mmin,Cp->ms[Cp->n-1]);
printf("This is not supported by the current implementation !!!\n");
endrun(88803);
}
if (Cp->SNII_Mmax < Cp->ms[Cp->n-1])
{
printf("\nSNII_Mmax = %g < ms[n-1] = %g !!!\n\n",Cp->SNII_Mmax,Cp->ms[Cp->n-1]);
printf("This is not supported by the current implementation !!!\n");
endrun(88804);
}
if (Cp->DYIN_Mmin < Cp->ms[Cp->n-1])
{
printf("\nDYIN_Mmin = %g < ms[n-1] = %g !!!\n\n",Cp->DYIN_Mmin,Cp->ms[Cp->n-1]);
printf("This is not supported by the current implementation !!!\n");
endrun(88805);
}
if (Cp->DYIN_Mmax < Cp->ms[Cp->n-1])
{
printf("\nDYIN_Mmax = %g < ms[n-1] = %g !!!\n\n",Cp->DYIN_Mmax,Cp->ms[Cp->n-1]);
printf("This is not supported by the current implementation !!!\n");
endrun(88806);
}
}
}
/*
init short cuts to some elements
*/
FE = get_ElementIndex("Fe");
METALS = get_ElementIndex("Metals");
}
/*! This function performe simple checks
* to validate the chemistry initialization
*/
void check_chimie(void)
{
int i;
printf("(Taks=%d) Number of elts : %d\n",ThisTask,Cp->nelts);
for(i=2;i<Cp->nelts+2;i++)
printf("%s ",&Elt[i].label);
printf("\n");
/* check number of elements */
if (NELEMENTS != Cp->nelts)
{
printf("(Taks=%d) NELEMENTS (=%d) != Cp->nelts (=%d) : please check !!!\n\n",ThisTask,NELEMENTS,Cp->nelts);
endrun(88807);
}
/* check that iron is the first element */
//if ((strcmp("Fe",Elt[2].label))!=0)
// {
// printf("(Taks=%d) first element (=%s) is not %s !!!\n\n",ThisTask,Elt[2].label,FIRST_ELEMENT);
// endrun(88808);
// }
}
/*! This function print some info on the chimie parameters
*/
void info(int it)
{
int i,j;
printf("\nTable %d\n\n",it);
printf("%g %g %g\n", Cps[it].coeff_z[0][0],Cps[it].coeff_z[0][1],Cps[it].coeff_z[0][2]);
printf("%g %g %g\n", Cps[it].coeff_z[1][0],Cps[it].coeff_z[1][1],Cps[it].coeff_z[1][2]);
printf("%g %g %g\n", Cps[it].coeff_z[2][0],Cps[it].coeff_z[2][1],Cps[it].coeff_z[2][2]);
printf("\n");
printf("\nIMF\n");
printf("%g %g\n",Cps[it].Mmin,Cps[it].Mmax);
printf("%d\n",Cps[it].n);
for (i=0;i<Cps[it].n;i++)
printf( "ms : %g ",Cps[it].ms[i]);
printf("\n");
for (i=0;i<Cps[it].n+1;i++)
printf( "as : %g ",Cps[it].as[i]);
printf("\n");
printf("\nRate SNII\n");
printf("%g ",Cps[it].SNII_Mmin);
printf("%g ",Cps[it].SNII_Mmax);
printf("\n");
printf("\nRate DYIN\n");
printf("%g ",Cps[it].DYIN_Mmin);
printf("%g ",Cps[it].DYIN_Mmax);
printf("\n");
printf("\nRate SNIa\n");
printf("%g %g\n",Cps[it].SNIa_Mpl,Cps[it].SNIa_Mpu);
printf("%g \n",Cps[it].SNIa_a);
printf("%g %g %g\n",Cps[it].SNIa_Mdl1,Cps[it].SNIa_Mdu1,Cps[it].SNIa_b1);
printf("%g %g %g\n",Cps[it].SNIa_Mdl2,Cps[it].SNIa_Mdu2,Cps[it].SNIa_b2);
printf("\n");
for (i=0;i<Cps[it].nelts+2;i++)
{
printf("> %g %g\n",Elts[it][i].MminSNII,Elts[it][i].StepSNII);
for (j=0;j<Cps[it].nptsSNII;j++)
{
printf(" %g\n",Elts[it][i].ArraySNII[j]);
}
}
for (i=0;i<Cps[it].nelts+2;i++)
{
printf("> %g %g\n",Elts[it][i].MminDYIN,Elts[it][i].StepDYIN);
for (j=0;j<Cps[it].nptsDYIN;j++)
{
printf(" %g\n",Elts[it][i].ArrayDYIN[j]);
}
}
printf("\n");
printf("%g\n",Cps[it].Mco);
for (i=0;i<Cps[it].nelts+2;i++)
printf("%g\n",Elts[it][i].MSNIa);
printf("\n");
}
/*! Return the number of elements considered
*/
int get_nelts()
{
return Cp->nelts;
}
/*! Return the solar mass abundance of elt i
*/
float get_SolarMassAbundance(i)
{
return Elt[i+2].SolarMassAbundance;
}
/*! Return the label of element i
*/
char* get_Element(i)
{
return Elt[i+2].label;
}
int get_ElementIndex(char *elt)
{
/*
example:
get_SolarMassAbundance(get_ElementIndex("Fe"));
*/
int i=-1;
for(i=0;i<Cp->nelts;i++)
if( strcmp(Elt[i+2].label, elt) == 0 )
return i;
printf("element %s is unknown\n",elt);
endrun(777123);
return i;
}
/*! Return the lifetime of a star of mass m and metallicity z
*/
double star_lifetime(double z,double m)
{
/* z is the mass fraction of metals, ie, the metallicity */
/* m is the stellar mass in code unit */
/* Return t in code time unit */
int i;
double a,b,c;
double coeff[3];
double logm,twologm,logm2,time;
/* convert m in msol */
m = m*All.UnitMass_in_g / SOLAR_MASS;
for (i=0;i<3;i++)
coeff[i] = ( Cp->coeff_z[i][0]*z+Cp->coeff_z[i][1] )*z+Cp->coeff_z[i][2];
a = coeff[0];
b = coeff[1];
c = coeff[2];
logm = log10(m);
twologm = 2.0 * logm;
logm2 = logm*logm;
time = pow(10.,(a*logm2+b*twologm+c));
return time;
}
/*! Return the mass of a star having a livetime t and a metallicity z
*/
double star_mass_from_age(double z,double t)
{
/* z is the mass fraction of metals, ie, the metallicity */
/* t is the star life time */
/* return the stellar mass (in code unit) that has a lifetime equal to t */
/* this is the inverse of star_lifetime */
int i;
double a,b,c;
double coeff[3];
double m;
for (i=0;i<3;i++)
coeff[i] = ( Cp->coeff_z[i][0]*z+Cp->coeff_z[i][1] )*z+Cp->coeff_z[i][2];
a = coeff[0];
b = coeff[1];
c = coeff[2];
m = -(b+sqrt(b*b-a*(c-log10(t))))/a;
m = pow(10,m); /* here, m is in solar mass */
m = m*SOLAR_MASS/All.UnitMass_in_g; /* Msol to mass unit */
return m;
}
/****************************************************************************************/
/*
/* Supernova rate : number of supernova per mass unit
/*
/****************************************************************************************/
double DYIN_rate(double m1,double m2)
{
/*
compute the number of stars between m1 and m2
masses in code unit
*/
double RDYIN;
double md,mu;
RDYIN = 0.0;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
/* find md, mu */
md = dmax(m1,Cp->DYIN_Mmin);
mu = dmin(m2,Cp->DYIN_Mmax);
if (mu<=md) /* no dying stars in that mass range */
return 0.0;
/* to code units */
md = md * SOLAR_MASS/All.UnitMass_in_g;
mu = mu * SOLAR_MASS/All.UnitMass_in_g;
/* compute number in the mass range */
RDYIN = get_imf_N(md,mu);
return RDYIN;
}
double SNII_rate(double m1,double m2)
{
/*
compute the number of SNII between m1 and m2
masses in code unit
*/
double RSNII;
double md,mu;
RSNII = 0.0;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
/* (1) find md, mu */
md = dmax(m1,Cp->SNII_Mmin);
mu = dmin(m2,Cp->SNII_Mmax);
if (mu<=md) /* no SNII in that mass range */
return 0.0;
/* !!!!! here we should use get_imf_N !!!! */
/* to ensure the full imf */
//RSNII = Cp->SNII_cte * (pow(mu,Cp->SNII_a)-pow(md,Cp->SNII_a)); /* number per solar mass */
///* convert in number per solar mass to number per mass unit */
//RSNII = RSNII *All.UnitMass_in_g / SOLAR_MASS;
/* to code units */
md = md * SOLAR_MASS/All.UnitMass_in_g;
mu = mu * SOLAR_MASS/All.UnitMass_in_g;
/* compute number in the mass range */
RSNII = get_imf_N(md,mu);
return RSNII;
}
double SNIa_rate(double m1,double m2)
{
/*
compute the number of SNIa between m1 and m2
masses in code unit
*/
double RSNIa;
double md,mu;
RSNIa = 0.0;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
/* RG contribution */
md = dmax(m1,Cp->SNIa_Mdl1);
mu = dmin(m2,Cp->SNIa_Mdu1);
if (md<mu)
RSNIa = RSNIa + Cp->SNIa_bb1 * Cp->SNIa_cte1 * (pow(mu,Cp->SNIa_a1)-pow(md,Cp->SNIa_a1));
/* MS contribution */
md = dmax(m1,Cp->SNIa_Mdl2);
mu = dmin(m2,Cp->SNIa_Mdu2);
if (md<mu)
RSNIa = RSNIa + Cp->SNIa_bb2 * Cp->SNIa_cte2 * (pow(mu,Cp->SNIa_a2)-pow(md,Cp->SNIa_a2));
/* WD contribution */
md = dmax(m1,Cp->SNIa_Mpl); /* select stars that have finished their life -> WD */
mu = Cp->SNIa_Mpu; /* no upper bond */
if (mu<=md) /* no SNIa in that mass range */
return 0.0;
RSNIa = RSNIa * Cp->SNIa_cte * (pow(mu,Cp->SNIa_a)-pow(md,Cp->SNIa_a)); /* number per solar mass */
/* convert in number per solar mass to number per mass unit */
RSNIa = RSNIa *All.UnitMass_in_g / SOLAR_MASS;
return RSNIa;
}
void DYIN_mass_ejection(double m1,double m2)
{
/*
Compute the mass fraction and yields of dying stars with masses between m1 and m2.
Store the result in the global variable`` MassFracDYIN``::
MassFracDYIN[0] = total gas
MassFracDYIN[1] = helium core (i.e. alpha(m))
MassFracDYIN[i] = frac mass elt i.
*/
double l1,l2;
int i1,i2,i1p,i2p,j;
double f1,f2;
double v1,v2;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
/* this was not in Poirier... */
m1 = dmax(m1,Cp->DYIN_Mmin);
m2 = dmin(m2,Cp->DYIN_Mmax);
if ( m2<=m1 )
{
for (j=0;j<Cp->nelts+2;j++)
MassFracDYIN[j] = 0;
return;
}
j = 0;
l1 = ( log10(m1) - Elt[j].MminDYIN) / Elt[j].StepDYIN ;
l2 = ( log10(m2) - Elt[j].MminDYIN) / Elt[j].StepDYIN ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<0) i1=0;
if (i2<0) i2=0;
/* --------- TOTAL GAS ---------- */
j = 0;
v1 = f1 * ( Elt[j].ArrayDYIN[i1p] - Elt[j].ArrayDYIN[i1] ) + Elt[j].ArrayDYIN[i1];
v2 = f2 * ( Elt[j].ArrayDYIN[i2p] - Elt[j].ArrayDYIN[i2] ) + Elt[j].ArrayDYIN[i2];
MassFracDYIN[j] = v2-v1;
/* --------- He core therm ---------- */
j = 1;
v1 = f1 * ( Elt[j].ArrayDYIN[i1p] - Elt[j].ArrayDYIN[i1] ) + Elt[j].ArrayDYIN[i1];
v2 = f2 * ( Elt[j].ArrayDYIN[i2p] - Elt[j].ArrayDYIN[i2] ) + Elt[j].ArrayDYIN[i2];
MassFracDYIN[j] = v2-v1;
/* ---------------------------- */
/* --------- Metals ---------- */
/* ---------------------------- */
j = 2;
l1 = ( log10(m1) - Elt[j].MminDYIN) / Elt[j].StepDYIN ;
l2 = ( log10(m2) - Elt[j].MminDYIN) / Elt[j].StepDYIN ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<0) i1=0;
if (i2<0) i2=0;
for (j=2;j<Cp->nelts+2;j++)
{
v1 = f1 * ( Elt[j].ArrayDYIN[i1p] - Elt[j].ArrayDYIN[i1] ) + Elt[j].ArrayDYIN[i1];
v2 = f2 * ( Elt[j].ArrayDYIN[i2p] - Elt[j].ArrayDYIN[i2] ) + Elt[j].ArrayDYIN[i2];
MassFracDYIN[j] = v2-v1;
}
}
void DYIN_mass_ejection_Z(double m1,double m2, double Z)
{
/*
Compute the mass fraction and yields of dying stars with masses between m1 and m2.
Store the result in the global variable`` MassFracDYIN``::
MassFracDYIN[0] = total gas
MassFracDYIN[1] = helium core (i.e. alpha(m))
MassFracDYIN[i] = frac mass elt i.
*/
double l1,l2;
int i1,i2,i1p,i2p,k;
int j1,j1p;
double f1,f2,g1;
double v1,v2,v11,v12;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
/* this was not in Poirier... */
m1 = dmax(m1,Cp->DYIN_Mmin);
m2 = dmin(m2,Cp->DYIN_Mmax);
if ( m2<=m1 )
{
for (k=0;k<Cp->nelts+2;k++)
MassFracDYIN[k] = 0;
return;
}
/* find i1,i1p, index in m1 and m2 */
k = 0;
l1 = ( log10(m1) - Elt[k].MminDYIN) / Elt[k].StepDYIN ;
l2 = ( log10(m2) - Elt[k].MminDYIN) / Elt[k].StepDYIN ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<0) i1=0;
if (i2<0) i2=0;
/* find j1,j1p, index in Z */
l1 = ( log10(Z) - Elt[k].MminZDYIN) / Elt[k].StepZDYIN ;
if (l1 < 0.0) l1 = 0.0;
j1 = (int)l1;
j1p = j1 + 1;
g1 = l1 - j1;
/* check (yr) */
if (j1<0) j1=0;
/* --------- TOTAL GAS ---------- */
k = 0;
/* mass 1 */
v11 = f1 * ( Elt[k].ArrayZDYIN[i1p][j1] - Elt[k].ArrayZDYIN[i1][j1] ) + Elt[k].ArrayZDYIN[i1][j1];
v12 = f1 * ( Elt[k].ArrayZDYIN[i1p][j1p] - Elt[k].ArrayZDYIN[i1][j1p] ) + Elt[k].ArrayZDYIN[i1][j1p];
v1 = g1 * ( v12 - v11 ) + v11;
/* mass 2 */
v11 = f2 * ( Elt[k].ArrayZDYIN[i2p][j1] - Elt[k].ArrayZDYIN[i2][j1] ) + Elt[k].ArrayZDYIN[i2][j1];
v12 = f2 * ( Elt[k].ArrayZDYIN[i2p][j1p] - Elt[k].ArrayZDYIN[i2][j1p] ) + Elt[k].ArrayZDYIN[i2][j1p];
v2 = g1 * ( v12 - v11 ) + v11;
MassFracDYIN[k] = v2-v1;
/* --------- He core therm ---------- */
k = 1;
/* mass 1 */
v11 = f1 * ( Elt[k].ArrayZDYIN[i1p][j1] - Elt[k].ArrayZDYIN[i1][j1] ) + Elt[k].ArrayZDYIN[i1][j1];
v12 = f1 * ( Elt[k].ArrayZDYIN[i1p][j1p] - Elt[k].ArrayZDYIN[i1][j1p] ) + Elt[k].ArrayZDYIN[i1][j1p];
v1 = g1 * ( v12 - v11 ) + v11;
/* mass 2 */
v11 = f2 * ( Elt[k].ArrayZDYIN[i2p][j1] - Elt[k].ArrayZDYIN[i2][j1] ) + Elt[k].ArrayZDYIN[i2][j1];
v12 = f2 * ( Elt[k].ArrayZDYIN[i2p][j1p] - Elt[k].ArrayZDYIN[i2][j1p] ) + Elt[k].ArrayZDYIN[i2][j1p];
v2 = g1 * ( v12 - v11 ) + v11;
MassFracDYIN[k] = v2-v1;
/* ---------------------------- */
/* --------- Metals ---------- */
/* ---------------------------- */
k = 2;
l1 = ( log10(m1) - Elt[k].MminDYIN) / Elt[k].StepDYIN ;
l2 = ( log10(m2) - Elt[k].MminDYIN) / Elt[k].StepDYIN ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<0) i1=0;
if (i2<0) i2=0;
/* find j1,j1p, index in Z */
l1 = ( log10(Z) - Elt[k].MminZDYIN) / Elt[k].StepZDYIN ;
if (l1 < 0.0) l1 = 0.0;
j1 = (int)l1;
j1p = j1 + 1;
g1 = l1 - j1;
/* check (yr) */
if (j1<0) j1=0;
for (k=2;k<Cp->nelts+2;k++)
{
/* mass 1 */
v11 = f1 * ( Elt[k].ArrayZDYIN[i1p][j1] - Elt[k].ArrayZDYIN[i1][j1] ) + Elt[k].ArrayZDYIN[i1][j1];
v12 = f1 * ( Elt[k].ArrayZDYIN[i1p][j1p] - Elt[k].ArrayZDYIN[i1][j1p] ) + Elt[k].ArrayZDYIN[i1][j1p];
v1 = g1 * ( v12 - v11 ) + v11;
/* mass 2 */
v11 = f2 * ( Elt[k].ArrayZDYIN[i2p][j1] - Elt[k].ArrayZDYIN[i2][j1] ) + Elt[k].ArrayZDYIN[i2][j1];
v12 = f2 * ( Elt[k].ArrayZDYIN[i2p][j1p] - Elt[k].ArrayZDYIN[i2][j1p] ) + Elt[k].ArrayZDYIN[i2][j1p];
v2 = g1 * ( v12 - v11 ) + v11;
MassFracDYIN[k] = v2-v1;
}
}
void DYIN_single_mass_ejection(double m1)
{
/*
Compute the mass fraction and yields of a dying stars of masse m1.
Store the result in the global variable ``SingleMassFracDYIN``::
SingleMassFracDYIN[0] = total gas
SingleMassFracDYIN[1] = helium core (i.e. alpha(m))
SingleMassFracDYIN[i] = frac mass elt i.
*/
double l1;
int i1,i1p,j;
double f1;
double v1;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
/* this was not in Poirier... */
if ( (m1<=Cp->DYIN_Mmin) || (m1>=Cp->DYIN_Mmax) )
{
for (j=0;j<Cp->nelts+2;j++)
SingleMassFracDYIN[j] = 0;
return;
}
j = 0;
l1 = ( log10(m1) - Elt[j].MminDYIN) / Elt[j].StepDYIN ;
if (l1 < 0.0) l1 = 0.0;
i1 = (int)l1;
i1p = i1 + 1;
f1 = l1 - i1;
/* check (yr) */
if (i1<0) i1=0;
/* --------- TOTAL GAS ---------- */
j = 0;
v1 = f1 * ( Elt[j].MetalDYIN[i1p] - Elt[j].MetalDYIN[i1] ) + Elt[j].MetalDYIN[i1];
SingleMassFracDYIN[j] = v1;
/* --------- He core therm ---------- */
j = 1;
v1 = f1 * ( Elt[j].MetalDYIN[i1p] - Elt[j].MetalDYIN[i1] ) + Elt[j].MetalDYIN[i1];
SingleMassFracDYIN[j] = v1;
/* ---------------------------- */
/* --------- Metals ---------- */
/* ---------------------------- */
j = 2;
l1 = ( log10(m1) - Elt[j].MminDYIN) / Elt[j].StepDYIN ;
if (l1 < 0.0) l1 = 0.0;
i1 = (int)l1;
i1p = i1 + 1;
f1 = l1 - i1;
/* check (yr) */
if (i1<0) i1=0;
for (j=2;j<Cp->nelts+2;j++)
{
v1 = f1 * ( Elt[j].MetalDYIN[i1p] - Elt[j].MetalDYIN[i1] ) + Elt[j].MetalDYIN[i1];
SingleMassFracDYIN[j] = v1;
}
}
void DYIN_single_mass_ejection_Z(double m1,double Z)
{
/*
Compute the mass fraction and yields of a dying stars of masse m1.
Store the result in the global variable ``SingleMassFracDYIN``::
SingleMassFracDYIN[0] = total gas
SingleMassFracDYIN[1] = helium core (i.e. alpha(m))
SingleMassFracDYIN[i] = frac mass elt i.
*/
double l1;
int i1,i1p,k;
int j1,j1p;
double f1,g1;
double v1,v11,v12;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
/* this was not in Poirier... */
if ( (m1<=Cp->DYIN_Mmin) || (m1>=Cp->DYIN_Mmax) )
{
for (k=0;k<Cp->nelts+2;k++)
SingleMassFracDYIN[k] = 0;
return;
}
k = 0;
/* find i1,i1p, index in m */
l1 = ( log10(m1) - Elt[k].MminDYIN) / Elt[k].StepDYIN ;
if (l1 < 0.0) l1 = 0.0;
i1 = (int)l1;
i1p = i1 + 1;
f1 = l1 - i1;
/* check (yr) */
if (i1<0) i1=0;
/* find j1,j1p, index in Z */
l1 = ( log10(Z) - Elt[k].MminZDYIN) / Elt[k].StepZDYIN ;
if (l1 < 0.0) l1 = 0.0;
j1 = (int)l1;
j1p = j1 + 1;
g1 = l1 - j1;
/* check (yr) */
if (j1<0) j1=0;
/* --------- TOTAL GAS ---------- */
k = 0;
v11 = f1 * ( Elt[k].MetalZDYIN[i1p][j1] - Elt[k].MetalZDYIN[i1][j1] ) + Elt[k].MetalZDYIN[i1][j1];
v12 = f1 * ( Elt[k].MetalZDYIN[i1p][j1p] - Elt[k].MetalZDYIN[i1][j1p] ) + Elt[k].MetalZDYIN[i1p][j1];
v1 = g1 * ( v12 - v11 ) + v11;
SingleMassFracDYIN[k] = v1;
/* --------- He core therm ---------- */
k = 1;
v11 = f1 * ( Elt[k].MetalZDYIN[i1p][j1] - Elt[k].MetalZDYIN[i1][j1] ) + Elt[k].MetalZDYIN[i1][j1];
v12 = f1 * ( Elt[k].MetalZDYIN[i1p][j1p] - Elt[k].MetalZDYIN[i1][j1p] ) + Elt[k].MetalZDYIN[i1p][j1];
v1 = g1 * ( v12 - v11 ) + v11;
SingleMassFracDYIN[k] = v1;
/* ---------------------------- */
/* --------- Metals ---------- */
/* ---------------------------- */
k = 2;
/* find i1,i1p, index in m */
l1 = ( log10(m1) - Elt[k].MminDYIN) / Elt[k].StepDYIN ;
if (l1 < 0.0) l1 = 0.0;
i1 = (int)l1;
i1p = i1 + 1;
f1 = l1 - i1;
/* check (yr) */
if (i1<0) i1=0;
/* find j1,j1p, index in Z */
l1 = ( log10(Z) - Elt[k].MminZDYIN) / Elt[k].StepZDYIN ;
if (l1 < 0.0) l1 = 0.0;
j1 = (int)l1;
j1p = j1 + 1;
g1 = l1 - j1;
/* check (yr) */
if (j1<0) j1=0;
for (k=2;k<Cp->nelts+2;k++)
{
v11 = f1 * ( Elt[k].MetalZDYIN[i1p][j1] - Elt[k].MetalZDYIN[i1][j1] ) + Elt[k].MetalZDYIN[i1][j1];
v12 = f1 * ( Elt[k].MetalZDYIN[i1p][j1p] - Elt[k].MetalZDYIN[i1][j1p] ) + Elt[k].MetalZDYIN[i1p][j1];
v1 = g1 * ( v12 - v11 ) + v11;
SingleMassFracDYIN[k] = v1;
}
}
void SNII_mass_ejection(double m1,double m2)
{
/*
.. warning:: here, we we do not limit the computation to SNII !!!
Compute the mass fraction and yields of SNII stars with masses between m1 and m2.
Store the result in the global variable ``MassFracSNII``::
MassFracSNII[0] = total gas
MassFracSNII[1] = 1-helium core (i.e. non processed elts)
MassFracSNII[i] = frac mass elt i.
*/
double l1,l2;
int i1,i2,i1p,i2p,j;
double f1,f2;
double v1,v2;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
/* this was not in Poirier... */
m1 = dmax(m1,Cp->SNII_Mmin);
m2 = dmin(m2,Cp->SNII_Mmax);
if ( m2<=m1 )
{
for (j=0;j<Cp->nelts+2;j++)
MassFracSNII[j] = 0;
return;
}
j = 0;
l1 = ( log10(m1) - Elt[j].MminSNII) / Elt[j].StepSNII ;
l2 = ( log10(m2) - Elt[j].MminSNII) / Elt[j].StepSNII ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<0) i1=0;
if (i2<0) i2=0;
/* --------- TOTAL GAS ---------- */
j = 0;
v1 = f1 * ( Elt[j].ArraySNII[i1p] - Elt[j].ArraySNII[i1] ) + Elt[j].ArraySNII[i1];
v2 = f2 * ( Elt[j].ArraySNII[i2p] - Elt[j].ArraySNII[i2] ) + Elt[j].ArraySNII[i2];
MassFracSNII[j] = v2-v1;
/* --------- He core therm ---------- */
j = 1;
v1 = f1 * ( Elt[j].ArraySNII[i1p] - Elt[j].ArraySNII[i1] ) + Elt[j].ArraySNII[i1];
v2 = f2 * ( Elt[j].ArraySNII[i2p] - Elt[j].ArraySNII[i2] ) + Elt[j].ArraySNII[i2];
MassFracSNII[j] = v2-v1;
/* ---------------------------- */
/* --------- Metals ---------- */
/* ---------------------------- */
j = 2;
l1 = ( log10(m1) - Elt[j].MminSNII) / Elt[j].StepSNII ;
l2 = ( log10(m2) - Elt[j].MminSNII) / Elt[j].StepSNII ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<0) i1=0;
if (i2<0) i2=0;
for (j=2;j<Cp->nelts+2;j++)
{
v1 = f1 * ( Elt[j].ArraySNII[i1p] - Elt[j].ArraySNII[i1] ) + Elt[j].ArraySNII[i1];
v2 = f2 * ( Elt[j].ArraySNII[i2p] - Elt[j].ArraySNII[i2] ) + Elt[j].ArraySNII[i2];
MassFracSNII[j] = v2-v1;
}
}
// void SNII_mass_ejection_Z(double m1,double m2, double Z)
// {
//
// /*
// Compute the mass fraction and yields of SNII with masses between m1 and m2.
// Store the result in the global variable`` MassFracSNII``::
//
// MassFracSNII[0] = total gas
// MassFracSNII[1] = helium core (i.e. alpha(m))
// MassFracSNII[i] = frac mass elt i.
