diff --git a/src/numerics_mod.F90 b/src/numerics_mod.F90 index 09fed92..1c769ca 100644 --- a/src/numerics_mod.F90 +++ b/src/numerics_mod.F90 @@ -1,395 +1,394 @@ !! MODULE NUMERICS ! The module numerics contains a set of routines that are called only once at ! the begining of a run. These routines do not need to be optimzed MODULE numerics USE basic USE prec_const USE grid USE utility implicit none PUBLIC :: build_dnjs_table, evaluate_kernels, evaluate_EM_op PUBLIC :: compute_lin_coeff CONTAINS !******************************************************************************! !!!!!!! Build the Laguerre-Laguerre coupling coefficient table for nonlin !******************************************************************************! SUBROUTINE build_dnjs_table USE array, Only : dnjs USE coeff IMPLICIT NONE INTEGER :: in, ij, is, J INTEGER :: n_, j_, s_ J = max(jmaxe,jmaxi) DO in = 1,J+1 ! Nested dependent loops to make benefit from dnjs symmetry n_ = in - 1 DO ij = in,J+1 j_ = ij - 1 DO is = ij,J+1 s_ = is - 1 dnjs(in,ij,is) = TO_DP(ALL2L(n_,j_,s_,0)) ! By symmetry dnjs(in,is,ij) = dnjs(in,ij,is) dnjs(ij,in,is) = dnjs(in,ij,is) dnjs(ij,is,in) = dnjs(in,ij,is) dnjs(is,ij,in) = dnjs(in,ij,is) dnjs(is,in,ij) = dnjs(in,ij,is) ENDDO ENDDO ENDDO END SUBROUTINE build_dnjs_table !******************************************************************************! !******************************************************************************! !!!!!!! Evaluate the kernels once for all !******************************************************************************! SUBROUTINE evaluate_kernels USE basic USE array, Only : kernel_e, kernel_i, HF_phi_correction_operator USE grid USE model, ONLY : sigmae2_taue_o2, sigmai2_taui_o2, KIN_E IMPLICIT NONE INTEGER :: j_int REAL(dp) :: j_dp, y_, factj DO eo = 0,1 DO ikx = ikxs,ikxe DO iky = ikys,ikye DO iz = izgs,izge !!!!! Electron kernels !!!!! IF(KIN_E) THEN DO ij = ijgs_e, ijge_e j_int = jarray_e(ij) j_dp = REAL(j_int,dp) y_ = sigmae2_taue_o2 * kparray(iky,ikx,iz,eo)**2 - IF(j_int .LE. 0) THEN - factj = 1._dp + IF(j_int .LT. 0) THEN kernel_e(ij,iky,ikx,iz,eo) = 0._dp ELSE factj = GAMMA(j_dp+1._dp) kernel_e(ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/factj ENDIF ENDDO IF (ijs_e .EQ. 1) & kernel_e(ijgs_e,iky,ikx,iz,eo) = 0._dp ENDIF !!!!! Ion kernels !!!!! DO ij = ijgs_i, ijge_i j_int = jarray_i(ij) j_dp = REAL(j_int,dp) y_ = sigmai2_taui_o2 * kparray(iky,ikx,iz,eo)**2 IF(j_int .LT. 0) THEN kernel_i(ij,iky,ikx,iz,eo) = 0._dp ELSE factj = GAMMA(j_dp+1._dp) kernel_i(ij,iky,ikx,iz,eo) = y_**j_int*EXP(-y_)/factj ENDIF ENDDO IF (ijs_i .EQ. 