diff --git a/src/GooseFEM/DynamicsDiagonalPeriodic.h b/src/GooseFEM/DynamicsDiagonalPeriodic.h index 720f8bb..89bed53 100644 --- a/src/GooseFEM/DynamicsDiagonalPeriodic.h +++ b/src/GooseFEM/DynamicsDiagonalPeriodic.h @@ -1,351 +1,353 @@ /* ========================================== DESCRIPTION ========================================== (c - GPLv3) T.W.J. de Geus (Tom) | tom@geus.me | www.geus.me | github.com/tdegeus/GooseFEM ================================================================================================= */ #ifndef GOOSEFEM_DYNAMICS_DIAGONAL_PERIODIC_H #define GOOSEFEM_DYNAMICS_DIAGONAL_PERIODIC_H #include "Macros.h" #include // ------------------------------------------------------------------------------------------------- namespace GooseFEM { namespace Dynamics { namespace Diagonal { // =========================================== OVERVIEW ============================================ template class Periodic { public: // variables // --------- // element/quadrature/material definition (should match mesh) std::shared_ptr elem; // mesh : nodal quantities and connectivity MatS dofs; // DOF-numbers of each node (column of 'vectors') MatS conn; // node numbers of each element (column of elements) MatD x0; // initial positions of each node (column of vectors) MatD u; // displacements of each node (column of vectors) MatD v; // velocities of each node (column of vectors) MatD a; // accelerations of each node (column of vectors) size_t nnode; // number of nodes size_t nelem; // number of elements size_t nne; // number of nodes-per-element size_t ndim; // number of dimensions size_t ndof; // number of DOFs (after eliminating periodic dependencies) // linear system ColD Minv; // inverse of mass matrix (constructed diagonal -> inverse == diagonal) ColD Fu; // force that depends on displacement (column) ColD Fv; // force that depends on velocity (and displacement) (column) ColD V; // velocity (column) ColD V_n; // velocity (column, last increment) ColD A; // acceleration (column) ColD A_n; // acceleration (column, last increment) // time integration double dt; // time step double t = 0.0; // current time double alpha; // non-Galilean damping coefficient // constructor // ----------- + Periodic(){}; + Periodic(std::shared_ptr elem, const MatD &x0, const MatS &conn, const MatS &dofs, double dt, double alpha=0.0 ); // functions // --------- void velocityVerlet(); // one time step of time integrator void Verlet(); // one time step of time integrator (Fv == 0) void computeMinv(); // element loop: inverse mass matrix <- "elem->computeM" void computeFu(); // element loop: displacement dependent forces <- "elem->computeFu" void computeFv(); // element loop: velocity dependent forces <- "elem->computeFv" void post(); // element loop: post-process <- "elem->post" }; // ========================================== SOURCE CODE ========================================== template Periodic::Periodic( std::shared_ptr _elem, const MatD &_x0, const MatS &_conn, const MatS &_dofs, double _dt, double _alpha ) { // problem specific settings elem = _elem; // mesh definition x0 = _x0; conn = _conn; dofs = _dofs; // time integration dt = _dt; alpha = _alpha; // extract mesh size from definition nnode = static_cast(x0 .rows()); ndim = static_cast(x0 .cols()); nelem = static_cast(conn.rows()); nne = static_cast(conn.cols()); ndof = dofs.maxCoeff()+1; // basic check (mostly the user is 'trusted') assert( dofs.size() == nnode * ndim ); assert( ndof < nnode * ndim ); // nodal quantities u.conservativeResize(nnode,ndim); u.setZero(); v.conservativeResize(nnode,ndim); v.setZero(); a.conservativeResize(nnode,ndim); a.setZero(); // linear system (DOFs) Minv.conservativeResize(ndof); Minv.setZero(); Fu .conservativeResize(ndof); Fu .setZero(); Fv .conservativeResize(ndof); Fv .setZero(); V .conservativeResize(ndof); V .setZero(); V_n .conservativeResize(ndof); V_n .setZero(); A .conservativeResize(ndof); A .setZero(); A_n .conservativeResize(ndof); A_n .setZero(); // compute inverse mass matrix : assumed constant in time computeMinv(); } // ================================================================================================= template void Periodic::velocityVerlet() { // (1) new