//
// */
//
// double l1,l2;
// int i1,i2,i1p,i2p,k;
// int j1,j1p;
// double f1,f2,g1;
// double v1,v2,v11,v12;
//
// /* convert m in msol */
// m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
// m2 = m2*All.UnitMass_in_g / SOLAR_MASS;
//
// /* this was not in Poirier... */
// m1 = dmax(m1,Cp->SNII_Mmin);
// m2 = dmin(m2,Cp->SNII_Mmax);
//
//
// if ( m2<=m1 )
// {
// for (k=0;k<Cp->nelts+2;k++)
// MassFracSNII[k] = 0;
// return;
// }
//
//
//
//
// /* find i1,i1p, index in m1 and m2 */
//
// k = 0;
// l1 = ( log10(m1) - Elt[k].MminSNII) / Elt[k].StepSNII ;
// l2 = ( log10(m2) - Elt[k].MminSNII) / Elt[k].StepSNII ;
//
// if (l1 < 0.0) l1 = 0.0;
// if (l2 < 0.0) l2 = 0.0;
//
// i1 = (int)l1;
// i2 = (int)l2;
//
// i1p = i1 + 1;
// i2p = i2 + 1;
//
// f1 = l1 - i1;
// f2 = l2 - i2;
//
// /* check (yr) */
// if (i1<0) i1=0;
// if (i2<0) i2=0;
//
//
// /* find j1,j1p, index in Z */
//
// l1 = ( log10(Z) - Elt[k].MminZSNII) / Elt[k].StepZSNII ;
//
// if (l1 < 0.0) l1 = 0.0;
//
// j1 = (int)l1;
// j1p = j1 + 1;
// g1 = l1 - j1;
//
// /* check (yr) */
// if (j1<0) j1=0;
//
//
//
// /* --------- TOTAL GAS ---------- */
// k = 0;
//
// /* mass 1 */
// v11 = f1 * ( Elt[k].ArrayZSNII[i1p][j1] - Elt[k].ArrayZSNII[i1][j1] ) + Elt[k].ArrayZSNII[i1][j1];
// v12 = f1 * ( Elt[k].ArrayZSNII[i1p][j1p] - Elt[k].ArrayZSNII[i1][j1p] ) + Elt[k].ArrayZSNII[i1p][j1];
// v1 = g1 * ( v12 - v11 ) + v11;
//
// /* mass 2 */
// v11 = f2 * ( Elt[k].ArrayZSNII[i2p][j1] - Elt[k].ArrayZSNII[i2][j1] ) + Elt[k].ArrayZSNII[i2][j1];
// v12 = f2 * ( Elt[k].ArrayZSNII[i2p][j1p] - Elt[k].ArrayZSNII[i2][j1p] ) + Elt[k].ArrayZSNII[i2p][j1];
// v2 = g1 * ( v12 - v11 ) + v11;
//
// MassFracSNII[k] = v2-v1;
//
// /* --------- He core therm ---------- */
// k = 1;
//
// /* mass 1 */
// v11 = f1 * ( Elt[k].ArrayZSNII[i1p][j1] - Elt[k].ArrayZSNII[i1][j1] ) + Elt[k].ArrayZSNII[i1][j1];
// v12 = f1 * ( Elt[k].ArrayZSNII[i1p][j1p] - Elt[k].ArrayZSNII[i1][j1p] ) + Elt[k].ArrayZSNII[i1p][j1];
// v1 = g1 * ( v12 - v11 ) + v11;
//
// /* mass 2 */
// v11 = f2 * ( Elt[k].ArrayZSNII[i2p][j1] - Elt[k].ArrayZSNII[i2][j1] ) + Elt[k].ArrayZSNII[i2][j1];
// v12 = f2 * ( Elt[k].ArrayZSNII[i2p][j1p] - Elt[k].ArrayZSNII[i2][j1p] ) + Elt[k].ArrayZSNII[i2p][j1];
// v2 = g1 * ( v12 - v11 ) + v11;
//
// MassFracSNII[k] = v2-v1;
//
// /* ---------------------------- */
// /* --------- Metals ---------- */
// /* ---------------------------- */
//
// k = 2;
//
// l1 = ( log10(m1) - Elt[k].MminSNII) / Elt[k].StepSNII ;
// l2 = ( log10(m2) - Elt[k].MminSNII) / Elt[k].StepSNII ;
//
// if (l1 < 0.0) l1 = 0.0;
// if (l2 < 0.0) l2 = 0.0;
//
// i1 = (int)l1;
// i2 = (int)l2;
//
// i1p = i1 + 1;
// i2p = i2 + 1;
//
// f1 = l1 - i1;
// f2 = l2 - i2;
//
// /* check (yr) */
// if (i1<0) i1=0;
// if (i2<0) i2=0;
//
// /* find j1,j1p, index in Z */
//
// l1 = ( log10(Z) - Elt[k].MminZSNII) / Elt[k].StepZSNII ;
//
// if (l1 < 0.0) l1 = 0.0;
//
// j1 = (int)l1;
// j1p = j1 + 1;
// g1 = l1 - j1;
//
// /* check (yr) */
// if (j1<0) j1=0;
//
// for (k=2;k<Cp->nelts+2;k++)
// {
//
// /* mass 1 */
// v11 = f1 * ( Elt[k].ArrayZSNII[i1p][j1] - Elt[k].ArrayZSNII[i1][j1] ) + Elt[k].ArrayZSNII[i1][j1];
// v12 = f1 * ( Elt[k].ArrayZSNII[i1p][j1p] - Elt[k].ArrayZSNII[i1][j1p] ) + Elt[k].ArrayZSNII[i1p][j1];
// v1 = g1 * ( v12 - v11 ) + v11;
//
// /* mass 2 */
// v11 = f2 * ( Elt[k].ArrayZSNII[i2p][j1] - Elt[k].ArrayZSNII[i2][j1] ) + Elt[k].ArrayZSNII[i2][j1];
// v12 = f2 * ( Elt[k].ArrayZSNII[i2p][j1p] - Elt[k].ArrayZSNII[i2][j1p] ) + Elt[k].ArrayZSNII[i2p][j1];
// v2 = g1 * ( v12 - v11 ) + v11;
//
// MassFracSNII[k] = v2-v1;
//
// }
//
// }
void SNII_single_mass_ejection(double m1)
{
/*
.. warning:: here, we we do not limit the computation to SNII !!!
Compute the mass fraction and yields of a SNII stars of masse m1.
Store the result in the global variable ``SingleMassFracSNII``::
SingleMassFracSNII[0] = total gas
SingleMassFracSNII[1] = 1-helium core (i.e. non processed elts)
SingleMassFracSNII[i] = frac mass elt i.
*/
double l1;
int i1,i1p,j;
double f1;
double v1;
/* convert m in msol */
m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
/* this was not in Poirier... */
if ( (m1<=Cp->SNII_Mmin) || (m1>=Cp->SNII_Mmax) )
{
for (j=0;j<Cp->nelts+2;j++)
SingleMassFracSNII[j] = 0;
return;
}
j = 0;
l1 = ( log10(m1) - Elt[j].MminSNII) / Elt[j].StepSNII ;
if (l1 < 0.0) l1 = 0.0;
i1 = (int)l1;
i1p = i1 + 1;
f1 = l1 - i1;
/* check (yr) */
if (i1<0) i1=0;
/* --------- TOTAL GAS ---------- */
j = 0;
v1 = f1 * ( Elt[j].MetalSNII[i1p] - Elt[j].MetalSNII[i1] ) + Elt[j].MetalSNII[i1];
SingleMassFracSNII[j] = v1;
/* --------- He core therm ---------- */
j = 1;
v1 = f1 * ( Elt[j].MetalSNII[i1p] - Elt[j].MetalSNII[i1] ) + Elt[j].MetalSNII[i1];
SingleMassFracSNII[j] = v1;
/* ---------------------------- */
/* --------- Metals ---------- */
/* ---------------------------- */
j = 2;
l1 = ( log10(m1) - Elt[j].MminSNII) / Elt[j].StepSNII ;
if (l1 < 0.0) l1 = 0.0;
i1 = (int)l1;
i1p = i1 + 1;
f1 = l1 - i1;
/* check (yr) */
if (i1<0) i1=0;
for (j=2;j<Cp->nelts+2;j++)
{
v1 = f1 * ( Elt[j].MetalSNII[i1p] - Elt[j].MetalSNII[i1] ) + Elt[j].MetalSNII[i1];
SingleMassFracSNII[j] = v1;
}
}
// void SNII_single_mass_ejection_Z(double m1,double Z)
// {
//
//
// /*
// Compute the mass fraction and yields of a SNII stars of masse m1.
// Store the result in the global variable ``SingleMassFracSNII``::
//
// SingleMassFracSNII[0] = total gas
// SingleMassFracSNII[1] = helium core (i.e. alpha(m))
// SingleMassFracSNII[i] = frac mass elt i.
// */
//
// double l1;
// int i1,i1p,k;
// int j1,j1p;
// double f1,g1;
// double v1,v11,v12;
//
// /* convert m in msol */
// m1 = m1*All.UnitMass_in_g / SOLAR_MASS;
//
// /* this was not in Poirier... */
// if ( (m1<=Cp->SNII_Mmin) || (m1>=Cp->SNII_Mmax) )
// {
// for (k=0;k<Cp->nelts+2;k++)
// SingleMassFracSNII[k] = 0;
// return;
// }
//
//
// k = 0;
//
//
// /* find i1,i1p, index in m */
//
// l1 = ( log10(m1) - Elt[k].MminSNII) / Elt[k].StepSNII ;
//
// if (l1 < 0.0) l1 = 0.0;
//
// i1 = (int)l1;
// i1p = i1 + 1;
// f1 = l1 - i1;
//
// /* check (yr) */
// if (i1<0) i1=0;
//
//
// /* find j1,j1p, index in Z */
//
// l1 = ( log10(Z) - Elt[k].MminZSNII) / Elt[k].StepZSNII ;
//
// if (l1 < 0.0) l1 = 0.0;
//
// j1 = (int)l1;
// j1p = j1 + 1;
// g1 = l1 - j1;
//
// /* check (yr) */
// if (j1<0) j1=0;
//
//
//
// /* --------- TOTAL GAS ---------- */
// k = 0;
// v11 = f1 * ( Elt[k].MetalZSNII[i1p][j1] - Elt[k].MetalZSNII[i1][j1] ) + Elt[k].MetalZSNII[i1][j1];
// v12 = f1 * ( Elt[k].MetalZSNII[i1p][j1p] - Elt[k].MetalZSNII[i1][j1p] ) + Elt[k].MetalZSNII[i1p][j1];
// v1 = g1 * ( v12 - v11 ) + v11;
//
// SingleMassFracSNII[k] = v1;
//
// /* --------- He core therm ---------- */
// k = 1;
// v11 = f1 * ( Elt[k].MetalZSNII[i1p][j1] - Elt[k].MetalZSNII[i1][j1] ) + Elt[k].MetalZSNII[i1][j1];
// v12 = f1 * ( Elt[k].MetalZSNII[i1p][j1p] - Elt[k].MetalZSNII[i1][j1p] ) + Elt[k].MetalZSNII[i1p][j1];
// v1 = g1 * ( v12 - v11 ) + v11;
//
// SingleMassFracSNII[k] = v1;
//
// /* ---------------------------- */
// /* --------- Metals ---------- */
// /* ---------------------------- */
//
// k = 2;
//
// /* find i1,i1p, index in m */
//
// l1 = ( log10(m1) - Elt[k].MminSNII) / Elt[k].StepSNII ;
//
// if (l1 < 0.0) l1 = 0.0;
//
// i1 = (int)l1;
// i1p = i1 + 1;
// f1 = l1 - i1;
//
// /* check (yr) */
// if (i1<0) i1=0;
//
//
// /* find j1,j1p, index in Z */
//
// l1 = ( log10(Z) - Elt[k].MminZSNII) / Elt[k].StepZSNII ;
//
// if (l1 < 0.0) l1 = 0.0;
//
// j1 = (int)l1;
// j1p = j1 + 1;
// g1 = l1 - j1;
//
// /* check (yr) */
// if (j1<0) j1=0;
//
// for (k=2;k<Cp->nelts+2;k++)
// {
//
// v11 = f1 * ( Elt[k].MetalZSNII[i1p][j1] - Elt[k].MetalZSNII[i1][j1] ) + Elt[k].MetalZSNII[i1][j1];
// v12 = f1 * ( Elt[k].MetalZSNII[i1p][j1p] - Elt[k].MetalZSNII[i1][j1p] ) + Elt[k].MetalZSNII[i1p][j1];
// v1 = g1 * ( v12 - v11 ) + v11;
//
// SingleMassFracSNII[k] = v1;
// }
//
// }
void SNIa_mass_ejection(double m1,double m2)
{
/*
Compute the total mass and element mass per mass unit of SNIa stars with masses between m1 and m2.
Store the result in the global variable ``MassFracSNIa``::
MassFracSNIa[0] = total gas
MassFracSNIa[1] = unused
MassFracSNIa[i] = frac mass elt i.
*/
int j;
double NSNIa;
/* number of SNIa per mass unit between time and time+dt */
NSNIa = SNIa_rate(m1,m2);
/* ejected mass in gas per mass unit */
MassFracSNIa[0] = Cp->Mco/All.UnitMass_in_g*SOLAR_MASS * NSNIa;
/* ejected elements in gas per mass unit */
for (j=2;j<Cp->nelts+2;j++)
MassFracSNIa[j] = NSNIa* Elt[j].MSNIa/All.UnitMass_in_g*SOLAR_MASS;
/* unused */
MassFracSNIa[1]=-1;
}
void SNIa_single_mass_ejection(double m1)
{
/*
Compute the total mass mass of element of a SNIa stars of masse m1.
Store the result in the global variable ``SingleMassFracSNIa``::
SingleMassFracSNIa[0] = total gas
SingleMassFracSNIa[1] = unused
SingleMassFracSNIa[i] = frac mass elt i.
*/
int j;
/* total ejected gas mass */
SingleMassFracSNIa[0] = Cp->Mco/All.UnitMass_in_g*SOLAR_MASS;
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
SingleMassFracSNIa[j] = Elt[j].MSNIa/All.UnitMass_in_g*SOLAR_MASS;
/* unused */
SingleMassFracSNIa[1] = -1;
}
void Total_mass_ejection(double m1,double m2,double M0,double *z)
{
/*
Sum the contribution in mass and yields of all stars in the mass range m1,m2.
Store the result in the global variable EjectedMass::
EjectedMass[0] = total gas
EjectedMass[1] = UNUSED
EjectedMass[i+2] = frac mass elt i.
FOR THE MOMENT::
- contrib of SNII (= all stars)
- contrib of SNIa
EjectedMass[0] = ejected Mass from SNII + Mco * number of SNIa
EjectedMass[i] = (SNII elts created ) + (SNII elts existing) + (SNIa elts)
*/
int j;
/* compute SNII mass ejection -> MassFracSNII */
SNII_mass_ejection(m1,m2);
/* compute SNIa mass ejection -> MassFracSNIa */ /* not really a mass fraction */
SNIa_mass_ejection(m1,m2);
/* compute DYIN mass ejection -> MassFracDYIN */ /* not really a mass fraction */
DYIN_mass_ejection(m1,m2);
/* total ejected gas mass */
EjectedMass[0] = M0 * ( MassFracDYIN[0] + MassFracSNII[0] + MassFracSNIa[0] );
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
EjectedMass[j] = M0*( MassFracDYIN[j] +z[j-2]*MassFracDYIN[1] + MassFracSNII[j] +z[j-2]*MassFracSNII[1] + MassFracSNIa[j] );
/* not used */
EjectedMass[1] = -1;
}
void Total_mass_ejection_Z(double m1,double m2,double M0,double *z)
{
/*
Sum the contribution in mass and yields of all stars in the mass range m1,m2.
Store the result in the global variable EjectedMass::
EjectedMass[0] = total gas
EjectedMass[1] = UNUSED
EjectedMass[i+2] = frac mass elt i.
FOR THE MOMENT::
- contrib of SNII (= all stars)
- contrib of SNIa
EjectedMass[0] = ejected Mass from SNII + Mco * number of SNIa
EjectedMass[i] = (SNII elts created ) + (SNII elts existing) + (SNIa elts)
*/
int j;
float Z; /* metalicity */
Z = z[METALS];
/* compute SNII mass ejection -> MassFracSNII */
SNII_mass_ejection(m1,m2);
/* compute SNIa mass ejection -> MassFracSNIa */ /* not really a mass fraction */
SNIa_mass_ejection(m1,m2);
/* compute DYIN mass ejection -> MassFracDYIN */ /* not really a mass fraction */
DYIN_mass_ejection_Z(m1,m2,Z);
/* total ejected gas mass */
EjectedMass[0] = M0 * ( MassFracDYIN[0] + MassFracSNII[0] + MassFracSNIa[0] );
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
EjectedMass[j] = M0*( MassFracDYIN[j] +z[j-2]*MassFracDYIN[1] + MassFracSNII[j] +z[j-2]*MassFracSNII[1] + MassFracSNIa[j] );
/* not used */
EjectedMass[1] = -1;
}
void DYIN_Total_single_mass_ejection(double m1,double *z)
{
/*
Mass and element ejected by a single dying stars of mass m1.
This takes into account processed and non processed gas
The results are stored in::
SingleEjectedMass[0] = gas mass
SingleEjectedMass[1] = unsued
SingleEjectedMass[i+2] = frac mass elt i
*/
int j;
float M0;
M0 = m1;
/* compute dying stars mass ejection -> SingleMassFracDYIN */
DYIN_single_mass_ejection(m1);
/* total ejected gas mass */
SingleEjectedMass[0] = M0 * SingleMassFracDYIN[0];
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
SingleEjectedMass[j] = M0*(SingleMassFracDYIN[j] +z[j-2]*SingleMassFracDYIN[1]);
/* not used */
SingleEjectedMass[1] = -1;
}
void SNII_Total_single_mass_ejection(double m1,double *z)
{
/*
Mass and element ejected by a single SNII of mass m1.
This takes into account processed and non processed gas
The results are stored in::
SingleEjectedMass[0] = gas mass
SingleEjectedMass[1] = unsued
SingleEjectedMass[i+2] = frac mass elt i
*/
int j;
float M0;
M0 = m1;
/* compute SNII mass ejection -> SingleMassFracSNII */
SNII_single_mass_ejection(m1);
/* total ejected gas mass */
SingleEjectedMass[0] = M0 * SingleMassFracSNII[0];
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
SingleEjectedMass[j] = M0*(SingleMassFracSNII[j] +z[j-2]*SingleMassFracSNII[1]);
/* not used */
SingleEjectedMass[1] = -1;
}
void SNIa_Total_single_mass_ejection(double m1, double *z)
{
int j;
/*
Mass and element ejected by a single SNIa of mass m1.
The results are stored in::
SingleEjectedMass[0] = gas mass
SingleEjectedMass[1] = unsued
SingleEjectedMass[i+2] = frac mass elt i
*/
/* compute SNIa mass ejection -> SingleMassFracSNIa */
SNIa_single_mass_ejection(m1);
/* total ejected gas mass */
SingleEjectedMass[0] = SingleMassFracSNIa[0];
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
SingleEjectedMass[j] = SingleMassFracSNIa[j];
}
void Total_single_mass_ejection(double m1,double *z,double NSNII,double NSNIa,double NDYIN)
{
/*
Sum the contribution in mass and yields of one star for mass m1.
Store the result in the global variable EjectedMass::
SingleEjectedMass[0] = total gas
SingleEjectedMass[1] = UNUSED
SingleEjectedMass[i+2] = frac mass elt i.
FOR THE MOMENT::
- contrib of SNII (= all stars)
- contrib of SNIa
SingleEjectedMass[0] = ejected Mass from SNII + Mco * number of SNIa
SingleEjectedMass[i] = (SNII elts created ) + (SNII elts existing) + (SNIa elts)
*/
int j;
float M0;
M0 = m1;
/* compute SNII mass ejection -> SingleMassFracSNII */
SNII_single_mass_ejection(m1);
/* compute SNII mass ejection -> SingleMassFracSNIa */
SNIa_single_mass_ejection(m1);
/* compute DYIN mass ejection -> SingleMassFracDYIN */
DYIN_single_mass_ejection(m1);
/* total ejected gas mass */
SingleEjectedMass[0] = M0 * ( SingleMassFracDYIN[0]*NDYIN + SingleMassFracSNII[0]*NSNII ) + SingleMassFracSNIa[0]*NSNIa;
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
SingleEjectedMass[j] = M0*( SingleMassFracDYIN[j]*NDYIN +z[j-2]*SingleMassFracDYIN[1]*NDYIN + SingleMassFracSNII[j]*NSNII +z[j-2]*SingleMassFracSNII[1]*NSNII ) + SingleMassFracSNIa[j]*NSNIa;
/* not used */
SingleEjectedMass[1] = -1;
}
void Total_single_mass_ejection_Z(double m1,double *z,double NSNII,double NSNIa,double NDYIN)
{
/*
Sum the contribution in mass and yields of one star for mass m1.
Store the result in the global variable EjectedMass::
SingleEjectedMass[0] = total gas
SingleEjectedMass[1] = UNUSED
SingleEjectedMass[i+2] = frac mass elt i.
FOR THE MOMENT::
- contrib of SNII (= all stars)
- contrib of SNIa
SingleEjectedMass[0] = ejected Mass from SNII + Mco * number of SNIa
SingleEjectedMass[i] = (SNII elts created ) + (SNII elts existing) + (SNIa elts)
*/
int j;
float M0;
float Z; /* metalicity */
M0 = m1;
Z = z[METALS];
//z[METALS]=0;
/* compute SNII mass ejection -> SingleMassFracSNII */
SNII_single_mass_ejection(m1);
/* compute SNII mass ejection -> SingleMassFracSNIa */
SNIa_single_mass_ejection(m1);
/* compute DYIN mass ejection -> SingleMassFracDYIN */
DYIN_single_mass_ejection_Z(m1,Z);
/* total ejected gas mass */
SingleEjectedMass[0] = M0 * ( SingleMassFracDYIN[0]*NDYIN + SingleMassFracSNII[0]*NSNII ) + SingleMassFracSNIa[0]*NSNIa;
/* ejected mass per element */
for (j=2;j<Cp->nelts+2;j++)
SingleEjectedMass[j] = M0*( SingleMassFracDYIN[j]*NDYIN +z[j-2]*SingleMassFracDYIN[1]*NDYIN + SingleMassFracSNII[j]*NSNII +z[j-2]*SingleMassFracSNII[1]*NSNII ) + SingleMassFracSNIa[j]*NSNIa;
/* not used */
SingleEjectedMass[1] = -1;
}
/****************************************************************************************/
/*
/*
/*
/* GADGET ONLY PART
/*
/*
/*
/****************************************************************************************/
static double hubble_a, atime, hubble_a2, fac_mu, fac_vsic_fix, a3inv, fac_egy;
#ifdef FEEDBACK
static double fac_pow;
#endif
#ifdef PERIODIC
static double boxSize, boxHalf;
#ifdef LONG_X
static double boxSize_X, boxHalf_X;
#else
#define boxSize_X boxSize
#define boxHalf_X boxHalf
#endif
#ifdef LONG_Y
static double boxSize_Y, boxHalf_Y;
#else
#define boxSize_Y boxSize
#define boxHalf_Y boxHalf
#endif
#ifdef LONG_Z
static double boxSize_Z, boxHalf_Z;
#else
#define boxSize_Z boxSize
#define boxHalf_Z boxHalf
#endif
#endif
#if defined(CHIMIE_THERMAL_FEEDBACK) && defined(CHIMIE_COMPUTE_THERMAL_FEEDBACK_ENERGY)
void chimie_compute_energy_int(int mode)
{
int i;
double DeltaEgyInt;
double Tot_DeltaEgyInt;
DeltaEgyInt = 0;
Tot_DeltaEgyInt = 0;
if (mode==1)
{
LocalSysState.EnergyInt1 = 0;
LocalSysState.EnergyInt2 = 0;
}
for(i = 0; i < N_gas; i++)
{
if (P[i].Type==0)
{
if (mode==1)
#ifdef DENSITY_INDEPENDENT_SPH
LocalSysState.EnergyInt1 += P[i].Mass * SphP[i].EntropyPred / (GAMMA_MINUS1) * pow(SphP[i].EgyWtDensity*a3inv, GAMMA_MINUS1);
#else
LocalSysState.EnergyInt1 += P[i].Mass * SphP[i].EntropyPred / (GAMMA_MINUS1) * pow(SphP[i].Density*a3inv, GAMMA_MINUS1);
#endif
else
#ifdef DENSITY_INDEPENDENT_SPH
LocalSysState.EnergyInt2 += P[i].Mass * SphP[i].EntropyPred / (GAMMA_MINUS1) * pow(SphP[i].EgyWtDensity*a3inv, GAMMA_MINUS1);
#else
LocalSysState.EnergyInt2 += P[i].Mass * SphP[i].EntropyPred / (GAMMA_MINUS1) * pow(SphP[i].Density*a3inv, GAMMA_MINUS1);
#endif
}
}
if (mode==2)
{
DeltaEgyInt = LocalSysState.EnergyInt2 - LocalSysState.EnergyInt1;
MPI_Reduce(&DeltaEgyInt, &Tot_DeltaEgyInt, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
LocalSysState.EnergyThermalFeedback -= DeltaEgyInt;
}
}
#endif
#if defined(CHIMIE_KINETIC_FEEDBACK) && defined(CHIMIE_COMPUTE_KINETIC_FEEDBACK_ENERGY)
void chimie_compute_energy_kin(int mode)
{
int i;
double DeltaEgyKin;
double Tot_DeltaEgyKin;
DeltaEgyKin = 0;
Tot_DeltaEgyKin = 0;
if (mode==1)
{
LocalSysState.EnergyKin1 = 0;
LocalSysState.EnergyKin2 = 0;
}
for(i = 0; i < N_gas; i++)
{
if (P[i].Type==0)
{
if (mode==1)
LocalSysState.EnergyKin1 += 0.5 * P[i].Mass * (P[i].Vel[0]*P[i].Vel[0]+P[i].Vel[1]*P[i].Vel[1]+P[i].Vel[2]*P[i].Vel[2]);
else
LocalSysState.EnergyKin2 += 0.5 * P[i].Mass * (P[i].Vel[0]*P[i].Vel[0]+P[i].Vel[1]*P[i].Vel[1]+P[i].Vel[2]*P[i].Vel[2]);
}
}
if (mode==2)
{
DeltaEgyKin = LocalSysState.EnergyKin2 - LocalSysState.EnergyKin1;
MPI_Reduce(&DeltaEgyKin, &Tot_DeltaEgyKin, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
LocalSysState.EnergyKineticFeedback -= DeltaEgyKin;
}
}
#endif
#ifdef CHIMIE_THERMAL_FEEDBACK
void chimie_apply_thermal_feedback(void)
{
int i;
double EgySpec,NewEgySpec,DeltaEntropy;
for(i = 0; i < N_gas; i++)
{
if (P[i].Type==0)
{
if (SphP[i].DeltaEgySpec > 0)
{
//printf("(%d) Step=%d i=%08d particle receive feedback\n",ThisTask,All.NumCurrentTiStep,i);
/* spec energy at current step (allways compute energy budget based on predicted entropy) */
#ifdef DENSITY_INDEPENDENT_SPH
EgySpec = SphP[i].EntropyPred / GAMMA_MINUS1 * pow(SphP[i].Density*a3inv, GAMMA_MINUS1);
#else
EgySpec = SphP[i].EntropyPred / GAMMA_MINUS1 * pow(SphP[i].Density*a3inv, GAMMA_MINUS1);
#endif
/* new egyspec */
NewEgySpec = EgySpec + SphP[i].DeltaEgySpec;
LocalSysState.EnergyThermalFeedback -= SphP[i].DeltaEgySpec*P[i].Mass;
/* new entropy */
#ifdef DENSITY_INDEPENDENT_SPH
DeltaEntropy = GAMMA_MINUS1*NewEgySpec/pow(SphP[i].Density*a3inv, GAMMA_MINUS1) - SphP[i].EntropyPred;
#else
DeltaEntropy = GAMMA_MINUS1*NewEgySpec/pow(SphP[i].Density*a3inv, GAMMA_MINUS1) - SphP[i].EntropyPred;
#endif
SphP[i].EntropyPred += DeltaEntropy;
SphP[i].Entropy += DeltaEntropy;
#ifdef DENSITY_INDEPENDENT_SPH
SphP[i].EntVarPred = pow(SphP[i].EntropyPred, 1/GAMMA);
#endif
/* set the adiabatic period for SNIa */
if (SphP[i].NumberOfSNIa>0)
SphP[i].SNIaThermalTime = All.Time;
/* set the adiabatic period for SNII */
if (SphP[i].NumberOfSNII>0)
SphP[i].SNIIThermalTime = All.Time;
/* reset variables */
SphP[i].DeltaEgySpec = 0;
SphP[i].NumberOfSNIa = 0;
SphP[i].NumberOfSNII = 0;
}
}
}
}
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
void chimie_apply_wind(void)
{
/* apply wind */
int i;
double e1,e2;
double phi,costh,sinth,vx,vy,vz;
for(i = 0; i < N_gas; i++)
{
if (P[i].Type==0)
{
if (SphP[i].WindFlag)
{
phi = get_ChimieKineticFeedback_random_number(P[i].ID)*PI*2.;
costh = 1.-2.*get_ChimieKineticFeedback_random_number(P[i].ID+1);
sinth = sqrt(1.-pow(costh,2));
vx = All.ChimieWindSpeed*sinth*cos(phi);
vy = All.ChimieWindSpeed*sinth*sin(phi);
vz = All.ChimieWindSpeed*costh;
e1 = 0.5*P[i].Mass * ( SphP[i].VelPred[0]*SphP[i].VelPred[0] + SphP[i].VelPred[1]*SphP[i].VelPred[1] + SphP[i].VelPred[2]*SphP[i].VelPred[2]);
P[i].Vel[0] += vx;
P[i].Vel[1] += vy;
P[i].Vel[2] += vz;
SphP[i].VelPred[0] += vx;
SphP[i].VelPred[1] += vy;
SphP[i].VelPred[2] += vz;
e2 = 0.5*P[i].Mass * ( SphP[i].VelPred[0]*SphP[i].VelPred[0] + SphP[i].VelPred[1]*SphP[i].VelPred[1] + SphP[i].VelPred[2]*SphP[i].VelPred[2]);
LocalSysState.EnergyKineticFeedback -= e2-e1;
SphP[i].WindFlag = 0;
}
}
}
}
#endif
/*! This function is the driver routine for the calculation of chemical evolution
*/
void chimie(void)
{
double t0, t1;
t0 = second(); /* measure the time for the full chimie computation */
if (ThisTask==0)
printf("Start Chimie computation.\n");
if(All.ComovingIntegrationOn)
{
/* Factors for comoving integration of hydro */
hubble_a = All.Omega0 / (All.Time * All.Time * All.Time)
+ (1 - All.Omega0 - All.OmegaLambda) / (All.Time * All.Time) + All.OmegaLambda;
hubble_a = All.Hubble * sqrt(hubble_a);
hubble_a2 = All.Time * All.Time * hubble_a;
fac_mu = pow(All.Time, 3 * (GAMMA - 1) / 2) / All.Time;
fac_egy = pow(All.Time, 3 * (GAMMA - 1));
fac_vsic_fix = hubble_a * pow(All.Time, 3 * GAMMA_MINUS1);
a3inv = 1 / (All.Time * All.Time * All.Time);
atime = All.Time;
#ifdef FEEDBACK
fac_pow = fac_egy*atime*atime;
#endif
}
else
{
hubble_a = hubble_a2 = atime = fac_mu = fac_vsic_fix = a3inv = fac_egy = 1.0;
#ifdef FEEDBACK
fac_pow = 1.0;
#endif
}
stars_density(); /* compute density */
#ifdef CHIMIE_ONE_SN_ONLY
if(All.ChimieOneSN==0) /* explode only if not one sn only*/
#endif
do_chimie(); /* chimie */
if (ThisTask==0)
printf("Chimie computation done.\n");
t1 = second();
All.CPU_Chimie += timediff(t0, t1);
}
/*! This function is the driver routine for the calculation of chemical evolution
*/
void do_chimie(void)
{
long long ntot, ntotleft;
int i, j, k, n, m, ngrp, maxfill, source, ndone;
int *nbuffer, *noffset, *nsend_local, *nsend, *numlist, *ndonelist;
int level, sendTask, recvTask, nexport, place;
double tstart, tend, sumt, sumcomm;
double timecomp = 0, timecommsumm = 0, timeimbalance = 0, sumimbalance;
int flag_chimie;
MPI_Status status;
int do_it;
int Ti0,Ti1,Ti2;
double t1,t2,t01,t02;
double tmin,tmax;
double minlivetime,maxlivetime;
double m1,m2,M0;
double NSNIa,NSNII,NDYIN;
double NSNIa_tot,NSNII_tot,NDYIN_tot,NSNIa_totlocal,NSNII_totlocal,NDYIN_totlocal;
double EgySN,EgySNlocal;
double EgySNThermal,EgySNKinetic;
int Nchim,Nchimlocal;
int Nwind,Nwindlocal;
int Nflag,Nflaglocal;
int Noldwind,Noldwindlocal;
double metals[NELEMENTS];
double FeH;
float MinRelMass=1e-3;
#ifdef DETAILED_CPU_OUTPUT_IN_CHIMIE
double *timecomplist;
double *timecommsummlist;
double *timeimbalancelist;
#endif
#ifdef PERIODIC
boxSize = All.BoxSize;
boxHalf = 0.5 * All.BoxSize;
#ifdef LONG_X
boxHalf_X = boxHalf * LONG_X;
boxSize_X = boxSize * LONG_X;
#endif
#ifdef LONG_Y
boxHalf_Y = boxHalf * LONG_Y;
boxSize_Y = boxSize * LONG_Y;
#endif
#ifdef LONG_Z
boxHalf_Z = boxHalf * LONG_Z;
boxSize_Z = boxSize * LONG_Z;
#endif
