diff --git a/doc/src/Eqs/pressure.jpg b/doc/src/Eqs/pressure.jpg index 0ed674775..525d8a75e 100644 Binary files a/doc/src/Eqs/pressure.jpg and b/doc/src/Eqs/pressure.jpg differ diff --git a/doc/src/Eqs/pressure.tex b/doc/src/Eqs/pressure.tex index 7a9a4e297..346b64715 100644 --- a/doc/src/Eqs/pressure.tex +++ b/doc/src/Eqs/pressure.tex @@ -1,9 +1,9 @@ \documentclass[12pt]{article} \begin{document} $$ - P = \frac{N k_B T}{V} + \frac{\sum_{i}^{N} r_i \bullet f_i}{dV} + P = \frac{N k_B T}{V} + \frac{\sum_{i}^{N'} r_i \bullet f_i}{dV} $$ \end{document} \ No newline at end of file diff --git a/doc/src/Eqs/pressure_tensor.jpg b/doc/src/Eqs/pressure_tensor.jpg index b5abf0ce4..665037f36 100644 Binary files a/doc/src/Eqs/pressure_tensor.jpg and b/doc/src/Eqs/pressure_tensor.jpg differ diff --git a/doc/src/Eqs/pressure_tensor.tex b/doc/src/Eqs/pressure_tensor.tex index 1d5fcdfa4..5fdb72397 100644 --- a/doc/src/Eqs/pressure_tensor.tex +++ b/doc/src/Eqs/pressure_tensor.tex @@ -1,10 +1,10 @@ \documentclass[12pt]{article} \begin{document} $$ P_{IJ} = \frac{\sum_{k}^{N} m_k v_{k_I} v_{k_J}}{V} + - \frac{\sum_{k}^{N} r_{k_I} f_{k_J}}{V} + \frac{\sum_{k}^{N'} r_{k_I} f_{k_J}}{V} $$ \end{document} diff --git a/doc/src/Section_commands.txt b/doc/src/Section_commands.txt index 28575624c..3323d184e 100644 --- a/doc/src/Section_commands.txt +++ b/doc/src/Section_commands.txt @@ -1,1201 +1,1202 @@ "Previous Section"_Section_start.html - "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc - "Next Section"_Section_packages.html :c :link(lws,http://lammps.sandia.gov) :link(ld,Manual.html) :link(lc,Section_commands.html#comm) :line 3. Commands :h3 This section describes how a LAMMPS input script is formatted and the input script commands used to define a LAMMPS simulation. 3.1 "LAMMPS input script"_#cmd_1 3.2 "Parsing rules"_#cmd_2 3.3 "Input script structure"_#cmd_3 3.4 "Commands listed by category"_#cmd_4 3.5 "Commands listed alphabetically"_#cmd_5 :all(b) :line :line 3.1 LAMMPS input script :link(cmd_1),h4 LAMMPS executes by reading commands from a input script (text file), one line at a time. When the input script ends, LAMMPS exits. Each command causes LAMMPS to take some action. It may set an internal variable, read in a file, or run a simulation. Most commands have default settings, which means you only need to use the command if you wish to change the default. In many cases, the ordering of commands in an input script is not important. However the following rules apply: (1) LAMMPS does not read your entire input script and then perform a simulation with all the settings. Rather, the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of commands: timestep 0.5 run 100 run 100 :pre does something different than this sequence: run 100 timestep 0.5 run 100 :pre In the first case, the specified timestep (0.5 fmsec) is used for two simulations of 100 timesteps each. In the 2nd case, the default timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5 fmsec timestep is used for the 2nd one. (2) Some commands are only valid when they follow other commands. For example you cannot set the temperature of a group of atoms until atoms have been defined and a group command is used to define which atoms belong to the group. (3) Sometimes command B will use values that can be set by command A. This means command A must precede command B in the input script if it is to have the desired effect. For example, the "read_data"_read_data.html command initializes the system by setting up the simulation box and assigning atoms to processors. If default values are not desired, the "processors"_processors.html and "boundary"_boundary.html commands need to be used before read_data to tell LAMMPS how to map processors to the simulation box. Many input script errors are detected by LAMMPS and an ERROR or WARNING message is printed. "This section"_Section_errors.html gives more information on what errors mean. The documentation for each command lists restrictions on how the command can be used. :line 3.2 Parsing rules :link(cmd_2),h4 Each non-blank line in the input script is treated as a command. LAMMPS commands are case sensitive. Command names are lower-case, as are specified command arguments. Upper case letters may be used in file names or user-chosen ID strings. Here is how each line in the input script is parsed by LAMMPS: (1) If the last printable character on the line is a "&" character, the command is assumed to continue on the next line. The next line is concatenated to the previous line by removing the "&" character and line break. This allows long commands to be continued across two or more lines. See the discussion of triple quotes in (6) for how to continue a command across multiple line without using "&" characters. (2) All characters from the first "#" character onward are treated as comment and discarded. See an exception in (6). Note that a comment after a trailing "&" character will prevent the command from continuing on the next line. Also note that for multi-line commands a single leading "#" will comment out the entire command. (3) The line is searched repeatedly for $ characters, which indicate variables that are replaced with a text string. See an exception in (6). If the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly brackets follow the $, then the variable name is the single character immediately following the $. Thus $\{myTemp\} and $x refer to variable names "myTemp" and "x". How the variable is converted to a text string depends on what style of variable it is; see the "variable"_variable.html doc page for details. It can be a variable that stores multiple text strings, and return one of them. The returned text string can be multiple "words" (space separated) which will then be interpreted as multiple arguments in the input command. The variable can also store a numeric formula which will be evaluated and its numeric result returned as a string. As a special case, if the $ is followed by parenthesis, then the text inside the parenthesis is treated as an "immediate" variable and evaluated as an "equal-style variable"_variable.html. This is a way to use numeric formulas in an input script without having to assign them to variable names. For example, these 3 input script lines: variable X equal (xlo+xhi)/2+sqrt(v_area) region 1 block $X 2 INF INF EDGE EDGE variable X delete :pre can be replaced by region 1 block $((xlo+xhi)/2+sqrt(v_area)) 2 INF INF EDGE EDGE :pre so that you do not have to define (or discard) a temporary variable X. Note that neither the curly-bracket or immediate form of variables can contain nested $ characters for other variables to substitute for. Thus you cannot do this: variable a equal 2 variable b2 equal 4 print "B2 = $\{b$a\}" :pre Nor can you specify this $($x-1.0) for an immediate variable, but you could use $(v_x-1.0), since the latter is valid syntax for an "equal-style variable"_variable.html. See the "variable"_variable.html command for more details of how strings are assigned to variables and evaluated, and how they can be used in input script commands. (4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain letters, digits, underscores, or punctuation characters. (5) The first word is the command name. All successive words in the line are arguments. (6) If you want text with spaces to be treated as a single argument, it can be enclosed in either single or double or triple quotes. A long single argument enclosed in single or double quotes can span multiple lines if the "&" character is used, as described above. When the lines are concatenated together (and the "&" characters and line breaks removed), the text will become a single line. If you want multiple lines of an argument to retain their line breaks, the text can be enclosed in triple quotes, in which case "&" characters are not needed. For example: print "Volume = $v" print 'Volume = $v' if "$\{steps\} > 1000" then quit variable a string "red green blue & purple orange cyan" print """ System volume = $v System temperature = $t """ :pre In each case, the single, double, or triple quotes are removed when the single argument they enclose is stored internally. See the "dump modify format"_dump_modify.html, "print"_print.html, "if"_if.html, and "python"_python.html commands for examples. A "#" or "$" character that is between quotes will not be treated as a comment indicator in (2) or substituted for as a variable in (3). NOTE: If the argument is itself a command that requires a quoted argument (e.g. using a "print"_print.html command as part of an "if"_if.html or "run every"_run.html command), then single, double, or triple quotes can be nested in the usual manner. See the doc pages for those commands for examples. Only one of level of nesting is allowed, but that should be sufficient for most use cases. :line 3.3 Input script structure :h4,link(cmd_3) This section describes the structure of a typical LAMMPS input script. The "examples" directory in the LAMMPS distribution contains many sample input scripts; the corresponding problems are discussed in "Section 7"_Section_example.html, and animated on the "LAMMPS WWW Site"_lws. A LAMMPS input script typically has 4 parts: Initialization Atom definition Settings Run a simulation :ol The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run some more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the commands need only be used if a non-default value is desired. (1) Initialization Set parameters that need to be defined before atoms are created or