1) & kernel_i(ijgs_i,iky,ikx,iz,eo) = 0._dp ENDDO ENDDO ENDDO ENDDO !! Correction term for the evaluation of the heat flux HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) = & 2._dp * Kernel_i(1,ikys:ikye,ikxs:ikxe,izs:ize,0) & -1._dp * Kernel_i(2,ikys:ikye,ikxs:ikxe,izs:ize,0) DO ij = ijs_i, ije_i j_int = jarray_i(ij) j_dp = REAL(j_int,dp) HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) = HF_phi_correction_operator(ikys:ikye,ikxs:ikxe,izs:ize) & - Kernel_i(ij,ikys:ikye,ikxs:ikxe,izs:ize,0) * (& 2._dp*(j_dp+1.5_dp) * Kernel_i(ij ,ikys:ikye,ikxs:ikxe,izs:ize,0) & - (j_dp+1.0_dp) * Kernel_i(ij+1,ikys:ikye,ikxs:ikxe,izs:ize,0) & - j_dp * Kernel_i(ij-1,ikys:ikye,ikxs:ikxe,izs:ize,0)) ENDDO END SUBROUTINE evaluate_kernels !******************************************************************************! !******************************************************************************! SUBROUTINE evaluate_EM_op IMPLICIT NONE CALL evaluate_poisson_op CALL evaluate_ampere_op END SUBROUTINE evaluate_EM_op !!!!!!! Evaluate inverse polarisation operator for Poisson equation !******************************************************************************! SUBROUTINE evaluate_poisson_op USE basic USE array, Only : kernel_e, kernel_i, inv_poisson_op, inv_pol_ion USE grid USE model, ONLY : qe2_taue, qi2_taui, KIN_E IMPLICIT NONE REAL(dp) :: pol_i, pol_e ! (Z_a^2/tau_a (1-sum_n kernel_na^2)) INTEGER :: ini,ine ! This term has no staggered grid dependence. It is evalued for the ! even z grid since poisson uses p=0 moments and phi only. kxloop: DO ikx = ikxs,ikxe kyloop: DO iky = ikys,ikye zloop: DO iz = izs,ize IF( (kxarray(ikx).EQ.0._dp) .AND. (kyarray(iky).EQ.0._dp) ) THEN inv_poisson_op(iky, ikx, iz) = 0._dp ELSE !!!!!!!!!!!!!!!!! Ion contribution ! loop over n only if the max polynomial degree pol_i = 0._dp DO ini=1,jmaxi+1 pol_i = pol_i + qi2_taui*kernel_i(ini,iky,ikx,iz,0)**2 ! ... sum recursively ... END DO !!!!!!!!!!!!! Electron contribution pol_e = 0._dp IF (KIN_E) THEN ! Kinetic model ! loop over n only if the max polynomial degree DO ine=1,jmaxe+1 ! ine = n+1 pol_e = pol_e + qe2_taue*kernel_e(ine,iky,ikx,iz,0)**2 ! ... sum recursively ... END DO ELSE ! Adiabatic model pol_e = qe2_taue - 1._dp ENDIF inv_poisson_op(iky, ikx, iz) = 1._dp/(qe2_taue + qi2_taui - pol_i - pol_e) inv_pol_ion (iky, ikx, iz) = 1._dp/(qi2_taui - pol_i) ENDIF END DO zloop END DO kyloop END DO kxloop END SUBROUTINE evaluate_poisson_op !******************************************************************************! !******************************************************************************! !!!!!!! Evaluate inverse polarisation operator for Poisson equation !