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
double v1m,v2m;
#endif
/* `NumStUpdate' gives the number of particles on this processor that want a chimie computation */
for(n = 0, NumStUpdate = 0; n < N_gas+N_stars; n++)
{
if(P[n].Ti_endstep == All.Ti_Current)
if(P[n].Type == ST)
{
m = P[n].StPIdx;
if ( (P[n].Mass/StP[m].InitialMass) > MinRelMass)
NumStUpdate++;
}
if(P[n].Type == 0)
SphP[n].dMass = 0.;
}
numlist = malloc(NTask * sizeof(int) * NTask);
MPI_Allgather(&NumStUpdate, 1, MPI_INT, numlist, 1, MPI_INT, MPI_COMM_WORLD);
for(i = 0, ntot = 0; i < NTask; i++)
ntot += numlist[i];
free(numlist);
noffset = malloc(sizeof(int) * NTask); /* offsets of bunches in common list */
nbuffer = malloc(sizeof(int) * NTask);
nsend_local = malloc(sizeof(int) * NTask);
nsend = malloc(sizeof(int) * NTask * NTask);
ndonelist = malloc(sizeof(int) * NTask);
i = 0; /* first gas particle, because stars may be hidden among gas particles */
ntotleft = ntot; /* particles left for all tasks together */
NSNIa_tot = 0;
NSNII_tot = 0;
NDYIN_tot = 0;
NSNIa_totlocal = 0;
NSNII_totlocal = 0;
NDYIN_totlocal = 0;
EgySN = 0;
EgySNlocal =0;
Nchimlocal = 0;
Nchim = 0;
Nwindlocal = 0;
Nwind = 0;
Noldwindlocal = 0;
Noldwind = 0;
Nflaglocal = 0;
Nflag = 0;
while(ntotleft > 0)
{
for(j = 0; j < NTask; j++)
nsend_local[j] = 0;
/* do local particles and prepare export list */
tstart = second();
for(nexport = 0, ndone = 0; i < N_gas+N_stars && nexport < All.BunchSizeChimie - NTask; i++)
{
/* only active particles and stars */
if((P[i].Ti_endstep == All.Ti_Current)&&(P[i].Type == ST))
{
if(P[i].Type != ST)
{
printf("P[i].Type != ST, we better stop.\n");
printf("N_gas=%d (type=%d) i=%d (type=%d)\n",N_gas,P[N_gas].Type,i,P[i].Type);
printf("Please, check that you do not use PEANOHILBERT\n");
endrun(777001);
}
m = P[i].StPIdx;
if ( (P[i].Mass/StP[m].InitialMass) > MinRelMass)
{
flag_chimie = 0;
/******************************************/
/* do chimie */
/******************************************/
/*****************************************************/
/* look if a SN may have explode during the last step
/*****************************************************/
/***********************************************/
/***********************************************/
/* set the right table base of the metallicity */
set_table(0);
//FeH = log10( (StP[m].Metal[FE]/get_SolarMassAbundance(FE)) + 1.e-20 );
//if (FeH<-3)
// set_table(1);
//else
// set_table(0);
//if (P[i].ID==65546)
// {
// printf("(%d) %g the particle 65546 FeH=%g metalFe=%g Mmin=%g Mmax=%g n=%d\n",ThisTask,All.Time,FeH,StP[m].Metal[FE],Cp->Mmin,Cp->Mmax,Cp->n);
// }
/*
Cp->Mmin
Cp->Mmax
Cp->n
Cp->ms[]
Cp->as[]
Cp->SNIa_cte
Cp->SNIa_a
Cp->SNIa_Mdl1
Cp->SNIa_Mdu1
Cp->SNIa_bb1
Cp->SNIa_cte1
Cp->SNIa_a1
Cp->SNIa_Mdl2
Cp->SNIa_Mdu2
Cp->SNIa_bb2
Cp->SNIa_cte2
Cp->SNIa_a2
*/
/***********************************************/
/***********************************************/
/* minimum live time for a given metallicity */
minlivetime = star_lifetime(StP[m].Metal[NELEMENTS-1],Cp->Mmax*SOLAR_MASS/All.UnitMass_in_g)*All.HubbleParam;
/* maximum live time for a given metallicity */
maxlivetime = star_lifetime(StP[m].Metal[NELEMENTS-1],Cp->Mmin*SOLAR_MASS/All.UnitMass_in_g)*All.HubbleParam;
//if (P[i].ID==65546)
// printf("(%d) %g the particle 65546 has a max livetime of %g (metal=%g Mmin=%g)\n",ThisTask,All.Time,maxlivetime,StP[m].Metal[NELEMENTS-1],Cp->Mmin);
if (All.ComovingIntegrationOn)
{
/* FormationTime on the time line */
Ti0 = log(StP[m].FormationTime/All.TimeBegin) / All.Timebase_interval;
/* Beginning of time step on the time line */
Ti1 = P[i].Ti_begstep;
/* End of time step on the time line */
Ti2 = All.Ti_Current;
#ifdef COSMICTIME
t01 = get_cosmictime_difference(Ti0,Ti1);
t02 = get_cosmictime_difference(Ti0,Ti2);
#endif
}
else
{
t1 = All.TimeBegin + (P[i].Ti_begstep * All.Timebase_interval);
t2 = All.TimeBegin + (All.Ti_Current * All.Timebase_interval);
t01 = t1-StP[m].FormationTime;
t02 = t2-StP[m].FormationTime;
}
/* now treat all cases */
do_it=1;
#if CHIMIE_ONE_SN_ONLY
if (All.Time<0.1)
do_it=0;
+ else
+ m1=m2=1; /* fix to 1 in order numerical problems with lifetime */
#else
/* beginning of interval */
if (t01>=minlivetime)
if (t01>=maxlivetime)
do_it=0; /* nothing to do */
else
m2 = star_mass_from_age(StP[m].Metal[NELEMENTS-1],t01/All.HubbleParam)*All.HubbleParam;
else
m2 = Cp->Mmax*SOLAR_MASS/All.UnitMass_in_g*All.HubbleParam;
/* end of interval */
if (t02<=maxlivetime)
if (t02<=minlivetime)
do_it=0; /* nothing to do */
else
m1 = star_mass_from_age(StP[m].Metal[NELEMENTS-1],t02/All.HubbleParam)*All.HubbleParam;
else
m1 = Cp->Mmin*SOLAR_MASS/All.UnitMass_in_g*All.HubbleParam;
#endif
//printf("Time=%g t01=%g t02=%g id=%d minlivetime=%g maxlivetime=%g \n",All.Time,t01,t02,P[i].ID,minlivetime,maxlivetime);
/* if some of the stars in the SSP explode between t1 and t2 */
if (do_it)
{
Nchimlocal++;
StP[m].Flag = 1; /* mark it as active */
if (m1>m2)
{
printf("m1=%g (%g Msol) > m2=%g (%g Msol) !!!\n\n",m1,m1*All.UnitMass_in_g/SOLAR_MASS,m2,m2*All.UnitMass_in_g/SOLAR_MASS);
endrun(777002);
}
M0 = StP[m].InitialMass;
for (k=0;k<NELEMENTS;k++)
metals[k] = StP[m].Metal[k];
/* number of SNIa */
NSNIa = SNIa_rate(m1/All.HubbleParam,m2/All.HubbleParam)*M0/All.HubbleParam;
/* number of SNII */
NSNII = SNII_rate(m1/All.HubbleParam,m2/All.HubbleParam)*M0/All.HubbleParam;
/* number of DYIN */
NDYIN = DYIN_rate(m1/All.HubbleParam,m2/All.HubbleParam)*M0/All.HubbleParam;
/* discretize SN */
#ifdef CHIMIE_MC_SUPERNOVAE
double fNSNIa,fNSNII,fNDYIN;
/* discretize SNIa */
fNSNIa = NSNIa-floor(NSNIa);
NSNIa = floor(NSNIa);
if (get_Chimie_random_number(P[i].ID) < fNSNIa)
NSNIa = NSNIa+1;
/* discretize SNII */
fNSNII = NSNII-floor(NSNII);
NSNII = floor(NSNII);
if (get_Chimie_random_number(P[i].ID) < fNSNII)
NSNII = NSNII+1;
/* discretize DYIN */
fNDYIN = NDYIN-floor(NDYIN);
NDYIN = floor(NDYIN);
if (get_Chimie_random_number(P[i].ID) < fNDYIN)
NDYIN = NDYIN+1;
#ifdef CHIMIE_ONE_SN_ONLY
/* here, we force to explode one and only one */
NSNIa=1;
NSNII=0;
NDYIN=0;
#endif
/* compute ejectas */
Total_single_mass_ejection(0.5*(m1+m2)/All.HubbleParam,metals,NSNII,NSNIa,NDYIN);
-
+
StP[m].TotalEjectedGasMass = SingleEjectedMass[0]*All.HubbleParam; /* gas mass */
-
+
for (k=0;k<NELEMENTS;k++)
StP[m].TotalEjectedEltMass[k] = SingleEjectedMass[k+2]*All.HubbleParam; /* metal mass */
#else
/* compute ejectas */
Total_mass_ejection(m1/All.HubbleParam,m2/All.HubbleParam,M0/All.HubbleParam,metals);
StP[m].TotalEjectedGasMass = EjectedMass[0]*All.HubbleParam; /* gas mass */
for (k=0;k<NELEMENTS;k++)
StP[m].TotalEjectedEltMass[k] = EjectedMass[k+2]*All.HubbleParam; /* metal mass */
#endif CHIMIE_MC_SUPERNOVAE
/* discretize SN */
if (StP[m].TotalEjectedGasMass>0)
flag_chimie=1;
/* compute injected energy */
StP[m].TotalEjectedEgySpec = All.ChimieSupernovaEnergy* (NSNIa + NSNII) /StP[m].TotalEjectedGasMass;
StP[m].NumberOfSNIa = NSNIa;
StP[m].NumberOfSNII = NSNII;
EgySNlocal += All.ChimieSupernovaEnergy* (NSNIa + NSNII);
NSNIa_totlocal += NSNIa;
NSNII_totlocal += NSNII;
NDYIN_totlocal += NDYIN;
/* correct mass particle */
if (P[i].Mass-StP[m].TotalEjectedGasMass<0)
{
printf("mass wants to be less than zero...\n");
printf("P[i].Mass=%g StP[m].TotalEjectedGasMass=%g\n",P[i].Mass,StP[m].TotalEjectedGasMass);
endrun(777100);
}
//if (P[i].ID==65546)
// printf("(%d) %g the particle 65546 is here, mass=%g TotalEjectedEltMass=%g m1=%g m2=%g\n",ThisTask,All.Time,P[i].Mass,StP[m].TotalEjectedGasMass,m1,m2);
P[i].Mass = P[i].Mass-StP[m].TotalEjectedGasMass;
if(P[i].Mass<0)
endrun(777023);
//float Fe,Mg;
//Fe = StP[m].TotalEjectedEltMass[0];
//Mg = StP[m].TotalEjectedEltMass[1];
}
/******************************************/
/* end do chimie */
/******************************************/
ndone++;
if (flag_chimie)
{
for(j = 0; j < NTask; j++)
Exportflag[j] = 0;
chimie_evaluate(i, 0);
for(j = 0; j < NTask; j++)
{
if(Exportflag[j])
{
for(k = 0; k < 3; k++)
{
ChimieDataIn[nexport].Pos[k] = P[i].Pos[k];
ChimieDataIn[nexport].Vel[k] = P[i].Vel[k];
}
ChimieDataIn[nexport].ID = P[i].ID;
ChimieDataIn[nexport].Timestep = P[i].Ti_endstep - P[i].Ti_begstep;
ChimieDataIn[nexport].Hsml = StP[m].Hsml;
ChimieDataIn[nexport].Density = StP[m].Density;
ChimieDataIn[nexport].Volume = StP[m].Volume;
#ifdef CHIMIE_KINETIC_FEEDBACK
ChimieDataIn[nexport].NgbMass = StP[m].NgbMass;
#endif
ChimieDataIn[nexport].TotalEjectedGasMass = StP[m].TotalEjectedGasMass;
for(k = 0; k < NELEMENTS; k++)
ChimieDataIn[nexport].TotalEjectedEltMass[k] = StP[m].TotalEjectedEltMass[k];
ChimieDataIn[nexport].TotalEjectedEgySpec = StP[m].TotalEjectedEgySpec;
ChimieDataIn[nexport].NumberOfSNIa = StP[m].NumberOfSNIa;
ChimieDataIn[nexport].NumberOfSNII = StP[m].NumberOfSNII;
#ifdef WITH_ID_IN_HYDRA
ChimieDataIn[nexport].ID = P[i].ID;
#endif
ChimieDataIn[nexport].Index = i;
ChimieDataIn[nexport].Task = j;
nexport++;
nsend_local[j]++;
}
}
}
}
}
}
tend = second();
timecomp += timediff(tstart, tend);
qsort(ChimieDataIn, nexport, sizeof(struct chimiedata_in), chimie_compare_key);
for(j = 1, noffset[0] = 0; j < NTask; j++)
noffset[j] = noffset[j - 1] + nsend_local[j - 1];
tstart = second();
MPI_Allgather(nsend_local, NTask, MPI_INT, nsend, NTask, MPI_INT, MPI_COMM_WORLD);
tend = second();
timeimbalance += timediff(tstart, tend);
/* now do the particles that need to be exported */
for(level = 1; level < (1 << PTask); level++)
{
tstart = second();
for(j = 0; j < NTask; j++)
nbuffer[j] = 0;
for(ngrp = level; ngrp < (1 << PTask); ngrp++)
{
maxfill = 0;
for(j = 0; j < NTask; j++)
{
if((j ^ ngrp) < NTask)
if(maxfill < nbuffer[j] + nsend[(j ^ ngrp) * NTask + j])
maxfill = nbuffer[j] + nsend[(j ^ ngrp) * NTask + j];
}
if(maxfill >= All.BunchSizeChimie)
break;
sendTask = ThisTask;
recvTask = ThisTask ^ ngrp;
if(recvTask < NTask)
{
if(nsend[ThisTask * NTask + recvTask] > 0 || nsend[recvTask * NTask + ThisTask] > 0)
{
/* get the particles */
MPI_Sendrecv(&ChimieDataIn[noffset[recvTask]],
nsend_local[recvTask] * sizeof(struct chimiedata_in), MPI_BYTE,
recvTask, TAG_CHIMIE_A,
&ChimieDataGet[nbuffer[ThisTask]],
nsend[recvTask * NTask + ThisTask] * sizeof(struct chimiedata_in), MPI_BYTE,
recvTask, TAG_CHIMIE_A, MPI_COMM_WORLD, &status);
}
}
for(j = 0; j < NTask; j++)
if((j ^ ngrp) < NTask)
nbuffer[j] += nsend[(j ^ ngrp) * NTask + j];
}
tend = second();
timecommsumm += timediff(tstart, tend);
/* now do the imported particles */
tstart = second();
for(j = 0; j < nbuffer[ThisTask]; j++)
chimie_evaluate(j, 1);
tend = second();
timecomp += timediff(tstart, tend);
/* do a block to measure imbalance */
tstart = second();
MPI_Barrier(MPI_COMM_WORLD);
tend = second();
timeimbalance += timediff(tstart, tend);
/* get the result */
tstart = second();
for(j = 0; j < NTask; j++)
nbuffer[j] = 0;
for(ngrp = level; ngrp < (1 << PTask); ngrp++)
{
maxfill = 0;
for(j = 0; j < NTask; j++)
{
if((j ^ ngrp) < NTask)
if(maxfill < nbuffer[j] + nsend[(j ^ ngrp) * NTask + j])
maxfill = nbuffer[j] + nsend[(j ^ ngrp) * NTask + j];
}
if(maxfill >= All.BunchSizeChimie)
break;
sendTask = ThisTask;
recvTask = ThisTask ^ ngrp;
if(recvTask < NTask)
{
if(nsend[ThisTask * NTask + recvTask] > 0 || nsend[recvTask * NTask + ThisTask] > 0)
{
/* send the results */
MPI_Sendrecv(&ChimieDataResult[nbuffer[ThisTask]],
nsend[recvTask * NTask + ThisTask] * sizeof(struct chimiedata_out),
MPI_BYTE, recvTask, TAG_CHIMIE_B,
&ChimieDataPartialResult[noffset[recvTask]],
nsend_local[recvTask] * sizeof(struct chimiedata_out),
MPI_BYTE, recvTask, TAG_CHIMIE_B, MPI_COMM_WORLD, &status);
/* add the result to the particles */
for(j = 0; j < nsend_local[recvTask]; j++)
{
source = j + noffset[recvTask];
place = ChimieDataIn[source].Index;
// for(k = 0; k < 3; k++)
// SphP[place].HydroAccel[k] += HydroDataPartialResult[source].Acc[k];
//
// SphP[place].DtEntropy += HydroDataPartialResult[source].DtEntropy;
//#ifdef FEEDBACK
// SphP[place].DtEgySpecFeedback += HydroDataPartialResult[source].DtEgySpecFeedback;
//#endif
// if(SphP[place].MaxSignalVel < HydroDataPartialResult[source].MaxSignalVel)
// SphP[place].MaxSignalVel = HydroDataPartialResult[source].MaxSignalVel;
//#ifdef COMPUTE_VELOCITY_DISPERSION
// for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
// SphP[place].VelocityDispersion[k] += HydroDataPartialResult[source].VelocityDispersion[k];
//#endif
}
}
}
for(j = 0; j < NTask; j++)
if((j ^ ngrp) < NTask)
nbuffer[j] += nsend[(j ^ ngrp) * NTask + j];
}
tend = second();
timecommsumm += timediff(tstart, tend);
level = ngrp - 1;
}
MPI_Allgather(&ndone, 1, MPI_INT, ndonelist, 1, MPI_INT, MPI_COMM_WORLD);
for(j = 0; j < NTask; j++)
ntotleft -= ndonelist[j];
}
free(ndonelist);
free(nsend);
free(nsend_local);
free(nbuffer);
free(noffset);
/* do final operations on results */
tstart = second();
for(i = 0; i < N_gas; i++)
{
if (P[i].Type==0)
{
P[i].Mass += SphP[i].dMass;
SphP[i].dMass = 0.;
}
}
tend = second();
timecomp += timediff(tstart, tend);
/* collect some timing information */
MPI_Reduce(&timecomp, &sumt, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timecommsumm, &sumcomm, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timeimbalance, &sumimbalance, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if(ThisTask == 0)
{
All.CPU_ChimieCompWalk += sumt / NTask;
All.CPU_ChimieCommSumm += sumcomm / NTask;
All.CPU_ChimieImbalance += sumimbalance / NTask;
}
#ifdef DETAILED_CPU_OUTPUT_IN_CHIMIE
numlist = malloc(sizeof(int) * NTask);
timecomplist = malloc(sizeof(double) * NTask);
timecommsummlist = malloc(sizeof(double) * NTask);
timeimbalancelist = malloc(sizeof(double) * NTask);
MPI_Gather(&NumStUpdate, 1, MPI_INT, numlist, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Gather(&timecomp, 1, MPI_DOUBLE, timecomplist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timecommsumm, 1, MPI_DOUBLE, timecommsummlist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timeimbalance, 1, MPI_DOUBLE, timeimbalancelist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
if(ThisTask == 0)
{
fprintf(FdTimings, "\n chimie\n\n");
fprintf(FdTimings, "Nupdate ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12d ",numlist[i]); /* nombre de part par proc */
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timecomp ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timecomplist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timecommsumm ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timecommsummlist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timeimbalance ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timeimbalancelist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "\n");
}
free(timeimbalancelist);
free(timecommsummlist);
free(timecomplist);
free(numlist);
#endif
/* collect some chimie informations */
MPI_Reduce(&NSNIa_totlocal, &NSNIa_tot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&NSNII_totlocal, &NSNII_tot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&NDYIN_totlocal, &NDYIN_tot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&EgySNlocal, &EgySN, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&Nchimlocal, &Nchim, 1, MPI_INT , MPI_SUM, 0, MPI_COMM_WORLD);
#ifdef CHIMIE_THERMAL_FEEDBACK
EgySNThermal = EgySN*(1-All.ChimieKineticFeedbackFraction);
#else
EgySNThermal = 0;
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
EgySNKinetic = EgySN*All.ChimieKineticFeedbackFraction;
/* count number of wind particles */
for(i = 0; i < N_gas; i++)
{
if (P[i].Type==0)
{
if (SphP[i].WindTime >= (All.Time-All.ChimieWindTime))
Nwindlocal++;
//else
// if (SphP[i].WindTime > All.TimeBegin-2*All.ChimieWindTime)
// Noldwindlocal++;
if (SphP[i].WindFlag)
Nflaglocal++;
}
}
MPI_Reduce(&Nwindlocal, &Nwind, 1, MPI_INT , MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&Noldwindlocal, &Noldwind, 1, MPI_INT , MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Allreduce(&Nflaglocal, &Nflag, 1, MPI_INT , MPI_SUM, MPI_COMM_WORLD);
#else
EgySNKinetic = 0;
#endif
/* write some info */
if (ThisTask==0)
{
fprintf(FdChimie, "%15g %10d %15g %15g %15g %15g %15g %10d %10d %10d\n",All.Time,Nchim,NSNIa_tot,NSNII_tot,EgySN,EgySNThermal,EgySNKinetic,Nwind,Noldwind,Nflag);
fflush(FdChimie);
}
/* this is no longer used */
// if (Nflag>0)
// {
// SetMinTimeStepForActives=1;
// if (ThisTask==0)
// fprintf(FdLog,"%g : !!! set min timestep for active particles !!!\n",All.Time);
// }
#ifdef CHIMIE_ONE_SN_ONLY
if (EgySN>0)
All.ChimieOneSN=1;
MPI_Bcast(&All.ChimieOneSN, 1, MPI_INT, 0, MPI_COMM_WORLD);
#endif
}
/*! This function is the 'core' of the Chemie computation. A target
* particle is specified which may either be local, or reside in the
* communication buffer.
*/
void chimie_evaluate(int target, int mode)
{
int j, n, startnode, numngb,numngb_inbox,k;
FLOAT *pos,*vel;
//FLOAT *vel;
//FLOAT mass;
double h, h2;
double acc[3];
double dx, dy, dz;
double wk, r, r2, u=0;
double hinv=1, hinv3;
int target_stp;
double density;
double volume;
#ifdef CHIMIE_KINETIC_FEEDBACK
double ngbmass;
double p;
#endif
double aij;
double ejectedGasMass;
double ejectedEltMass[NELEMENTS];
double ejectedEgySpec;
double NumberOfSNIa;
double NumberOfSNII;
double mass_k;
double NewMass;
double fv,vi2,vj2;
double EgySpec,NewEgySpec;
double DeltaEntropy;
double DeltaVel[3];
#ifndef LONGIDS
unsigned int id; /*!< particle identifier */
#else
unsigned long long id; /*!< particle identifier */
#endif
if(mode == 0)
{
pos = P[target].Pos;
vel = P[target].Vel;
id = P[target].ID;
target_stp = P[target].StPIdx;
h = StP[target_stp].Hsml;
density = StP[target_stp].Density;
volume = StP[target_stp].Volume;
#ifdef CHIMIE_KINETIC_FEEDBACK
ngbmass = StP[target_stp].NgbMass;
#endif
ejectedGasMass = StP[target_stp].TotalEjectedGasMass;
for(k=0;k<NELEMENTS;k++)
ejectedEltMass[k] = StP[target_stp].TotalEjectedEltMass[k];
ejectedEgySpec = StP[target_stp].TotalEjectedEgySpec;
NumberOfSNIa = StP[target_stp].NumberOfSNIa;
NumberOfSNII = StP[target_stp].NumberOfSNII;
}
else
{
pos = ChimieDataGet[target].Pos;
vel = ChimieDataGet[target].Vel;
id = ChimieDataGet[target].ID;
h = ChimieDataGet[target].Hsml;
density = ChimieDataGet[target].Density;
volume = ChimieDataGet[target].Volume;
#ifdef CHIMIE_KINETIC_FEEDBACK
ngbmass = ChimieDataGet[target].NgbMass;
#endif
ejectedGasMass = ChimieDataGet[target].TotalEjectedGasMass;
for(k=0;k<NELEMENTS;k++)
ejectedEltMass[k] = ChimieDataGet[target].TotalEjectedEltMass[k];
ejectedEgySpec = ChimieDataGet[target].TotalEjectedEgySpec;
NumberOfSNIa = ChimieDataGet[target].NumberOfSNIa;
NumberOfSNII = ChimieDataGet[target].NumberOfSNII;
}
/* initialize variables before SPH loop is started */
acc[0] = acc[1] = acc[2] = 0;
vi2 = 0;
for(k=0;k<3;k++)
vi2 += vel[k]*vel[k];
h2 = h * h;
hinv = 1.0 / h;
#ifndef TWODIMS
hinv3 = hinv * hinv * hinv;
#else
hinv3 = hinv * hinv / boxSize_Z;
#endif
/* Now start the actual SPH computation for this particle */
startnode = All.MaxPart;
numngb = 0;
do
{
numngb_inbox = ngb_treefind_variable_for_chimie(&pos[0], h, &startnode);
for(n = 0; n < numngb_inbox; n++)
{
j = Ngblist[n];
dx = pos[0] - P[j].Pos[0];
dy = pos[1] - P[j].Pos[1];
dz = pos[2] - P[j].Pos[2];
#ifdef PERIODIC /* now find the closest image in the given box size */
if(dx > boxHalf_X)
dx -= boxSize_X;
if(dx < -boxHalf_X)
dx += boxSize_X;
if(dy > boxHalf_Y)
dy -= boxSize_Y;
if(dy < -boxHalf_Y)
dy += boxSize_Y;
if(dz > boxHalf_Z)
dz -= boxSize_Z;
if(dz < -boxHalf_Z)
dz += boxSize_Z;
#endif
r2 = dx * dx + dy * dy + dz * dz;
if(r2 < h2)
{
numngb++;
r = sqrt(r2);
u = r * hinv;
if(u < 0.5)
{
wk = hinv3 * (KERNEL_COEFF_1 + KERNEL_COEFF_2 * (u - 1) * u * u);
}
else
{
wk = hinv3 * KERNEL_COEFF_5 * (1.0 - u) * (1.0 - u) * (1.0 - u);
}
/* normalisation using mass */
aij = P[j].Mass*wk/density;
/* normalisation using volume */
/* !!! si on utilise, il faut stoquer une nouvelle variable : OldDensity, car density est modifié plus bas... */
//aij = P[j].Mass/SphP[j].Density*wk/volume;
/* metal injection */
for(k=0;k<NELEMENTS;k++)
{
#ifdef CHIMIE_SMOOTH_METALS
mass_k = SphP[j].MassMetal[k]*P[j].Mass; /* mass of elt k */
SphP[j].MassMetal[k] = ( mass_k + aij*ejectedEltMass[k] )/( P[j].Mass + aij*ejectedGasMass );
#else
mass_k = SphP[j].Metal[k]*P[j].Mass; /* mass of elt k */
SphP[j].Metal[k] = ( mass_k + aij*ejectedEltMass[k] )/( P[j].Mass + aij*ejectedGasMass );
#endif
}
/* new mass */
NewMass = P[j].Mass + aij*ejectedGasMass;
/* new velocity */
vj2 = 0;
for(k=0;k<3;k++)
vj2 += SphP[j].VelPred[k]*SphP[j].VelPred[k];
fv = sqrt( (P[j].Mass/NewMass) + aij*(ejectedGasMass/NewMass) * (vi2/vj2) );
for(k=0;k<3;k++)
{
DeltaVel[k] = fv*SphP[j].VelPred[k] - SphP[j].VelPred[k];
SphP[j].VelPred[k] += DeltaVel[k];
P[j].Vel [k] += DeltaVel[k];
}
/* spec energy at current step */
#ifdef DENSITY_INDEPENDENT_SPH
EgySpec = SphP[j].EntropyPred / GAMMA_MINUS1 * pow(SphP[j].EgyWtDensity*a3inv, GAMMA_MINUS1);
#else
EgySpec = SphP[j].EntropyPred / GAMMA_MINUS1 * pow(SphP[j].Density*a3inv, GAMMA_MINUS1);
#endif
/* new egyspec */
NewEgySpec = (EgySpec )*(P[j].Mass/NewMass);
/* new density */
#ifdef DENSITY_INDEPENDENT_SPH
SphP[j].Density = SphP[j].Density*NewMass/P[j].Mass;
SphP[j].EgyWtDensity = SphP[j].EgyWtDensity*NewMass/P[j].Mass;
#else
SphP[j].Density = SphP[j].Density*NewMass/P[j].Mass;
#endif
/* new entropy */
#ifdef DENSITY_INDEPENDENT_SPH
DeltaEntropy = GAMMA_MINUS1*NewEgySpec/pow(SphP[j].EgyWtDensity*a3inv, GAMMA_MINUS1) - SphP[j].EntropyPred;
#else
DeltaEntropy = GAMMA_MINUS1*NewEgySpec/pow(SphP[j].Density*a3inv, GAMMA_MINUS1) - SphP[j].EntropyPred;
#endif
SphP[j].EntropyPred += DeltaEntropy;
SphP[j].Entropy += DeltaEntropy;
#ifdef CHIMIE_THERMAL_FEEDBACK
SphP[j].DeltaEgySpec += (1.-All.ChimieKineticFeedbackFraction)*(ejectedGasMass*ejectedEgySpec)* aij/NewMass;
SphP[j].NumberOfSNII += NumberOfSNII*aij;
SphP[j].NumberOfSNIa += NumberOfSNIa*aij;
#ifdef TIMESTEP_UPDATE_FOR_FEEDBACK
if(P[j].Ti_endstep != All.Ti_Current)
make_particle_active(j);
#endif
#endif
#ifdef CHIMIE_KINETIC_FEEDBACK
p = (All.ChimieKineticFeedbackFraction*ejectedEgySpec*ejectedGasMass)/(0.5*ngbmass*All.ChimieWindSpeed*All.ChimieWindSpeed);
double r;
r = get_Chimie_random_number(P[j].ID+id);
if ( r < p) /* we should maybe have a 2d table here... */
{
if (SphP[j].WindTime < (All.Time-All.ChimieWindTime)) /* not a wind particle */
{
SphP[j].WindFlag = 1;
SphP[j].WindTime = All.Time;
}
}
#endif
#ifdef CHECK_ENTROPY_SIGN
if ((SphP[j].EntropyPred < 0)||(SphP[j].Entropy < 0))
{
printf("\ntask=%d: entropy less than zero in chimie_evaluate !\n", ThisTask);
printf("ID=%d Entropy=%g EntropyPred=%g DeltaEntropy=%g\n",P[j].ID,SphP[j].Entropy,SphP[j].EntropyPred,DeltaEntropy);
fflush(stdout);
endrun(777003);
}
#endif
/* store mass diff. */
SphP[j].dMass += NewMass-P[j].Mass;
}
}
}
while(startnode >= 0);
/* Now collect the result at the right place */
if(mode == 0)
{
// for(k = 0; k < 3; k++)
// SphP[target].HydroAccel[k] = acc[k];
// SphP[target].DtEntropy = dtEntropy;
//#ifdef FEEDBACK
// SphP[target].DtEgySpecFeedback = dtEgySpecFeedback;
//#endif
// SphP[target].MaxSignalVel = maxSignalVel;
//#ifdef COMPUTE_VELOCITY_DISPERSION
// for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
// SphP[target].VelocityDispersion[k] = VelocityDispersion[k];
//#endif
}
else
{
// for(k = 0; k < 3; k++)
// HydroDataResult[target].Acc[k] = acc[k];
// HydroDataResult[target].DtEntropy = dtEntropy;
//#ifdef FEEDBACK
// HydroDataResult[target].DtEgySpecFeedback = dtEgySpecFeedback;
//#endif
// HydroDataResult[target].MaxSignalVel = maxSignalVel;
//#ifdef COMPUTE_VELOCITY_DISPERSION
// for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
// HydroDataResult[target].VelocityDispersion[k] = VelocityDispersion[k];
//#endif
}
}
/*! This is a comparison kernel for a sort routine, which is used to group
* particles that are going to be exported to the same CPU.