read-in from a file. The relevant commands are "units"_units.html, "dimension"_dimension.html, "newton"_newton.html, "processors"_processors.html, "boundary"_boundary.html, "atom_style"_atom_style.html, "atom_modify"_atom_modify.html. If force-field parameters appear in the files that will be read, these commands tell LAMMPS what kinds of force fields are being used: "pair_style"_pair_style.html, "bond_style"_bond_style.html, "angle_style"_angle_style.html, "dihedral_style"_dihedral_style.html, "improper_style"_improper_style.html. (2) Atom definition There are 3 ways to define atoms in LAMMPS. Read them in from a data or restart file via the "read_data"_read_data.html or "read_restart"_read_restart.html commands. These files can contain molecular topology information. Or create atoms on a lattice (with no molecular topology), using these commands: "lattice"_lattice.html, "region"_region.html, "create_box"_create_box.html, "create_atoms"_create_atoms.html. The entire set of atoms can be duplicated to make a larger simulation using the "replicate"_replicate.html command. (3) Settings Once atoms and molecular topology are defined, a variety of settings can be specified: force field coefficients, simulation parameters, output options, etc. Force field coefficients are set by these commands (they can also be set in the read-in files): "pair_coeff"_pair_coeff.html, "bond_coeff"_bond_coeff.html, "angle_coeff"_angle_coeff.html, "dihedral_coeff"_dihedral_coeff.html, "improper_coeff"_improper_coeff.html, "kspace_style"_kspace_style.html, "dielectric"_dielectric.html, "special_bonds"_special_bonds.html. Various simulation parameters are set by these commands: "neighbor"_neighbor.html, "neigh_modify"_neigh_modify.html, "group"_group.html, "timestep"_timestep.html, "reset_timestep"_reset_timestep.html, "run_style"_run_style.html, "min_style"_min_style.html, "min_modify"_min_modify.html. Fixes impose a variety of boundary conditions, time integration, and diagnostic options. The "fix"_fix.html command comes in many flavors. Various computations can be specified for execution during a simulation using the "compute"_compute.html, "compute_modify"_compute_modify.html, and "variable"_variable.html commands. Output options are set by the "thermo"_thermo.html, "dump"_dump.html, and "restart"_restart.html commands. (4) Run a simulation A molecular dynamics simulation is run using the "run"_run.html command. Energy minimization (molecular statics) is performed using the "minimize"_minimize.html command. A parallel tempering (replica-exchange) simulation can be run using the "temper"_temper.html command. :line 3.4 Commands listed by category :link(cmd_4),h4 This section lists all LAMMPS commands, grouped by category. The "next section"_#cmd_5 lists the same commands alphabetically. The next section also includes (long) lists of style options for entries that appear in the following categories as a single command (fix, compute, pair, etc). Commands that are added by user packages are not included in these categories, but they are in the next section. Initialization: "newton"_newton.html, "package"_package.html, "processors"_processors.html, "suffix"_suffix.html, "units"_units.html Setup simulation box: "boundary"_boundary.html, "box"_box.html, "change_box"_change_box.html, "create_box"_create_box.html, "dimension"_dimension.html, "lattice"_lattice.html, "region"_region.html Setup atoms: "atom_modify"_atom_modify.html, "atom_style"_atom_style.html, "balance"_balance.html, "create_atoms"_create_atoms.html, "create_bonds"_create_bonds.html, "delete_atoms"_delete_atoms.html, "delete_bonds"_delete_bonds.html, "displace_atoms"_displace_atoms.html, "group"_group.html, "mass"_mass.html, "molecule"_molecule.html, "read_data"_read_data.html, "read_dump"_read_dump.html, "read_restart"_read_restart.html, "replicate"_replicate.html, "set"_set.html, "velocity"_velocity.html Force fields: "angle_coeff"_angle_coeff.html, "angle_style"_angle_style.html, "bond_coeff"_bond_coeff.html, "bond_style"_bond_style.html, "bond_write"_bond_write.html, "dielectric"_dielectric.html, "dihedral_coeff"_dihedral_coeff.html, "dihedral_style"_dihedral_style.html, "improper_coeff"_improper_coeff.html, "improper_style"_improper_style.html, "kspace_modify"_kspace_modify.html, "kspace_style"_kspace_style.html, "pair_coeff"_pair_coeff.html, "pair_modify"_pair_modify.html, "pair_style"_pair_style.html, "pair_write"_pair_write.html, "special_bonds"_special_bonds.html Settings: "comm_modify"_comm_modify.html, "comm_style"_comm_style.html, "info"_info.html, "min_modify"_min_modify.html, "min_style"_min_style.html, "neigh_modify"_neigh_modify.html, "neighbor"_neighbor.html, "partition"_partition.html, "reset_timestep"_reset_timestep.html, "run_style"_run_style.html, "timer"_timer.html, "timestep"_timestep.html Operations within timestepping (fixes) and diagnositics (computes): "compute"_compute.html, "compute_modify"_compute_modify.html, "fix"_fix.html, "fix_modify"_fix_modify.html, "uncompute"_uncompute.html, "unfix"_unfix.html Output: "dump image"_dump_image.html, "dump movie"_dump_image.html, "dump"_dump.html, "dump_modify"_dump_modify.html, "restart"_restart.html, "thermo"_thermo.html, "thermo_modify"_thermo_modify.html, "thermo_style"_thermo_style.html, "undump"_undump.html, "write_coeff"_write_coeff.html, "write_data"_write_data.html, "write_dump"_write_dump.html, "write_restart"_write_restart.html Actions: "minimize"_minimize.html, "neb"_neb.html, "prd"_prd.html, "rerun"_rerun.html, "run"_run.html, "tad"_tad.html, "temper"_temper.html Input script control: "clear"_clear.html, "echo"_echo.html, "if"_if.html, "include"_include.html, "jump"_jump.html, "label"_label.html, "log"_log.html, "next"_next.html, "print"_print.html, "python"_python.html, "quit"_quit.html, "shell"_shell.html, "variable"_variable.html :line 3.5 Individual commands :h4,link(cmd_5),link(comm) This section lists all LAMMPS commands alphabetically, with a separate listing below of styles within certain commands. The "previous section"_#cmd_4 lists the same commands, grouped by category. Note that some style options for some commands are part of specific LAMMPS packages, which means they cannot be used unless the package was included when LAMMPS was built. Not all packages are included in a default LAMMPS build. These dependencies are listed as Restrictions in the command's documentation. "angle_coeff"_angle_coeff.html, "angle_style"_angle_style.html, "atom_modify"_atom_modify.html, "atom_style"_atom_style.html, "balance"_balance.html, "bond_coeff"_bond_coeff.html, "bond_style"_bond_style.html, "bond_write"_bond_write.html, "boundary"_boundary.html, "box"_box.html, "change_box"_change_box.html, "clear"_clear.html, "comm_modify"_comm_modify.html, "comm_style"_comm_style.html, "compute"_compute.html, "compute_modify"_compute_modify.html, "create_atoms"_create_atoms.html, "create_bonds"_create_bonds.html, "create_box"_create_box.html, "delete_atoms"_delete_atoms.html, "delete_bonds"_delete_bonds.html, "dielectric"_dielectric.html, "dihedral_coeff"_dihedral_coeff.html, "dihedral_style"_dihedral_style.html, "dimension"_dimension.html, "displace_atoms"_displace_atoms.html, "dump"_dump.html, "dump image"_dump_image.html, "dump_modify"_dump_modify.html, "dump movie"_dump_image.html, "echo"_echo.html, "fix"_fix.html, "fix_modify"_fix_modify.html, "group"_group.html, "if"_if.html, "info"_info.html, "improper_coeff"_improper_coeff.html, "improper_style"_improper_style.html, "include"_include.html, "jump"_jump.html, "kspace_modify"_kspace_modify.html, "kspace_style"_kspace_style.html, "label"_label.html, "lattice"_lattice.html, "log"_log.html, "mass"_mass.html, "minimize"_minimize.html, "min_modify"_min_modify.html, "min_style"_min_style.html, "molecule"_molecule.html, "neb"_neb.html, "neigh_modify"_neigh_modify.html, "neighbor"_neighbor.html, "newton"_newton.html, "next"_next.html, "package"_package.html, "pair_coeff"_pair_coeff.html, "pair_modify"_pair_modify.html, "pair_style"_pair_style.html, "pair_write"_pair_write.html, "partition"_partition.html, "prd"_prd.html, "print"_print.html, "processors"_processors.html, "python"_python.html, "quit"_quit.html, "read_data"_read_data.html, "read_dump"_read_dump.html, "read_restart"_read_restart.html, "region"_region.html, "replicate"_replicate.html, "rerun"_rerun.html, "reset_timestep"_reset_timestep.html, "restart"_restart.html, "run"_run.html, "run_style"_run_style.html, "set"_set.html, "shell"_shell.html, "special_bonds"_special_bonds.html, "suffix"_suffix.html, "tad"_tad.html, "temper"_temper.html, "thermo"_thermo.html, "thermo_modify"_thermo_modify.html, "thermo_style"_thermo_style.html, "timer"_timer.html, "timestep"_timestep.html, "uncompute"_uncompute.html, "undump"_undump.html, "unfix"_unfix.html, "units"_units.html, "variable"_variable.html, "velocity"_velocity.html, "write_coeff"_write_coeff.html, "write_data"_write_data.html, "write_dump"_write_dump.html, "write_restart"_write_restart.html :tb(c=6,ea=c) These are additional commands in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "dump custom/vtk"_dump_custom_vtk.html, "dump nc"_dump_nc.html, "dump nc/mpiio"_dump_nc.html, "group2ndx"_group2ndx.html, "ndx2group"_group2ndx.html :tb(c=3,ea=c) :line Fix styles :h4 See the "fix"_fix.html command for one-line descriptions of each style or