diff --git "a/Chapitre 2 - Algebre matricielle/2.1 Addition, multiplication par un scalaire, transpos\303\251e.ipynb" "b/Chapitre 2 - Algebre matricielle/2.1 Addition, multiplication par un scalaire, transpos\303\251e.ipynb" index 7482811..63e4109 100644 --- "a/Chapitre 2 - Algebre matricielle/2.1 Addition, multiplication par un scalaire, transpos\303\251e.ipynb" +++ "b/Chapitre 2 - Algebre matricielle/2.1 Addition, multiplication par un scalaire, transpos\303\251e.ipynb" @@ -1,164 +1,274 @@ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# **Concept(s)-clé(s) et théorie**\n", "\n", - "L'*ensemble des matrices* de tailles $m\\times n$ à coefficients réels se note\n", - "$$M_{m\\times n}(\\mathbb{R}).$$\n", + "L'*ensemble des matrices* de tailles $m\\times n$ à coefficients réels se note $\\mathcal{M}_{m\\times n}(\\mathbb{R}).$\n", "\n", + "On rappelle que pour une matrice $A\\in \\mathcal{M}_{m\\times n}(\\mathbb{R})$ on a $A=(a_{ij})$ avec $1\\leq i \\leq m$ et $1\\leq j\\leq n$. On utilise aussi $(A)_{ij}$ pour dénoter la composante $a_{ij}$ de la matrice $A$.\n", "\n", "\n", - "Soient deux matrices $A,B\\in M_{m\\times n}(\\mathbb{R})$ et $\\lambda\\in\\mathbb{R}$ on définit:\n", "\n", - "$\\bullet \\hskip.5em A+B\\in M_{m\\times n}(\\mathbb{R})$ par\n", - "$$(A+B)_{ij}=A_{ij}+B_{ij},$$ pour tout $1≤i≤m$ et tout $1≤j≤n$;\n", + "Soient deux matrices $A,B\\in \\mathcal{M}_{m\\times n}(\\mathbb{R})$ et soit un scalaire $\\lambda\\in\\mathbb{R}$ on définit:\n", "\n", - "$\\bullet \\hskip.5em\\lambda A\\in M_{m\\times n}(\\mathbb{R})$ par\n", - "$$(\\lambda A)_{ij}=\\lambda A_{ij},$$\n", - "pour tout $1≤i≤m$ et tout $1≤j≤n$;\n", + "$\\bullet$ l'addition $\\hskip.5em A+B\\in \\mathcal{M}_{m\\times n}(\\mathbb{R})$ par\n", + "$$(A+B)_{ij}=a_{ij}+b_{ij},$$ pour tout $1\\leq i\\leq m$ et tout $1\\leq j \\leq n$;\n", "\n", - "$\\bullet\\hskip.5em$ la transposée de $A$, notée $A^T$, par\n", - "$$(A^T)_{ij}=A_{ji},$$\n", - "pour tout $1≤i≤n$ et tout $1≤j≤m$. Il est important de remarquer que $A^T\\in M_{n\\times m}(\\mathbb{R})$ dans cette situation." + "$\\bullet$ la multiplication par un scalaire $\\hskip.5em\\lambda A\\in \\mathcal{M}_{m\\times n}(\\mathbb{R})$ par\n", + "$$(\\lambda A)_{ij}=\\lambda a_{ij},$$\n", + "pour tout $1\\leq i\\leq m$ et tout $1\\leq j \\leq n$;\n", + "\n", + "\n", + "\n", + "On peut définir la transposée de $A$, que l'on note $A^T$, par\n", + "$$(A^T)_{ij}=a_{ji},$$\n", + "pour tout $1\\leq i\\leq m$ et tout $1\\leq j \\leq n$. On remarque que $A^T\\in \\mathcal{M}_{n\\times m}(\\mathbb{R})$ dans cette situation." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import Librairie.AL_Fct as al\n", "import Corrections.corrections as corrections" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### **Exercice 1**\n", "\n", - "Rentrer les tailles de la transposée de la matrice ci-dessous." + "Trouver la dimension de la **Transposée de la matrice** donnée ci-dessous en remplissant les deux champs dans lesquels vous pouvez rentrer une valeur pour $m$ et $n$. \n", + "\n", + "Vérifier en cliquant sur **Run Interact**" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/latex": [ + "$\\left(\\begin{array}{cccccc} 5 & 2 & 18 & 35 & 23 & 93 \\\\-24 & -71 & -38 & 58 & -28 & 68 \\end{array}\\right)$" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "A=al.randomA()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "43d1984827e048348f76def503c8831d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "IntText(value=1, description='m:')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "af17da56fdad4ba4b872a2b1a2883915", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "IntText(value=1, description='n:')" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2f502e8cf0544c6e9c0ba213ad6c27f1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(Button(description='Run Interact', style=ButtonStyle()), Output()), _dom_classes=('widge…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "al.dimensionA(A.transpose())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### **Exercice 2**\n", "\n", - "Soient $A,B\\in M_{4\\times 2}(\\mathbb{R})$ données par\n", + "Soient $A,B\\in \\mathcal{M}_{4\\times 2}(\\mathbb{R})$ données par\n", "$$\n", - "A=\\begin{bmatrix}\n", + "A=\\begin{pmatrix}\n", "1 & -12 \\\\\n", "6 & 4\\\\\n", "-5 & 2\\\\\n", "0 & -2\n", - "\\end{bmatrix}\\hskip2em\n", - "B=\\begin{bmatrix}\n", + "\\end{pmatrix}\\hskip2em\n", + "B=\\begin{pmatrix}\n", "0 & 4\\\\\n", "-2 & -1\\\\\n", "1 & -1\\\\\n", "1 & 3\n", - "\\end{bmatrix}\n", + "\\end{pmatrix}\n", "$$\n", "\n", "Cocher la proposition qui est correcte." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "corrections.Ex2Chapitre2_1()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### **Exercice 3**\n", "\n", - "Soient $A,B\\in M_{4\\times 2}(\\mathbb{R})$ données par\n", + "Soient $A,B\\in \\mathcal{M}_{4\\times 2}(\\mathbb{R})$ données par\n", "$$\n", - "A=\\begin{bmatrix}\n", + "A=\\begin{pmatrix}\n", "1 & -12 \\\\\n", "6 & 4\\\\\n", "-5 & 2\\\\\n", "0 & -2\n", - "\\end{bmatrix}\\hskip2em\n", - "B=\\begin{bmatrix}\n", + "\\end{pmatrix}\\hskip2em\n", + "B=\\begin{pmatrix}\n", "0 & 4\\\\\n", "-2 & -1\\\\\n", "1 & -1\\\\\n", "1 & 3\n", - "\\end{bmatrix}\n", + "\\end{pmatrix}\n", "$$\n", "\n", "Soit $C$ donnée par $C=(3(-2A^T) + (-2B)^T)^T$. \n", "\n", "Alors $C_{32}$vaut" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "corrections.Ex3Chapitre2_1()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Passez au notebook du chapitre 2.2: Multiplication de matrices](./2.2%20Multiplication%20de%20matrices.ipynb)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 4 }