*/
int chimie_compare_key(const void *a, const void *b)
{
if(((struct chimiedata_in *) a)->Task < (((struct chimiedata_in *) b)->Task))
return -1;
if(((struct chimiedata_in *) a)->Task > (((struct chimiedata_in *) b)->Task))
return +1;
return 0;
}
/****************************************************************************************/
/*
/*
/*
/* PYTHON INTERFACE
/*
/*
/*
/****************************************************************************************/
#ifdef PYCHEM
static PyObject *
chemistry_CodeUnits_to_SolarMass_Factor(PyObject *self, PyObject *args)
{
return Py_BuildValue("d",All.UnitMass_in_g/SOLAR_MASS);
}
static PyObject *
chemistry_SolarMass_to_CodeUnits_Factor(PyObject *self, PyObject *args)
{
return Py_BuildValue("d",SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_SetVerbosityOn(PyObject *self, PyObject *args)
{
verbose=1;
return Py_BuildValue("i",0);
}
static PyObject *
chemistry_SetVerbosityOff(PyObject *self, PyObject *args)
{
verbose=0;
return Py_BuildValue("i",0);
}
static PyObject * chemistry_InitDefaultParameters(void)
{
/* list of Gadget parameters */
/* System of units */
All.UnitLength_in_cm = 3.085e+21; /* 1.0 kpc */
All.UnitMass_in_g = 1.989e+43; /* 1.0e10 solar masses */
All.UnitVelocity_in_cm_per_s = 20725573.785998672; /* 207 km/sec */
All.GravityConstantInternal = 0;
All.UnitTime_in_s = All.UnitLength_in_cm / All.UnitVelocity_in_cm_per_s;
All.UnitTime_in_Megayears=All.UnitTime_in_s / SEC_PER_MEGAYEAR;
return Py_BuildValue("i",1);
}
static PyObject * SetParameters(PyObject *dict)
{
PyObject *key;
PyObject *value;
int ivalue;
float fvalue;
double dvalue;
/* check that it is a PyDictObject */
if(!PyDict_Check(dict))
{
PyErr_SetString(PyExc_AttributeError, "argument is not a dictionary.");
return NULL;
}
if (PyDict_Size(dict)==0)
return Py_BuildValue("i",0);
Py_ssize_t pos=0;
while(PyDict_Next(dict,&pos,&key,&value))
{
if(PyString_Check(key))
{
/* System of units */
if(strcmp(PyString_AsString(key), "UnitLength_in_cm")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.UnitLength_in_cm = PyFloat_AsDouble(value);
}
if(strcmp(PyString_AsString(key), "UnitMass_in_g")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.UnitMass_in_g = PyFloat_AsDouble(value);
}
if(strcmp(PyString_AsString(key), "UnitVelocity_in_cm_per_s")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.UnitVelocity_in_cm_per_s = PyFloat_AsDouble(value);
}
if(strcmp(PyString_AsString(key), "GravityConstantInternal")==0)
{
if(PyInt_Check(value)||PyLong_Check(value)||PyFloat_Check(value))
All.GravityConstantInternal = PyFloat_AsDouble(value);
}
}
}
return Py_BuildValue("i",1);
}
static PyObject * chemistry_SetParameters(PyObject *self, PyObject *args)
{
PyObject *dict;
/* here, we can have either arguments or dict directly */
if(PyDict_Check(args))
{
dict = args;
}
else
{
if (! PyArg_ParseTuple(args, "O",&dict))
return NULL;
}
SetParameters(dict);
return Py_BuildValue("i",1);
}
static PyObject * chemistry_GetParameters(void)
{
PyObject *dict;
PyObject *key;
PyObject *value;
dict = PyDict_New();
/* System of units */
key = PyString_FromString("UnitLength_in_cm");
value = PyFloat_FromDouble(All.UnitLength_in_cm);
PyDict_SetItem(dict,key,value);
key = PyString_FromString("UnitMass_in_g");
value = PyFloat_FromDouble(All.UnitMass_in_g);
PyDict_SetItem(dict,key,value);
key = PyString_FromString("UnitVelocity_in_cm_per_s");
value = PyFloat_FromDouble(All.UnitVelocity_in_cm_per_s);
PyDict_SetItem(dict,key,value);
key = PyString_FromString("GravityConstantInternal");
value = PyFloat_FromDouble(All.GravityConstantInternal);
PyDict_SetItem(dict,key,value);
return Py_BuildValue("O",dict);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_init_chimie(PyObject *self, PyObject *args, PyObject *kwds)
{
int NumberOfTables=1;
int DefaultTable=0;
PyObject *paramsDict=NULL;
paramsDict= PyDict_New();
//PyObject *filename;
//if (! PyArg_ParseTuple(args, "Oii",&filename,&NumberOfTables,&DefaultTable))
// {
// PyErr_SetString(PyExc_ValueError,"init_chimie, error in parsing.");
// return NULL;
// }
static char *kwlist[] = {"filename","NumberOfTables","DefaultTable","params", NULL};
PyObject *filename=PyString_FromString("chimie.yr.dat");
/* this fails with python2.6, I do not know why ??? */
if (! PyArg_ParseTupleAndKeywords(args, kwds, "|OiiO",kwlist,&filename,&NumberOfTables,&DefaultTable,&paramsDict))
{
PyErr_SetString(PyExc_ValueError,"init_chimie, error in parsing arguments.");
return NULL;
}
if (!PyString_Check(filename))
{
PyErr_SetString(PyExc_ValueError,"Argument must be a string.");
return NULL;
}
/* copy filename */
All.ChimieParameterFile = PyString_AsString(filename);
/* set number of tables */
All.ChimieNumberOfParameterFiles = NumberOfTables;
/* check if the file exists */
if(!(fopen(All.ChimieParameterFile, "r")))
{
PyErr_SetString(PyExc_ValueError,"The parameter file does not exists.");
return NULL;
}
/* use default parameters */
chemistry_InitDefaultParameters();
/* check if units are given */
/* check that it is a PyDictObject */
if(!PyDict_Check(paramsDict))
{
PyErr_SetString(PyExc_AttributeError, "argument is not a dictionary.");
return NULL;
}
else
{
SetParameters(paramsDict);
}
init_chimie();
/* by default, set the first one */
set_table(DefaultTable);
return Py_BuildValue("O",Py_None);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_info(PyObject *self, PyObject *args, PyObject *kwds)
{
int DefaultTable=0;
static char *kwlist[] = {"DefaultTable", NULL};
/* this fails with python2.6, I do not know why ??? */
if (! PyArg_ParseTupleAndKeywords(args, kwds, "|i",kwlist,&DefaultTable))
{
PyErr_SetString(PyExc_ValueError,"init_chimie, error in parsing arguments.");
return NULL;
}
info(0);
return Py_BuildValue("O",Py_None);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_set_table(PyObject *self, PyObject *args, PyObject *kwds)
{
int i;
if (! PyArg_ParseTuple(args, "i",&i))
return PyString_FromString("error");
/* set the table */
set_table(i);
return Py_BuildValue("d",0);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_get_imf(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *m,*imf;
int i;
if (! PyArg_ParseTuple(args, "O",&m))
return PyString_FromString("error");
m = TO_DOUBLE(m);
/* create an output */
imf = (PyArrayObject *) PyArray_SimpleNew(m->nd,m->dimensions,PyArray_DOUBLE);
//printf("--> %g\n",Cp->bs[0]);
//for (i=0;i<Cp->n;i++)
// printf("%g %g\n",Cp->ms[i],Cp->as[i]);
for(i = 0; i < m->dimensions[0]; i++)
{
*(double *)(imf->data + i*(imf->strides[0])) = get_imf(*(double *)(m->data + i*(m->strides[0])));
}
return PyArray_Return(imf);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_get_imf_M(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *m1,*m2,*imf;
int i;
if (! PyArg_ParseTuple(args, "OO",&m1,&m2))
return PyString_FromString("error");
m1 = TO_DOUBLE(m1);
m2 = TO_DOUBLE(m2);
/* create an output */
imf = (PyArrayObject *) PyArray_SimpleNew(m1->nd,m1->dimensions,PyArray_DOUBLE);
for(i = 0; i < imf->dimensions[0]; i++)
{
*(double *)(imf->data + i*(imf->strides[0])) = get_imf_M( *(double *)(m1->data + i*(m1->strides[0])), *(double *)(m2->data + i*(m2->strides[0])) );
}
return PyArray_Return(imf);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_get_imf_N(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *m1,*m2,*imf;
int i;
if (! PyArg_ParseTuple(args, "OO",&m1,&m2))
return PyString_FromString("error");
m1 = TO_DOUBLE(m1);
m2 = TO_DOUBLE(m2);
/* create an output */
imf = (PyArrayObject *) PyArray_SimpleNew(m1->nd,m1->dimensions,PyArray_DOUBLE);
for(i = 0; i < imf->dimensions[0]; i++)
{
*(double *)(imf->data + i*(imf->strides[0])) = get_imf_N( *(double *)(m1->data + i*(m1->strides[0])), *(double *)(m2->data + i*(m2->strides[0])) );
}
return PyArray_Return(imf);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_star_lifetime(self, args)
PyObject *self;
PyObject *args;
{
/* z is the mass fraction of metals, ie, the metallicity */
/* m is the star mass in code unit */
/* Return t in time unit */
double time,z,m;
if (!PyArg_ParseTuple(args, "dd", &z, &m))
return NULL;
time = star_lifetime(z,m);
return Py_BuildValue("d",time);
}
static PyObject *
chemistry_star_mass_from_age(self, args)
PyObject *self;
PyObject *args;
{
/* t : life time (in code unit) */
/* return the stellar mass (in code unit) that has a lifetime equal to t */
double time,z,m;
if (!PyArg_ParseTuple(args, "dd", &z, &time))
return NULL;
m = star_mass_from_age(z,time);
return Py_BuildValue("d",m);
}
static PyObject *
chemistry_DYIN_rate(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2;
double RDYIN;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1,&m2))
return NULL;
RDYIN = DYIN_rate(m1,m2);
return Py_BuildValue("d",RDYIN);
}
static PyObject *
chemistry_SNII_rate(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2;
double RSNII;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1,&m2))
return NULL;
RSNII = SNII_rate(m1,m2);
return Py_BuildValue("d",RSNII);
}
static PyObject *
chemistry_SNIa_rate(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2;
double RSNIa;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1,&m2))
return NULL;
RSNIa = SNIa_rate(m1,m2);
return Py_BuildValue("d",RSNIa);
}
static PyObject *
chemistry_DYIN_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2;
PyArrayObject *ArrMassDYIN;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1,&m2))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassDYIN = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute dying stars ejection */
DYIN_mass_ejection(m1,m2);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassDYIN->data + (i)*(ArrMassDYIN->strides[0])) = MassFracDYIN[i];
/* convert in array */
return Py_BuildValue("O",ArrMassDYIN);
}
static PyObject *
chemistry_DYIN_mass_ejection_Z(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2,Z;
PyArrayObject *ArrMassDYIN;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "ddd", &m1,&m2,&Z))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassDYIN = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute dying stars ejection */
DYIN_mass_ejection_Z(m1,m2, Z);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassDYIN->data + (i)*(ArrMassDYIN->strides[0])) = MassFracDYIN[i];
/* convert in array */
return Py_BuildValue("O",ArrMassDYIN);
}
static PyObject *
chemistry_DYIN_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
PyArrayObject *ArrMassDYIN;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "d", &m1))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassDYIN = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute SN ejection */
DYIN_single_mass_ejection(m1);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassDYIN->data + (i)*(ArrMassDYIN->strides[0])) = SingleMassFracDYIN[i];
/* convert in array */
return Py_BuildValue("O",ArrMassDYIN);
}
static PyObject *
chemistry_DYIN_single_mass_ejection_Z(self, args)
PyObject *self;
PyObject *args;
{
double m1,Z;
PyArrayObject *ArrMassDYIN;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1, &Z))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassDYIN = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute SN ejection */
DYIN_single_mass_ejection_Z(m1,Z);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassDYIN->data + (i)*(ArrMassDYIN->strides[0])) = SingleMassFracDYIN[i];
/* convert in array */
return Py_BuildValue("O",ArrMassDYIN);
}
static PyObject *
chemistry_SNII_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2;
PyArrayObject *ArrMassSNII;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1,&m2))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassSNII = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute SN ejection */
SNII_mass_ejection(m1,m2);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassSNII->data + (i)*(ArrMassSNII->strides[0])) = MassFracSNII[i];
/* convert in array */
return Py_BuildValue("O",ArrMassSNII);
}
static PyObject *
chemistry_SNII_mass_ejection_Z(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2,Z;
PyArrayObject *ArrMassSNII;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "ddd", &m1,&m2,&Z))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassSNII = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute SNII stars ejection */
SNII_mass_ejection_Z(m1,m2, Z);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassSNII->data + (i)*(ArrMassSNII->strides[0])) = MassFracSNII[i];
/* convert in array */
return Py_BuildValue("O",ArrMassSNII);
}
static PyObject *
chemistry_SNII_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
PyArrayObject *ArrMassSNII;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "d", &m1))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassSNII = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute SN ejection */
SNII_single_mass_ejection(m1);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassSNII->data + (i)*(ArrMassSNII->strides[0])) = SingleMassFracSNII[i];
/* convert in array */
return Py_BuildValue("O",ArrMassSNII);
}
static PyObject *
chemistry_SNII_single_mass_ejection_Z(self, args)
PyObject *self;
PyObject *args;
{
double m1,Z;
PyArrayObject *ArrMassSNII;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1, &Z))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassSNII = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute SN ejection */
SNII_single_mass_ejection_Z(m1,Z);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassSNII->data + (i)*(ArrMassSNII->strides[0])) = SingleMassFracSNII[i];
/* convert in array */
return Py_BuildValue("O",ArrMassSNII);
}
static PyObject *
chemistry_SNIa_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2;
PyArrayObject *ArrMassSNIa;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dd", &m1,&m2))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassSNIa = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute SN ejection */
SNIa_mass_ejection(m1,m2);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassSNIa->data + (i)*(ArrMassSNIa->strides[0])) = MassFracSNIa[i];
/* convert in array */
return Py_BuildValue("O",ArrMassSNIa);
}
static PyObject *
chemistry_SNIa_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
PyArrayObject *ArrMassSNIa;
npy_intp ld[1];
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "d", &m1))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
ArrMassSNIa = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* compute SN ejection */
SNIa_single_mass_ejection(m1);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(ArrMassSNIa->data + (i)*(ArrMassSNIa->strides[0])) = SingleMassFracSNIa[i];
/* convert in array */
return Py_BuildValue("O",ArrMassSNIa);
}
static PyObject *
chemistry_Total_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2,M;
PyArrayObject *zs;
PyArrayObject *EMass;
npy_intp ld[1];
int i;
double *z;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dddO", &m1,&m2,&M,&zs))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
EMass = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* allocate memory for the metallicity array */
z = malloc((Cp->nelts) * sizeof(double));
/* export values */
for (i=0;i<Cp->nelts;i++)
z[i]= *(double *)(zs->data + (i)*(zs->strides[0]));
/* compute SN ejection */
Total_mass_ejection(m1,m2,M,z);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(EMass->data + (i)*(EMass->strides[0])) = EjectedMass[i];
/* convert in array */
return Py_BuildValue("O",EMass);
}
static PyObject *
chemistry_Total_mass_ejection_Z(self, args)
PyObject *self;
PyObject *args;
{
double m1,m2,M;
PyArrayObject *zs;
PyArrayObject *EMass;
npy_intp ld[1];
int i;
double *z;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dddO", &m1,&m2,&M,&zs))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
EMass = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* allocate memory for the metallicity array */
z = malloc((Cp->nelts) * sizeof(double));
/* export values */
for (i=0;i<Cp->nelts;i++)
z[i]= *(double *)(zs->data + (i)*(zs->strides[0]));
/* compute SN ejection */
Total_mass_ejection_Z(m1,m2,M,z);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(EMass->data + (i)*(EMass->strides[0])) = EjectedMass[i];
/* convert in array */
return Py_BuildValue("O",EMass);
}
static PyObject *
chemistry_DYIN_Total_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
PyArrayObject *zs;
PyArrayObject *EMass;
npy_intp ld[1];
int i;
double *z;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dO", &m1,&zs))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
EMass = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* allocate memory for the metallicity array */
z = malloc((Cp->nelts) * sizeof(double));
/* export values */
for (i=0;i<Cp->nelts;i++)
z[i]= *(double *)(zs->data + (i)*(zs->strides[0]));
/* compute dying stars ejection */
DYIN_Total_single_mass_ejection(m1,z);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(EMass->data + (i)*(EMass->strides[0])) = SingleEjectedMass[i];
/* convert in array */
return Py_BuildValue("O",EMass);
}
static PyObject *
chemistry_SNII_Total_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
PyArrayObject *zs;
PyArrayObject *EMass;
npy_intp ld[1];
int i;
double *z;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dO", &m1,&zs))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
EMass = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* allocate memory for the metallicity array */
z = malloc((Cp->nelts) * sizeof(double));
/* export values */
for (i=0;i<Cp->nelts;i++)
z[i]= *(double *)(zs->data + (i)*(zs->strides[0]));
/* compute SN ejection */
SNII_Total_single_mass_ejection(m1,z);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(EMass->data + (i)*(EMass->strides[0])) = SingleEjectedMass[i];
/* convert in array */
return Py_BuildValue("O",EMass);
}
static PyObject *
chemistry_SNIa_Total_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
PyArrayObject *zs;
PyArrayObject *EMass;
npy_intp ld[1];
int i;
double *z;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dO", &m1,&zs))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
EMass = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* allocate memory for the metallicity array */
z = malloc((Cp->nelts) * sizeof(double));
/* export values */
for (i=0;i<Cp->nelts;i++)
z[i]= *(double *)(zs->data + (i)*(zs->strides[0]));
/* compute SN ejection */
SNIa_Total_single_mass_ejection(m1,z);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(EMass->data + (i)*(EMass->strides[0])) = SingleEjectedMass[i];
/* convert in array */
return Py_BuildValue("O",EMass);
}
static PyObject *
chemistry_Total_single_mass_ejection(self, args)
PyObject *self;
PyObject *args;
{
double m1;
double NSNII,NSNIa,NDYIN;
PyArrayObject *zs;
PyArrayObject *EMass;
npy_intp ld[1];
int i;
double *z;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dOddd", &m1,&zs,&NSNII,&NSNIa,&NDYIN))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
EMass = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* allocate memory for the metallicity array */
z = malloc((Cp->nelts) * sizeof(double));
/* export values */
for (i=0;i<Cp->nelts;i++)
z[i]= *(double *)(zs->data + (i)*(zs->strides[0]));
/* compute SN ejection */
Total_single_mass_ejection(m1,z,NSNII,NSNIa,NDYIN);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(EMass->data + (i)*(EMass->strides[0])) = SingleEjectedMass[i];
/* convert in array */
return Py_BuildValue("O",EMass);
}
static PyObject *
chemistry_Total_single_mass_ejection_Z(self, args)
PyObject *self;
PyObject *args;
{
double m1;
double NSNII,NSNIa,NDYIN;
PyArrayObject *zs;
PyArrayObject *EMass;
npy_intp ld[1];
int i;
double *z;
/* parse arguments */
if (!PyArg_ParseTuple(args, "dOddd", &m1,&zs,&NSNII,&NSNIa,&NDYIN))
return NULL;
/* create output array */
ld[0]= Cp->nelts+2;
EMass = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* allocate memory for the metallicity array */
z = malloc((Cp->nelts) * sizeof(double));
/* export values */
for (i=0;i<Cp->nelts;i++)
z[i]= *(double *)(zs->data + (i)*(zs->strides[0]));
/* compute SN ejection */
Total_single_mass_ejection_Z(m1,z,NSNII,NSNIa,NDYIN);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(EMass->data + (i)*(EMass->strides[0])) = SingleEjectedMass[i];
/* convert in array */
return Py_BuildValue("O",EMass);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_cooling_function(self, args)
PyObject *self;
PyObject *args;
{
/*
on gives :
u_energy
metal = metal(i,2)
parameters
t_const,zmin,zmax,slz,tmin,tmax,slt,FeHSolar,cooling_data_max
*/
PyArrayObject *cooling_data;
double u_energy,metal;
double t_const,zmin,zmax,slz,tmin,tmax,slt,FeHSolar,cooling_data_max;
double cooling,u_cutoff,T,Z;
double rt, rz, ft, fz, v1, v2, v;
int it,iz,itp,izp;
/* parse arguments */
if (!PyArg_ParseTuple(args, "ddOddddddddd", &u_energy, &metal, &cooling_data,&t_const,&zmin,&zmax,&slz,&tmin,&tmax,&slt,&FeHSolar,&cooling_data_max))
return NULL;
u_cutoff=(100)/t_const;
cooling = 0.0;
if (u_energy > u_cutoff)
{
T = log10( t_const*u_energy );
Z = log10( metal/FeHSolar + 1.e-10 );
if (Z>zmax)
{
/*print *,'Warning: Z>Zmax for',i*/
Z=zmax;
}
if (Z < zmin)
{
rt = (T-tmin)/slt;
it = (int)rt;
if (it < cooling_data_max )
it = (int)rt;
else
it = cooling_data_max;
itp = it+1;
ft = rt - it;
fz = ( 10. + Z )/( 10. + zmin);
//v1 = ft*(cooling_data( 1, itp)-cooling_data( 1,it) ) + cooling_data( 1,it );
v1 = ft * (*(double *) (cooling_data->data + 1*(cooling_data->strides[0]) + itp*cooling_data->strides[1])
- *(double *) (cooling_data->data + 1*(cooling_data->strides[0]) + it *cooling_data->strides[1]))
+ *(double *) (cooling_data->data + 1*(cooling_data->strides[0]) + it *cooling_data->strides[1]);
//v2 = ft*(cooling_data( 0,itp )-cooling_data( 0, it ) ) + cooling_data( 0, it );
v2 = ft * (*(double *) (cooling_data->data + 0*(cooling_data->strides[0]) + itp*cooling_data->strides[1])
- *(double *) (cooling_data->data + 0*(cooling_data->strides[0]) + it *cooling_data->strides[1]))
+ *(double *) (cooling_data->data + 0*(cooling_data->strides[0]) + it *cooling_data->strides[1]);
v = v2 + fz*(v1-v2);
}
else
{
rt = (T-tmin)/slt;
rz = (Z-zmin)/slz+1.0;
if (it < cooling_data_max )
it = (int)rt;
else
it = cooling_data_max;
iz = (int)rz;
itp = it+1;
izp = iz+1;
ft = rt - it;
fz = rz - iz;
//v1 = ft*(cooling_data( izp, itp)-cooling_data(izp,it)) + cooling_data( izp, it );
v1 = ft * (*(double *) (cooling_data->data + izp*(cooling_data->strides[0]) + itp*cooling_data->strides[1])
- *(double *) (cooling_data->data + izp*(cooling_data->strides[0]) + it *cooling_data->strides[1]))
+ *(double *) (cooling_data->data + izp*(cooling_data->strides[0]) + it *cooling_data->strides[1]);
//v2 = ft*(cooling_data( iz, itp )-cooling_data(iz,it )) + cooling_data( iz, it );
v2 = ft * (*(double *) (cooling_data->data + iz *(cooling_data->strides[0]) + itp*cooling_data->strides[1])
- *(double *) (cooling_data->data + iz *(cooling_data->strides[0]) + it *cooling_data->strides[1]))
+ *(double *) (cooling_data->data + iz *(cooling_data->strides[0]) + it *cooling_data->strides[1]);
v = v2 + fz*(v1-v2);
}
cooling = pow(10,v);
}
return Py_BuildValue("d",cooling);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_get_Mmax(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->Mmax * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_Mmin(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->Mmin * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_Mco(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->Mco * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_SNIa_Mpl(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->SNIa_Mpl * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_SNIa_Mpu(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->SNIa_Mpu * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_SNII_Mmin(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->SNII_Mmin * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_SNII_Mmax(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->SNII_Mmax * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_DYIN_Mmin(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->DYIN_Mmin * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_DYIN_Mmax(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->DYIN_Mmax * SOLAR_MASS/All.UnitMass_in_g);
}
static PyObject *
chemistry_get_imf_Ntot(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("d",(double)Cp->imf_Ntot/SOLAR_MASS*All.UnitMass_in_g); /* in code mass unit */
}
static PyObject *
chemistry_get_as(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *as;
npy_intp ld[1];
int i;
/* create output array */
ld[0]= Cp->n+1;
as = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* import values */
for (i=0;i<Cp->n+1;i++)
*(double *)(as->data + (i)*(as->strides[0])) = Cp->as[i];
return Py_BuildValue("O",as);
}
static PyObject *
chemistry_get_bs(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *bs;
npy_intp ld[1];
int i;
/* create output array */
ld[0]= Cp->n+1;
bs = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* import values */
for (i=0;i<Cp->n+1;i++)
*(double *)(bs->data + (i)*(bs->strides[0])) = Cp->bs[i];
return Py_BuildValue("O",bs);
}
static PyObject *
chemistry_get_fs(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *fs;
npy_intp ld[1];
int i;
/* create output array */
ld[0]= Cp->n;
fs = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* import values */
for (i=0;i<Cp->n;i++)
*(double *)(fs->data + (i)*(fs->strides[0])) = Cp->fs[i];
return Py_BuildValue("O",fs);
}
static PyObject *
chemistry_get_allnelts(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("i",(int)Cp->nelts+2);
}
static PyObject *
chemistry_get_nelts(self, args)
PyObject *self;
PyObject *args;
{
return Py_BuildValue("i",(int)Cp->nelts);
}
static PyObject *
chemistry_get_allelts_labels(self, args)
PyObject *self;
PyObject *args;
{
int i;
PyObject *LabelList,*LabelString;
LabelList = PyList_New((Py_ssize_t)Cp->nelts+2);
for(i=0;i<Cp->nelts+2;i++)
{
LabelString = PyString_FromString(Elt[i].label);
PyList_SetItem(LabelList, (Py_ssize_t)i,LabelString);
}
return Py_BuildValue("O",LabelList);
}
static PyObject *
chemistry_get_elts_labels(self, args)
PyObject *self;
PyObject *args;
{
int i;
PyObject *LabelList,*LabelString;
LabelList = PyList_New((Py_ssize_t)Cp->nelts);
for(i=2;i<Cp->nelts+2;i++)
{
LabelString = PyString_FromString(Elt[i].label);
PyList_SetItem(LabelList, (Py_ssize_t)i-2,LabelString);
}
return Py_BuildValue("O",LabelList);
}
/* static PyObject *
chemistry_get_elts_SolarMassAbundances(self, args)
PyObject *self;
PyObject *args;
{
int i;
npy_intp ld[1];
PyArrayObject *AbList;
ld[0] = Cp->nelts;
AbList = (PyArrayObject *) PyArray_SimpleNew(1,ld,NPY_FLOAT);
for(i=2;i<Cp->nelts+2;i++)
*(float*)(AbList->data + (i-2)*(AbList->strides[0])) = (float) Elt[i].SolarMassAbundance;
return PyArray_Return(AbList);
} */