click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "adapt"_fix_adapt.html, "addforce"_fix_addforce.html, "append/atoms"_fix_append_atoms.html, "atom/swap"_fix_atom_swap.html, "aveforce"_fix_aveforce.html, "ave/atom"_fix_ave_atom.html, "ave/chunk"_fix_ave_chunk.html, "ave/correlate"_fix_ave_correlate.html, "ave/histo"_fix_ave_histo.html, "ave/histo/weight"_fix_ave_histo.html, "ave/time"_fix_ave_time.html, "balance"_fix_balance.html, "bond/break"_fix_bond_break.html, "bond/create"_fix_bond_create.html, "bond/swap"_fix_bond_swap.html, "box/relax"_fix_box_relax.html, "cmap"_fix_cmap.html, "controller"_fix_controller.html, "deform (k)"_fix_deform.html, "deposit"_fix_deposit.html, "drag"_fix_drag.html, "dt/reset"_fix_dt_reset.html, "efield"_fix_efield.html, "ehex"_fix_ehex.html, "enforce2d"_fix_enforce2d.html, "evaporate"_fix_evaporate.html, "external"_fix_external.html, "freeze"_fix_freeze.html, "gcmc"_fix_gcmc.html, "gld"_fix_gld.html, "gravity (o)"_fix_gravity.html, "halt"_fix_halt.html, "heat"_fix_heat.html, "indent"_fix_indent.html, "langevin (k)"_fix_langevin.html, "lineforce"_fix_lineforce.html, "momentum"_fix_momentum.html, "move"_fix_move.html, "msst"_fix_msst.html, "neb"_fix_neb.html, "nph (ko)"_fix_nh.html, "nphug (o)"_fix_nphug.html, "nph/asphere (o)"_fix_nph_asphere.html, "nph/body"_fix_nph_body.html, "nph/sphere (o)"_fix_nph_sphere.html, "npt (kio)"_fix_nh.html, "npt/asphere (o)"_fix_npt_asphere.html, "npt/body"_fix_npt_body.html, "npt/sphere (o)"_fix_npt_sphere.html, "nve (kio)"_fix_nve.html, "nve/asphere (i)"_fix_nve_asphere.html, "nve/asphere/noforce"_fix_nve_asphere_noforce.html, "nve/body"_fix_nve_body.html, "nve/limit"_fix_nve_limit.html, "nve/line"_fix_nve_line.html, "nve/noforce"_fix_nve_noforce.html, "nve/sphere (o)"_fix_nve_sphere.html, "nve/tri"_fix_nve_tri.html, "nvt (iko)"_fix_nh.html, "nvt/asphere (o)"_fix_nvt_asphere.html, "nvt/body"_fix_nvt_body.html, "nvt/sllod (io)"_fix_nvt_sllod.html, "nvt/sphere (o)"_fix_nvt_sphere.html, "oneway"_fix_oneway.html, "orient/bcc"_fix_orient.html, "orient/fcc"_fix_orient.html, "planeforce"_fix_planeforce.html, "poems"_fix_poems.html, "pour"_fix_pour.html, "press/berendsen"_fix_press_berendsen.html, "print"_fix_print.html, "property/atom"_fix_property_atom.html, "qeq/comb (o)"_fix_qeq_comb.html, "qeq/dynamic"_fix_qeq.html, "qeq/fire"_fix_qeq.html, "qeq/point"_fix_qeq.html, "qeq/shielded"_fix_qeq.html, "qeq/slater"_fix_qeq.html, "rattle"_fix_shake.html, "reax/bonds"_fix_reax_bonds.html, "recenter"_fix_recenter.html, "restrain"_fix_restrain.html, "rigid (o)"_fix_rigid.html, "rigid/nph (o)"_fix_rigid.html, "rigid/npt (o)"_fix_rigid.html, "rigid/nve (o)"_fix_rigid.html, "rigid/nvt (o)"_fix_rigid.html, "rigid/small (o)"_fix_rigid.html, "rigid/small/nph"_fix_rigid.html, "rigid/small/npt"_fix_rigid.html, "rigid/small/nve"_fix_rigid.html, "rigid/small/nvt"_fix_rigid.html, "setforce (k)"_fix_setforce.html, "shake"_fix_shake.html, "spring"_fix_spring.html, "spring/chunk"_fix_spring_chunk.html, "spring/rg"_fix_spring_rg.html, "spring/self"_fix_spring_self.html, "srd"_fix_srd.html, "store/force"_fix_store_force.html, "store/state"_fix_store_state.html, "temp/berendsen"_fix_temp_berendsen.html, "temp/csld"_fix_temp_csvr.html, "temp/csvr"_fix_temp_csvr.html, "temp/rescale"_fix_temp_rescale.html, "tfmc"_fix_tfmc.html, "thermal/conductivity"_fix_thermal_conductivity.html, "tmd"_fix_tmd.html, "ttm"_fix_ttm.html, "tune/kspace"_fix_tune_kspace.html, "vector"_fix_vector.html, "viscosity"_fix_viscosity.html, "viscous"_fix_viscous.html, "wall/colloid"_fix_wall.html, "wall/gran"_fix_wall_gran.html, "wall/gran/region"_fix_wall_gran_region.html, "wall/harmonic"_fix_wall.html, "wall/lj1043"_fix_wall.html, "wall/lj126"_fix_wall.html, "wall/lj93"_fix_wall.html, "wall/piston"_fix_wall_piston.html, "wall/reflect (k)"_fix_wall_reflect.html, "wall/region"_fix_wall_region.html, "wall/srd"_fix_wall_srd.html :tb(c=8,ea=c) These are additional fix styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "adapt/fep"_fix_adapt_fep.html, "addtorque"_fix_addtorque.html, "atc"_fix_atc.html, "ave/correlate/long"_fix_ave_correlate_long.html, "colvars"_fix_colvars.html, "dpd/energy"_fix_dpd_energy.html, "drude"_fix_drude.html, "drude/transform/direct"_fix_drude_transform.html, "drude/transform/reverse"_fix_drude_transform.html, "eos/cv"_fix_eos_cv.html, "eos/table"_fix_eos_table.html, "eos/table/rx"_fix_eos_table_rx.html, "flow/gauss"_fix_flow_gauss.html, "gle"_fix_gle.html, "imd"_fix_imd.html, "ipi"_fix_ipi.html, "langevin/drude"_fix_langevin_drude.html, "langevin/eff"_fix_langevin_eff.html, "lb/fluid"_fix_lb_fluid.html, "lb/momentum"_fix_lb_momentum.html, "lb/pc"_fix_lb_pc.html, "lb/rigid/pc/sphere"_fix_lb_rigid_pc_sphere.html, "lb/viscous"_fix_lb_viscous.html, "meso"_fix_meso.html, "manifoldforce"_fix_manifoldforce.html, "meso/stationary"_fix_meso_stationary.html, "nve/manifold/rattle"_fix_nve_manifold_rattle.html, "nvt/manifold/rattle"_fix_nvt_manifold_rattle.html, "nph/eff"_fix_nh_eff.html, "npt/eff"_fix_nh_eff.html, "nve/eff"_fix_nve_eff.html, "nvt/eff"_fix_nh_eff.html, "nvt/sllod/eff"_fix_nvt_sllod_eff.html, "phonon"_fix_phonon.html, "pimd"_fix_pimd.html, "qbmsst"_fix_qbmsst.html, "qeq/reax"_fix_qeq_reax.html, "qmmm"_fix_qmmm.html, "qtb"_fix_qtb.html, "reax/c/bonds"_fix_reax_bonds.html, "reax/c/species"_fix_reaxc_species.html, "rx"_fix_rx.html, "saed/vtk"_fix_saed_vtk.html, "shardlow"_fix_shardlow.html, "smd"_fix_smd.html, "smd/adjust/dt"_fix_smd_adjust_dt.html, "smd/integrate/tlsph"_fix_smd_integrate_tlsph.html, "smd/integrate/ulsph"_fix_smd_integrate_ulsph.html, "smd/move/triangulated/surface"_fix_smd_move_triangulated_surface.html, "smd/setvel"_fix_smd_setvel.html, "smd/wall/surface"_fix_smd_wall_surface.html, "temp/rescale/eff"_fix_temp_rescale_eff.html, "ti/spring"_fix_ti_spring.html, "ttm/mod"_fix_ttm.html :tb(c=6,ea=c) :line Compute styles :h4 See the "compute"_compute.html command for one-line descriptions of each style or click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "angle"_compute_angle.html, "angle/local"_compute_angle_local.html, "angmom/chunk"_compute_angmom_chunk.html, "body/local"_compute_body_local.html, "bond"_compute_bond.html, "bond/local"_compute_bond_local.html, "centro/atom"_compute_centro_atom.html, "chunk/atom"_compute_chunk_atom.html, "cluster/atom"_compute_cluster_atom.html, "cna/atom"_compute_cna_atom.html, "com"_compute_com.html, "com/chunk"_compute_com_chunk.html, "contact/atom"_compute_contact_atom.html, "coord/atom"_compute_coord_atom.html, "damage/atom"_compute_damage_atom.html, "dihedral"_compute_dihedral.html, "dihedral/local"_compute_dihedral_local.html, "dilatation/atom"_compute_dilatation_atom.html, "dipole/chunk"_compute_dipole_chunk.html, "displace/atom"_compute_displace_atom.html, "erotate/asphere"_compute_erotate_asphere.html, "erotate/rigid"_compute_erotate_rigid.html, "erotate/sphere"_compute_erotate_sphere.html, "erotate/sphere/atom"_compute_erotate_sphere_atom.html, "event/displace"_compute_event_displace.html, "group/group"_compute_group_group.html, "gyration"_compute_gyration.html, "gyration/chunk"_compute_gyration_chunk.html, "heat/flux"_compute_heat_flux.html, "hexorder/atom"_compute_hexorder_atom.html, "improper"_compute_improper.html, "improper/local"_compute_improper_local.html, "inertia/chunk"_compute_inertia_chunk.html, "ke"_compute_ke.html, "ke/atom"_compute_ke_atom.html, "ke/rigid"_compute_ke_rigid.html, "msd"_compute_msd.html, "msd/chunk"_compute_msd_chunk.html, "msd/nongauss"_compute_msd_nongauss.html, "omega/chunk"_compute_omega_chunk.html, "orientorder/atom"_compute_orientorder_atom.html, "pair"_compute_pair.html, "pair/local"_compute_pair_local.html, "pe"_compute_pe.html, "pe/atom"_compute_pe_atom.html, "plasticity/atom"_compute_plasticity_atom.html, "pressure"_compute_pressure.html, "property/atom"_compute_property_atom.html, "property/local"_compute_property_local.html, "property/chunk"_compute_property_chunk.html, "rdf"_compute_rdf.html, "reduce"_compute_reduce.html, "reduce/region"_compute_reduce.html, "rigid/local"_compute_rigid_local.html, "slice"_compute_slice.html, "sna/atom"_compute_sna_atom.html, "snad/atom"_compute_sna_atom.html, "snav/atom"_compute_sna_atom.html, "stress/atom"_compute_stress_atom.html, "temp (k)"_compute_temp.html, "temp/asphere"_compute_temp_asphere.html, "temp/body"_compute_temp_body.html, "temp/chunk"_compute_temp_chunk.html, "temp/com"_compute_temp_com.html, "temp/deform"_compute_temp_deform.html, "temp/partial"_compute_temp_partial.html, "temp/profile"_compute_temp_profile.html, "temp/ramp"_compute_temp_ramp.html, "temp/region"_compute_temp_region.html, "temp/sphere"_compute_temp_sphere.html, "ti"_compute_ti.html, "torque/chunk"_compute_torque_chunk.html, "vacf"_compute_vacf.html, "vcm/chunk"_compute_vcm_chunk.html, "voronoi/atom"_compute_voronoi_atom.html :tb(c=6,ea=c) These are additional compute styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "ackland/atom"_compute_ackland_atom.html, "basal/atom"_compute_basal_atom.html, "dpd"_compute_dpd.html, "dpd/atom"_compute_dpd_atom.html, "fep"_compute_fep.html, "force/tally"_compute_tally.html, "heat/flux/tally"_compute_tally.html, "ke/eff"_compute_ke_eff.html, "ke/atom/eff"_compute_ke_atom_eff.html, "meso/e/atom"_compute_meso_e_atom.html, "meso/rho/atom"_compute_meso_rho_atom.html, "meso/t/atom"_compute_meso_t_atom.html, "pe/tally"_compute_tally.html, "pe/mol/tally"_compute_tally.html, "saed"_compute_saed.html, "smd/contact/radius"_compute_smd_contact_radius.html, "smd/damage"_compute_smd_damage.html, "smd/hourglass/error"_compute_smd_hourglass_error.html, "smd/internal/energy"_compute_smd_internal_energy.html, "smd/plastic/strain"_compute_smd_plastic_strain.html, "smd/plastic/strain/rate"_compute_smd_plastic_strain_rate.html, "smd/rho"_compute_smd_rho.html, "smd/tlsph/defgrad"_compute_smd_tlsph_defgrad.html, "smd/tlsph/dt"_compute_smd_tlsph_dt.html, "smd/tlsph/num/neighs"_compute_smd_tlsph_num_neighs.html, "smd/tlsph/shape"_compute_smd_tlsph_shape.html, "smd/tlsph/strain"_compute_smd_tlsph_strain.html, "smd/tlsph/strain/rate"_compute_smd_tlsph_strain_rate.html, "smd/tlsph/stress"_compute_smd_tlsph_stress.html, "smd/triangle/mesh/vertices"_compute_smd_triangle_mesh_vertices.html, "smd/ulsph/num/neighs"_compute_smd_ulsph_num_neighs.html, "smd/ulsph/strain"_compute_smd_ulsph_strain.html, "smd/ulsph/strain/rate"_compute_smd_ulsph_strain_rate.html, "smd/ulsph/stress"_compute_smd_ulsph_stress.html, "smd/vol"_compute_smd_vol.html, "stress/tally"_compute_tally.html, "temp/drude"_compute_temp_drude.html, "temp/eff"_compute_temp_eff.html, "temp/deform/eff"_compute_temp_deform_eff.html, "temp/region/eff"_compute_temp_region_eff.html, "temp/rotate"_compute_temp_rotate.html, "xrd"_compute_xrd.html :tb(c=6,ea=c) :line Pair_style potentials :h4 See the "pair_style"_pair_style.html command for an overview of pair potentials. Click on the style itself for a full description. Many of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "none"_pair_none.html, "zero"_pair_zero.html, "hybrid"_pair_hybrid.html, "hybrid/overlay"_pair_hybrid.html, "adp (o)"_pair_adp.html, "airebo (o)"_pair_airebo.html, "airebo/morse (o)"_pair_airebo.html, "beck (go)"_pair_beck.html, "body"_pair_body.html, "bop"_pair_bop.html, "born (go)"_pair_born.html, "born/coul/dsf"_pair_born.html, "born/coul/dsf/cs"_pair_born.html, "born/coul/long (go)"_pair_born.html, "born/coul/long/cs"_pair_born.html, "born/coul/msm (o)"_pair_born.html, "born/coul/wolf (go)"_pair_born.html, "brownian (o)"_pair_brownian.html, "brownian/poly (o)"_pair_brownian.html, "buck (gkio)"_pair_buck.html, "buck/coul/cut (gkio)"_pair_buck.html, "buck/coul/long (gkio)"_pair_buck.html, "buck/coul/long/cs"_pair_buck.html, "buck/coul/msm (o)"_pair_buck.html, "buck/long/coul/long (o)"_pair_buck_long.html, "colloid (go)"_pair_colloid.html, "comb (o)"_pair_comb.html, "comb3"_pair_comb.html, "coul/cut (gko)"_pair_coul.html, "coul/debye (gko)"_pair_coul.html, "coul/dsf (gko)"_pair_coul.html, "coul/long (gko)"_pair_coul.html, "coul/long/cs"_pair_coul.html, "coul/msm"_pair_coul.html, "coul/streitz"_pair_coul.html, "coul/wolf (ko)"_pair_coul.html, "dpd (o)"_pair_dpd.html, "dpd/tstat (o)"_pair_dpd.html, "dsmc"_pair_dsmc.html, "eam (gkot)"_pair_eam.html, "eam/alloy (gkot)"_pair_eam.html, "eam/fs (gkot)"_pair_eam.html, "eim (o)"_pair_eim.html, "gauss (go)"_pair_gauss.html, "gayberne (gio)"_pair_gayberne.html, "gran/hertz/history (o)"_pair_gran.html, "gran/hooke (o)"_pair_gran.html, "gran/hooke/history (o)"_pair_gran.html, "hbond/dreiding/lj (o)"_pair_hbond_dreiding.html, "hbond/dreiding/morse (o)"_pair_hbond_dreiding.html, "kim"_pair_kim.html, "lcbop"_pair_lcbop.html, "line/lj"_pair_line_lj.html, "lj/charmm/coul/charmm (ko)"_pair_charmm.html, "lj/charmm/coul/charmm/implicit (ko)"_pair_charmm.html, "lj/charmm/coul/long (giko)"_pair_charmm.html, "lj/charmm/coul/msm"_pair_charmm.html, "lj/class2 (gko)"_pair_class2.html, "lj/class2/coul/cut (ko)"_pair_class2.html, "lj/class2/coul/long (gko)"_pair_class2.html, "lj/cubic (go)"_pair_lj_cubic.html, "lj/cut (gikot)"_pair_lj.html, "lj/cut/coul/cut (gko)"_pair_lj.html, "lj/cut/coul/debye (gko)"_pair_lj.html, "lj/cut/coul/dsf (gko)"_pair_lj.html, "lj/cut/coul/long (gikot)"_pair_lj.html, "lj/cut/coul/long/cs"_pair_lj.html, "lj/cut/coul/msm (go)"_pair_lj.html, "lj/cut/dipole/cut (go)"_pair_dipole.html, "lj/cut/dipole/long"_pair_dipole.html, "lj/cut/tip4p/cut (o)"_pair_lj.html, "lj/cut/tip4p/long (ot)"_pair_lj.html, "lj/expand (gko)"_pair_lj_expand.html, "lj/gromacs (gko)"_pair_gromacs.html, "lj/gromacs/coul/gromacs (ko)"_pair_gromacs.html, "lj/long/coul/long (o)"_pair_lj_long.html, "lj/long/dipole/long"_pair_dipole.html, "lj/long/tip4p/long"_pair_lj_long.html, "lj/smooth (o)"_pair_lj_smooth.html, "lj/smooth/linear (o)"_pair_lj_smooth_linear.html, "lj96/cut (go)"_pair_lj96.html, "lubricate (o)"_pair_lubricate.html, "lubricate/poly (o)"_pair_lubricate.html, "lubricateU"_pair_lubricateU.html, "lubricateU/poly"_pair_lubricateU.html, "meam"_pair_meam.html, "mie/cut (o)"_pair_mie.html, "morse (got)"_pair_morse.html, "nb3b/harmonic (o)"_pair_nb3b_harmonic.html, "nm/cut (o)"_pair_nm.html, "nm/cut/coul/cut (o)"_pair_nm.html, "nm/cut/coul/long (o)"_pair_nm.html, "peri/eps"_pair_peri.html, "peri/lps (o)"_pair_peri.html, "peri/pmb (o)"_pair_peri.html, "peri/ves"_pair_peri.html, "polymorphic"_pair_polymorphic.html, "reax"_pair_reax.html, "rebo (o)"_pair_airebo.html, "resquared (go)"_pair_resquared.html, "snap"_pair_snap.html, "soft (go)"_pair_soft.html, "sw (gkio)"_pair_sw.html, "table (gko)"_pair_table.html, "tersoff (gkio)"_pair_tersoff.html, "tersoff/mod (gko)"_pair_tersoff_mod.html, +"tersoff/mod/c (o)"_pair_tersoff_mod.html, "tersoff/zbl (gko)"_pair_tersoff_zbl.html, "tip4p/cut (o)"_pair_coul.html, "tip4p/long (o)"_pair_coul.html, "tri/lj"_pair_tri_lj.html, -"vashishta (o)"_pair_vashishta.html, +"vashishta (ko)"_pair_vashishta.html, "vashishta/table (o)"_pair_vashishta.html, "yukawa (go)"_pair_yukawa.html, "yukawa/colloid (go)"_pair_yukawa_colloid.html, "zbl (go)"_pair_zbl.html :tb(c=4,ea=c) These are additional pair styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "agni (o)"_pair_agni.html, "awpmd/cut"_pair_awpmd.html, "buck/mdf"_pair_mdf.html, "coul/cut/soft (o)"_pair_lj_soft.html, "coul/diel (o)"_pair_coul_diel.html, "coul/long/soft (o)"_pair_lj_soft.html, "dpd/fdt"_pair_dpd_fdt.html, "dpd/fdt/energy"_pair_dpd_fdt.html, "eam/cd (o)"_pair_eam.html, "edip (o)"_pair_edip.html, "eff/cut"_pair_eff.html, "exp6/rx"_pair_exp6_rx.html, "gauss/cut"_pair_gauss.html, "lennard/mdf"_pair_mdf.html, "list"_pair_list.html, "lj/charmm/coul/long/soft (o)"_pair_charmm.html, "lj/cut/coul/cut/soft (o)"_pair_lj_soft.html, "lj/cut/coul/long/soft (o)"_pair_lj_soft.html, "lj/cut/dipole/sf (go)"_pair_dipole.html, "lj/cut/soft (o)"_pair_lj_soft.html, "lj/cut/thole/long (o)"_pair_thole.html, "lj/cut/tip4p/long/soft (o)"_pair_lj_soft.html, "lj/mdf"_pair_mdf.html, "lj/sdk (gko)"_pair_sdk.html, "lj/sdk/coul/long (go)"_pair_sdk.html, "lj/sdk/coul/msm (o)"_pair_sdk.html, "lj/sf (o)"_pair_lj_sf.html, "meam/spline (o)"_pair_meam_spline.html, "meam/sw/spline"_pair_meam_sw_spline.html, "mgpt"_pair_mgpt.html, "morse/smooth/linear"_pair_morse.html, "morse/soft"_pair_morse.html, "multi/lucy"_pair_multi_lucy.html, "multi/lucy/rx"_pair_multi_lucy_rx.html, "quip"_pair_quip.html, "reax/c (k)"_pair_reax_c.html, "smd/hertz"_pair_smd_hertz.html, "smd/tlsph"_pair_smd_tlsph.html, "smd/triangulated/surface"_pair_smd_triangulated_surface.html, "smd/ulsph"_pair_smd_ulsph.html, "smtbq"_pair_smtbq.html, "sph/heatconduction"_pair_sph_heatconduction.html, "sph/idealgas"_pair_sph_idealgas.html, "sph/lj"_pair_sph_lj.html, "sph/rhosum"_pair_sph_rhosum.html, "sph/taitwater"_pair_sph_taitwater.html, "sph/taitwater/morris"_pair_sph_taitwater_morris.html, "srp"_pair_srp.html, "table/rx"_pair_table_rx.html, "tersoff/table (o)"_pair_tersoff.html, "thole"_pair_thole.html, "tip4p/long/soft (o)"_pair_lj_soft.html :tb(c=4,ea=c) :line Bond_style potentials :h4 See the "bond_style"_bond_style.html command for an overview of bond potentials. Click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "none"_bond_none.html, "zero"_bond_zero.html, "hybrid"_bond_hybrid.html, "class2 (o)"_bond_class2.html, "fene (iko)"_bond_fene.html, "fene/expand (o)"_bond_fene_expand.html, "harmonic (ko)"_bond_harmonic.html, "morse (o)"_bond_morse.html, "nonlinear (o)"_bond_nonlinear.html, "quartic (o)"_bond_quartic.html, "table (o)"_bond_table.html :tb(c=4,ea=c) These are additional bond styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "harmonic/shift (o)"_bond_harmonic_shift.html, "harmonic/shift/cut (o)"_bond_harmonic_shift_cut.html :tb(c=4,ea=c) :line Angle_style potentials :h4 See the "angle_style"_angle_style.html command for an overview of angle potentials. Click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "none"_angle_none.html, "zero"_angle_zero.html, "hybrid"_angle_hybrid.html, "charmm (ko)"_angle_charmm.html, "class2 (o)"_angle_class2.html, "cosine (o)"_angle_cosine.html, "cosine/delta (o)"_angle_cosine_delta.html, "cosine/periodic (o)"_angle_cosine_periodic.html, "cosine/squared (o)"_angle_cosine_squared.html, "harmonic (iko)"_angle_harmonic.html, "table (o)"_angle_table.html :tb(c=4,ea=c) These are additional angle styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "cosine/shift (o)"_angle_cosine_shift.html, "cosine/shift/exp (o)"_angle_cosine_shift_exp.html, "dipole (o)"_angle_dipole.html, "fourier (o)"_angle_fourier.html, "fourier/simple (o)"_angle_fourier_simple.html, "quartic (o)"_angle_quartic.html, "sdk"_angle_sdk.html :tb(c=4,ea=c) :line Dihedral_style potentials :h4 See the "dihedral_style"_dihedral_style.html command for an overview of dihedral potentials. Click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "none"_dihedral_none.html, "zero"_dihedral_zero.html, "hybrid"_dihedral_hybrid.html, "charmm (ko)"_dihedral_charmm.html, "class2 (o)"_dihedral_class2.html, "harmonic (io)"_dihedral_harmonic.html, "helix (o)"_dihedral_helix.html, "multi/harmonic (o)"_dihedral_multi_harmonic.html, "opls (iko)"_dihedral_opls.html :tb(c=4,ea=c) These are additional dihedral styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "cosine/shift/exp (o)"_dihedral_cosine_shift_exp.html, "fourier (o)"_dihedral_fourier.html, "nharmonic (o)"_dihedral_nharmonic.html, "quadratic (o)"_dihedral_quadratic.html, "spherical (o)"_dihedral_spherical.html, "table (o)"_dihedral_table.html :tb(c=4,ea=c) :line Improper_style potentials :h4 See the "improper_style"_improper_style.html command for an overview of improper potentials. Click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "none"_improper_none.html, "zero"_improper_zero.html, "hybrid"_improper_hybrid.html, "class2 (o)"_improper_class2.html, "cvff (io)"_improper_cvff.html, "harmonic (ko)"_improper_harmonic.html, "umbrella (o)"_improper_umbrella.html :tb(c=4,ea=c) These are additional improper styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "cossq (o)"_improper_cossq.html, "distance"_improper_distance.html, "fourier (o)"_improper_fourier.html, "ring (o)"_improper_ring.html :tb(c=4,ea=c) :line Kspace solvers :h4 See the "kspace_style"_kspace_style.html command for an overview of Kspace solvers. Click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "ewald (o)"_kspace_style.html, "ewald/disp"_kspace_style.html, "msm (o)"_kspace_style.html, "msm/cg (o)"_kspace_style.html, "pppm (go)"_kspace_style.html, "pppm/cg (o)"_kspace_style.html, "pppm/disp"_kspace_style.html, "pppm/disp/tip4p"_kspace_style.html, "pppm/stagger"_kspace_style.html, "pppm/tip4p (o)"_kspace_style.html :tb(c=4,ea=c) diff --git a/doc/src/compute_pressure.txt b/doc/src/compute_pressure.txt index cad3c5e65..9e8c2a3b4 100644 --- a/doc/src/compute_pressure.txt +++ b/doc/src/compute_pressure.txt @@ -1,155 +1,154 @@ "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c :link(lws,http://lammps.sandia.gov) :link(ld,Manual.html) :link(lc,Section_commands.html#comm) :line compute pressure command :h3 [Syntax:] compute ID group-ID pressure temp-ID keyword ... :pre ID, group-ID are documented in "compute"_compute.html command pressure = style name of this compute command temp-ID = ID of compute that calculates temperature, can be NULL if not needed zero or more keywords may be appended keyword = {ke} or {pair} or {bond} or {angle} or {dihedral} or {improper} or {kspace} or {fix} or {virial} :ul [Examples:] compute 1 all pressure thermo_temp compute 1 all pressure NULL pair bond :pre [Description:] Define a computation that calculates the pressure of the entire system of atoms. The specified group must be "all". See the "compute stress/atom"_compute_stress_atom.html command if you want per-atom pressure (stress). These per-atom values could be summed for a group of atoms via the "compute reduce"_compute_reduce.html command. The pressure is computed by the formula :c,image(Eqs/pressure.jpg) where N is the number of atoms in the system (see discussion of DOF below), Kb is the Boltzmann constant, T is the temperature, d is the -dimensionality of the system (2 or 3 for 2d/3d), V is the system -volume (or area in 2d). -The second term is the virial, -dU/dV, computed within LAMMPS for all -pairwise as well as 2-body, 3-body, 4-body, many-body, and -long-range interactions, where r_i and f_i are the position and -force vector of atom i, and the big black dot indicates dot product. -When periodic boundary conditions are used, the summation includes -contributions from periodic images of the atoms in the central box, -which involves computing partial forces on local and ghost atoms. -A detailed description of how partial forces for 2-body and manybody -potentials are computed is provided in "(Thompson)"_#Thompson. -"Fixes"_fix.html that impose constraints -(e.g. the "fix shake"_fix_shake.html command) also contribute to the -virial term. +dimensionality of the system (2 or 3 for 2d/3d), and V is the system +volume (or area in 2d). The second term is the virial, equal to +-dU/dV, computed for all pairwise as well as 2-body, 3-body, 4-body, +manybody, and long-range interactions, where r_i and f_i are the +position and force vector of atom i, and the black dot indicates a dot +product. When periodic boundary conditions are used, N' necessarily +includes periodic image (ghost) atoms outside the central box, and the +position and force vectors of ghost atoms are thus included in the +summation. When periodic boundary conditions are not used, N' = N = +the number of atoms in the system. "Fixes"_fix.html that impose +constraints (e.g. the "fix shake"_fix_shake.html command) also +contribute to the virial term. A symmetric pressure tensor, stored as a 6-element vector, is also calculated by this compute. The 6 components of the vector are ordered xx, yy, zz, xy, xz, yz. The equation for the I,J components (where I and J = x,y,z) is similar to the above formula, except that the first term uses components of the kinetic energy tensor and the second term uses components of the virial tensor: :c,image(Eqs/pressure_tensor.jpg) If no extra keywords are listed, the entire equations above are calculated. This includes a kinetic energy (temperature) term and the virial as the sum of pair, bond, angle, dihedral, improper, kspace (long-range), and fix contributions to the force on each atom. If any extra keywords are listed, then only those components are summed to compute temperature or ke and/or the virial. The {virial} keyword means include all terms except the kinetic energy {ke}. Details of how LAMMPS computes the virial efficiently for the entire -system, including the effects of periodic boundary conditions is -discussed in "(Thompson)"_#Thompson. +system, including for manybody potentials and accounting for the +effects of periodic boundary conditions are discussed in +"(Thompson)"_#Thompson. The temperature and kinetic energy tensor is not calculated by this compute, but rather by the temperature compute specified with the command. If the kinetic energy is not included in the pressure, than the temperature compute is not used and can be specified as NULL. Normally the temperature compute used by compute pressure should calculate the temperature of all atoms for consistency with the virial term, but any compute style that calculates temperature can be used, e.g. one that excludes frozen atoms or other degrees of freedom. Note that if desired the specified temperature compute can be one that subtracts off a bias to calculate a temperature using only the thermal velocity of the atoms, e.g. by subtracting a background streaming velocity. See the doc pages for individual "compute commands"_compute.html to determine which ones include a bias. Also note that the N in the first formula above is really degrees-of-freedom divided by d = dimensionality, where the DOF value is calcluated by the temperature compute. See the various "compute temperature"_compute.html styles for details. A compute of this style with the ID of "thermo_press" is created when LAMMPS starts up, as if this command were in the input script: compute thermo_press all pressure thermo_temp :pre where "thermo_temp" is the ID of a similarly defined compute of style "temp". See the "thermo_style" command for more details. :line Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are functionally the same as the corresponding style without the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in "Section 5"_Section_accelerate.html of the manual. The accelerated styles take the same arguments and should produce the same results, except for round-off and precision issues. These accelerated styles are part of the GPU, USER-INTEL, KOKKOS, USER-OMP and OPT packages, respectively. They are only enabled if LAMMPS was built with those packages. See the "Making LAMMPS"_Section_start.html#start_3 section for more info. You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the "-suffix command-line switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can use the "suffix"_suffix.html command in your input script. See "Section 5"_Section_accelerate.html of the manual for more instructions on how to use the accelerated styles effectively. :line [Output info:] This compute calculates a global scalar (the pressure) and a global vector of length 6 (pressure tensor), which can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values from a compute as input. See "this section"_Section_howto.html#howto_15 for an overview of LAMMPS output options. The scalar and vector values calculated by this compute are "intensive". The scalar and vector values will be in pressure "units"_units.html. [Restrictions:] none [Related commands:] "compute temp"_compute_temp.html, "compute stress/atom"_compute_stress_atom.html, "thermo_style"_thermo_style.html, [Default:] none :line :link(Thompson) [(Thompson)] Thompson, Plimpton, Mattson, J Chem Phys, 131, 154107 (2009). diff --git a/doc/src/pair_tersoff_mod.txt b/doc/src/pair_tersoff_mod.txt index f74f322b1..5e1c4131d 100644 --- a/doc/src/pair_tersoff_mod.txt +++ b/doc/src/pair_tersoff_mod.txt @@ -1,208 +1,207 @@ "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c :link(lws,http://lammps.sandia.gov) :link(ld,Manual.html) :link(lc,Section_commands.html#comm) :line pair_style tersoff/mod command :h3 pair_style tersoff/mod/c command :h3 pair_style tersoff/mod/gpu command :h3 pair_style tersoff/mod/kk command :h3 pair_style tersoff/mod/omp command :h3 pair_style tersoff/mod/c/omp command :h3 [Syntax:] pair_style tersoff/mod :pre pair_style tersoff/mod/c :pre [Examples:] pair_style tersoff/mod pair_coeff * * Si.tersoff.mod Si Si :pre pair_style tersoff/mod/c pair_coeff * * Si.tersoff.modc Si Si :pre [Description:] The {tersoff/mod} and {tersoff/mod/c} styles computes a bond-order type interatomic potential "(Kumagai)"_#Kumagai based on a 3-body Tersoff potential "(Tersoff_1)"_#Tersoff_1, "(Tersoff_2)"_#Tersoff_2 with modified cutoff function and angular-dependent term, giving the energy E of a system of atoms as :c,image(Eqs/pair_tersoff_mod.jpg) where f_R is a two-body term and f_A includes three-body interactions. The summations in the formula are over all neighbors J and K of atom I within a cutoff distance = R + D. The {tersoff/mod/c} style differs from {tersoff/mod} only in the formulation of the V_ij term, where it contains an additional c0 term. :c,image(Eqs/pair_tersoff_mod_c.jpg) - The modified cutoff function f_C proposed by "(Murty)"_#Murty and having a continuous second-order differential is employed. The angular-dependent term g(theta) was modified to increase the flexibility of the potential. The {tersoff/mod} potential is fitted to both the elastic constants and melting point by employing the modified Tersoff potential function form in which the angular-dependent term is improved. The model performs extremely well in describing the crystalline, liquid, and amorphous phases "(Schelling)"_#Schelling. Only a single pair_coeff command is used with the {tersoff/mod} style which specifies a Tersoff/MOD potential file with parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N additional arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types: filename N element names = mapping of Tersoff/MOD elements to atom types :ul As an example, imagine the Si.tersoff_mod file has Tersoff values for Si. If your LAMMPS simulation has 3 Si atoms types, you would use the following pair_coeff command: pair_coeff * * Si.tersoff_mod Si Si Si :pre The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The three Si arguments map LAMMPS atom types 1,2,3 to the Si element in the Tersoff/MOD file. If a mapping value is specified as NULL, the mapping is not performed. This can be used when a {tersoff/mod} potential is used as part of the {hybrid} pair style. The NULL values are placeholders for atom types that will be used with other potentials. Tersoff/MOD file in the {potentials} directory of the LAMMPS distribution have a ".tersoff.mod" suffix. Potential files for the {tersoff/mod/c} style have the suffix ".tersoff.modc". Lines that are not blank or comments (starting with #) define parameters for a triplet of elements. The parameters in a single entry correspond to coefficients in the formulae above: element 1 (the center atom in a 3-body interaction) element 2 (the atom bonded to the center atom) element 3 (the atom influencing the 1-2 bond in a bond-order sense) beta alpha h eta beta_ters = 1 (dummy parameter) lambda2 (1/distance units) B (energy units) R (distance units) D (distance units) lambda1 (1/distance units) A (energy units) n c1 c2 c3 c4 c5 c0 (energy units, tersoff/mod/c only):ul The n, eta, lambda2, B, lambda1, and A parameters are only used for two-body interactions. The beta, alpha, c1, c2, c3, c4, c5, h parameters are only used for three-body interactions. The R and D parameters are used for both two-body and three-body interactions. The c0 term applies to {tersoff/mod/c} only. The non-annotated parameters are unitless. The Tersoff/MOD potential file must contain entries for all the elements listed in the pair_coeff command. It can also contain entries for additional elements not being used in a particular simulation; LAMMPS ignores those entries. For a single-element simulation, only a single entry is required (e.g. SiSiSi). As annotated above, the first element in the entry is the center atom in a three-body interaction and it is bonded to the 2nd atom and the bond is influenced by the 3rd atom. Thus an entry for SiSiSi means Si bonded to a Si with another Si atom influencing the bond. :line Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are functionally the same as the corresponding style without the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in "Section 5"_Section_accelerate.html of the manual. The accelerated styles take the same arguments and should produce the same results, except for round-off and precision issues. These accelerated styles are part of the GPU, USER-INTEL, KOKKOS, USER-OMP and OPT packages, respectively. They are only enabled if LAMMPS was built with those packages. See the "Making LAMMPS"_Section_start.html#start_3 section for more info. You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the "-suffix command-line switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can use the "suffix"_suffix.html command in your input script. See "Section 5"_Section_accelerate.html of the manual for more instructions on how to use the accelerated styles effectively. :line [Mixing, shift, table, tail correction, restart, rRESPA info]: This pair style does not support the "pair_modify"_pair_modify.html shift, table, and tail options. This pair style does not write its information to "binary restart files"_restart.html, since it is stored in potential files. Thus, you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file. This pair style can only be used via the {pair} keyword of the "run_style respa"_run_style.html command. It does not support the {inner}, {middle}, {outer} keywords. :line [Restrictions:] This pair style is part of the MANYBODY package. It is only enabled if LAMMPS was built with that package. See the "Making LAMMPS"_Section_start.html#start_3 section for more info. This pair style requires the "newton"_newton.html setting to be "on" for pair interactions. The Tersoff/MOD potential files provided with LAMMPS (see the potentials directory) are parameterized for metal "units"_units.html. You can use the Tersoff/MOD potential with any LAMMPS units, but you would need to create your own Tersoff/MOD potential file with coefficients listed in the appropriate units if your simulation doesn't use "metal" units. [Related commands:] "pair_coeff"_pair_coeff.html [Default:] none :line :link(Kumagai) [(Kumagai)] T. Kumagai, S. Izumi, S. Hara, S. Sakai, Comp. Mat. Science, 39, 457 (2007). :link(Tersoff_1) [(Tersoff_1)] J. Tersoff, Phys Rev B, 37, 6991 (1988). :link(Tersoff_2) [(Tersoff_2)] J. Tersoff, Phys Rev B, 38, 9902 (1988). :link(Murty) [(Murty)] M.V.R. Murty, H.A. Atwater, Phys Rev B, 51, 4889 (1995). :link(Schelling) [(Schelling)] Patrick K. Schelling, Comp. Mat. Science, 44, 274 (2008). diff --git a/doc/src/pair_vashishta.txt b/doc/src/pair_vashishta.txt index 7bd5a06aa..902e6012f 100644 --- a/doc/src/pair_vashishta.txt +++ b/doc/src/pair_vashishta.txt @@ -1,245 +1,246 @@ "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c :link(lws,http://lammps.sandia.gov) :link(ld,Manual.html) :link(lc,Section_commands.html#comm) :line pair_style vashishta command :h3 pair_style vashishta/omp command :h3 +pair_style vashishta/kk command :h3 pair_style vashishta/table command :h3 pair_style vashishta/table/omp command :h3 [Syntax:] pair_style style args :pre style = {vashishta} or {vashishta/table} or {vashishta/omp} or {vashishta/table/omp} args = list of arguments for a particular style :ul {vashishta} or {vashishta/omp} args = none {vashishta/table} or {vashishta/table/omp} args = Ntable cutinner Ntable = # of tabulation points cutinner = tablulate from cutinner to cutoff :pre [Examples:] pair_style vashishta pair_coeff * * SiC.vashishta Si C :pre pair_style vashishta/table 100000 0.2 pair_coeff * * SiC.vashishta Si C :pre [Description:] The {vashishta} and {vashishta/table} styles compute the combined 2-body and 3-body family of potentials developed in the group of Priya Vashishta and collaborators. By combining repulsive, screened Coulombic, screened charge-dipole, and dispersion interactions with a bond-angle energy based on the Stillinger-Weber potential, this potential has been used to describe a variety of inorganic compounds, including SiO2 "Vashishta1990"_#Vashishta1990, SiC "Vashishta2007"_#Vashishta2007, and InP "Branicio2009"_#Branicio2009. The potential for the energy U of a system of atoms is :c,image(Eqs/pair_vashishta.jpg) where we follow the notation used in "Branicio2009"_#Branicio2009. U2 is a two-body term and U3 is a three-body term. The summation over two-body terms is over all neighbors J within a cutoff distance = {rc}. The twobody terms are shifted and tilted by a linear function so that the energy and force are both zero at {rc}. The summation over three-body terms is over all neighbors J and K within a cut-off distance = {r0}, where the exponential screening function becomes zero. The {vashishta} style computes these formulas analytically. The {vashishta/table} style tabulates the analytic values for {Ntable} points from cutinner to the cutoff of the potential. The points are equally spaced in R^2 space from cutinner^2 to cutoff^2. For the two-body term in the above equation, a linear interpolation for each pairwise distance between adjacent points in the table. In practice the tabulated version can run 3-5x faster than the analytic version with with moderate to little loss of accuracy for Ntable values between 10000 and 1000000. It is not recommended to use less than 5000 tabulation points. Only a single pair_coeff command is used with either style which specifies a Vashishta potential file with parameters for all needed elements. These are mapped to LAMMPS atom types by specifying N additional arguments after the filename in the pair_coeff command, where N is the number of LAMMPS atom types: filename N element names = mapping of Vashishta elements to atom types :ul See the "pair_coeff"_pair_coeff.html