******************************************************************************! SUBROUTINE evaluate_ampere_op USE basic USE array, Only : kernel_e, kernel_i, inv_ampere_op USE grid USE model, ONLY : q_e, q_i, beta, sigma_e, sigma_i USE geometry, ONLY : hatB IMPLICIT NONE REAL(dp) :: pol_i, pol_e, kperp2 ! (Z_a^2/tau_a (1-sum_n kernel_na^2)) INTEGER :: ini,ine ! We do not solve Ampere if beta = 0 to spare waste of ressources IF(SOLVE_AMPERE) THEN ! This term has no staggered grid dependence. It is evalued for the ! even z grid since poisson uses p=0 moments and phi only. kxloop: DO ikx = ikxs,ikxe kyloop: DO iky = ikys,ikye zloop: DO iz = izs,ize kperp2 = kparray(iky,ikx,iz,0)**2 IF( (kxarray(ikx).EQ.0._dp) .AND. (kyarray(iky).EQ.0._dp) ) THEN inv_ampere_op(iky, ikx, iz) = 0._dp ELSE !!!!!!!!!!!!!!!!! Ion contribution pol_i = 0._dp ! loop over n only up to the max polynomial degree DO ini=1,jmaxi+1 pol_i = pol_i + kernel_i(ini,iky,ikx,iz,0)**2 ! ... sum recursively ... END DO pol_i = q_i**2/(sigma_i**2) * pol_i !!!!!!!!!!!!! Electron contribution pol_e = 0._dp ! loop over n only up to the max polynomial degree DO ine=1,jmaxe+1 ! ine = n+1 pol_e = pol_e + kernel_e(ine,iky,ikx,iz,0)**2 ! ... sum recursively ... END DO pol_e = q_e**2/(sigma_e**2) * pol_e inv_ampere_op(iky, ikx, iz) = 1._dp/(2._dp*kperp2*hatB(iz,0)**2 + beta*(pol_i + pol_e)) ENDIF END DO zloop END DO kyloop END DO kxloop ENDIF END SUBROUTINE evaluate_ampere_op !******************************************************************************! SUBROUTINE compute_lin_coeff USE array USE model, ONLY: taue_qe, taui_qi, & k_Te, k_Ti, k_Ne, k_Ni, CurvB, GradB, KIN_E,& tau_e, tau_i, sigma_e, sigma_i USE prec_const USE grid, ONLY: parray_e, parray_i, jarray_e, jarray_i, & ip,ij, ips_e,ipe_e, ips_i,ipe_i, ijs_e,ije_e, ijs_i,ije_i IMPLICIT NONE INTEGER :: p_int, j_int ! polynom. degrees REAL(dp) :: p_dp, j_dp !! Electrons linear coefficients for moment RHS !!!!!!!!!! IF(KIN_E)THEN DO ip = ips_e, ipe_e p_int= parray_e(ip) ! Hermite degree p_dp = REAL(p_int,dp) ! REAL of Hermite degree DO ij = ijs_e, ije_e j_int= jarray_e(ij) ! Laguerre degree j_dp = REAL(j_int,dp) ! REAL of Laguerre degree ! All Napj terms xnepj(ip,ij) = taue_qe*(CurvB*(2._dp*p_dp + 1._dp) & +GradB*(2._dp*j_dp + 1._dp)) ! Mirror force terms ynepp1j (ip,ij) = -SQRT(tau_e)/sigma_e * (j_dp+1)*SQRT(p_dp+1._dp) ynepm1j (ip,ij) = -SQRT(tau_e)/sigma_e * (j_dp+1)*SQRT(p_dp) ynepp1jm1(ip,ij) = +SQRT(tau_e)/sigma_e * j_dp*SQRT(p_dp+1._dp) ynepm1jm1(ip,ij) = +SQRT(tau_e)/sigma_e * j_dp*SQRT(p_dp) zNepm1j (ip,ij) = +SQRT(tau_e)/sigma_e * (2._dp*j_dp+1_dp)*SQRT(p_dp) zNepm1jp1(ip,ij) = -SQRT(tau_e)/sigma_e * (j_dp+1_dp)*SQRT(p_dp) zNepm1jm1(ip,ij) = -SQRT(tau_e)/sigma_e * j_dp*SQRT(p_dp) ENDDO ENDDO DO ip = ips_e, ipe_e p_int= parray_e(ip) ! Hermite degree p_dp = REAL(p_int,dp) ! REAL of Hermite degree ! Landau damping coefficients (ddz napj term) xnepp1j(ip) = SQRT(tau_e)/sigma_e * SQRT(p_dp + 1_dp) xnepm1j(ip) = SQRT(tau_e)/sigma_e * SQRT(p_dp) ! Magnetic curvature term xnepp2j(ip) = taue_qe * CurvB * SQRT((p_dp + 1._dp) * (p_dp + 2._dp)) xnepm2j(ip) = taue_qe * CurvB * SQRT(p_dp * (p_dp - 1._dp)) ENDDO DO ij = ijs_e, ije_e j_int= jarray_e(ij) ! Laguerre degree j_dp = REAL(j_int,dp) ! REAL of Laguerre degree ! Magnetic gradient term xnepjp1(ij) = -taue_qe * GradB * (j_dp + 1._dp) xnepjm1(ij) = -taue_qe * GradB * j_dp ENDDO ENDIF !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! Ions linear coefficients for moment RHS !!!!!!!!!! DO ip = ips_i, ipe_i p_int= parray_i(ip) ! Hermite degree p_dp = REAL(p_int,dp) ! REAL of Hermite degree DO ij = ijs_i, ije_i j_int= jarray_i(ij) ! Laguerre degree j_dp = REAL(j_int,dp) ! REAL of Laguerre degree ! All Napj terms xnipj(ip,ij) = taui_qi*(CurvB*(2._dp*p_dp + 1._dp) & +GradB*(2._dp*j_dp + 1._dp)) ! Mirror force terms ynipp1j (ip,ij) = -SQRT(tau_i)/sigma_i* (j_dp+1)*SQRT(p_dp+1._dp) ynipm1j (ip,ij) = -SQRT(tau_i)/sigma_i* (j_dp+1)*SQRT(p_dp) ynipp1jm1(ip,ij) = +SQRT(tau_i)/sigma_i* j_dp*SQRT(p_dp+1._dp) ynipm1jm1(ip,ij) = +SQRT(tau_i)/sigma_i* j_dp*SQRT(p_dp) ! Trapping terms zNipm1j (ip,ij) = +SQRT(tau_i)/sigma_i* (2._dp*j_dp+1_dp)*SQRT(p_dp) zNipm1jp1(ip,ij) = -SQRT(tau_i)/sigma_i* (j_dp+1_dp)*SQRT(p_dp) zNipm1jm1(ip,ij) = -SQRT(tau_i)/sigma_i* j_dp*SQRT(p_dp) ENDDO ENDDO DO ip = ips_i, ipe_i p_int= parray_i(ip) ! Hermite degree p_dp = REAL(p_int,dp) ! REAL of Hermite degree ! Landau damping coefficients (ddz napj term) xnipp1j(ip) = SQRT(tau_i)/sigma_i * SQRT(p_dp + 1._dp) xnipm1j(ip) = SQRT(tau_i)/sigma_i * SQRT(p_dp) ! Magnetic curvature term xnipp2j(ip) = taui_qi * CurvB * SQRT((p_dp + 1._dp) * (p_dp + 2._dp)) xnipm2j(ip) = taui_qi * CurvB * SQRT(p_dp * (p_dp - 1._dp)) ENDDO DO ij = ijs_i, ije_i j_int= jarray_i(ij) ! Laguerre degree j_dp = REAL(j_int,dp) ! REAL of Laguerre degree ! Magnetic gradient term xnipjp1(ij) = -taui_qi * GradB * (j_dp + 1._dp) xnipjm1(ij) = -taui_qi * GradB * j_dp ENDDO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! ES linear coefficients for moment RHS !!!!!!!!!! IF (KIN_E) THEN DO ip = ips_e, ipe_e p_int= parray_e(ip) ! Hermite degree DO ij = ijs_e, ije_e j_int= jarray_e(ij) ! REALof Laguerre degree j_dp = REAL(j_int,dp) ! REALof Laguerre degree !! Electrostatic potential pj terms IF (p_int .EQ. 0) THEN ! kronecker p0 xphij_e(ip,ij) = +k_Ne+ 2.