static PyObject *
chemistry_get_elts_SolarMassAbundances(self, args)
PyObject *self;
PyObject *args;
{
int i;
PyObject *AbDict,*LabelString,*AbVal;
AbDict = PyDict_New();
for(i=2;i<Cp->nelts+2;i++)
{
AbVal = PyFloat_FromDouble(Elt[i].SolarMassAbundance);
LabelString = PyString_FromString(Elt[i].label);
PyDict_SetItem(AbDict,LabelString, AbVal);
}
return Py_BuildValue("O",AbDict);
}
static PyObject *
chemistry_get_MSNIa(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *MSNIa;
npy_intp ld[1];
int i;
/* create output array */
ld[0]= Cp->nelts;
MSNIa = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* import values */
for (i=0;i<Cp->nelts;i++)
*(double *)(MSNIa->data + (i)*(MSNIa->strides[0])) = Elt[i+2].MSNIa/All.UnitMass_in_g*SOLAR_MASS;
return Py_BuildValue("O",MSNIa);
}
static PyObject *
chemistry_get_MassFracSNII(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *MassFrac;
npy_intp ld[1];
int i;
/* create output array */
ld[0]= Cp->nelts+2;
MassFrac = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(MassFrac->data + (i)*(MassFrac->strides[0])) = MassFracSNII[i];
return Py_BuildValue("O",MassFrac);
}
static PyObject *
chemistry_get_SingleMassFracSNII(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *MassFrac;
npy_intp ld[1];
int i;
/* create output array */
ld[0]= Cp->nelts+2;
MassFrac = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
/* import values */
for (i=0;i<Cp->nelts+2;i++)
*(double *)(MassFrac->data + (i)*(MassFrac->strides[0])) = SingleMassFracSNII[i];
return Py_BuildValue("O",MassFrac);
}
static PyObject *
chemistry_imf_sampling(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *ms;
npy_intp ld[1];
int i;
int n,seed;
/* parse arguments */
if (!PyArg_ParseTuple(args, "ii", &n,&seed))
return NULL;
/* create output array */
ld[0]= n;
ms = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
srandom(seed);
/* import values */
for (i=0;i<n;i++)
*(double *)(ms->data + (i)*(ms->strides[0])) = imf_sampling();
return Py_BuildValue("O",ms);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_SNII_rate_P(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *ConstSN,*Msn;
double m1,m2,md;
double powSN1,powSN2;
double RSNII;
RSNII = 0.0;
/* parse arguments */
if (!PyArg_ParseTuple(args, "ddddOO", &m1,&m2,&powSN1,&powSN2,&ConstSN,&Msn))
return NULL;
if ( m1 < *(double *) (Msn->data + 2*(Msn->strides[0]) + 1*(Msn->strides[1])) )
md = *(double *) (Msn->data + 2*(Msn->strides[0]) + 1*(Msn->strides[1]));
else
md = m1;
if (md >= m2)
RSNII = 0;
else
RSNII = *(double *) (ConstSN->data + 2*ConstSN->strides[0]) *(pow(m2,powSN1)-pow(md,powSN1));
return Py_BuildValue("d",RSNII);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_SNIa_rate_P(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *ConstSN,*Msn;
double m1,m2,md,mu;
double powSN1,powSN2;
double RSNIa;
double rate;
int i;
/* parse arguments */
if (!PyArg_ParseTuple(args, "ddddOO", &m1,&m2,&powSN1,&powSN2,&ConstSN,&Msn))
return NULL;
RSNIa = 0.0;
for (i=0;i<2;i++)
{
if ( m1 < *(double *) (Msn->data + i*(Msn->strides[0]) + 0*(Msn->strides[1])) )
md = *(double *) (Msn->data + i*(Msn->strides[0]) + 0*(Msn->strides[1]));
else
md = m1;
if ( m2 > *(double *) (Msn->data + i*(Msn->strides[0]) + 1*(Msn->strides[1])) )
mu = *(double *) (Msn->data + i*(Msn->strides[0]) + 1*(Msn->strides[1]));
else
mu = m2;
if (md<mu)
RSNIa = RSNIa+ *(double *) (ConstSN->data + i*ConstSN->strides[0])*(pow(mu,powSN2)-pow(md,powSN2));
}
if ( m1 < *(double *) (Msn->data + 2*(Msn->strides[0]) + 0*(Msn->strides[1])) )
md = *(double *) (Msn->data + 2*(Msn->strides[0]) + 0*(Msn->strides[1]));
else
md = m1;
mu = *(double *) (Msn->data + 2*(Msn->strides[0]) + 1*(Msn->strides[1]));
if (md >= mu)
RSNIa = 0.0;
else
RSNIa = RSNIa*(pow(mu,powSN1)-pow(md,powSN1));
if (RSNIa<0)
RSNIa = 0;
return Py_BuildValue("d",RSNIa);
}
/*********************************/
/* */
/*********************************/
static PyObject *
chemistry_SNII_mass_ejection_P(self, args)
PyObject *self;
PyObject *args;
{
PyArrayObject *ArrayOrigin,*ArrayStep,*ChemArray;
double m1,m2;
int NbElement;
double l1,l2;
int i1,i2,i1p,i2p,j;
double f1,f2;
double v1,v2;
PyArrayObject *ArrMassSNII;
npy_intp ld[1];
/* parse arguments */
if (!PyArg_ParseTuple(args, "ddOOOi", &m1,&m2,&ArrayOrigin,&ArrayStep,&ChemArray,&NbElement))
return NULL;
/* create output array */
ld[0]= NbElement+2;
ArrMassSNII = (PyArrayObject *) PyArray_SimpleNew(1,ld,PyArray_DOUBLE);
l1 = ( log10(m1) - *(double *)(ArrayOrigin->data + 0*(ArrayOrigin->strides[0])) ) / *(double *)(ArrayStep->data + 0*(ArrayStep->strides[0])) ;
l2 = ( log10(m2) - *(double *)(ArrayOrigin->data + 0*(ArrayOrigin->strides[0])) ) / *(double *)(ArrayStep->data + 0*(ArrayStep->strides[0])) ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<1) i1=1;
if (i2<1) i2=1;
/* --------- TOTAL GAS ---------- */
j = NbElement;
v1=f1* (*(double *)(ChemArray->data + (i1p)*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]))
- *(double *)(ChemArray->data + (i1 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1])))
+ *(double *)(ChemArray->data + (i1 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]));
v2=f2* (*(double *)(ChemArray->data + (i2p)*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]))
- *(double *)(ChemArray->data + (i2 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1])))
+ *(double *)(ChemArray->data + (i2 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]));
*(double *)(ArrMassSNII->data + (j)*(ArrMassSNII->strides[0])) = v2-v1;
/* --------- He core therm ---------- */
j = NbElement+1;
v1=f1* (*(double *)(ChemArray->data + (i1p)*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]))
- *(double *)(ChemArray->data + (i1 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1])))
+ *(double *)(ChemArray->data + (i1 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]));
v2=f2* (*(double *)(ChemArray->data + (i2p)*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]))
- *(double *)(ChemArray->data + (i2 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1])))
+ *(double *)(ChemArray->data + (i2 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]));
*(double *)(ArrMassSNII->data + (j)*(ArrMassSNII->strides[0])) = v2-v1;
/* --------- Metals ---------- */
l1 = ( log10(m1) - *(double *)(ArrayOrigin->data + 1*(ArrayOrigin->strides[0])) ) / *(double *)(ArrayStep->data + 1*(ArrayStep->strides[0])) ;
l2 = ( log10(m2) - *(double *)(ArrayOrigin->data + 1*(ArrayOrigin->strides[0])) ) / *(double *)(ArrayStep->data + 1*(ArrayStep->strides[0])) ;
if (l1 < 0.0) l1 = 0.0;
if (l2 < 0.0) l2 = 0.0;
i1 = (int)l1;
i2 = (int)l2;
i1p = i1 + 1;
i2p = i2 + 1;
f1 = l1 - i1;
f2 = l2 - i2;
/* check (yr) */
if (i1<1) i1=1;
if (i2<1) i2=1;
for (j=0;j<NbElement;j++)
{
v1=f1* (*(double *)(ChemArray->data + (i1p)*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]))
- *(double *)(ChemArray->data + (i1 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1])))
+ *(double *)(ChemArray->data + (i1 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]));
v2=f2* (*(double *)(ChemArray->data + (i2p)*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]))
- *(double *)(ChemArray->data + (i2 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1])))
+ *(double *)(ChemArray->data + (i2 )*(ChemArray->strides[0]) + (j)*(ChemArray->strides[1]));
*(double *)(ArrMassSNII->data + (j)*(ArrMassSNII->strides[0])) = v2-v1;
}
return Py_BuildValue("O",ArrMassSNII);
}
/* definition of the method table */
static PyMethodDef chemistryMethods[] = {
{"CodeUnits_to_SolarMass_Factor", chemistry_CodeUnits_to_SolarMass_Factor, METH_VARARGS,
"convertion factor : CodeUnits -> SolarMass"},
{"SolarMass_to_CodeUnits_Factor", chemistry_SolarMass_to_CodeUnits_Factor, METH_VARARGS,
"convertion factor : SolarMass -> CodeUnits"},
{"SetVerbosityOn", (PyCFunction)chemistry_SetVerbosityOn, METH_VARARGS,
"Set verbosity to on"},
{"SetVerbosityOff", (PyCFunction)chemistry_SetVerbosityOff, METH_VARARGS,
"Set verbosity to off"},
{"InitDefaultParameters", (PyCFunction)chemistry_InitDefaultParameters, METH_VARARGS,
"Init default parameters"},
{"SetParameters", (PyCFunction)chemistry_SetParameters, METH_VARARGS,
"Set gadget parameters"},
{"GetParameters", (PyCFunction)chemistry_GetParameters, METH_VARARGS,
"get some gadget parameters"},
{"init_chimie", chemistry_init_chimie, METH_VARARGS| METH_KEYWORDS,
"Init chimie."},
{"info", chemistry_info, METH_VARARGS| METH_KEYWORDS,
"Get info on tables."},
{"set_table", chemistry_set_table, METH_VARARGS,
"Set the chimie table."},
{"get_imf", chemistry_get_imf, METH_VARARGS,
"Compute corresponding imf value."},
{"get_imf_M", chemistry_get_imf_M, METH_VARARGS,
"Compute the mass fraction between m1 and m2."},
{"get_imf_N", chemistry_get_imf_N, METH_VARARGS,
"Compute the fraction number between m1 and m2."},
{"star_lifetime", chemistry_star_lifetime, METH_VARARGS,
"Compute star life time."},
{"star_mass_from_age", chemistry_star_mass_from_age, METH_VARARGS,
"Return the stellar mass that has a lifetime equal to t."},
{"DYIN_rate", chemistry_DYIN_rate, METH_VARARGS,
"Return the number of dying stars per unit mass with masses between m1 and m2."},
{"SNII_rate", chemistry_SNII_rate, METH_VARARGS,
"Return the number of SNII per unit mass with masses between m1 and m2."},
{"SNIa_rate", chemistry_SNIa_rate, METH_VARARGS,
"Return the number of SNIa per unit mass with masses between m1 and m2."},
{"DYIN_mass_ejection", chemistry_DYIN_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements, per unit mass due to the explotion of dying stars with masses between m1 and m2."},
{"DYIN_mass_ejection_Z", chemistry_DYIN_mass_ejection_Z, METH_VARARGS,
"Mass fraction of ejected elements, per unit mass due to the explotion of dying stars with masses between m1 and m2 (metallicity dependency)."},
{"DYIN_single_mass_ejection", chemistry_DYIN_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements due to the explotion of one dying star of mass m."},
{"DYIN_single_mass_ejection_Z", chemistry_DYIN_single_mass_ejection_Z, METH_VARARGS,
"Mass fraction of ejected elements due to the explotion of one dying star of mass m (metallicity dependency)."},
{"SNII_mass_ejection", chemistry_SNII_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements, per unit mass due to the explotion of SNII with masses between m1 and m2."},
//{"SNII_mass_ejection_Z", chemistry_SNII_mass_ejection_Z, METH_VARARGS,
// "Mass fraction of ejected elements, per unit mass due to the explotion of SNII with masses between m1 and m2 (metallicity dependency)."},
{"SNII_single_mass_ejection", chemistry_SNII_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements due to the explotion of one SNII of mass m."},
//{"SNII_single_mass_ejection_Z", chemistry_SNII_single_mass_ejection_Z, METH_VARARGS,
// "Mass fraction of ejected elements due to the explotion of one SNII star of mass m (metallicity dependency)."},
{"SNIa_mass_ejection", chemistry_SNIa_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements, per unit mass due to the explotion of SNIa with masses between m1 and m2."},
{"SNIa_single_mass_ejection", chemistry_SNIa_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements due to the explotion of one SNIa of mass m."},
{"Total_mass_ejection", chemistry_Total_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements, per unit mass due to the explotion of SNIa and SNII with masses between m1 and m2."},
{"Total_mass_ejection_Z", chemistry_Total_mass_ejection_Z, METH_VARARGS,
"Mass fraction of ejected elements, per unit mass due to the explotion of SNIa and SNII with masses between m1 and m2 (metallicity dependency)."},
{"DYIN_Total_single_mass_ejection", chemistry_DYIN_Total_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements (including processed and non processed elements) due to the explotion of one dying star of mass m."},
{"SNII_Total_single_mass_ejection", chemistry_SNII_Total_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements (including processed and non processed elements) due to the explotion of one SNII of mass m."},
{"SNIa_Total_single_mass_ejection", chemistry_SNIa_Total_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements (including processed and non processed elements) due to the explotion of one SNIa of mass m."},
{"Total_single_mass_ejection", chemistry_Total_single_mass_ejection, METH_VARARGS,
"Mass fraction of ejected elements, per unit mass due to the explotion of one dying star of mass m1."},
{"Total_single_mass_ejection_Z", chemistry_Total_single_mass_ejection_Z, METH_VARARGS,
"Mass fraction of ejected elements, per unit mass due to the explotion of one dying star of mass m1 (metallicity dependency)."},
{"get_Mmax", chemistry_get_Mmax, METH_VARARGS,
"Get max star mass of the IMF, in code unit."},
{"get_Mmin", chemistry_get_Mmin, METH_VARARGS,
"Get min star mass of the IMF, in code unit."},
{"get_Mco", chemistry_get_Mco, METH_VARARGS,
"Get mean WD mass, in code unit."},
{"get_SNIa_Mpl", chemistry_get_SNIa_Mpl, METH_VARARGS,
"Get min mass of SNIa, in code unit."},
{"get_SNIa_Mpu", chemistry_get_SNIa_Mpu, METH_VARARGS,
"Get max mass of SNIa, in code unit."},
{"get_SNII_Mmin", chemistry_get_SNII_Mmin, METH_VARARGS,
"Get min mass of SNII, in code unit."},
{"get_SNII_Mmax", chemistry_get_SNII_Mmax, METH_VARARGS,
"Get max mass of SNII, in code unit."},
{"get_DYIN_Mmin", chemistry_get_DYIN_Mmin, METH_VARARGS,
"Get min mass of DYIN, in code unit."},
{"get_DYIN_Mmax", chemistry_get_DYIN_Mmax, METH_VARARGS,
"Get max mass of DYIN, in code unit."},
{"get_imf_Ntot", chemistry_get_imf_Ntot, METH_VARARGS,
"Get number of stars in the imf, per unit mass."},
{"get_as", chemistry_get_as, METH_VARARGS,
"Get power coefficients."},
{"get_bs", chemistry_get_bs, METH_VARARGS,
"Get normalisation coefficients."},
{"get_fs", chemistry_get_fs, METH_VARARGS,
"Get fs, mass fraction at ms."},
{"get_allnelts", chemistry_get_allnelts, METH_VARARGS,
"Get the number of element considered, including ejected mass (Ej) and non processed ejected mass (Ejnp).."},
{"get_nelts", chemistry_get_nelts, METH_VARARGS,
"Get the number of element considered."},
{"get_allelts_labels", chemistry_get_allelts_labels, METH_VARARGS,
"Get the labels of elements, including ejected mass (Ej) and non processed ejected mass (Ejnp)."},
{"get_elts_labels", chemistry_get_elts_labels, METH_VARARGS,
"Get the labels of elements."},
{"get_elts_SolarMassAbundances", chemistry_get_elts_SolarMassAbundances, METH_VARARGS,
"Get the solar mass abundance of elements."},
{"get_MassFracSNII", chemistry_get_MassFracSNII, METH_VARARGS,
"Get the mass fraction per element ejected by a set of SNII."},
{"get_SingleMassFracSNII", chemistry_get_SingleMassFracSNII, METH_VARARGS,
"Get the mass fraction per element ejected by a SNII."},
{"get_MSNIa", chemistry_get_MSNIa, METH_VARARGS,
"Get the mass per element ejected by a SNIa."},
{"cooling_function", chemistry_cooling_function, METH_VARARGS,
"Compute cooling."},
{"imf_sampling", chemistry_imf_sampling, METH_VARARGS,
"Sample imf with n points."},
/* old poirier */
{"SNIa_rate_P", chemistry_SNIa_rate_P, METH_VARARGS,
"Return the number of SNIa per unit mass and time. (Poirier version)"},
{"SNII_rate_P", chemistry_SNII_rate_P, METH_VARARGS,
"Return the number of SNII per unit mass and time. (Poirier version)"},
{"SNII_mass_ejection_P", chemistry_SNII_mass_ejection_P, METH_VARARGS,
"Mass ejection due to SNII per unit mass and time. (Poirier version)"},
{NULL, NULL, 0, NULL} /* Sentinel */
};
void initchemistry(void)
{
(void) Py_InitModule("chemistry", chemistryMethods);
import_array();
}
#endif /* PYCHEM */
#endif /* CHIMIE */
diff --git a/src/density.c b/src/density.c
index 4ed4468..e070f54 100644
--- a/src/density.c
+++ b/src/density.c
@@ -1,907 +1,945 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include "allvars.h"
#include "proto.h"
/*! \file density.c
* \brief SPH density computation and smoothing length determination
*
* This file contains the "first SPH loop", where the SPH densities and
* some auxiliary quantities are computed. If the number of neighbours
* obtained falls outside the target range, the correct smoothing
* length is determined iteratively, if needed.
*/
#ifdef PERIODIC
static double boxSize, boxHalf;
#ifdef LONG_X
static double boxSize_X, boxHalf_X;
#else
#define boxSize_X boxSize
#define boxHalf_X boxHalf
#endif
#ifdef LONG_Y
static double boxSize_Y, boxHalf_Y;
#else
#define boxSize_Y boxSize
#define boxHalf_Y boxHalf
#endif
#ifdef LONG_Z
static double boxSize_Z, boxHalf_Z;
#else
#define boxSize_Z boxSize
#define boxHalf_Z boxHalf
#endif
#endif
/*! This function computes the local density for each active SPH particle,
* the number of neighbours in the current smoothing radius, and the
* divergence and curl of the velocity field. The pressure is updated as
* well. If a particle with its smoothing region is fully inside the
* local domain, it is not exported to the other processors. The function
* also detects particles that have a number of neighbours outside the
* allowed tolerance range. For these particles, the smoothing length is
* adjusted accordingly, and the density computation is executed again.
* Note that the smoothing length is not allowed to fall below the lower
* bound set by MinGasHsml.
*/
void density(int mode)
{
long long ntot, ntotleft;
int *noffset, *nbuffer, *nsend, *nsend_local, *numlist, *ndonelist;
int i, j, n, ndone, npleft, maxfill, source, iter = 0;
int level, ngrp, sendTask, recvTask, place, nexport;
double dt_entr, tstart, tend, tstart_ngb = 0, tend_ngb = 0;
double sumt, sumcomm, timengb, sumtimengb;
double timecomp = 0, timeimbalance = 0, timecommsumm = 0, sumimbalance;
MPI_Status status;
#ifdef DETAILED_CPU_OUTPUT_IN_DENSITY
double *timengblist;
double *timecomplist;
double *timecommsummlist;
double *timeimbalancelist;
#endif
#ifdef DETAILED_CPU
double t0=0,t1=0;
#endif
#ifdef PERIODIC
boxSize = All.BoxSize;
boxHalf = 0.5 * All.BoxSize;
#ifdef LONG_X
boxHalf_X = boxHalf * LONG_X;
boxSize_X = boxSize * LONG_X;
#endif
#ifdef LONG_Y
boxHalf_Y = boxHalf * LONG_Y;
boxSize_Y = boxSize * LONG_Y;
#endif
#ifdef LONG_Z
boxHalf_Z = boxHalf * LONG_Z;
boxSize_Z = boxSize * LONG_Z;
#endif
#endif
#ifdef DETAILED_CPU
if (mode==1)
t0 = second();
#endif
noffset = malloc(sizeof(int) * NTask); /* offsets of bunches in common list */
nbuffer = malloc(sizeof(int) * NTask);
nsend_local = malloc(sizeof(int) * NTask);
nsend = malloc(sizeof(int) * NTask * NTask);
ndonelist = malloc(sizeof(int) * NTask);
for(n = 0, NumSphUpdate = 0; n < N_gas; n++)
{
SphP[n].Left = SphP[n].Right = 0;
#ifdef AVOIDNUMNGBPROBLEM
SphP[n].OldNumNgb = -1;
#endif
#ifdef ART_CONDUCTIVITY
SphP[n].EnergyIntPred = GAMMA_MINUS1*SphP[n].Pressure/SphP[n].Density ;
#endif
#ifdef SFR
if((P[n].Ti_endstep == All.Ti_Current) && (P[n].Type == 0))
#else
if(P[n].Ti_endstep == All.Ti_Current)
#endif
NumSphUpdate++;
}
numlist = malloc(NTask * sizeof(int) * NTask);
MPI_Allgather(&NumSphUpdate, 1, MPI_INT, numlist, 1, MPI_INT, MPI_COMM_WORLD);
for(i = 0, ntot = 0; i < NTask; i++)
ntot += numlist[i];
free(numlist);
/* we will repeat the whole thing for those particles where we didn't
* find enough neighbours
*/
do
{
i = 0; /* beginn with this index */
ntotleft = ntot; /* particles left for all tasks together */
while(ntotleft > 0)
{
for(j = 0; j < NTask; j++)
nsend_local[j] = 0;
/* do local particles and prepare export list */
tstart = second();
for(nexport = 0, ndone = 0; i < N_gas && nexport < All.BunchSizeDensity - NTask; i++)
#ifdef SFR
if((P[i].Ti_endstep == All.Ti_Current) && (P[i].Type == 0))
#else
if(P[i].Ti_endstep == All.Ti_Current)
#endif
{
ndone++;
for(j = 0; j < NTask; j++)
Exportflag[j] = 0;
density_evaluate(i, 0);
for(j = 0; j < NTask; j++)
{
if(Exportflag[j])
{
DensDataIn[nexport].Pos[0] = P[i].Pos[0];
DensDataIn[nexport].Pos[1] = P[i].Pos[1];
DensDataIn[nexport].Pos[2] = P[i].Pos[2];
DensDataIn[nexport].Vel[0] = SphP[i].VelPred[0];
DensDataIn[nexport].Vel[1] = SphP[i].VelPred[1];
DensDataIn[nexport].Vel[2] = SphP[i].VelPred[2];
DensDataIn[nexport].Hsml = SphP[i].Hsml;
#ifdef MULTIPHASE
DensDataIn[nexport].Phase = SphP[i].Phase;
#endif
DensDataIn[nexport].Index = i;
DensDataIn[nexport].Task = j;
#ifdef ART_CONDUCTIVITY
DensDataIn[nexport].EnergyIntPred = SphP[i].EnergyIntPred ;
#endif
nexport++;
nsend_local[j]++;
}
}
}
tend = second();
timecomp += timediff(tstart, tend);
qsort(DensDataIn, nexport, sizeof(struct densdata_in), dens_compare_key);
for(j = 1, noffset[0] = 0; j < NTask; j++)
noffset[j] = noffset[j - 1] + nsend_local[j - 1];
tstart = second();
MPI_Allgather(nsend_local, NTask, MPI_INT, nsend, NTask, MPI_INT, MPI_COMM_WORLD);
tend = second();
timeimbalance += timediff(tstart, tend);
/* now do the particles that need to be exported */
for(level = 1; level < (1 << PTask); level++)
{
tstart = second();
for(j = 0; j < NTask; j++)
nbuffer[j] = 0;
for(ngrp = level; ngrp < (1 << PTask); ngrp++)
{
maxfill = 0;
for(j = 0; j < NTask; j++)
{
if((j ^ ngrp) < NTask)
if(maxfill < nbuffer[j] + nsend[(j ^ ngrp) * NTask + j])
maxfill = nbuffer[j] + nsend[(j ^ ngrp) * NTask + j];
}
if(maxfill >= All.BunchSizeDensity)
break;
sendTask = ThisTask;
recvTask = ThisTask ^ ngrp;
if(recvTask < NTask)
{
if(nsend[ThisTask * NTask + recvTask] > 0 || nsend[recvTask * NTask + ThisTask] > 0)
{
/* get the particles */
MPI_Sendrecv(&DensDataIn[noffset[recvTask]],
nsend_local[recvTask] * sizeof(struct densdata_in), MPI_BYTE,
recvTask, TAG_DENS_A,
&DensDataGet[nbuffer[ThisTask]],
nsend[recvTask * NTask + ThisTask] * sizeof(struct densdata_in),
MPI_BYTE, recvTask, TAG_DENS_A, MPI_COMM_WORLD, &status);
}
}
for(j = 0; j < NTask; j++)
if((j ^ ngrp) < NTask)
nbuffer[j] += nsend[(j ^ ngrp) * NTask + j];
}
tend = second();
timecommsumm += timediff(tstart, tend);
tstart = second();
for(j = 0; j < nbuffer[ThisTask]; j++)
density_evaluate(j, 1);
tend = second();
timecomp += timediff(tstart, tend);
/* do a block to explicitly measure imbalance */
tstart = second();
MPI_Barrier(MPI_COMM_WORLD);
tend = second();
timeimbalance += timediff(tstart, tend);
/* get the result */
tstart = second();
for(j = 0; j < NTask; j++)
nbuffer[j] = 0;
for(ngrp = level; ngrp < (1 << PTask); ngrp++)
{
maxfill = 0;
for(j = 0; j < NTask; j++)
{
if((j ^ ngrp) < NTask)
if(maxfill < nbuffer[j] + nsend[(j ^ ngrp) * NTask + j])
maxfill = nbuffer[j] + nsend[(j ^ ngrp) * NTask + j];
}
if(maxfill >= All.BunchSizeDensity)
break;
sendTask = ThisTask;
recvTask = ThisTask ^ ngrp;
if(recvTask < NTask)
{
if(nsend[ThisTask * NTask + recvTask] > 0 || nsend[recvTask * NTask + ThisTask] > 0)
{
/* send the results */
MPI_Sendrecv(&DensDataResult[nbuffer[ThisTask]],
nsend[recvTask * NTask + ThisTask] * sizeof(struct densdata_out),
MPI_BYTE, recvTask, TAG_DENS_B,
&DensDataPartialResult[noffset[recvTask]],
nsend_local[recvTask] * sizeof(struct densdata_out),
MPI_BYTE, recvTask, TAG_DENS_B, MPI_COMM_WORLD, &status);
/* add the result to the particles */
for(j = 0; j < nsend_local[recvTask]; j++)
{
source = j + noffset[recvTask];
place = DensDataIn[source].Index;
SphP[place].NumNgb += DensDataPartialResult[source].Ngb;
SphP[place].Density += DensDataPartialResult[source].Rho;
SphP[place].DivVel += DensDataPartialResult[source].Div;
SphP[place].DhsmlDensityFactor += DensDataPartialResult[source].DhsmlDensity;
#ifdef DENSITY_INDEPENDENT_SPH
SphP[place].EgyWtDensity += DensDataPartialResult[source].EgyRho;
SphP[place].DhsmlEgyDensityFactor += DensDataPartialResult[source].DhsmlEgyDensity;
#endif
SphP[place].Rot[0] += DensDataPartialResult[source].Rot[0];
SphP[place].Rot[1] += DensDataPartialResult[source].Rot[1];
SphP[place].Rot[2] += DensDataPartialResult[source].Rot[2];
#ifdef ART_CONDUCTIVITY
SphP[place].GradEnergyInt[0] += DensDataPartialResult[source].GradEnergyInt[0];
SphP[place].GradEnergyInt[1] += DensDataPartialResult[source].GradEnergyInt[1];
SphP[place].GradEnergyInt[2] += DensDataPartialResult[source].GradEnergyInt[2];
-#endif
+#endif
+
+#ifdef METAL_DIFFUSION
+ SphP[place].RmsSpeed += DensDataPartialResult[source].RmsSpeed;
+#endif
+
}
}
}
for(j = 0; j < NTask; j++)
if((j ^ ngrp) < NTask)
nbuffer[j] += nsend[(j ^ ngrp) * NTask + j];
}
tend = second();
timecommsumm += timediff(tstart, tend);
level = ngrp - 1;
}
MPI_Allgather(&ndone, 1, MPI_INT, ndonelist, 1, MPI_INT, MPI_COMM_WORLD);
for(j = 0; j < NTask; j++)
ntotleft -= ndonelist[j];
}
/* do final operations on results */
tstart = second();
for(i = 0, npleft = 0; i < N_gas; i++)
{
#ifdef SFR
if((P[i].Ti_endstep == All.Ti_Current) && (P[i].Type == 0))
#else
if(P[i].Ti_endstep == All.Ti_Current)
#endif
{
{
/* this two following lines where the old Gadget-2 version */
//SphP[i].DhsmlDensityFactor =
// 1 / (1 + SphP[i].Hsml * SphP[i].DhsmlDensityFactor / (NUMDIMS * SphP[i].Density));
/* they are replaced by the next ones, from Hopkins */
SphP[i].DhsmlDensityFactor *= SphP[i].Hsml / (NUMDIMS * SphP[i].Density);
if (SphP[i].DhsmlDensityFactor > -0.9)
{
SphP[i].DhsmlDensityFactor = 1 / (1 + SphP[i].DhsmlDensityFactor);
} else {
SphP[i].DhsmlDensityFactor = 1;
}
#ifdef DENSITY_INDEPENDENT_SPH
if((SphP[i].EntVarPred>0)&&(SphP[i].EgyWtDensity>0))
{
SphP[i].DhsmlEgyDensityFactor *= SphP[i].Hsml/ (NUMDIMS * SphP[i].EgyWtDensity);
SphP[i].DhsmlEgyDensityFactor *= -SphP[i].DhsmlDensityFactor;
SphP[i].EgyWtDensity /= SphP[i].EntVarPred;
} else {
SphP[i].DhsmlEgyDensityFactor=0; SphP[i].EntVarPred=0; SphP[i].EgyWtDensity=0;
}
#endif
#if CHIMIE_SMOOTH_METALS
int k;
for (k=0;k<NELEMENTS;k++)
SphP[i].Metal[k] = SphP[i].RhoMetal[k] / SphP[i].Density;
#endif
SphP[i].CurlVel = sqrt(SphP[i].Rot[0] * SphP[i].Rot[0] +
SphP[i].Rot[1] * SphP[i].Rot[1] +
SphP[i].Rot[2] * SphP[i].Rot[2]) / SphP[i].Density;
SphP[i].DivVel /= SphP[i].Density;
dt_entr = (All.Ti_Current - (P[i].Ti_begstep + P[i].Ti_endstep) / 2) * All.Timebase_interval;
#ifdef DENSITY_INDEPENDENT_SPH
SphP[i].Pressure = pow(SphP[i].EntVarPred*SphP[i].EgyWtDensity,GAMMA);
#else
SphP[i].Pressure =
(SphP[i].Entropy + SphP[i].DtEntropy * dt_entr) * pow(SphP[i].Density, GAMMA);
#endif
#ifdef ART_CONDUCTIVITY
SphP[i].GradEnergyInt[0] /= SphP[i].Density;
SphP[i].GradEnergyInt[1] /= SphP[i].Density;
SphP[i].GradEnergyInt[2] /= SphP[i].Density;
-#endif
+#endif
+
+
+#ifdef METAL_DIFFUSION
+ SphP[i].RmsSpeed /= SphP[i].Density;
+ if(SphP[i].RmsSpeed>0)
+ SphP[i].MetalDiffusionCoeff = 0.1*SphP[i].Density * sqrt( SphP[i].RmsSpeed ) * SphP[i].Hsml ;
+ else
+ SphP[i].MetalDiffusionCoeff = 0;
+
+ //if(SphP[i].MetalDiffusionCoeff<2e-7)
+ // SphP[i].MetalDiffusionCoeff=0;
+#endif
+
}
/* now check whether we had enough neighbours */
if(SphP[i].NumNgb < (All.DesNumNgb - All.MaxNumNgbDeviation) ||
(SphP[i].NumNgb > (All.DesNumNgb + All.MaxNumNgbDeviation)
&& SphP[i].Hsml > (1.01 * All.MinGasHsml)))
{
#ifdef AVOIDNUMNGBPROBLEM
// if((SphP[i].NumNgb>SphP[i].OldNumNgb-All.MaxNumNgbDeviation/10000.)