doc page for alternate ways to specify the path for the potential file. As an example, imagine a file SiC.vashishta has parameters for Si and C. If your LAMMPS simulation has 4 atoms types and you want the 1st 3 to be Si, and the 4th to be C, you would use the following pair_coeff command: pair_coeff * * SiC.vashishta Si Si Si C :pre The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Si arguments map LAMMPS atom types 1,2,3 to the Si element in the file. The final C argument maps LAMMPS atom type 4 to the C element in the file. If a mapping value is specified as NULL, the mapping is not performed. This can be used when a {vashishta} potential is used as part of the {hybrid} pair style. The NULL values are placeholders for atom types that will be used with other potentials. Vashishta files in the {potentials} directory of the LAMMPS distribution have a ".vashishta" suffix. Lines that are not blank or comments (starting with #) define parameters for a triplet of elements. The parameters in a single entry correspond to the two-body and three-body coefficients in the formulae above: element 1 (the center atom in a 3-body interaction) element 2 element 3 H (energy units) eta Zi (electron charge units) Zj (electron charge units) lambda1 (distance units) D (energy units) lambda4 (distance units) W (energy units) rc (distance units) B (energy units) gamma r0 (distance units) C costheta0 :ul The non-annotated parameters are unitless. The Vashishta potential file must contain entries for all the elements listed in the pair_coeff command. It can also contain entries for additional elements not being used in a particular simulation; LAMMPS ignores those entries. For a single-element simulation, only a single entry is required (e.g. SiSiSi). For a two-element simulation, the file must contain 8 entries (for SiSiSi, SiSiC, SiCSi, SiCC, CSiSi, CSiC, CCSi, CCC), that specify parameters for all permutations of the two elements interacting in three-body configurations. Thus for 3 elements, 27 entries would be required, etc. Depending on the particular version of the Vashishta potential, the values of these parameters may be keyed to the identities of zero, one, two, or three elements. In order to make the input file format unambiguous, general, and simple to code, LAMMPS uses a slightly confusing method for specifying parameters. All parameters are divided into two classes: two-body and three-body. Two-body and three-body parameters are handled differently, as described below. The two-body parameters are H, eta, lambda1, D, lambda4, W, rc, gamma, and r0. They appear in the above formulae with two subscripts. The parameters Zi and Zj are also classified as two-body parameters, even though they only have 1 subscript. The three-body parameters are B, C, costheta0. They appear in the above formulae with three subscripts. Two-body and three-body parameters are handled differently, as described below. The first element in each entry is the center atom in a three-body interaction, while the second and third elements are two neighbor atoms. Three-body parameters for a central atom I and two neighbors J and K are taken from the IJK entry. Note that even though three-body parameters do not depend on the order of J and K, LAMMPS stores three-body parameters for both IJK and IKJ. The user must ensure that these values are equal. Two-body parameters for an atom I interacting with atom J are taken from the IJJ entry, where the 2nd and 3rd elements are the same. Thus the two-body parameters for Si interacting with C come from the SiCC entry. Note that even though two-body parameters (except possibly gamma and r0 in U3) do not depend on the order of the two elements, LAMMPS will get the Si-C value from the SiCC entry and the C-Si value from the CSiSi entry. The user must ensure that these values are equal. Two-body parameters appearing in entries where the 2nd and 3rd elements are different are stored but never used. It is good practice to enter zero for these values. Note that the three-body function U3 above contains the two-body parameters gamma and r0. So U3 for a central C atom bonded to an Si atom and a second C atom will take three-body parameters from the CSiC entry, but two-body parameters from the CCC and CSiSi entries. :line Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are functionally the same as the corresponding style without the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in "Section 5"_Section_accelerate.html of the manual. The accelerated styles take the same arguments and should produce the same results, except for round-off and precision issues. These accelerated styles are part of the GPU, USER-INTEL, KOKKOS, USER-OMP and OPT packages, respectively. They are only enabled if LAMMPS was built with those packages. See the "Making LAMMPS"_Section_start.html#start_3 section for more info. You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the "-suffix command-line switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can use the "suffix"_suffix.html command in your input script. See "Section 5"_Section_accelerate.html of the manual for more instructions on how to use the accelerated styles effectively. :line [Mixing, shift, table, tail correction, restart, rRESPA info]: For atom type pairs I,J and I != J, where types I and J correspond to two different element types, mixing is performed by LAMMPS as described above from values in the potential file. This pair style does not support the "pair_modify"_pair_modify.html shift, table, and tail options. This pair style does not write its information to "binary restart files"_restart.html, since it is stored in potential files. Thus, you need to re-specify the pair_style and pair_coeff commands in an input script that reads a restart file. This pair style can only be used via the {pair} keyword of the "run_style respa"_run_style.html command. It does not support the {inner}, {middle}, {outer} keywords. :line [Restrictions:] These pair style are part of the MANYBODY package. They is only enabled if LAMMPS was built with that package. See the "Making LAMMPS"_Section_start.html#start_3 section for more info. These pair styles requires the "newton"_newton.html setting to be "on" for pair interactions. The Vashishta potential files provided with LAMMPS (see the potentials directory) are parameterized for metal "units"_units.html. You can use the Vashishta potential with any LAMMPS units, but you would need to create your own potential file with coefficients listed in the appropriate units if your simulation doesn't use "metal" units. [Related commands:] "pair_coeff"_pair_coeff.html [Default:] none :line :link(Vashishta1990) [(Vashishta1990)] P. Vashishta, R. K. Kalia, J. P. Rino, Phys. Rev. B 41, 12197 (1990). :link(Vashishta2007) [(Vashishta2007)] P. Vashishta, R. K. Kalia, A. Nakano, J. P. Rino. J. Appl. Phys. 101, 103515 (2007). :link(Branicio2009) [(Branicio2009)] Branicio, Rino, Gan and Tsuzuki, J. Phys Condensed Matter 21 (2009) 095002 diff --git a/src/USER-MISC/pair_agni.cpp b/src/USER-MISC/pair_agni.cpp index 888f73455..57f0a9cd4 100644 --- a/src/USER-MISC/pair_agni.cpp +++ b/src/USER-MISC/pair_agni.cpp @@ -1,508 +1,508 @@ /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- - Contributing author: Axel Kohlmeyer (Temple U) + Contributing authors: Axel Kohlmeyer (Temple U), Venkatesh Botu ------------------------------------------------------------------------- */ #include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "pair_agni.h" #include "atom.h" #include "neighbor.h" #include "neigh_request.h" #include "force.h" #include "comm.h" #include "memory.h" #include "neighbor.h" #include "neigh_list.h" #include "memory.h" #include "error.h" #include "citeme.h" #include "math_special.h" #include "math_const.h" using namespace LAMMPS_NS; using namespace MathSpecial; static const char cite_pair_agni[] = "pair agni command:\n\n" "@article{botu2015adaptive,\n" " author = {Botu, Venkatesh and Ramprasad, Rampi},\n" " title = {Adaptive machine learning framework to" " accelerate ab initio molecular dynamics},\n" " journal = {International Journal of Quantum Chemistry},\n" " volume = {115},\n" " number = {16},\n" " pages = {1074--1083},\n" " year = {2015},\n" " publisher = {Wiley Online Library}\n" "}\n\n" "@article{botu2015learning,\n" " author = {Botu, Venkatesh and Ramprasad, Rampi},\n" " title = {Learning scheme to predict atomic forces" " and accelerate materials simulations},\n" " journal = {Physical Review B},\n" " volume = {92},\n" " number = {9},\n" " pages = {094306},\n" " year = {2015},\n" " publisher = {APS}\n" "}\n\n"; #define AGNI_VERSION 1 #define MAXLINE 10240 #define MAXWORD 40 /* ---------------------------------------------------------------------- */ PairAGNI::PairAGNI(LAMMPS *lmp) : Pair(lmp) { if (lmp->citeme) lmp->citeme->add(cite_pair_agni); single_enable = 0; restartinfo = 0; one_coeff = 1; manybody_flag = 1; no_virial_fdotr_compute = 1; nelements = 0; elements = NULL; elem2param = NULL; nparams = 0; params = NULL; map = NULL; } /* ---------------------------------------------------------------------- check if allocated, since class can be destructed when incomplete ------------------------------------------------------------------------- */ PairAGNI::~PairAGNI() { if (elements) for (int i = 0; i < nelements; i++) delete [] elements[i]; delete [] elements; if (params) { for (int i = 0; i < nparams; ++i) { int n = params[i].numeta; for (int j = 0; j < n; ++j) { delete [] params[i].xU[j]; } delete [] params[i].eta; delete [] params[i].alpha; delete [] params[i].xU; delete [] params[i].yU; } memory->destroy(params); params = NULL; } if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); delete [] map; } } /* ---------------------------------------------------------------------- */ void PairAGNI::compute(int eflag, int vflag) { int i,j,k,ii,jj,inum,jnum,itype; double xtmp,ytmp,ztmp,delx,dely,delz; double rsq; int *ilist,*jlist,*numneigh,**firstneigh; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = vflag_fdotr = 0; double **x = atom->x; double **f = atom->f; int *type = atom->type; inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; double fxtmp,fytmp,fztmp; double *Vx, *Vy, *Vz; // loop over full neighbor list of my atoms for (ii = 0; ii < inum; ii++) { i = ilist[ii]; itype = map[type[i]]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; fxtmp = fytmp = fztmp = 0.0; const Param &iparam = params[elem2param[itype]]; Vx = new double[iparam.numeta]; Vy = new double[iparam.numeta]; Vz = new double[iparam.numeta]; memset(Vx,0,iparam.numeta*sizeof(double)); memset(Vy,0,iparam.numeta*sizeof(double)); memset(Vz,0,iparam.numeta*sizeof(double)); jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; if ((rsq > 0.0) && (rsq < iparam.cutsq)) { const double r = sqrt(rsq); const double cF = 0.5*(cos((MathConst::MY_PI*r)/iparam.cut)+1.0); const double wX = cF*delx/r; const double wY = cF*dely/r; const double wZ = cF*delz/r; for (k = 0; k < iparam.numeta; ++k) { const double e = exp(-(iparam.eta[k]*rsq)); Vx[k] += wX*e; Vy[k] += wY*e; Vz[k] += wZ*e; } } } for (j = 0; j < iparam.numtrain; ++j) { double kx = 0.0; double ky = 0.0; double kz = 0.0; for(int k = 0; k < iparam.numeta; ++k) { const double xu = iparam.xU[k][j]; kx += square(Vx[k] - xu); ky += square(Vy[k] - xu); kz += square(Vz[k] - xu); } const double e = -0.5/(square(iparam.sigma)); fxtmp += iparam.alpha[j]*exp(kx*e); fytmp += iparam.alpha[j]*exp(ky*e); fztmp += iparam.alpha[j]*exp(kz*e); } fxtmp += iparam.b; fytmp += iparam.b; fztmp += iparam.b; f[i][0] += fxtmp; f[i][1] += fytmp; f[i][2] += fztmp; if (evflag) ev_tally_xyz_full(i,0.0,0.0,fxtmp,fytmp,fztmp,delx,dely,delz); delete [] Vx; delete [] Vy; delete [] Vz; } if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- */ void PairAGNI::allocate() { allocated = 1; int n = atom->ntypes; memory->create(setflag,n+1,n+1,"pair:setflag"); memory->create(cutsq,n+1,n+1,"pair:cutsq"); map = new int[n+1]; } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairAGNI::settings(int narg, char **arg) { if (narg != 0) error->all(FLERR,"Illegal pair_style command"); } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairAGNI::coeff(int narg, char **arg) { int i,j,n; if (!allocated) allocate(); if (narg != 3 + atom->ntypes) error->all(FLERR,"Incorrect args for pair coefficients"); // insure I,J args are * * if (strcmp(arg[0],"*") != 0 || strcmp(arg[1],"*") != 0) error->all(FLERR,"Incorrect args for pair coefficients"); // read args that map atom types to elements in potential file // map[i] = which element the Ith atom type is, -1 if NULL // nelements = # of unique elements // elements = list of element names if (elements) { for (i = 0; i < nelements; i++) delete [] elements[i]; delete [] elements; } elements = new char*[atom->ntypes]; for (i = 0; i < atom->ntypes; i++) elements[i] = NULL; nelements = 0; for (i = 3; i < narg; i++) { if (strcmp(arg[i],"NULL") == 0) { map[i-2] = -1; continue; } for (j = 0; j < nelements; j++) if (strcmp(arg[i],elements[j]) == 0) break; map[i-2] = j; if (j == nelements) { n = strlen(arg[i]) + 1; elements[j] = new char[n]; strcpy(elements[j],arg[i]); nelements++; } } // read potential file and initialize potential parameters read_file(arg[2]); setup_params(); // clear setflag since coeff() called once with I,J = * * n = atom->ntypes; for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; // set setflag i,j for type pairs where both are mapped to elements int count = 0; for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) if (map[i] >= 0 && map[j] >= 0) { setflag[i][j] = 1; count++; } if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairAGNI::init_style() { // need a full neighbor list int irequest = neighbor->request(this,instance_me); neighbor->requests[irequest]->half = 0; neighbor->requests[irequest]->full = 1; } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairAGNI::init_one(int i, int j) { if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set"); return cutmax; } /* ---------------------------------------------------------------------- */ void PairAGNI::read_file(char *file) { memory->sfree(params); params = NULL; nparams = 0; // open file on proc 0 only // then read line by line and broadcast the line to all MPI ranks FILE *fp; if (comm->me == 0) { fp = force->open_potential(file); if (fp == NULL) { char str[128]; sprintf(str,"Cannot open AGNI potential file %s",file); error->one(FLERR,str); } } int i,j,n,nwords,curparam,wantdata; char line[MAXLINE],*ptr; int eof = 0; char **words = new char*[MAXWORD+1]; while (1) { n = 0; if (comm->me == 0) { ptr = fgets(line,MAXLINE,fp); if (ptr == NULL) { eof = 1; fclose(fp); } else n = strlen(line) + 1; } MPI_Bcast(&eof,1,MPI_INT,0,world); if (eof) break; MPI_Bcast(&n,1,MPI_INT,0,world); MPI_Bcast(line,n,MPI_CHAR,0,world); // strip comment, skip line if blank if ((ptr = strchr(line,'#'))) *ptr = '\0'; nwords = atom->count_words(line); if (nwords == 0) continue; if (nwords > MAXWORD) error->all(FLERR,"Increase MAXWORD and recompile"); // words = ptrs to all words in line nwords = 0; words[nwords++] = strtok(line," \t\n\r\f"); while ((words[nwords++] = strtok(NULL," \t\n\r\f"))) continue; --nwords; if ((nwords == 2) && (strcmp(words[0],"generation") == 0)) { int ver = atoi(words[1]); if (ver != AGNI_VERSION) error->all(FLERR,"Incompatible AGNI potential file version"); if ((ver == 1) && (nelements != 1)) error->all(FLERR,"Cannot handle multi-element systems with this potential"); } else if ((nwords == 2) && (strcmp(words[0],"n_elements") == 0)) { nparams = atoi(words[1]); if ((nparams < 1) || params) // sanity check error->all(FLERR,"Invalid AGNI potential file"); params = memory->create(params,nparams,"pair:params"); memset(params,0,nparams*sizeof(Param)); curparam = -1; } else if (params && (nwords == nparams+1) && (strcmp(words[0],"element") == 0)) { wantdata = -1; for (i = 0; i < nparams; ++i) { for (j = 0; j < nelements; ++j) if (strcmp(words[i+1],elements[j]) == 0) break; if (j == nelements) error->all(FLERR,"No suitable parameters for requested element found"); else params[i].ielement = j; } } else if (params && (nwords == 2) && (strcmp(words[0],"interaction") == 0)) { for (i = 0; i < nparams; ++i) if (strcmp(words[1],elements[params[i].ielement]) == 0) curparam = i; } else if ((curparam >=0) && (nwords == 1) && (strcmp(words[0],"endVar") == 0)) { int numtrain = params[curparam].numtrain; int numeta = params[curparam].numeta; params[curparam].alpha = new double[numtrain]; params[curparam].yU = new double[numtrain]; params[curparam].xU = new double*[numeta]; for (i = 0; i < numeta; ++i) params[curparam].xU[i] = new double[numtrain]; wantdata = curparam; curparam = -1; } else if ((curparam >=0) && (nwords == 2) && (strcmp(words[0],"Rc") == 0)) { params[curparam].cut = atof(words[1]); } else if ((curparam >=0) && (nwords == 2) && (strcmp(words[0],"Rs") == 0)) { ; // ignored } else if ((curparam >=0) && (nwords == 2) && (strcmp(words[0],"neighbors") == 0)) { ; // ignored } else if ((curparam >=0) && (nwords == 2) && (strcmp(words[0],"sigma") == 0)) { params[curparam].sigma = atof(words[1]); } else if ((curparam >=0) && (nwords == 2) && (strcmp(words[0],"lambda") == 0)) { params[curparam].lambda = atof(words[1]); } else if ((curparam >=0) && (nwords == 2) && (strcmp(words[0],"b") == 0)) { params[curparam].b = atof(words[1]); } else if ((curparam >=0) && (nwords == 2) && (strcmp(words[0],"n_train") == 0)) { params[curparam].numtrain = atoi(words[1]); } else if ((curparam >=0) && (nwords > 1) && (strcmp(words[0],"eta") == 0)) { params[curparam].numeta = nwords-1; params[curparam].eta = new double[nwords-1]; for (i = 0, j = 1 ; j < nwords; ++i, ++j) params[curparam].eta[i] = atof(words[j]); } else if (params && (wantdata >=0) && (nwords == params[wantdata].numeta+3)) { n = (int) atof(words[0]); for (i = 0; i < params[wantdata].numeta; ++i) { params[wantdata].xU[i][n] = atof(words[i+1]); } params[wantdata].yU[n] = atof(words[params[wantdata].numeta+1]); params[wantdata].alpha[n] = atof(words[params[wantdata].numeta+2]); } else { if (comm->me == 0) error->warning(FLERR,"Ignoring unknown content in AGNI potential file."); } } delete [] words; } /* ---------------------------------------------------------------------- */ void PairAGNI::setup_params() { int i,m,n; double rtmp; // set elem2param for all elements memory->destroy(elem2param); memory->create(elem2param,nelements,"pair:elem2param"); for (i = 0; i < nelements; i++) { n = -1; for (m = 0; m < nparams; m++) { if (i == params[m].ielement) { if (n >= 0) error->all(FLERR,"Potential file has duplicate entry"); n = m; } } if (n < 0) error->all(FLERR,"Potential file is missing an entry"); elem2param[i] = n; } // compute parameter values derived from inputs // set cutsq using shortcut to reduce neighbor list for accelerated // calculations. cut must remain unchanged as it is a potential parameter // (cut = a*sigma) cutmax = 0.0; for (m = 0; m < nparams; m++) { rtmp = params[m].cut; params[m].cutsq = rtmp * rtmp; if (rtmp > cutmax) cutmax = rtmp; } }