*j_dp*k_Te xphijp1_e(ip,ij) = -k_Te*(j_dp+1._dp) xphijm1_e(ip,ij) = -k_Te* j_dp ELSE IF (p_int .EQ. 2) THEN ! kronecker p2 xphij_e(ip,ij) = +k_Te/SQRT2 xphijp1_e(ip,ij) = 0._dp; xphijm1_e(ip,ij) = 0._dp; ELSE xphij_e(ip,ij) = 0._dp; xphijp1_e(ip,ij) = 0._dp xphijm1_e(ip,ij) = 0._dp; ENDIF ENDDO ENDDO ENDIF DO ip = ips_i, ipe_i p_int= parray_i(ip) ! Hermite degree DO ij = ijs_i, ije_i j_int= jarray_i(ij) ! REALof Laguerre degree j_dp = REAL(j_int,dp) ! REALof Laguerre degree !! Electrostatic potential pj terms IF (p_int .EQ. 0) THEN ! kronecker p0 xphij_i(ip,ij) = +k_Ni + 2._dp*j_dp*k_Ti xphijp1_i(ip,ij) = -k_Ti*(j_dp+1._dp) xphijm1_i(ip,ij) = -k_Ti* j_dp ELSE IF (p_int .EQ. 2) THEN ! kronecker p2 xphij_i(ip,ij) = +k_Ti/SQRT2 xphijp1_i(ip,ij) = 0._dp; xphijm1_i(ip,ij) = 0._dp; ELSE xphij_i(ip,ij) = 0._dp; xphijp1_i(ip,ij) = 0._dp xphijm1_i(ip,ij) = 0._dp; ENDIF ENDDO ENDDO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! EM linear coefficients for moment RHS !!!!!!!!!! IF (KIN_E) THEN DO ip = ips_e, ipe_e p_int= parray_e(ip) ! Hermite degree DO ij = ijs_e, ije_e j_int= jarray_e(ij) ! REALof Laguerre degree j_dp = REAL(j_int,dp) ! REALof Laguerre degree !! Electrostatic potential pj terms IF (p_int .EQ. 1) THEN ! kronecker p1 xpsij_e (ip,ij) = +(k_Ne + (2._dp*j_dp+1._dp)*k_Te)* SQRT(tau_e)/sigma_e xpsijp1_e(ip,ij) = - k_Te*(j_dp+1._dp) * SQRT(tau_e)/sigma_e xpsijm1_e(ip,ij) = - k_Te* j_dp * SQRT(tau_e)/sigma_e ELSE IF (p_int .EQ. 3) THEN ! kronecker p3 xpsij_e (ip,ij) = + k_Te*SQRT3/SQRT2 * SQRT(tau_e)/sigma_e xpsijp1_e(ip,ij) = 0._dp; xpsijm1_e(ip,ij) = 0._dp; ELSE xpsij_e (ip,ij) = 0._dp; xpsijp1_e(ip,ij) = 0._dp xpsijm1_e(ip,ij) = 0._dp; ENDIF ENDDO ENDDO ENDIF DO ip = ips_i, ipe_i p_int= parray_i(ip) ! Hermite degree DO ij = ijs_i, ije_i j_int= jarray_i(ij) ! REALof Laguerre degree j_dp = REAL(j_int,dp) ! REALof Laguerre degree !! Electrostatic potential pj terms IF (p_int .EQ. 1) THEN ! kronecker p1 xpsij_i (ip,ij) = +(k_Ni + (2._dp*j_dp+1._dp)*k_Ti)* SQRT(tau_i)/sigma_i xpsijp1_i(ip,ij) = - k_Ti*(j_dp+1._dp) * SQRT(tau_i)/sigma_i xpsijm1_i(ip,ij) = - k_Ti* j_dp * SQRT(tau_i)/sigma_i ELSE IF (p_int .EQ. 3) THEN ! kronecker p3 xpsij_i (ip,ij) = + k_Ti*SQRT3/SQRT2 * SQRT(tau_i)/sigma_i xpsijp1_i(ip,ij) = 0._dp; xpsijm1_i(ip,ij) = 0._dp; ELSE xpsij_i (ip,ij) = 0._dp; xpsijp1_i(ip,ij) = 0._dp xpsijm1_i(ip,ij) = 0._dp; ENDIF ENDDO ENDDO END SUBROUTINE compute_lin_coeff END MODULE numerics