// &&(SphP[i].NumNgb<SphP[i].OldNumNgb+All.MaxNumNgbDeviation/10000.))
if(SphP[i].NumNgb==SphP[i].OldNumNgb)
{
P[i].Ti_endstep = -P[i].Ti_endstep - 1;
printf("ID=%d NumNgb=%g OldNumNgb=%g\n",P[i].ID,SphP[i].NumNgb,SphP[i].OldNumNgb);
continue;
}
SphP[i].OldNumNgb = SphP[i].NumNgb;
#endif
/* need to redo this particle */
npleft++;
if(SphP[i].Left > 0 && SphP[i].Right > 0)
if((SphP[i].Right - SphP[i].Left) < 1.0e-3 * SphP[i].Left)
{
/* this one should be ok */
npleft--;
P[i].Ti_endstep = -P[i].Ti_endstep - 1; /* Mark as inactive */
continue;
}
if(SphP[i].NumNgb < (All.DesNumNgb - All.MaxNumNgbDeviation))
SphP[i].Left = dmax(SphP[i].Hsml, SphP[i].Left);
else
{
if(SphP[i].Right != 0)
{
if(SphP[i].Hsml < SphP[i].Right)
SphP[i].Right = SphP[i].Hsml;
}
else
SphP[i].Right = SphP[i].Hsml;
}
if(iter >= MAXITER - 10)
{
printf
("i=%d task=%d ID=%d Hsml=%g Left=%g Right=%g Ngbs=%g Right-Left=%g\n pos=(%g|%g|%g)\n",
i, ThisTask, (int) P[i].ID, SphP[i].Hsml, SphP[i].Left, SphP[i].Right,
(float) SphP[i].NumNgb, SphP[i].Right - SphP[i].Left, P[i].Pos[0], P[i].Pos[1],
P[i].Pos[2]);
fflush(stdout);
}
if(SphP[i].Right > 0 && SphP[i].Left > 0)
SphP[i].Hsml = pow(0.5 * (pow(SphP[i].Left, 3) + pow(SphP[i].Right, 3)), 1.0 / 3);
else
{
if(SphP[i].Right == 0 && SphP[i].Left == 0)
{
printf
("i=%d task=%d ID=%d Hsml=%g Left=%g Right=%g Ngbs=%g Right-Left=%g\n pos=(%g|%g|%g)\n",
i, ThisTask, (int) P[i].ID, SphP[i].Hsml, SphP[i].Left, SphP[i].Right,
(float) SphP[i].NumNgb, SphP[i].Right - SphP[i].Left, P[i].Pos[0], P[i].Pos[1],
P[i].Pos[2]);
fflush(stdout);
endrun(8188); /* can't occur */
}
if(SphP[i].Right == 0 && SphP[i].Left > 0)
{
if(P[i].Type == 0 && fabs(SphP[i].NumNgb - All.DesNumNgb) < 0.5 * All.DesNumNgb)
{
SphP[i].Hsml *=
1 - (SphP[i].NumNgb -
All.DesNumNgb) / (NUMDIMS * SphP[i].NumNgb) * SphP[i].DhsmlDensityFactor;
}
else
SphP[i].Hsml *= 1.26;
}
if(SphP[i].Right > 0 && SphP[i].Left == 0)
{
if(P[i].Type == 0 && fabs(SphP[i].NumNgb - All.DesNumNgb) < 0.5 * All.DesNumNgb)
{
SphP[i].Hsml *=
1 - (SphP[i].NumNgb -
All.DesNumNgb) / (NUMDIMS * SphP[i].NumNgb) * SphP[i].DhsmlDensityFactor;
}
else
SphP[i].Hsml /= 1.26;
}
}
if(SphP[i].Hsml < All.MinGasHsml)
SphP[i].Hsml = All.MinGasHsml;
}
else
P[i].Ti_endstep = -P[i].Ti_endstep - 1; /* Mark as inactive */
}
}
tend = second();
timecomp += timediff(tstart, tend);
numlist = malloc(NTask * sizeof(int) * NTask);
MPI_Allgather(&npleft, 1, MPI_INT, numlist, 1, MPI_INT, MPI_COMM_WORLD);
for(i = 0, ntot = 0; i < NTask; i++)
ntot += numlist[i];
free(numlist);
if(ntot > 0)
{
if(iter == 0)
tstart_ngb = second();
iter++;
if(iter > 0 && ThisTask == 0)
{
printf("ngb iteration %d: need to repeat for %d%09d particles.\n", iter,
(int) (ntot / 1000000000), (int) (ntot % 1000000000));
fflush(stdout);
}
if(iter > MAXITER)
{
printf("failed to converge in neighbour iteration in density()\n");
fflush(stdout);
endrun(1155);
}
}
else
tend_ngb = second();
}
while(ntot > 0);
/* mark as active again */
for(i = 0; i < NumPart; i++)
if(P[i].Ti_endstep < 0)
P[i].Ti_endstep = -P[i].Ti_endstep - 1;
free(ndonelist);
free(nsend);
free(nsend_local);
free(nbuffer);
free(noffset);
/* collect some timing information */
if(iter > 0)
timengb = timediff(tstart_ngb, tend_ngb);
else
timengb = 0;
MPI_Reduce(&timengb, &sumtimengb, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timecomp, &sumt, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timecommsumm, &sumcomm, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timeimbalance, &sumimbalance, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
#ifdef DETAILED_CPU_OUTPUT_IN_DENSITY
numlist = malloc(sizeof(int) * NTask);
timengblist = malloc(sizeof(double) * NTask);
timecomplist = malloc(sizeof(double) * NTask);
timecommsummlist = malloc(sizeof(double) * NTask);
timeimbalancelist = malloc(sizeof(double) * NTask);
MPI_Gather(&NumSphUpdate, 1, MPI_INT, numlist, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Gather(&timengb, 1, MPI_DOUBLE, timengblist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timecomp, 1, MPI_DOUBLE, timecomplist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timecommsumm, 1, MPI_DOUBLE, timecommsummlist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timeimbalance, 1, MPI_DOUBLE, timeimbalancelist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
if(ThisTask == 0)
{
fprintf(FdTimings, "\n density (mode=%d)\n\n",mode);
fprintf(FdTimings, "Nupdate ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12d ",numlist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timengb ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timengblist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timecomp ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timecomplist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timecommsumm ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timecommsummlist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timeimbalance ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timeimbalancelist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "\n");
}
free(timeimbalancelist);
free(timecommsummlist);
free(timecomplist);
free(numlist);
#endif
#ifdef DETAILED_CPU
if (mode==1)
{
t1 = second();
#ifdef SFR
All.CPU_StarFormation += timediff(t0, t1);
#endif
}
else
if(ThisTask == 0)
{
All.CPU_HydCompWalk += sumt / NTask;
All.CPU_HydCommSumm += sumcomm / NTask;
All.CPU_HydImbalance += sumimbalance / NTask;
All.CPU_EnsureNgb += sumtimengb / NTask;
}
#else
if(ThisTask == 0)
{
All.CPU_HydCompWalk += sumt / NTask;
All.CPU_HydCommSumm += sumcomm / NTask;
All.CPU_HydImbalance += sumimbalance / NTask;
All.CPU_EnsureNgb += sumtimengb / NTask;
}
#endif
#ifdef GAS_ACCRETION
update_entropy_for_accreated_particles();
#endif
}
/*! This function represents the core of the SPH density computation. The
* target particle may either be local, or reside in the communication
* buffer.
*/
void density_evaluate(int target, int mode)
{
int j, n, startnode, numngb, numngb_inbox;
double h, h2, fac, hinv, hinv3, hinv4;
double rho, divv, wk, dwk;
double dx, dy, dz, r, r2, u, mass_j;
double dvx, dvy, dvz, rotv[3];
double weighted_numngb, dhsmlrho;
FLOAT *pos, *vel;
int phase=0;
#ifdef DENSITY_INDEPENDENT_SPH
double egyrho, dhsmlegyrho;
#endif
#ifdef ART_CONDUCTIVITY
double gradux, graduy, graduz;
double energyintpred;
#endif
+#ifdef METAL_DIFFUSION
+ double RmsSpeed=0;
+#endif
+
+
#ifdef CHIMIE_SMOOTH_METALS
FLOAT rhometal[NELEMENTS];
int k;
for (k=0;k<NELEMENTS;k++)
rhometal[k] = 0;
#endif
if(mode == 0)
{
pos = P[target].Pos;
vel = SphP[target].VelPred;
h = SphP[target].Hsml;
#ifdef MULTIPHASE
phase = SphP[target].Phase;
#endif
#ifdef ART_CONDUCTIVITY
energyintpred = SphP[target].EnergyIntPred;
#endif
}
else
{
pos = DensDataGet[target].Pos;
vel = DensDataGet[target].Vel;
h = DensDataGet[target].Hsml;
#ifdef MULTIPHASE
phase = DensDataGet[target].Phase;
#endif
#ifdef ART_CONDUCTIVITY
energyintpred = DensDataGet[target].EnergyIntPred;
#endif
}
h2 = h * h;
hinv = 1.0 / h;
#ifndef TWODIMS
hinv3 = hinv * hinv * hinv;
#else
hinv3 = hinv * hinv / boxSize_Z;
#endif
hinv4 = hinv3 * hinv;
rho = divv = rotv[0] = rotv[1] = rotv[2] = 0;
weighted_numngb = 0;
dhsmlrho = 0;
#ifdef ART_CONDUCTIVITY
gradux=graduy=graduz=0;
#endif
#ifdef DENSITY_INDEPENDENT_SPH
egyrho=0; dhsmlegyrho=0;
#endif
startnode = All.MaxPart;
numngb = 0;
do
{
numngb_inbox = ngb_treefind_variable(&pos[0], h, phase, &startnode);
for(n = 0; n < numngb_inbox; n++)
{
j = Ngblist[n];
dx = pos[0] - P[j].Pos[0];
dy = pos[1] - P[j].Pos[1];
dz = pos[2] - P[j].Pos[2];
#ifdef PERIODIC /* now find the closest image in the given box size */
if(dx > boxHalf_X)
dx -= boxSize_X;
if(dx < -boxHalf_X)
dx += boxSize_X;
if(dy > boxHalf_Y)
dy -= boxSize_Y;
if(dy < -boxHalf_Y)
dy += boxSize_Y;
if(dz > boxHalf_Z)
dz -= boxSize_Z;
if(dz < -boxHalf_Z)
dz += boxSize_Z;
#endif
r2 = dx * dx + dy * dy + dz * dz;
if(r2 < h2)
{
numngb++;
r = sqrt(r2);
u = r * hinv;
if(u < 0.5)
{
wk = hinv3 * (KERNEL_COEFF_1 + KERNEL_COEFF_2 * (u - 1) * u * u);
dwk = hinv4 * u * (KERNEL_COEFF_3 * u - KERNEL_COEFF_4);
}
else
{
wk = hinv3 * KERNEL_COEFF_5 * (1.0 - u) * (1.0 - u) * (1.0 - u);
dwk = hinv4 * KERNEL_COEFF_6 * (1.0 - u) * (1.0 - u);
}
mass_j = P[j].Mass;
rho += mass_j * wk;
#ifdef CHIMIE_SMOOTH_METALS
for (k=0;k<NELEMENTS;k++)
rhometal[k] += SphP[j].MassMetal[k] * mass_j * wk;
#endif
weighted_numngb += NORM_COEFF * wk / hinv3;
dhsmlrho += -mass_j * (NUMDIMS * hinv * wk + u * dwk);
#ifdef DENSITY_INDEPENDENT_SPH
egyrho += mass_j * SphP[j].EntVarPred * wk;
dhsmlegyrho += -mass_j * SphP[j].EntVarPred * (NUMDIMS * hinv * wk + u * dwk);
#endif
if(r > 0)
{
fac = mass_j * dwk / r;
dvx = vel[0] - SphP[j].VelPred[0];
dvy = vel[1] - SphP[j].VelPred[1];
dvz = vel[2] - SphP[j].VelPred[2];
divv -= fac * (dx * dvx + dy * dvy + dz * dvz);
rotv[0] += fac * (dz * dvy - dy * dvz);
rotv[1] += fac * (dx * dvz - dz * dvx);
rotv[2] += fac * (dy * dvx - dx * dvy);
#ifdef ART_CONDUCTIVITY
if (All.NumCurrentTiStep==0)
fac = 0;
gradux += fac * (energyintpred-SphP[j].EnergyIntPred)*dx;
graduy += fac * (energyintpred-SphP[j].EnergyIntPred)*dy;
graduz += fac * (energyintpred-SphP[j].EnergyIntPred)*dz;
-#endif
+#endif
+
+
+
+#ifdef METAL_DIFFUSION
+ RmsSpeed += -fac * (dvx * dvx + dvy * dvy + dvz * dvz) ;
+#endif
+
+
+
}
}
}
}
while(startnode >= 0);
if(mode == 0)
{
SphP[target].NumNgb = weighted_numngb;
SphP[target].Density = rho;
SphP[target].DivVel = divv;
SphP[target].DhsmlDensityFactor = dhsmlrho;
SphP[target].Rot[0] = rotv[0];
SphP[target].Rot[1] = rotv[1];
SphP[target].Rot[2] = rotv[2];
#ifdef ART_CONDUCTIVITY
SphP[target].GradEnergyInt[0] = gradux;
SphP[target].GradEnergyInt[1] = graduy;
SphP[target].GradEnergyInt[2] = graduz;
#endif
#ifdef DENSITY_INDEPENDENT_SPH
SphP[target].EgyWtDensity = egyrho;
SphP[target].DhsmlEgyDensityFactor = dhsmlegyrho;
#endif
#ifdef CHIMIE_SMOOTH_METALS
for (k=0;k<NELEMENTS;k++)
SphP[target].RhoMetal[k] = rhometal[k];
#endif
-
+#ifdef METAL_DIFFUSION
+ SphP[target].RmsSpeed = RmsSpeed;
+#endif
}
else
{
DensDataResult[target].Rho = rho;
DensDataResult[target].Div = divv;
DensDataResult[target].Ngb = weighted_numngb;
DensDataResult[target].DhsmlDensity = dhsmlrho;
DensDataResult[target].Rot[0] = rotv[0];
DensDataResult[target].Rot[1] = rotv[1];
DensDataResult[target].Rot[2] = rotv[2];
#ifdef ART_CONDUCTIVITY
DensDataResult[target].GradEnergyInt[0] = gradux;
DensDataResult[target].GradEnergyInt[1] = graduy;
DensDataResult[target].GradEnergyInt[2] = graduz;
#endif
#ifdef DENSITY_INDEPENDENT_SPH
DensDataResult[target].EgyRho = egyrho;
DensDataResult[target].DhsmlEgyDensity = dhsmlegyrho;
#endif
#ifdef CHIMIE_SMOOTH_METALS
for (k=0;k<NELEMENTS;k++)
DensDataResult[target].RhoMetal[k] = rhometal[k];
#endif
+#ifdef METAL_DIFFUSION
+ DensDataResult[target].RmsSpeed = RmsSpeed;
+#endif
+
}
}
/*! This routine is a comparison kernel used in a sort routine to group
* particles that are exported to the same processor.
*/
int dens_compare_key(const void *a, const void *b)
{
if(((struct densdata_in *) a)->Task < (((struct densdata_in *) b)->Task))
return -1;
if(((struct densdata_in *) a)->Task > (((struct densdata_in *) b)->Task))
return +1;
return 0;
}
diff --git a/src/hydra.c b/src/hydra.c
index 8c24257..df33f6e 100644
--- a/src/hydra.c
+++ b/src/hydra.c
@@ -1,1734 +1,1786 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include <gsl/gsl_math.h>
#include "allvars.h"
#include "proto.h"
/*! \file hydra.c
* \brief Computation of SPH forces and rate of entropy generation
*
* This file contains the "second SPH loop", where the SPH forces are
* computed, and where the rate of change of entropy due to the shock heating
* (via artificial viscosity) is computed.
*/
static double hubble_a, atime, hubble_a2, fac_mu, fac_vsic_fix, a3inv, fac_egy;
#ifdef FEEDBACK
static double fac_pow;
#endif
#ifdef PERIODIC
static double boxSize, boxHalf;
#ifdef LONG_X
static double boxSize_X, boxHalf_X;
#else
#define boxSize_X boxSize
#define boxHalf_X boxHalf
#endif
#ifdef LONG_Y
static double boxSize_Y, boxHalf_Y;
#else
#define boxSize_Y boxSize
#define boxHalf_Y boxHalf
#endif
#ifdef LONG_Z
static double boxSize_Z, boxHalf_Z;
#else
#define boxSize_Z boxSize
#define boxHalf_Z boxHalf
#endif
#endif
/*! This function is the driver routine for the calculation of hydrodynamical
* force and rate of change of entropy due to shock heating for all active
* particles .