nodal positions (displacements) // - apply update (nodal) : x_{n+1} = x_n + dt * v_n + .5 * dt^2 * a_n" u += dt * v + ( .5 * std::pow(dt,2.) ) * a; // - compute forces that are dependent on the displacement, but not on the velocity computeFu(); // (2a) estimate nodal velocities // - update velocities (DOFs) V.noalias() = V_n + dt * A; // - convert to nodal velocity (periodicity implies that several nodes depend on the same DOF) for ( size_t i=0; i new nodal accelerations, their DOF equivalents, and a 'back-up' // "v" == "V_n" -> new nodal velocities, and a 'back-up' // "u" -> new nodal displacements // The forces "Fu" and "Fv" correspond to this state of the system } // ================================================================================================= template void Periodic::Verlet() { // (1) new nodal positions (displacements) // - apply update (nodal) : x_{n+1} = x_n + dt * v_n + .5 * dt^2 * a_n" u += dt * v + ( .5 * std::pow(dt,2.) ) * a; // - compute forces that are dependent on the displacement, but not on the velocity computeFu(); // - solve for accelerations (DOFs) A.noalias() = Minv.cwiseProduct( - Fu ); // - convert to nodal acceleration (periodicity implies that several nodes depend on the same DOF) for ( size_t i=0; i new nodal accelerations, their DOF equivalents, and a 'back-up' // "v" == "V_n" -> new nodal velocities, and a 'back-up' // "u" -> new nodal displacements // The forces "Fu" correspond to this state of the system } // ================================================================================================= template void Periodic::computeMinv() { // array with DOF numbers of each node cppmat::matrix2 dofe(nne,ndim); // zero-initialize mass matrix (only the inverse is stored) ColD M(ndof); M.setZero(); // loop over all elements for ( size_t e = 0 ; e < nelem ; ++e ) { // - nodal positions, displacement, and DOF numbers for element "e" for ( size_t m = 0 ; m < nne ; ++m ) { for ( size_t i = 0 ; i < ndim ; ++i ) { elem->xe(m,i) = x0 (conn(e,m),i); elem->ue(m,i) = u (conn(e,m),i); dofe (m,i) = dofs(conn(e,m),i); } } // - compute element mass matrix using problem specific "Element" class elem->computeM(e); // - assemble element mass matrix : take only the diagonal for ( size_t i = 0 ; i < nne*ndim ; ++i ) M(dofe[i]) += elem->M(i,i); // - check that the user provided a diagonal mass matrix #ifndef NDEBUG - for ( size_t i = 0 ; i < nne*ndim ; ++i ) { - for ( size_t j = 0 ; j < nne*ndim ; ++j ) { - if ( i != j ) assert( ! elem->M(i,j) ); - else assert( elem->M(i,i) ); - } + for ( size_t i = 0 ; i < nne*ndim ; ++i ) { + for ( size_t j = 0 ; j < nne*ndim ; ++j ) { + if ( i != j ) assert( ! elem->M(i,j) ); + else assert( elem->M(i,i) ); } + } #endif } // compute inverse of the mass matrix Minv = M.cwiseInverse(); } // ================================================================================================= template void Periodic::computeFu() { // array with DOF numbers of each node cppmat::matrix2 dofe(nne,ndim); // zero-initialize displacement dependent force Fu.setZero(); // loop over all elements for ( size_t e = 0 ; e < nelem ; ++e ) { // - nodal positions, displacement, and DOF numbers for element "e" for ( size_t m = 0 ; m < nne ; ++m ) { for ( size_t i = 0 ; i < ndim ; ++i ) { elem->xe(m,i) = x0 (conn(e,m),i); elem->ue(m,i) = u (conn(e,m),i); dofe (m,i) = dofs(conn(e,m),i); } } // - compute element force using problem specific "Element" class elem->computeFu(e); // - assemble force to global system for ( size_t i = 0 ; i < nne*ndim ; ++i ) Fu(dofe[i]) += elem->fu(i); } } // ================================================================================================= template void Periodic::computeFv() { // array with DOF numbers of each node cppmat::matrix2 dofe(nne,ndim); // zero-initialize velocity dependent force Fv.setZero(); // loop over all elements for ( size_t e = 0 ; e < nelem ; ++e ) { // - nodal positions, displacement, velocity, and DOF numbers for element "e" for ( size_t m = 0 ; m < nne ; ++m ) { for ( size_t i = 0 ; i < ndim ; ++i ) { elem->xe(m,i) = x0 (conn(e,m),i); elem->ue(m,i) = u (conn(e,m),i); elem->ve(m,i) = v (conn(e,m),i); dofe (m,i) = dofs(conn(e,m),i); } } // - compute element force using problem specific "Element" class elem->computeFv(e); // - assemble force to global system for ( size_t i = 0 ; i < nne*ndim ; ++i ) Fv(dofe[i]) += elem->fv(i); } } // ================================================================================================= template void Periodic::post() { // array with DOF numbers of each node cppmat::matrix2 dofe(nne,ndim); // loop over all elements for ( size_t e = 0 ; e < nelem ; ++e ) { // - nodal positions, displacement, velocity, and DOF numbers for element "e" for ( size_t m = 0 ; m < nne ; ++m ) { for ( size_t i = 0 ; i < ndim ; ++i ) { elem->xe(m,i) = x0 (conn(e,m),i); elem->ue(m,i) = u (conn(e,m),i); elem->ve(m,i) = v (conn(e,m),i); dofe (m,i) = dofs(conn(e,m),i); } } // - run post-process function of the problem specific "Element" class (output is handled there) elem->post(e); } } // ================================================================================================= }}} // namespace GooseFEM::Dynamics::Diagonal #endif diff --git a/src/GooseFEM/DynamicsDiagonalSemiPeriodic.h b/src/GooseFEM/DynamicsDiagonalSemiPeriodic.h index 0708763..4fefbb8 100644 --- a/src/GooseFEM/DynamicsDiagonalSemiPeriodic.h +++ b/src/GooseFEM/DynamicsDiagonalSemiPeriodic.h @@ -1,377 +1,383 @@ /* ========================================== DESCRIPTION ========================================== (c - GPLv3) T.W.J. de Geus (Tom) | tom@geus.me | www.geus.me | github.com/tdegeus/GooseFEM ================================================================================================= */ #ifndef GOOSEFEM_DYNAMICS_DIAGONAL_SEMIPERIODIC_H #define GOOSEFEM_DYNAMICS_DIAGONAL_SEMIPERIODIC_H #include "Macros.h" #include // ------------------------------------------------------------------------------------------------- namespace GooseFEM { namespace Dynamics { namespace Diagonal { // =========================================== OVERVIEW ============================================ template class SemiPeriodic { public: // variables // --------- // element/quadrature/material definition (should match mesh) std::shared_ptr elem; // mesh : nodal quantities and connectivity MatS dofs; // DOF-numbers of each node (column of 'vectors') MatS conn; // node numbers of each element (column of elements) MatD x0; // initial positions of each node (column of vectors) MatD u; // displacements of each node (column of vectors) MatD v; // velocities of each node (column of vectors) MatD a; // accelerations of each node (column of vectors) size_t nnode; // number of nodes size_t nelem; // number of elements size_t nne; // number of nodes-per-element size_t ndim; // number of dimensions size_t ndof; // number of DOFs (after eliminating periodic dependencies) // fixed DOFs size_t nfixed; // number of fixed DOFs ColS fixedDofs; // DOF-number that are prescribed ColD fixedV; // prescribed velocity for the fixed DOFs ColD fixedA; // prescribed acceleration for the fixed DOFs // linear system ColD Minv; // inverse of mass matrix (constructed diagonal -> inverse == diagonal) ColD Fu; // force that depends on displacement (column) ColD Fv; // force that depends on velocity (and displacement) (column) ColD V; // velocity (column) ColD V_n; // velocity (column, last increment) ColD A; // acceleration (column) ColD A_n; // acceleration (column, last increment) // time integration double dt; // time step double t = 0.0; // current time double alpha; // non-Galilean damping coefficient // constructor // ----------- + SemiPeriodic(){}; + SemiPeriodic(std::shared_ptr elem, const MatD &x0, const MatS &conn, const MatS &dofs, const ColS &fixedDofs, double dt, double alpha=0.0 ); // functions // --------- void velocityVerlet(); // one time step of time integrator void Verlet(); // one time step of time integrator (Fv == 0) void computeMinv(); // element loop: inverse mass matrix <- "elem->computeM" void computeFu(); // element loop: displacement dependent forces <- "elem->computeFu" void computeFv(); // element loop: velocity dependent forces <- "elem->computeFv" void post(); // element loop: post-process <- "elem->post" }; // ========================================== SOURCE CODE ========================================== template