*/
void hydro_force(void)
{
long long ntot, ntotleft;
int i, j, k, n, ngrp, maxfill, source, ndone;
int *nbuffer, *noffset, *nsend_local, *nsend, *numlist, *ndonelist;
int level, sendTask, recvTask, nexport, place;
double soundspeed_i;
double tstart, tend, sumt, sumcomm;
double timecomp = 0, timecommsumm = 0, timeimbalance = 0, sumimbalance;
MPI_Status status;
#ifdef ART_VISCO_CD
int ii,jj;
#endif
#ifdef DETAILED_CPU_OUTPUT_IN_HYDRA
double *timecomplist;
double *timecommsummlist;
double *timeimbalancelist;
#endif
#ifdef PERIODIC
boxSize = All.BoxSize;
boxHalf = 0.5 * All.BoxSize;
#ifdef LONG_X
boxHalf_X = boxHalf * LONG_X;
boxSize_X = boxSize * LONG_X;
#endif
#ifdef LONG_Y
boxHalf_Y = boxHalf * LONG_Y;
boxSize_Y = boxSize * LONG_Y;
#endif
#ifdef LONG_Z
boxHalf_Z = boxHalf * LONG_Z;
boxSize_Z = boxSize * LONG_Z;
#endif
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
double v1m,v2m;
#endif
if(All.ComovingIntegrationOn)
{
/* Factors for comoving integration of hydro */
hubble_a = All.Omega0 / (All.Time * All.Time * All.Time)
+ (1 - All.Omega0 - All.OmegaLambda) / (All.Time * All.Time) + All.OmegaLambda;
hubble_a = All.Hubble * sqrt(hubble_a);
hubble_a2 = All.Time * All.Time * hubble_a;
fac_mu = pow(All.Time, 3 * (GAMMA - 1) / 2) / All.Time;
fac_egy = pow(All.Time, 3 * (GAMMA - 1));
fac_vsic_fix = hubble_a * pow(All.Time, 3 * GAMMA_MINUS1);
a3inv = 1 / (All.Time * All.Time * All.Time);
atime = All.Time;
#ifdef FEEDBACK
fac_pow = fac_egy*atime*atime;
#endif
}
else
{
hubble_a = hubble_a2 = atime = fac_mu = fac_vsic_fix = a3inv = fac_egy = 1.0;
#ifdef FEEDBACK
fac_pow = 1.0;
#endif
}
#ifdef OUTPUT_CONDUCTIVITY
for (i=0;i<N_gas;i++)
SphP[i].OptVar1 = sqrt( pow(SphP[i].GradEnergyInt[0],2)+pow(SphP[i].GradEnergyInt[1],2)+pow(SphP[i].GradEnergyInt[2],2))*SphP[i].Hsml/(SphP[i].Pressure/(SphP[i].Density*GAMMA_MINUS1)) ;
#endif
/* `NumSphUpdate' gives the number of particles on this processor that want a force update */
for(n = 0, NumSphUpdate = 0; n < N_gas; n++)
{
#ifdef SFR
if((P[n].Ti_endstep == All.Ti_Current) && (P[n].Type == 0))
#else
if(P[n].Ti_endstep == All.Ti_Current)
#endif
#ifdef MULTIPHASE
if(SphP[n].Phase == GAS_SPH)
#endif
NumSphUpdate++;
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK)
for(j = 0; j < 3; j++)
SphP[n].FeedbackUpdatedAccel[j] = 0;
#endif
+
+#ifdef METAL_DIFFUSION
+ SphP[n].MetalDiffusionA = 0;
+ for(j = 0; j < NELEMENTS; j++)
+ SphP[n].MetalDiffusionB[j] = 0;
+#endif
+
}
numlist = malloc(NTask * sizeof(int) * NTask);
MPI_Allgather(&NumSphUpdate, 1, MPI_INT, numlist, 1, MPI_INT, MPI_COMM_WORLD);
for(i = 0, ntot = 0; i < NTask; i++)
ntot += numlist[i];
free(numlist);
noffset = malloc(sizeof(int) * NTask); /* offsets of bunches in common list */
nbuffer = malloc(sizeof(int) * NTask);
nsend_local = malloc(sizeof(int) * NTask);
nsend = malloc(sizeof(int) * NTask * NTask);
ndonelist = malloc(sizeof(int) * NTask);
i = 0; /* first particle for this task */
ntotleft = ntot; /* particles left for all tasks together */
while(ntotleft > 0)
{
for(j = 0; j < NTask; j++)
nsend_local[j] = 0;
/* do local particles and prepare export list */
tstart = second();
for(nexport = 0, ndone = 0; i < N_gas && nexport < All.BunchSizeHydro - NTask; i++)
#ifdef SFR
if((P[i].Ti_endstep == All.Ti_Current) && (P[i].Type == 0))
#else
if(P[i].Ti_endstep == All.Ti_Current)
#endif
{
#ifdef MULTIPHASE
if(SphP[i].Phase == GAS_SPH)
{
#endif
ndone++;
for(j = 0; j < NTask; j++)
Exportflag[j] = 0;
hydro_evaluate(i, 0);
for(j = 0; j < NTask; j++)
{
if(Exportflag[j])
{
for(k = 0; k < 3; k++)
{
HydroDataIn[nexport].Pos[k] = P[i].Pos[k];
HydroDataIn[nexport].Vel[k] = SphP[i].VelPred[k];
}
HydroDataIn[nexport].Hsml = SphP[i].Hsml;
#ifdef FEEDBACK
HydroDataIn[nexport].EnergySN = SphP[i].EnergySN;
#endif
HydroDataIn[nexport].Mass = P[i].Mass;
#ifdef DENSITY_INDEPENDENT_SPH
HydroDataIn[nexport].EgyRho = SphP[i].EgyWtDensity;
HydroDataIn[nexport].EntVarPred = SphP[i].EntVarPred;
HydroDataIn[nexport].DhsmlDensityFactor = SphP[i].DhsmlEgyDensityFactor;
#else
HydroDataIn[nexport].DhsmlDensityFactor = SphP[i].DhsmlDensityFactor;
#endif
HydroDataIn[nexport].Density = SphP[i].Density;
HydroDataIn[nexport].Pressure = SphP[i].Pressure;
HydroDataIn[nexport].Timestep = P[i].Ti_endstep - P[i].Ti_begstep;
#ifdef WITH_ID_IN_HYDRA
HydroDataIn[nexport].ID = P[i].ID;
#endif
#ifdef ART_CONDUCTIVITY
HydroDataIn[nexport].NormGradEnergyInt = sqrt( pow(SphP[i].GradEnergyInt[0],2)+pow(SphP[i].GradEnergyInt[1],2)+pow(SphP[i].GradEnergyInt[2],2));
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
HydroDataIn[nexport].ArtBulkViscConst = SphP[i].ArtBulkViscConst;
#endif
/* calculation of F1 */
soundspeed_i = sqrt(GAMMA * SphP[i].Pressure / SphP[i].Density);
HydroDataIn[nexport].F1 = fabs(SphP[i].DivVel) /
(fabs(SphP[i].DivVel) + SphP[i].CurlVel +
0.0001 * soundspeed_i / SphP[i].Hsml / fac_mu);
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
if (SphP[i].DeltaEgySpec>0) /* the particle is touch by feedback */
{
#ifdef DENSITY_INDEPENDENT_SPH
HydroDataIn[nexport].PressureFeedbackUpdated = updated_pressure_hydra(SphP[i].EntropyPred,SphP[i].EgyWtDensity,SphP[i].DeltaEgySpec);
#else
HydroDataIn[nexport].PressureFeedbackUpdated = updated_pressure_hydra(SphP[i].EntropyPred,SphP[i].Density,SphP[i].DeltaEgySpec);
#endif
}
else
{
HydroDataIn[nexport].PressureFeedbackUpdated = SphP[i].Pressure;
}
/* calculation of F1 */
soundspeed_i = sqrt(GAMMA * HydroDataIn[nexport].PressureFeedbackUpdated / SphP[i].Density);
HydroDataIn[nexport].F1FeedbackUpdated = fabs(SphP[i].DivVel) /
(fabs(SphP[i].DivVel) + SphP[i].CurlVel +
0.0001 * soundspeed_i / SphP[i].Hsml / fac_mu);
#endif
-
+#ifdef METAL_DIFFUSION
+ HydroDataIn[nexport].MetalDiffusionCoeff = SphP[i].MetalDiffusionCoeff;
+#endif
HydroDataIn[nexport].Index = i;
HydroDataIn[nexport].Task = j;
nexport++;
nsend_local[j]++;
}
}
#ifdef MULTIPHASE
}
#endif
}
tend = second();
timecomp += timediff(tstart, tend);
qsort(HydroDataIn, nexport, sizeof(struct hydrodata_in), hydro_compare_key);
for(j = 1, noffset[0] = 0; j < NTask; j++)
noffset[j] = noffset[j - 1] + nsend_local[j - 1];
tstart = second();
MPI_Allgather(nsend_local, NTask, MPI_INT, nsend, NTask, MPI_INT, MPI_COMM_WORLD);
tend = second();
timeimbalance += timediff(tstart, tend);
/* now do the particles that need to be exported */
for(level = 1; level < (1 << PTask); level++)
{
tstart = second();
for(j = 0; j < NTask; j++)
nbuffer[j] = 0;
for(ngrp = level; ngrp < (1 << PTask); ngrp++)
{
maxfill = 0;
for(j = 0; j < NTask; j++)
{
if((j ^ ngrp) < NTask)
if(maxfill < nbuffer[j] + nsend[(j ^ ngrp) * NTask + j])
maxfill = nbuffer[j] + nsend[(j ^ ngrp) * NTask + j];
}
if(maxfill >= All.BunchSizeHydro)
break;
sendTask = ThisTask;
recvTask = ThisTask ^ ngrp;
if(recvTask < NTask)
{
if(nsend[ThisTask * NTask + recvTask] > 0 || nsend[recvTask * NTask + ThisTask] > 0)
{
/* get the particles */
MPI_Sendrecv(&HydroDataIn[noffset[recvTask]],
nsend_local[recvTask] * sizeof(struct hydrodata_in), MPI_BYTE,
recvTask, TAG_HYDRO_A,
&HydroDataGet[nbuffer[ThisTask]],
nsend[recvTask * NTask + ThisTask] * sizeof(struct hydrodata_in), MPI_BYTE,
recvTask, TAG_HYDRO_A, MPI_COMM_WORLD, &status);
}
}
for(j = 0; j < NTask; j++)
if((j ^ ngrp) < NTask)
nbuffer[j] += nsend[(j ^ ngrp) * NTask + j];
}
tend = second();
timecommsumm += timediff(tstart, tend);
/* now do the imported particles */
tstart = second();
for(j = 0; j < nbuffer[ThisTask]; j++)
hydro_evaluate(j, 1);
tend = second();
timecomp += timediff(tstart, tend);
/* do a block to measure imbalance */
tstart = second();
MPI_Barrier(MPI_COMM_WORLD);
tend = second();
timeimbalance += timediff(tstart, tend);
/* get the result */
tstart = second();
for(j = 0; j < NTask; j++)
nbuffer[j] = 0;
for(ngrp = level; ngrp < (1 << PTask); ngrp++)
{
maxfill = 0;
for(j = 0; j < NTask; j++)
{
if((j ^ ngrp) < NTask)
if(maxfill < nbuffer[j] + nsend[(j ^ ngrp) * NTask + j])
maxfill = nbuffer[j] + nsend[(j ^ ngrp) * NTask + j];
}
if(maxfill >= All.BunchSizeHydro)
break;
sendTask = ThisTask;
recvTask = ThisTask ^ ngrp;
if(recvTask < NTask)
{
if(nsend[ThisTask * NTask + recvTask] > 0 || nsend[recvTask * NTask + ThisTask] > 0)
{
/* send the results */
MPI_Sendrecv(&HydroDataResult[nbuffer[ThisTask]],
nsend[recvTask * NTask + ThisTask] * sizeof(struct hydrodata_out),
MPI_BYTE, recvTask, TAG_HYDRO_B,
&HydroDataPartialResult[noffset[recvTask]],
nsend_local[recvTask] * sizeof(struct hydrodata_out),
MPI_BYTE, recvTask, TAG_HYDRO_B, MPI_COMM_WORLD, &status);
/* add the result to the particles */
for(j = 0; j < nsend_local[recvTask]; j++)
{
source = j + noffset[recvTask];
place = HydroDataIn[source].Index;
for(k = 0; k < 3; k++)
SphP[place].HydroAccel[k] += HydroDataPartialResult[source].Acc[k];
SphP[place].DtEntropy += HydroDataPartialResult[source].DtEntropy;
#ifdef FEEDBACK
SphP[place].DtEgySpecFeedback += HydroDataPartialResult[source].DtEgySpecFeedback;
#endif
if(SphP[place].MaxSignalVel < HydroDataPartialResult[source].MaxSignalVel)
SphP[place].MaxSignalVel = HydroDataPartialResult[source].MaxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
SphP[place].VelocityDispersion[k] += HydroDataPartialResult[source].VelocityDispersion[k];
#endif
#ifdef OUTPUT_CONDUCTIVITY
SphP[place].OptVar2 += HydroDataPartialResult[source].OptVar2;
#endif
#ifdef ART_VISCO_CD
/* reduce DmatCD and TmatCD*/
for (ii = 0; ii < 3; ii++)
for (jj = 0; jj < 3; jj++)
{
SphP[place].DmatCD[ii][jj] += HydroDataPartialResult[source].DmatCD[ii][jj];
SphP[place].TmatCD[ii][jj] += HydroDataPartialResult[source].TmatCD[ii][jj];
}
SphP[place].R_CD += HydroDataPartialResult[source].R_CD;
if(SphP[place].MaxSignalVelCD < HydroDataPartialResult[source].MaxSignalVelCD)
SphP[place].MaxSignalVelCD = HydroDataPartialResult[source].MaxSignalVelCD;
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
for(k = 0; k < 3; k++)
SphP[place].FeedbackUpdatedAccel[k] += HydroDataPartialResult[source].AccFeedbackUpdated[k];
if(SphP[place].MaxSignalVelFeedbackUpdated < HydroDataPartialResult[source].maxSignalVelFeedbackUpdated)
SphP[place].MaxSignalVelFeedbackUpdated = HydroDataPartialResult[source].maxSignalVelFeedbackUpdated;
#endif
-
+#ifdef METAL_DIFFUSION
+ for(k = 0; k < NELEMENTS; k++)
+ SphP[place].MetalDiffusionB[k] += HydroDataPartialResult[source].MetalDiffusionB[k];
+ SphP[place].MetalDiffusionA += HydroDataPartialResult[source].MetalDiffusionA;
+#endif
}
}
}
for(j = 0; j < NTask; j++)
if((j ^ ngrp) < NTask)
nbuffer[j] += nsend[(j ^ ngrp) * NTask + j];
}
tend = second();
timecommsumm += timediff(tstart, tend);
level = ngrp - 1;
}
MPI_Allgather(&ndone, 1, MPI_INT, ndonelist, 1, MPI_INT, MPI_COMM_WORLD);
for(j = 0; j < NTask; j++)
ntotleft -= ndonelist[j];
}
free(ndonelist);
free(nsend);
free(nsend_local);
free(nbuffer);
free(noffset);
/* do final operations on results */
tstart = second();
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
for(i = 0; i < N_gas; i++)
SphP[i].MaxSignalVel=dmax(SphP[i].MaxSignalVel,SphP[i].MaxSignalVelFeedbackUpdated);
#endif
for(i = 0; i < N_gas; i++)
#ifdef SFR
if((P[i].Ti_endstep == All.Ti_Current) && (P[i].Type == 0))
#else
if(P[i].Ti_endstep == All.Ti_Current)
#endif
{
#ifdef DENSITY_INDEPENDENT_SPH
SphP[i].DtEntropy *= GAMMA_MINUS1 / (hubble_a2 * pow(SphP[i].EgyWtDensity, GAMMA_MINUS1));
#else
SphP[i].DtEntropy *= GAMMA_MINUS1 / (hubble_a2 * pow(SphP[i].Density, GAMMA_MINUS1));
#endif
#ifdef SPH_BND_PARTICLES
if(P[i].ID == 0)
{
SphP[i].DtEntropy = 0;
for(k = 0; k < 3; k++)
SphP[i].HydroAccel[k] = 0;
}
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
if (SphP[i].VelocityDispersion[0] != 0)
{
/* compute sigma r */
v1m = SphP[i].VelocityDispersion[1]/SphP[i].VelocityDispersion[0];
v2m = SphP[i].VelocityDispersion[2]/SphP[i].VelocityDispersion[0];
if (v2m > v1m*v1m)
SphP[i].OptVar1 = sqrt(v2m - v1m*v1m);
else
SphP[i].OptVar1 = 0.0;
}
else
SphP[i].OptVar1 = 0.0;
#endif
#ifdef OUTPUT_CONDUCTIVITY
SphP[i].OptVar2*= GAMMA_MINUS1 / (hubble_a2 * pow(SphP[i].Density, GAMMA_MINUS1)); /* to dA/dt */
if (SphP[i].OptVar2!=0)
SphP[i].OptVar2=SphP[i].Entropy/fabs(SphP[i].OptVar2); /* to time*/
else
SphP[i].OptVar2=0;
#endif
#ifdef ART_VISCO_CD
compute_art_visc(i);
#endif
}
tend = second();
timecomp += timediff(tstart, tend);
/* collect some timing information */
MPI_Reduce(&timecomp, &sumt, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timecommsumm, &sumcomm, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&timeimbalance, &sumimbalance, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if(ThisTask == 0)
{
All.CPU_HydCompWalk += sumt / NTask;
All.CPU_HydCommSumm += sumcomm / NTask;
All.CPU_HydImbalance += sumimbalance / NTask;
}
#ifdef DETAILED_CPU_OUTPUT_IN_HYDRA
numlist = malloc(sizeof(int) * NTask);
timecomplist = malloc(sizeof(double) * NTask);
timecommsummlist = malloc(sizeof(double) * NTask);
timeimbalancelist = malloc(sizeof(double) * NTask);
MPI_Gather(&NumSphUpdate, 1, MPI_INT, numlist, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Gather(&timecomp, 1, MPI_DOUBLE, timecomplist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timecommsumm, 1, MPI_DOUBLE, timecommsummlist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gather(&timeimbalance, 1, MPI_DOUBLE, timeimbalancelist, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
if(ThisTask == 0)
{
fprintf(FdTimings, "\n hydra\n\n");
fprintf(FdTimings, "Nupdate ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12d ",numlist[i]); /* nombre de part par proc */
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timecomp ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timecomplist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timecommsumm ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timecommsummlist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "timeimbalance ");
for (i=0;i<NTask;i++)
fprintf(FdTimings, "%12g ",timeimbalancelist[i]);
fprintf(FdTimings, "\n");
fprintf(FdTimings, "\n");
}
free(timeimbalancelist);
free(timecommsummlist);
free(timecomplist);
free(numlist);
#endif
}
/*! This function is the 'core' of the SPH force computation. A target
* particle is specified which may either be local, or reside in the
* communication buffer.
*/
void hydro_evaluate(int target, int mode)
{
int j, k, n, timestep, startnode, numngb;
FLOAT *pos, *vel;
FLOAT mass, h_i, dhsmlDensityFactor, rho, pressure, f1, f2;
double acc[3], dtEntropy, maxSignalVel;
double dx, dy, dz, dvx, dvy, dvz;
double h_i2, hinv=1, hinv4;
double p_over_rho2_i, p_over_rho2_j, soundspeed_i, soundspeed_j;
double hfc, dwk_i, vdotr, vdotr2, visc, mu_ij, rho_ij=0, vsig;
double h_j, dwk_j, r, r2, u=0, hfc_visc;
int phase=0;
#ifdef FEEDBACK
int EnergySN;
double wk,wk_i,wk_j,uintspec,hinv3;
double dtEgySpecFeedback=0;
#endif
#ifdef WITH_ID_IN_HYDRA
int id;
#endif
#ifdef COMPUTE_VELOCITY_DISPERSION
double VelocityDispersion[VELOCITY_DISPERSION_SIZE];
for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
VelocityDispersion[k]=0.0;
#endif
#ifndef NOVISCOSITYLIMITER
double dt;
#endif
#ifdef ART_CONDUCTIVITY
double hfc_cond,vsig_u,vsig_u_max;
double Arho_i,Arho_j;
double u_i,u_j;
double normGradEnergyInt_i, normGradEnergyInt_j;
double dtEntropy_artcond;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO)|| defined(ART_VISCO_CD)
double alpha_i, alpha_j;
double alpha_ij;
double beta_ij;
double soundspeed_ij;
#ifdef ART_VISCO_CD
double wk,wk_i,wk_j,hinv3;
int ii, jj;
double DmatCD[3][3];
double TmatCD[3][3];
double dv_dot_dx;
double R_CD;
double sign_DiVel;
double maxSignalVelCD;
#endif
#endif
#ifdef DENSITY_INDEPENDENT_SPH
double egyrho, entvarpred;
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
double p_over_rho2_iFeedbackUpdated,soundspeed_iFeedbackUpdated;
double p_over_rho2_jFeedbackUpdated,soundspeed_jFeedbackUpdated;
double maxSignalVelFeedbackUpdated,hfcFeedbackUpdated,hfc_viscFeedbackUpdated,viscFeedbackUpdated;
double accFeedbackUpdated[3];
FLOAT f1FeedbackUpdated,f2FeedbackUpdated;
FLOAT pressureFeedbackUpdated;
#ifdef DENSITY_INDEPENDENT_SPH
double pup;
#endif
#endif
+#ifdef METAL_DIFFUSION
+FLOAT MetalDiffusionCoeff;
+double Kij=0;
+double MetalDiffusionA=0;
+double MetalDiffusionB[NELEMENTS];
+for (k = 0;k < NELEMENTS; k++)
+ MetalDiffusionB[k]=0;
+#endif
+
if(mode == 0)
{
pos = P[target].Pos;
vel = SphP[target].VelPred;
h_i = SphP[target].Hsml;
#ifdef FEEDBACK
EnergySN = SphP[target].EnergySN;
#endif
#ifdef WITH_ID_IN_HYDRA
id = P[target].ID;
#endif
mass = P[target].Mass;
dhsmlDensityFactor = SphP[target].DhsmlDensityFactor;
rho = SphP[target].Density;
pressure = SphP[target].Pressure;
timestep = P[target].Ti_endstep - P[target].Ti_begstep;
soundspeed_i = sqrt(GAMMA * pressure / rho);
f1 = fabs(SphP[target].DivVel) /
(fabs(SphP[target].DivVel) + SphP[target].CurlVel +
0.0001 * soundspeed_i / SphP[target].Hsml / fac_mu);
#ifdef ART_CONDUCTIVITY
normGradEnergyInt_i = sqrt( pow(SphP[target].GradEnergyInt[0],2)+pow(SphP[target].GradEnergyInt[1],2)+pow(SphP[target].GradEnergyInt[2],2));
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
alpha_i = SphP[target].ArtBulkViscConst;
#endif
#ifdef DENSITY_INDEPENDENT_SPH
egyrho = SphP[target].EgyWtDensity;
entvarpred = SphP[target].EntVarPred;
dhsmlDensityFactor = SphP[target].DhsmlEgyDensityFactor;
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
if (SphP[target].DeltaEgySpec>0)
{
#ifdef DENSITY_INDEPENDENT_SPH
pressureFeedbackUpdated = updated_pressure_hydra(SphP[target].EntropyPred,SphP[target].EgyWtDensity,SphP[target].DeltaEgySpec);
#else
pressureFeedbackUpdated = updated_pressure_hydra(SphP[target].EntropyPred,SphP[target].Density,SphP[target].DeltaEgySpec);
#endif
}
else
{
pressureFeedbackUpdated = SphP[target].Pressure;
}
soundspeed_iFeedbackUpdated = sqrt(GAMMA * pressureFeedbackUpdated / rho);
f1FeedbackUpdated = fabs(SphP[target].DivVel) /
(fabs(SphP[target].DivVel) + SphP[target].CurlVel +
0.0001 * soundspeed_iFeedbackUpdated / SphP[target].Hsml / fac_mu);
-#endif
+#endif
+
+#ifdef METAL_DIFFUSION
+ MetalDiffusionCoeff = SphP[target].MetalDiffusionCoeff;
+#endif
}
else
{
pos = HydroDataGet[target].Pos;
vel = HydroDataGet[target].Vel;
h_i = HydroDataGet[target].Hsml;
#ifdef FEEDBACK
EnergySN = HydroDataGet[target].EnergySN;
#endif
#ifdef WITH_ID_IN_HYDRA
id = HydroDataGet[target].ID;
#endif
mass = HydroDataGet[target].Mass;
dhsmlDensityFactor = HydroDataGet[target].DhsmlDensityFactor;
rho = HydroDataGet[target].Density;
pressure = HydroDataGet[target].Pressure;
timestep = HydroDataGet[target].Timestep;
soundspeed_i = sqrt(GAMMA * pressure / rho);
f1 = HydroDataGet[target].F1;
#ifdef ART_CONDUCTIVITY
normGradEnergyInt_i = HydroDataGet[target].NormGradEnergyInt;
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO)|| defined(ART_VISCO_CD)
alpha_i = HydroDataGet[target].ArtBulkViscConst;
#endif
#ifdef DENSITY_INDEPENDENT_SPH
egyrho = HydroDataGet[target].EgyRho;
entvarpred = HydroDataGet[target].EntVarPred;
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
pressureFeedbackUpdated = HydroDataGet[target].PressureFeedbackUpdated;
soundspeed_iFeedbackUpdated = sqrt(GAMMA * pressureFeedbackUpdated / rho);
f1FeedbackUpdated = HydroDataGet[target].F1FeedbackUpdated;
+#endif
+
+#ifdef METAL_DIFFUSION
+ MetalDiffusionCoeff = HydroDataGet[target].MetalDiffusionCoeff;
#endif
-
}
/* initialize variables before SPH loop is started */
acc[0] = acc[1] = acc[2] = dtEntropy = 0;
maxSignalVel = 0;
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
accFeedbackUpdated[0] = accFeedbackUpdated[1] = accFeedbackUpdated[2] = 0;
maxSignalVelFeedbackUpdated = 0;
#endif
#ifdef FEEDBACK
dtEgySpecFeedback=0;
#endif
#ifdef DENSITY_INDEPENDENT_SPH
p_over_rho2_i = pressure / (egyrho * egyrho);
#else
p_over_rho2_i = pressure / (rho * rho) * dhsmlDensityFactor;
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
#ifdef DENSITY_INDEPENDENT_SPH
p_over_rho2_iFeedbackUpdated = pressureFeedbackUpdated / (egyrho * egyrho);
#else
p_over_rho2_iFeedbackUpdated = pressureFeedbackUpdated / (rho * rho) * dhsmlDensityFactor;
#endif
#endif
h_i2 = h_i * h_i;
#ifdef ART_CONDUCTIVITY
Arho_i = pressure/rho;
u_i = pressure/(rho*GAMMA_MINUS1);
dtEntropy_artcond=0;
#endif
#ifdef ART_VISCO_CD
for (ii = 0; ii < 3; ii++)
for (jj = 0; jj < 3; jj++)
{
DmatCD[ii][jj] = 0.;
TmatCD[ii][jj] = 0.;
}
R_CD = 0.;
maxSignalVelCD=0;
#endif
/* Now start the actual SPH computation for this particle */
startnode = All.MaxPart;
do
{
numngb = ngb_treefind_pairs(&pos[0], h_i, phase, &startnode);
for(n = 0; n < numngb; n++)
{
j = Ngblist[n];
dx = pos[0] - P[j].Pos[0];
dy = pos[1] - P[j].Pos[1];
dz = pos[2] - P[j].Pos[2];
#ifdef PERIODIC /* find the closest image in the given box size */
if(dx > boxHalf_X)
dx -= boxSize_X;
if(dx < -boxHalf_X)
dx += boxSize_X;
if(dy > boxHalf_Y)
dy -= boxSize_Y;
if(dy < -boxHalf_Y)
dy += boxSize_Y;
if(dz > boxHalf_Z)
dz -= boxSize_Z;
if(dz < -boxHalf_Z)
dz += boxSize_Z;
#endif
r2 = dx * dx + dy * dy + dz * dz;
h_j = SphP[j].Hsml;
if(r2 < h_i2 || r2 < h_j * h_j)
{
r = sqrt(r2);
if(r > 0)
{
#ifdef DENSITY_INDEPENDENT_SPH
p_over_rho2_j = SphP[j].Pressure / (SphP[j].EgyWtDensity * SphP[j].EgyWtDensity);
soundspeed_j = sqrt(GAMMA * SphP[j].Pressure / SphP[j].Density);
#else
p_over_rho2_j = SphP[j].Pressure / (SphP[j].Density * SphP[j].Density);
soundspeed_j = sqrt(GAMMA * p_over_rho2_j * SphP[j].Density);
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
if (SphP[j].DeltaEgySpec>0) /* the particle is touch by feedback */
{
#ifdef DENSITY_INDEPENDENT_SPH
pup = updated_pressure_hydra(SphP[j].EntropyPred,SphP[j].EgyWtDensity,SphP[j].DeltaEgySpec);
p_over_rho2_jFeedbackUpdated = pup / (SphP[j].EgyWtDensity * SphP[j].EgyWtDensity);
soundspeed_jFeedbackUpdated = sqrt(GAMMA * pup / SphP[j].Density);
#else
p_over_rho2_jFeedbackUpdated = updated_pressure_hydra(SphP[j].EntropyPred,SphP[j].Density,SphP[j].DeltaEgySpec) / (SphP[j].Density * SphP[j].Density);
soundspeed_jFeedbackUpdated = sqrt(GAMMA * p_over_rho2_jFeedbackUpdated * SphP[j].Density);
#endif
}
else
{
p_over_rho2_jFeedbackUpdated = p_over_rho2_j;
soundspeed_jFeedbackUpdated = soundspeed_j;
}
#endif
dvx = vel[0] - SphP[j].VelPred[0];
dvy = vel[1] - SphP[j].VelPred[1];
dvz = vel[2] - SphP[j].VelPred[2];
vdotr = dx * dvx + dy * dvy + dz * dvz;
if(All.ComovingIntegrationOn)
vdotr2 = vdotr + hubble_a2 * r2;
else
vdotr2 = vdotr;
if(r2 < h_i2)
{
hinv = 1.0 / h_i;
#ifndef TWODIMS
hinv4 = hinv * hinv * hinv * hinv;
#else
hinv4 = hinv * hinv * hinv / boxSize_Z;
#endif
u = r * hinv;
if(u < 0.5)
dwk_i = hinv4 * u * (KERNEL_COEFF_3 * u - KERNEL_COEFF_4);
else
dwk_i = hinv4 * KERNEL_COEFF_6 * (1.0 - u) * (1.0 - u);
}
else
{
dwk_i = 0;
}
if(r2 < h_j * h_j)
{
hinv = 1.0 / h_j;
#ifndef TWODIMS
hinv4 = hinv * hinv * hinv * hinv;
#else
hinv4 = hinv * hinv * hinv / boxSize_Z;
#endif
u = r * hinv;
if(u < 0.5)
dwk_j = hinv4 * u * (KERNEL_COEFF_3 * u - KERNEL_COEFF_4);
else
dwk_j = hinv4 * KERNEL_COEFF_6 * (1.0 - u) * (1.0 - u);
}
else
{
dwk_j = 0;
}
if(soundspeed_i + soundspeed_j > maxSignalVel)
maxSignalVel = soundspeed_i + soundspeed_j;
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
if (SphP[j].DeltaEgySpec>0) /* the particle is touch by feedback */
{
if(soundspeed_iFeedbackUpdated + soundspeed_jFeedbackUpdated > maxSignalVelFeedbackUpdated)
maxSignalVelFeedbackUpdated = soundspeed_iFeedbackUpdated + soundspeed_jFeedbackUpdated;
}
#endif
/*********************************/
/* standard form of viscosity */
/*********************************/
#if !defined(ART_VISCO_MM) && !defined(ART_VISCO_RO) && !defined(ART_VISCO_CD)
visc = artificial_viscosity(r,vdotr2,soundspeed_i,soundspeed_j,dwk_i,dwk_j,timestep,j,mass,rho,f1,&maxSignalVel);
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
viscFeedbackUpdated = artificial_viscosity(r,vdotr2,soundspeed_iFeedbackUpdated,soundspeed_jFeedbackUpdated,dwk_i,dwk_j,timestep,j,mass,rho,f1FeedbackUpdated,&maxSignalVelFeedbackUpdated);
#endif
#endif
/**************************************/
/* alternative form of viscosity RO MM*/
/**************************************/
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO)
visc = artificial_viscosity_improved(r,vdotr2,soundspeed_i,soundspeed_j,dwk_i,dwk_j,h_i,timestep,j,mass,rho,f1,&maxSignalVel);
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
viscFeedbackUpdated = artificial_viscosity_improved(r,vdotr2,soundspeed_iFeedbackUpdated,soundspeed_jFeedbackUpdated,dwk_i,dwk_j,h_i,timestep,j,mass,rho,f1FeedbackUpdated,&maxSignalVelFeedbackUpdated);
#endif
#endif
/**************************************/
/* alternative form of viscosity CD */
/**************************************/
#if defined(ART_VISCO_CD)
visc = artificial_viscosity_CD(r,vdotr2,soundspeed_i,soundspeed_j,dwk_i,dwk_j,timestep,j,mass,rho,f1,&maxSignalVel);
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
viscFeedbackUpdated = artificial_viscosity_CD(r,vdotr2,soundspeed_iFeedbackUpdated,soundspeed_jFeedbackUpdated,dwk_i,dwk_j,timestep,j,mass,rho,f1FeedbackUpdated,&maxSignalVelFeedbackUpdated);
#endif
#endif
/*********************************/
/* now finish sph */
/*********************************/
#ifndef DENSITY_INDEPENDENT_SPH
p_over_rho2_j *= SphP[j].DhsmlDensityFactor;
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
p_over_rho2_jFeedbackUpdated *= SphP[j].DhsmlDensityFactor;
#endif
#endif
hfc_visc = 0.5 * P[j].Mass * visc * (dwk_i + dwk_j) / r;
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
hfc_viscFeedbackUpdated = 0.5 * P[j].Mass * viscFeedbackUpdated * (dwk_i + dwk_j) / r;
#endif
#ifdef DENSITY_INDEPENDENT_SPH
hfc = hfc_visc;
/* leading-order term */
hfc += P[j].Mass *
(dwk_i*p_over_rho2_i*SphP[j].EntVarPred/entvarpred +
dwk_j*p_over_rho2_j*entvarpred/SphP[j].EntVarPred) / r;
/* grad-h corrections */
hfc += P[j].Mass *
(dwk_i*p_over_rho2_i*egyrho/rho*dhsmlDensityFactor +
dwk_j*p_over_rho2_j*SphP[j].EgyWtDensity/SphP[j].Density*SphP[j].DhsmlEgyDensityFactor) / r;
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
hfcFeedbackUpdated = hfc_viscFeedbackUpdated;
/* leading-order term */
hfcFeedbackUpdated += P[j].Mass *
(dwk_i*p_over_rho2_iFeedbackUpdated*SphP[j].EntVarPred/entvarpred +
dwk_j*p_over_rho2_jFeedbackUpdated*entvarpred/SphP[j].EntVarPred) / r;
/* grad-h corrections */
hfcFeedbackUpdated += P[j].Mass *
(dwk_i*p_over_rho2_iFeedbackUpdated*egyrho/rho*dhsmlDensityFactor +
dwk_j*p_over_rho2_jFeedbackUpdated*SphP[j].EgyWtDensity/SphP[j].Density*SphP[j].DhsmlEgyDensityFactor) / r;
#endif
#else /* if not DENSITY_INDEPENDENT_SPH */
hfc = hfc_visc + P[j].Mass * (p_over_rho2_i * dwk_i + p_over_rho2_j * dwk_j) / r;
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
hfcFeedbackUpdated = hfc_viscFeedbackUpdated + P[j].Mass * (p_over_rho2_iFeedbackUpdated * dwk_i + p_over_rho2_jFeedbackUpdated * dwk_j) / r;
#endif
#endif /* DENSITY_INDEPENDENT_SPH */
acc[0] -= hfc * dx;
acc[1] -= hfc * dy;
acc[2] -= hfc * dz;
dtEntropy += 0.5 * hfc_visc * vdotr2;
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
accFeedbackUpdated[0] -= hfcFeedbackUpdated * dx;
accFeedbackUpdated[1] -= hfcFeedbackUpdated * dy;
accFeedbackUpdated[2] -= hfcFeedbackUpdated * dz;
if(P[j].Ti_endstep == All.Ti_Current)
{
if(SphP[j].DeltaEgySpec == 0) /* the particle is active but not affected by feedback */
SphP[j].DeltaEgySpec = -1;
if(maxSignalVelFeedbackUpdated > SphP[j].MaxSignalVelFeedbackUpdated)
{
SphP[j].MaxSignalVelFeedbackUpdated = maxSignalVelFeedbackUpdated;
}
SphP[j].FeedbackUpdatedAccel[0] -= hfcFeedbackUpdated * dx;
SphP[j].FeedbackUpdatedAccel[1] -= hfcFeedbackUpdated * dy;
SphP[j].FeedbackUpdatedAccel[2] -= hfcFeedbackUpdated * dz;
}
#endif
/*********************************/
/* prediction for the next step */
/*********************************/
#ifdef ART_VISCO_CD
artificial_viscosity_CD_prediction(r,vdotr2,soundspeed_i,soundspeed_j,dwk_i,dwk_j,timestep,j,mass,rho,f1,&maxSignalVel);
#endif
/*****************************************/
/* ART CONDUCTIVITY */
/*****************************************/
#ifdef ART_CONDUCTIVITY
mu_ij = fac_mu * vdotr2 / r;
vsig_u = soundspeed_i + soundspeed_j - 3 * mu_ij;
Arho_j = SphP[j].Pressure / SphP[j].Density;
rho_ij = 0.5 * (rho + SphP[j].Density);
/* switch */
normGradEnergyInt_j = sqrt( pow(SphP[j].GradEnergyInt[0],2)+pow(SphP[j].GradEnergyInt[1],2)+pow(SphP[j].GradEnergyInt[2],2));
u_j = SphP[j].Pressure/(SphP[j].Density*GAMMA_MINUS1);
hfc_cond = P[j].Mass * All.ArtCondConst * vsig_u * (Arho_i-Arho_j)/ rho_ij * 0.5*(dwk_i + dwk_j);
dtEntropy_artcond = hfc_cond / GAMMA_MINUS1;
dtEntropy += dtEntropy_artcond ;
#endif
-
-
+ /*****************************************/
+ /* METAL DIFFUSION */
+ /*****************************************/
+
+#ifdef METAL_DIFFUSION
+ if(MetalDiffusionCoeff!=0 && SphP[j].MetalDiffusionCoeff!=0)
+ {
+ Kij = P[j].Mass / (SphP[j].Density * rho ) * 4.0 * MetalDiffusionCoeff * SphP[j].MetalDiffusionCoeff / ( MetalDiffusionCoeff + SphP[j].MetalDiffusionCoeff ) * 0.5 * (dwk_i + dwk_j) / r ;
+ MetalDiffusionA += Kij;
+
+ for(k=0;k<NELEMENTS;k++)
+ MetalDiffusionB[k] += Kij * SphP[j].Metal[k] ;
+ }
+#endif
+
+
/*****************************************/
/* FEEDBACK INTERACTION */
/*****************************************/
#ifdef FEEDBACK
rho_ij = 0.5 * (rho + SphP[j].Density);
if(P[j].Ti_endstep == All.Ti_Current)
{
/* additional feedback entropy */
if ((EnergySN > 0)||(SphP[j].EnergySN > 0))
{
/* find the thermal specific energy to release */
uintspec = 0.;
if (EnergySN > 0)
{
uintspec = 0;
}
if (SphP[j].EnergySN > 0)
{
uintspec += SphP[j].EnergySN * (1-All.SupernovaFractionInEgyKin)/ mass;
}
if(r2 < h_i2)
{
hinv = 1.0 / h_i;
hinv3 = hinv * hinv * hinv ;
u = r * hinv;
if(u < 0.5)
wk_i = hinv3 * (KERNEL_COEFF_1 + KERNEL_COEFF_2 * (u - 1) * u * u);
else
wk_i = hinv3 * KERNEL_COEFF_5 * (1.0 - u) * (1.0 - u) * (1.0 - u);
}
else
wk_i = 0;
if(r2 < h_j * h_j)
{
hinv = 1.0 / h_j;
hinv3 = hinv * hinv * hinv ;
u = r * hinv;
if(u < 0.5)
wk_j = hinv3 * (KERNEL_COEFF_1 + KERNEL_COEFF_2 * (u - 1) * u * u);
else
wk_j = hinv3 * KERNEL_COEFF_5 * (1.0 - u) * (1.0 - u) * (1.0 - u);
}
else
wk_j = 0;
wk = 0.5*(wk_i+wk_j);
/* dt in physical units */
dt = imax(timestep, (P[j].Ti_endstep - P[j].Ti_begstep)) * All.Timebase_interval/ hubble_a;
if(dt <= 0);
uintspec = 0;
/* thermal feedback */
uintspec = (uintspec/dt) *wk *0.5*(mass + P[j].Mass) /rho_ij *fac_pow ;
dtEntropy += uintspec;
dtEgySpecFeedback += uintspec;
}
}
#endif /* FEEDBACK */
}
}
}
}
while(startnode >= 0);
/* Now collect the result at the right place */
if(mode == 0)
{
for(k = 0; k < 3; k++)
SphP[target].HydroAccel[k] = acc[k];
SphP[target].DtEntropy = dtEntropy;
#ifdef FEEDBACK
SphP[target].DtEgySpecFeedback = dtEgySpecFeedback;
#endif
SphP[target].MaxSignalVel = maxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
SphP[target].VelocityDispersion[k] = VelocityDispersion[k];
#endif
#ifdef OUTPUT_CONDUCTIVITY
SphP[target].OptVar2 = dtEntropy_artcond;
#endif
#ifdef ART_VISCO_CD
/*collect DmatCD, TmatCD*/
for (ii = 0; ii < 3; ii++)
for (jj = 0; jj < 3; jj++)
{
SphP[target].DmatCD[ii][jj] = DmatCD[ii][jj];
SphP[target].TmatCD[ii][jj] = TmatCD[ii][jj];
}
SphP[target].R_CD = R_CD;
SphP[target].MaxSignalVelCD = maxSignalVelCD;
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
if (maxSignalVelFeedbackUpdated>SphP[target].MaxSignalVelFeedbackUpdated)
SphP[target].MaxSignalVelFeedbackUpdated = maxSignalVelFeedbackUpdated;
for(k = 0; k < 3; k++)
SphP[target].FeedbackUpdatedAccel[k] = accFeedbackUpdated[k];
-#endif
+#endif
+#ifdef METAL_DIFFUSION
+ SphP[target].MetalDiffusionA += MetalDiffusionA;
+ for(k = 0; k < NELEMENTS; k++)
+ SphP[target].MetalDiffusionB[k] += MetalDiffusionB[k];
+#endif
}
else
{
for(k = 0; k < 3; k++)
HydroDataResult[target].Acc[k] = acc[k];
HydroDataResult[target].DtEntropy = dtEntropy;
#ifdef FEEDBACK
HydroDataResult[target].DtEgySpecFeedback = dtEgySpecFeedback;
#endif
HydroDataResult[target].MaxSignalVel = maxSignalVel;
#ifdef COMPUTE_VELOCITY_DISPERSION
for(k = 0; k < VELOCITY_DISPERSION_SIZE; k++)
HydroDataResult[target].VelocityDispersion[k] = VelocityDispersion[k];
#endif
#ifdef OUTPUT_CONDUCTIVITY
HydroDataResult[target].OptVar2 = dtEntropy_artcond;
#endif
#ifdef ART_VISCO_CD
/*collect DmatCD, TmatCD*/
for (ii = 0; ii < 3; ii++)
for (jj = 0; jj < 3; jj++)
{
HydroDataResult[target].DmatCD[ii][jj] = DmatCD[ii][jj];
HydroDataResult[target].TmatCD[ii][jj] = TmatCD[ii][jj];
}
HydroDataResult[target].R_CD = R_CD;
HydroDataResult[target].MaxSignalVelCD = maxSignalVelCD;
#endif
#if defined(TIMESTEP_UPDATE_FOR_FEEDBACK) && defined(CHIMIE_THERMAL_FEEDBACK)
HydroDataResult[target].maxSignalVelFeedbackUpdated = maxSignalVelFeedbackUpdated;
for(k = 0; k < 3; k++)
HydroDataResult[target].AccFeedbackUpdated[k] = accFeedbackUpdated[k];
#endif
-
+#ifdef METAL_DIFFUSION
+ HydroDataResult[target].MetalDiffusionA += MetalDiffusionA;
+ for(k = 0; k < NELEMENTS; k++)
+ HydroDataResult[target].MetalDiffusionB[k] += MetalDiffusionB[k];
+#endif
}
}
/*! This is a comparison kernel for a sort routine, which is used to group
* particles that are going to be exported to the same CPU.
*/
int hydro_compare_key(const void *a, const void *b)
{
if(((struct hydrodata_in *) a)->Task < (((struct hydrodata_in *) b)->Task))
return -1;
if(((struct hydrodata_in *) a)->Task > (((struct hydrodata_in *) b)->Task))
return +1;
return 0;
}
/*! default from Gadget-2
*/
double artificial_viscosity(double r,double vdotr2,double soundspeed_i,double soundspeed_j,double dwk_i,double dwk_j,int timestep,int j,FLOAT mass,FLOAT rho,FLOAT f1,double *maxSignalVel)
{
double visc,vsig,rho_ij,mu_ij;
FLOAT f2;
#ifndef NOVISCOSITYLIMITER
double dt;
#endif
if(vdotr2 < 0) /* ... artificial viscosity */
{
mu_ij = fac_mu * vdotr2 / r; /* note: this is negative! */
vsig = soundspeed_i + soundspeed_j - 3 * mu_ij;
if(vsig > *maxSignalVel)
*maxSignalVel = vsig;
rho_ij = 0.5 * (rho + SphP[j].Density);
f2 = fabs(SphP[j].DivVel) / (fabs(SphP[j].DivVel) + SphP[j].CurlVel + 0.0001 * soundspeed_j / fac_mu / SphP[j].Hsml);
visc = 0.25 * All.ArtBulkViscConst * vsig * (-mu_ij) / rho_ij * (f1 + f2);
/* .... end artificial viscosity evaluation */
#ifndef NOVISCOSITYLIMITER
/* make sure that viscous acceleration is not too large */
dt = imax(timestep, (P[j].Ti_endstep - P[j].Ti_begstep)) * All.Timebase_interval;
if(dt > 0 && (dwk_i + dwk_j) < 0)
{
visc = dmin(visc, 0.5 * fac_vsic_fix * vdotr2 / (0.5 * (mass + P[j].Mass) * (dwk_i + dwk_j) * r * dt));
}
#endif
}
else
visc = 0;
return visc;
}
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO)
/*! Tiret version
*/
double artificial_viscosity_improved_old_tiret(double r,double vdotr2,double soundspeed_i,double soundspeed_j,double dwk_i,double dwk_j,int timestep,int j,FLOAT mass,FLOAT rho,FLOAT f1,double *maxSignalVel)
{
double visc,vsig,rho_ij,mu_ij;
double alpha_i,alpha_j,alpha_ij,beta_ij,soundspeed_ij;
FLOAT f2;
#ifndef NOVISCOSITYLIMITER
double dt;
#endif
if(vdotr2 < 0) /* ... artificial viscosity */
{
alpha_j = SphP[j].ArtBulkViscConst;
alpha_ij = 0.5*(alpha_i + alpha_j);
beta_ij = 3/2. * alpha_ij; /* 3/2 is compatible with Springel 05 */
mu_ij = fac_mu * vdotr2 / r; /* note: this is negative! */
vsig = soundspeed_i + soundspeed_j - 2*beta_ij/alpha_ij * mu_ij;
if(vsig > *maxSignalVel)
*maxSignalVel = vsig;
soundspeed_ij = 0.5 * (soundspeed_i + soundspeed_j);
f2 =
fabs(SphP[j].DivVel) / (fabs(SphP[j].DivVel) + SphP[j].CurlVel +
0.0001 * soundspeed_j / fac_mu / SphP[j].Hsml);
rho_ij = 0.5 * (rho + SphP[j].Density);
visc = (- alpha_ij * soundspeed_ij * mu_ij + beta_ij * mu_ij * mu_ij) / rho_ij * 0.5*(f1 + f2) ;
#ifndef NOVISCOSITYLIMITER
if(vdotr2 < 0)
{
/* make sure that viscous acceleration is not too large */
dt = imax(timestep, (P[j].Ti_endstep - P[j].Ti_begstep)) * All.Timebase_interval;
if(dt > 0 && (dwk_i + dwk_j) < 0)
{
visc = dmin(visc, 0.5 * fac_vsic_fix * vdotr2 /
(0.5 * (mass + P[j].Mass) * (dwk_i + dwk_j) * r * dt));
}
}
#endif
}
else
visc = 0;
return visc;
}
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO)
/*! Monaghan + variation of coefficient (!!! this may diverge for small rij)
*/
double artificial_viscosity_improved_old_Arnaudon(double r,double vdotr2,double soundspeed_i,double soundspeed_j,double dwk_i,double dwk_j,double h_i,int timestep,int j,FLOAT mass,FLOAT rho,FLOAT f1,double *maxSignalVel)
{
double visc,vsig,rho_ij,mu_ij;
double alpha_i,alpha_j,alpha_ij,beta_ij,soundspeed_ij;
double h_ij,r2;
FLOAT f2;
#ifndef NOVISCOSITYLIMITER
double dt;
#endif
if(vdotr2 < 0) /* ... artificial viscosity */
{
r2 = r*r;
h_ij= 0.5 * (h_i + SphP[j].Hsml);
mu_ij = h_ij* fac_mu * vdotr2 / r2;
alpha_j = SphP[j].ArtBulkViscConst;
alpha_ij = 0.5*(alpha_i + alpha_j);
beta_ij = 2 * alpha_ij; /* 3/2 is compatible with Springel 05 */
soundspeed_ij = 0.5 * (soundspeed_i + soundspeed_j);
rho_ij = 0.5 * (rho + SphP[j].Density);
f2 =
fabs(SphP[j].DivVel) / (fabs(SphP[j].DivVel) + SphP[j].CurlVel +
0.0001 * soundspeed_j / fac_mu / SphP[j].Hsml);
visc = (-alpha_ij *soundspeed_ij + beta_ij*mu_ij )*mu_ij / rho_ij *0.5 *(f1 + f2);
/* .... end artificial viscosity evaluation */
#ifndef NOVISCOSITYLIMITER
/* make sure that viscous acceleration is not too large */
dt = imax(timestep, (P[j].Ti_endstep - P[j].Ti_begstep)) * All.Timebase_interval;
if(dt > 0 && (dwk_i + dwk_j) < 0)
{
visc = dmin(visc, 0.5 * fac_vsic_fix * vdotr2 /
(0.5 * (mass + P[j].Mass) * (dwk_i + dwk_j) * r * dt));
}
#endif
}
else
visc = 0;
return visc;
}
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO)
/*! Rosswog (with divergence corrected)
*/
double artificial_viscosity_improved_bis(double r,double vdotr2,double soundspeed_i,double soundspeed_j,double dwk_i,double dwk_j,double h_i,int timestep,int j,FLOAT mass,FLOAT rho,FLOAT f1,double *maxSignalVel)
{
double visc,vsig,rho_ij,mu_ij;
double alpha_i,alpha_j,alpha_ij,beta_ij,soundspeed_ij;
double h_ij,r2;
FLOAT f2;
#ifndef NOVISCOSITYLIMITER
double dt;
#endif
if(vdotr2 < 0) /* ... artificial viscosity */
{
r2 = r*r;
h_ij= 0.5 * (h_i + SphP[j].Hsml);
mu_ij = h_ij* fac_mu * vdotr2 / (r2+0.01*(h_ij*h_ij));
alpha_j = SphP[j].ArtBulkViscConst;
alpha_ij = 0.5*(alpha_i + alpha_j);
beta_ij = 2 * alpha_ij; /* 3/2 is compatible with Springel 05 */
soundspeed_ij = 0.5 * (soundspeed_i + soundspeed_j);
rho_ij = 0.5 * (rho + SphP[j].Density);
f2 =
fabs(SphP[j].DivVel) / (fabs(SphP[j].DivVel) + SphP[j].CurlVel +
0.0001 * soundspeed_j / fac_mu / SphP[j].Hsml);
visc = (-alpha_ij *soundspeed_ij + beta_ij*mu_ij )*mu_ij / rho_ij *0.5 *(f1 + f2);
/* .... end artificial viscosity evaluation */
#ifndef NOVISCOSITYLIMITER
/* make sure that viscous acceleration is not too large */
dt = imax(timestep, (P[j].Ti_endstep - P[j].Ti_begstep)) * All.Timebase_interval;
if(dt > 0 && (dwk_i + dwk_j) < 0)
{
visc = dmin(visc, 0.5 * fac_vsic_fix * vdotr2 /
(0.5 * (mass + P[j].Mass) * (dwk_i + dwk_j) * r * dt));
}
#endif
}
else
visc = 0;
return visc;
}
#endif
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO)
/*! Springel + Rosswog
*/
double artificial_viscosity_improved(double r,double vdotr2,double soundspeed_i,double soundspeed_j,double dwk_i,double dwk_j,double h_i,int timestep,int j,FLOAT mass,FLOAT rho,FLOAT f1,double *maxSignalVel)
{
double visc,vsig,rho_ij,mu_ij;
double alpha_i,alpha_j,alpha_ij,beta_ij,soundspeed_ij;
double h_ij,r2;
FLOAT f2;
#ifndef NOVISCOSITYLIMITER
double dt;
#endif
if(vdotr2 < 0) /* ... artificial viscosity */
{
alpha_j = SphP[j].ArtBulkViscConst;
alpha_ij = 0.5*(alpha_i + alpha_j);
mu_ij = fac_mu * vdotr2 / r; /* note: this is negative! */
vsig = soundspeed_i + soundspeed_j - 3 * mu_ij;
if(vsig > *maxSignalVel)
*maxSignalVel = vsig;
rho_ij = 0.5 * (rho + SphP[j].Density);
f2 = fabs(SphP[j].DivVel) / (fabs(SphP[j].DivVel) + SphP[j].CurlVel + 0.0001 * soundspeed_j / fac_mu / SphP[j].Hsml);
visc = 0.25 * alpha_ij * vsig * (-mu_ij) / rho_ij * (f1 + f2);
/* .... end artificial viscosity evaluation */
#ifndef NOVISCOSITYLIMITER
/* make sure that viscous acceleration is not too large */
dt = imax(timestep, (P[j].Ti_endstep - P[j].Ti_begstep)) * All.Timebase_interval;
if(dt > 0 && (dwk_i + dwk_j) < 0)
{
visc = dmin(visc, 0.5 * fac_vsic_fix * vdotr2 / (0.5 * (mass + P[j].Mass) * (dwk_i + dwk_j) * r * dt));
}
#endif
}
else
visc = 0;
return visc;
}
#endif
#if defined(ART_VISCO_CD)
/*! Cullen-Dehnen artificial viscosity
*/
double artificial_viscosity_CD(double r,double vdotr2,double soundspeed_i,double soundspeed_j,double dwk_i,double dwk_j,int timestep,int j,FLOAT mass,FLOAT rho,FLOAT f1,double *maxSignalVel)
{
double visc,vsig,rho_ij,mu_ij;
FLOAT f2;
#ifndef NOVISCOSITYLIMITER
double dt;
#endif
alpha_j = SphP[j].ArtBulkViscConst;
alpha_ij = 0.5*(alpha_i + alpha_j);
beta_ij = 3/2. * alpha_ij;
mu_ij = fac_mu * vdotr2 / r; /* note: this is negative! */
vsig = soundspeed_i + soundspeed_j - 2*beta_ij/alpha_ij * mu_ij;
if(vsig > maxSignalVel)
maxSignalVel = vsig;
soundspeed_ij = 0.5 * (soundspeed_i + soundspeed_j);
rho_ij = 0.5 * (rho + SphP[j].Density);
visc = (- alpha_ij * soundspeed_ij * mu_ij + beta_ij * mu_ij * mu_ij) / rho_ij;
#ifndef NOVISCOSITYLIMITER
if(vdotr2 < 0)
{
/* make sure that viscous acceleration is not too large */
dt = imax(timestep, (P[j].Ti_endstep - P[j].Ti_begstep)) * All.Timebase_interval;
if(dt > 0 && (dwk_i + dwk_j) < 0)
{
visc = dmin(visc, 0.5 * fac_vsic_fix * vdotr2 /
(0.5 * (mass + P[j].Mass) * (dwk_i + dwk_j) * r * dt));
}
}
#endif
return visc;
}
#endif
#if defined(ART_VISCO_CD)
/*! Cullen-Dehnen artificial viscosity
*/
double artificial_viscosity_CD_prediction(double r,double vdotr2,double soundspeed_i,double soundspeed_j,double dwk_i,double dwk_j,double mu_ij,int timestep,int j,FLOAT mass,FLOAT rho,FLOAT f1,double *maxSignalVel)
{
/* WARNING WARNING WARNING WARNING WARNING WARNING WARNING
This part is not finished and should not compile.
WARNING WARNING WARNING WARNING WARNING WARNING WARNING * /
/* COMPUTE wk_i, wk_j, wk */
if(r2 < h_i2)
{
hinv = 1.0 / h_i;
hinv3 = hinv * hinv * hinv ;
u = r * hinv;
if(u < 0.5)
wk_i = hinv3 * (KERNEL_COEFF_1 + KERNEL_COEFF_2 * (u - 1) * u * u);
else
wk_i = hinv3 * KERNEL_COEFF_5 * (1.0 - u) * (1.0 - u) * (1.0 - u);
}
else
wk_i = 0;
if(r2 < h_j * h_j)
{
hinv = 1.0 / h_j;
hinv3 = hinv * hinv * hinv ;
u = r * hinv;
if(u < 0.5)
wk_j = hinv3 * (KERNEL_COEFF_1 + KERNEL_COEFF_2 * (u - 1) * u * u);
else
wk_j = hinv3 * KERNEL_COEFF_5 * (1.0 - u) * (1.0 - u) * (1.0 - u);
}
else
wk_j = 0;
/* wk = 0.5*(wk_i+wk_j); */
wk = 0.5*(dwk_i + dwk_j)/r;
/* CHOICE OF THE WEIGHT */
wk = P[j].Mass * wk / SphP[j].Density;
/* COMPUTE the matrix Di, Ti */
DmatCD[0][0] += dvx * dx * wk;
DmatCD[1][0] += dvy * dx * wk;
DmatCD[2][0] += dvz * dx * wk;
DmatCD[0][1] += dvx * dy * wk;
DmatCD[1][1] += dvy * dy * wk;
DmatCD[2][1] += dvz * dy * wk;
DmatCD[0][2] += dvx * dz * wk;
DmatCD[1][2] += dvy * dz * wk;
DmatCD[2][2] += dvz * dz * wk;
TmatCD[0][0] += dx * dx * wk;
TmatCD[1][0] += dy * dx * wk;
TmatCD[2][0] += dz * dx * wk;
TmatCD[0][1] += dx * dy * wk;
TmatCD[1][1] += dy * dy * wk;
TmatCD[2][1] += dz * dy * wk;
TmatCD[0][2] += dx * dz * wk;
TmatCD[1][2] += dy * dz * wk;
TmatCD[2][2] += dz * dz * wk;
/* COMPUTE maxSignalVel */
dv_dot_dx = dvx * dx + dvy * dy + dvz * dz;
vsig = soundspeed_ij - dmin(0., dv_dot_dx);
if(vsig > maxSignalVelCD)
maxSignalVelCD = vsig;
/* compute chock indicator */
if (SphP[j].DiVelAccurate>0.)
sign_DiVel = 1.;
else
sign_DiVel = -1.;
R_CD += 0.5 * sign_DiVel * P[j].Mass * (wk_i + wk_j);
}
#endif
#ifdef TIMESTEP_UPDATE_FOR_FEEDBACK
/*! This function return the pressure as a function
* of entropy and density, but add the contribution
* of the feedback energy.
*/
FLOAT updated_pressure_hydra(FLOAT EntropyPred,FLOAT Density,FLOAT DeltaEgySpec)
{
FLOAT pressure;
FLOAT EgySpec,EgySpecUpdated;
/* energy from entropy */
EgySpec = EntropyPred / GAMMA_MINUS1 * pow(Density*a3inv, GAMMA_MINUS1);
EgySpecUpdated = EgySpec + DeltaEgySpec;
/* pressure */
pressure = GAMMA_MINUS1 * (Density*a3inv) * EgySpecUpdated;
return pressure;
}
#endif
diff --git a/src/predict.c b/src/predict.c
index 2968fa7..4e2496c 100644
--- a/src/predict.c
+++ b/src/predict.c
@@ -1,193 +1,207 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include <gsl/gsl_math.h>
#include "allvars.h"
#include "proto.h"
/*! \file predict.c
* \brief drift particles by a small time interval
*
* This function contains code to implement a drift operation on all the
* particles, which represents one part of the leapfrog integration scheme.
*/
/*! This function drifts all particles from the current time to the future:
* time0 - > time1
*
* If there is no explicit tree construction in the following timestep, the
* tree nodes are also drifted and updated accordingly. Note: For periodic
* boundary conditions, the mapping of coordinates onto the interval
* [0,All.BoxSize] is only done before the domain decomposition, or for
* outputs to snapshot files. This simplifies dynamic tree updates, and
* allows the domain decomposition to be carried out only every once in a
* while.
*/
void move_particles(int time0, int time1)
{
int i, j;
double dt_drift, dt_gravkick, dt_hydrokick, dt_entr;
double t0, t1;
-
+
+#ifdef METAL_DIFFUSION
+ double eAdt;
+#endif
t0 = second();
if(All.ComovingIntegrationOn)
{
dt_drift = get_drift_factor(time0, time1);
dt_gravkick = get_gravkick_factor(time0, time1);
dt_hydrokick = get_hydrokick_factor(time0, time1);
}
else
{
dt_drift = dt_gravkick = dt_hydrokick = (time1 - time0) * All.Timebase_interval;
}
for(i = 0; i < NumPart; i++)
{
for(j = 0; j < 3; j++)
P[i].Pos[j] += P[i].Vel[j] * dt_drift;
if(P[i].Type == 0)
{
#ifdef PMGRID
for(j = 0; j < 3; j++)
{
SphP[i].VelPred[j] += (P[i].GravAccel[j] + P[i].GravPM[j]) * dt_gravkick + SphP[i].HydroAccel[j] * dt_hydrokick;
}
#else
for(j = 0; j < 3; j++)
{
SphP[i].VelPred[j] += P[i].GravAccel[j] * dt_gravkick + SphP[i].HydroAccel[j] * dt_hydrokick;
}
#endif
#ifdef DISSIPATION_FORCES
for(j = 0; j < 3; j++)
{
SphP[i].VelPred[j] += SphP[i].DissipationForcesAccel[j] * dt_hydrokick;
}
#endif
SphP[i].Density *= exp(-SphP[i].DivVel * dt_drift);
SphP[i].Hsml *= exp(0.333333333333 * SphP[i].DivVel * dt_drift);
if(SphP[i].Hsml < All.MinGasHsml)
SphP[i].Hsml = All.MinGasHsml;
dt_entr = (time1 - (P[i].Ti_begstep + P[i].Ti_endstep) / 2) * All.Timebase_interval;
#ifdef DENSITY_INDEPENDENT_SPH
SphP[i].EgyWtDensity *= exp(-SphP[i].DivVel * dt_drift);
SphP[i].EntVarPred = pow(SphP[i].Entropy + SphP[i].DtEntropy * dt_entr, 1/GAMMA);
SphP[i].Pressure = (SphP[i].Entropy + SphP[i].DtEntropy * dt_entr) * pow(SphP[i].EgyWtDensity, GAMMA);
#else
SphP[i].Pressure = (SphP[i].Entropy + SphP[i].DtEntropy * dt_entr) * pow(SphP[i].Density, GAMMA);
#endif
#ifdef ENTROPYPRED
SphP[i].EntropyPred = (SphP[i].Entropy + SphP[i].DtEntropy * dt_entr);
#endif
#ifdef CHECK_ENTROPY_SIGN
if ((SphP[i].EntropyPred < 0)||(SphP[i].Entropy < 0))
{
printf("\ntask=%d: EntropyPred less than zero in move_particles !\n", ThisTask);
printf("ID=%d Entropy=%g EntropyPred=%g DtEntropy=%g dt_entr=%g\n",P[i].ID,SphP[i].Entropy,SphP[i].EntropyPred,SphP[i].DtEntropy,dt_entr);
fflush(stdout);
endrun(333021);
}
#endif
#ifdef NO_NEGATIVE_PRESSURE
if (SphP[i].Pressure<0)
{
printf("\ntask=%d: pressure less than zero in move_particles !\n", ThisTask);
printf("ID=%d Entropy=%g DtEntropy*dt=%g Density=%g DtEntropy=%g dt=%g\n",P[i].ID,SphP[i].Entropy,SphP[i].DtEntropy*dt_entr,SphP[i].Density,SphP[i].DtEntropy,dt_entr);
fflush(stdout);
endrun(333022);
}
#endif
/***********************************************************/
/* compute art visc coeff */
/***********************************************************/
#if defined(ART_VISCO_MM)|| defined(ART_VISCO_RO) || defined(ART_VISCO_CD)
move_art_visc(i,dt_drift);
#endif
+ /***********************************************************/
+ /* compute diffusion */
+ /***********************************************************/
-
+#ifdef METAL_DIFFUSION
+ if(SphP[i].MetalDiffusionA!=0)
+ for(j = 0; j < NELEMENTS; j++)
+ if(SphP[i].MetalDiffusionA!=0)
+ {
+ eAdt = exp( SphP[i].MetalDiffusionA * dt_drift );
+ SphP[i].Metal[j] = SphP[i].Metal[j] * eAdt + SphP[i].MetalDiffusionB[j] / SphP[i].MetalDiffusionA * (1.0 - eAdt) ;
+ }
+#endif
}
}
/* if domain-decomp and tree are not going to be reconstructed, update dynamically. */
if(All.NumForcesSinceLastDomainDecomp < All.TotNumPart * All.TreeDomainUpdateFrequency)
{
for(i = 0; i < Numnodestree; i++)
for(j = 0; j < 3; j++)
Nodes[All.MaxPart + i].u.d.s[j] += Extnodes[All.MaxPart + i].vs[j] * dt_drift;
force_update_len();
force_update_pseudoparticles();
}
t1 = second();
All.CPU_Predict += timediff(t0, t1);
}
/*! This function makes sure that all particle coordinates (Pos) are
* periodically mapped onto the interval [0, BoxSize]. After this function
* has been called, a new domain decomposition should be done, which will
* also force a new tree construction.
*/
#ifdef PERIODIC
void do_box_wrapping(void)
{
int i, j;
double boxsize[3];
for(j = 0; j < 3; j++)
boxsize[j] = All.BoxSize;
#ifdef LONG_X
boxsize[0] *= LONG_X;
#endif
#ifdef LONG_Y
boxsize[1] *= LONG_Y;
#endif
#ifdef LONG_Z
boxsize[2] *= LONG_Z;
#endif
for(i = 0; i < NumPart; i++)
for(j = 0; j < 3; j++)
{
while(P[i].Pos[j] < 0)
P[i].Pos[j] += boxsize[j];
while(P[i].Pos[j] >= boxsize[j])
P[i].Pos[j] -= boxsize[j];
}
}
#endif

Event Timeline