SemiPeriodic::SemiPeriodic( std::shared_ptr _elem, const MatD &_x0, const MatS &_conn, const MatS &_dofs, const ColS &_fixedDofs, double _dt, double _alpha ) { // problem specific settings elem = _elem; // mesh definition x0 = _x0; conn = _conn; dofs = _dofs; // time integration dt = _dt; alpha = _alpha; // fixed DOFs fixedDofs = _fixedDofs; nfixed = static_cast(fixedDofs.size()); // extract mesh size from definition nnode = static_cast(x0 .rows()); ndim = static_cast(x0 .cols()); nelem = static_cast(conn.rows()); nne = static_cast(conn.cols()); ndof = dofs.maxCoeff()+1; // basic check (mostly the user is 'trusted') assert( dofs.size() == nnode * ndim ); assert( ndof < nnode * ndim ); + #ifndef NDEBUG + for ( size_t i = 0 ; i < nfixed ; ++i ) assert( fixedDofs(i) < ndof ); + #endif + // nodal quantities u.conservativeResize(nnode,ndim); u.setZero(); v.conservativeResize(nnode,ndim); v.setZero(); a.conservativeResize(nnode,ndim); a.setZero(); // linear system (DOFs) Minv.conservativeResize(ndof); Minv.setZero(); Fu .conservativeResize(ndof); Fu .setZero(); Fv .conservativeResize(ndof); Fv .setZero(); V .conservativeResize(ndof); V .setZero(); V_n .conservativeResize(ndof); V_n .setZero(); A .conservativeResize(ndof); A .setZero(); A_n .conservativeResize(ndof); A_n .setZero(); // fixed DOFs : default zero velocity and acceleration fixedV.conservativeResize(nfixed); fixedV.setZero(); fixedA.conservativeResize(nfixed); fixedA.setZero(); // compute inverse mass matrix : assumed constant in time computeMinv(); } // ================================================================================================= template void SemiPeriodic::velocityVerlet() { // (1) new nodal positions (displacements) // - apply update (nodal) : x_{n+1} = x_n + dt * v_n + .5 * dt^2 * a_n" u += dt * v + ( .5 * std::pow(dt,2.) ) * a; // - compute forces that are dependent on the displacement, but not on the velocity computeFu(); // (2a) estimate nodal velocities // - update velocities (DOFs) V.noalias() = V_n + dt * A; + // - set fixed velocity + for ( size_t i=0; i new nodal accelerations, their DOF equivalents, and a 'back-up' // "v" == "V_n" -> new nodal velocities, and a 'back-up' // "u" -> new nodal displacements // The forces "Fu" and "Fv" correspond to this state of the system } // ================================================================================================= template void SemiPeriodic::Verlet() { // (1) new nodal positions (displacements) // - apply update (nodal) : x_{n+1} = x_n + dt * v_n + .5 * dt^2 * a_n" u += dt * v + ( .5 * std::pow(dt,2.) ) * a; // - compute forces that are dependent on the displacement, but not on the velocity computeFu(); // - solve for accelerations (DOFs) A.noalias() = Minv.cwiseProduct( - Fu ); + // - set fixed acceleration + for ( size_t i=0; i new nodal accelerations, their DOF equivalents, and a 'back-up' // "v" == "V_n" -> new nodal velocities, and a 'back-up' // "u" -> new nodal displacements // The forces "Fu" correspond to this state of the system } // ================================================================================================= template void SemiPeriodic::computeMinv() { // array with DOF numbers of each node cppmat::matrix2 dofe(nne,ndim); // zero-initialize mass matrix (only the inverse is stored) ColD M(ndof); M.setZero(); // loop over all elements for ( size_t e = 0 ; e < nelem ; ++e ) { // - nodal positions, displacement, and DOF numbers for element "e" for ( size_t m = 0 ; m < nne ; ++m ) { for ( size_t i = 0 ; i < ndim ; ++i ) { elem->xe(m,i) = x0 (conn(e,m),i); elem->ue(m,i) = u (conn(e,m),i); dofe (m,i) = dofs(conn(e,m),i); } } // - compute element mass matrix using problem specific "Element" class elem->computeM(e); // - assemble element mass matrix : take only the diagonal for ( size_t i = 0 ; i < nne*ndim ; ++i ) M(dofe[i]) += elem->M(i,i); // - check that the user provided a diagonal mass matrix #ifndef NDEBUG - for ( size_t i = 0 ; i < nne*ndim ; ++i ) { - for ( size_t j = 0 ; j < nne*ndim ; ++j ) { - if ( i != j ) assert( ! elem->M(i,j) ); - else assert( elem->M(i,i) ); - } + for ( size_t i = 0 ; i < nne*ndim ; ++i ) { + for ( size_t j = 0 ; j < nne*ndim ; ++j ) { + if ( i != j ) assert( ! elem->M(i,j) ); + else assert( elem->M(i,i) ); } + } #endif } // compute inverse of the mass matrix Minv = M.cwiseInverse(); } // ================================================================================================= template void SemiPeriodic::computeFu() { // array with DOF numbers of each node cppmat::matrix2 dofe(nne,ndim); // zero-initialize displacement dependent force Fu.setZero(); // loop over all elements for ( size_t e = 0 ; e < nelem ; ++e ) { // - nodal positions, displacement, and DOF numbers for element "e" for ( size_t m = 0 ; m < nne ; ++m ) { for ( size_t i = 0 ; i < ndim ; ++i ) { elem->xe(m,i) = x0 (conn(e,m),i); elem->ue(m,i) = u (conn(e,m),i); dofe (m,i) = dofs(conn(e,m),i); } } // - compute element force using problem specific "Element" class elem->computeFu(e); // - assemble force to global system for ( size_t i = 0 ; i < nne*ndim ; ++i ) Fu(dofe[i]) += elem->fu(i); } } // ================================================================================================= template void SemiPeriodic::computeFv() { // array with DOF numbers of each node cppmat::matrix2 dofe(nne,ndim); // zero-initialize velocity dependent force Fv.setZero(); // loop over all elements for ( size_t e = 0 ; e < nelem ; ++e ) { // - nodal positions, displacement, velocity, and DOF numbers for element "e" for ( size_t m = 0 ; m < nne ; ++m ) { for ( size_t i = 0 ; i < ndim ; ++i ) { elem->xe(m,i) = x0 (conn(e,m),i); elem->ue(m,i) = u (conn(e,m),i); elem->ve(m,i) = v (conn(e,m),i); dofe (m,i) = dofs(conn(e,m),i); } } // - compute element force using problem specific "Element" class elem->computeFv(e); // - assemble force to global system for ( size_t i = 0 ; i < nne*ndim ; ++i ) Fv(dofe[i]) += elem->fv(i); } } // ================================================================================================= template void SemiPeriodic::post() { // array with DOF numbers of each node cppmat::matrix2 dofe(nne,ndim); // loop over all elements for ( size_t e = 0 ; e < nelem ; ++e ) { // - nodal positions, displacement, velocity, and DOF numbers for element "e" for ( size_t m = 0 ; m < nne ; ++m ) { for ( size_t i = 0 ; i < ndim ; ++i ) { elem->xe(m,i) = x0 (conn(e,m),i); elem->ue(m,i) = u (conn(e,m),i); elem->ve(m,i) = v (conn(e,m),i); dofe (m,i) = dofs(conn(e,m),i); } } // - run post-process function of the problem specific "Element" class (output is handled there) elem->post(e); } } // ================================================================================================= }}} // namespace GooseFEM::Dynamics::Diagonal #endif diff --git a/src/GooseFEM/Macros.h b/src/GooseFEM/Macros.h index 0f9abbe..598e4cf 100644 --- a/src/GooseFEM/Macros.h +++ b/src/GooseFEM/Macros.h @@ -1,57 +1,57 @@ /* ================================================================================================= (c - GPLv3) T.W.J. de Geus (Tom) | tom@geus.me | www.geus.me | github.com/tdegeus/GooseFEM ================================================================================================= */ #ifndef GOOSEFEM_MACROS_H #define GOOSEFEM_MACROS_H #define _USE_MATH_DEFINES // to use "M_PI" from "math.h" #include #include #include #include #include #include #include #include #include #include #include #include // ================================================================================================= #define GOOSEFEM_WORLD_VERSION 0 #define GOOSEFEM_MAJOR_VERSION 0 -#define GOOSEFEM_MINOR_VERSION 2 +#define GOOSEFEM_MINOR_VERSION 3 #define GOOSEFEM_VERSION_AT_LEAST(x,y,z) \ (GOOSEFEM_WORLD_VERSION>x || (GOOSEFEM_WORLD_VERSION>=x && \ (GOOSEFEM_MAJOR_VERSION>y || (GOOSEFEM_MAJOR_VERSION>=y && \ GOOSEFEM_MINOR_VERSION>=z)))) #define GOOSEFEM_VERSION(x,y,z) \ (GOOSEFEM_WORLD_VERSION==x && \ GOOSEFEM_MAJOR_VERSION==y && \ GOOSEFEM_MINOR_VERSION==z) // ================================================================================================= namespace GooseFEM { typedef Eigen::Matrix MatD; typedef Eigen::Matrix MatS; typedef Eigen::Matrix ColD; typedef Eigen::Matrix ColS; typedef Eigen::Matrix ColI; // ------------------------------------------------------------------------------------------------- } #endif