diff --git a/tools/python/pizza/dump.py b/tools/python/pizza/dump.py
index ed0f430f4..153ab1a18 100644
--- a/tools/python/pizza/dump.py
+++ b/tools/python/pizza/dump.py
@@ -1,1168 +1,1189 @@
 # Pizza.py toolkit, www.cs.sandia.gov/~sjplimp/pizza.html
 # Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
 #
 # Copyright (2005) Sandia Corporation.  Under the terms of Contract
 # DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
 # certain rights in this software.  This software is distributed under 
 # the GNU General Public License.
 
 # dump tool
 
 oneline = "Read, write, manipulate dump files and particle attributes"
 
 docstr = """
 d = dump("dump.one")              read in one or more dump files
 d = dump("dump.1 dump.2.gz")	  can be gzipped
 d = dump("dump.*")		  wildcard expands to multiple files
 d = dump("dump.*",0)		  two args = store filenames, but don't read
 
   incomplete and duplicate snapshots are deleted
   if atoms have 5 or 8 columns, assign id,type,x,y,z (ix,iy,iz)
   atoms will be unscaled if stored in files as scaled
 
 time = d.next()             	  read next snapshot from dump files
 
   used with 2-argument constructor to allow reading snapshots one-at-a-time
   snapshot will be skipped only if another snapshot has same time stamp
   return time stamp of snapshot read
   return -1 if no snapshots left or last snapshot is incomplete
   no column name assignment or unscaling is performed
 
 d.map(1,"id",3,"x")               assign names to atom columns (1-N)
 
   not needed if dump file is self-describing
   
 d.tselect.all()			  select all timesteps
 d.tselect.one(N)		  select only timestep N
 d.tselect.none()		  deselect all timesteps
 d.tselect.skip(M)		  select every Mth step
 d.tselect.test("$t >= 100 and $t < 10000")      select matching timesteps
 d.delete()	      	      	  delete non-selected timesteps
 
   selecting a timestep also selects all atoms in the timestep
   skip() and test() only select from currently selected timesteps
   test() uses a Python Boolean expression with $t for timestep value
     Python comparison syntax: == != < > <= >= and or
 
 d.aselect.all()	      	                      select all atoms in all steps
 d.aselect.all(N)      	                      select all atoms in one step
 d.aselect.test("$id > 100 and $type == 2")    select match atoms in all steps
 d.aselect.test("$id > 100 and $type == 2",N)  select matching atoms in one step
 
   all() with no args selects atoms from currently selected timesteps
   test() with one arg selects atoms from currently selected timesteps
   test() sub-selects from currently selected atoms
   test() uses a Python Boolean expression with $ for atom attributes
     Python comparison syntax: == != < > <= >= and or
     $name must end with a space
 
 d.write("file")	   	  	   write selected steps/atoms to dump file
 d.scatter("tmp")		   write selected steps/atoms to mutiple files
 
   scatter() files are given timestep suffix: e.g. tmp.0, tmp.100, etc
 
 d.scale() 	    	  	   scale x,y,z to 0-1 for all timesteps
 d.scale(100)			   scale atom coords for timestep N
 d.unscale()			   unscale x,y,z to box size to all timesteps
 d.unscale(1000)			   unscale atom coords for timestep N
 d.wrap()			   wrap x,y,z into periodic box via ix,iy,iz
 d.unwrap()			   unwrap x,y,z out of box via ix,iy,iz
 d.owrap("other")		   wrap x,y,z to same image as another atom
 d.sort()              	  	   sort atoms by atom ID in all selected steps
 d.sort("x")            	  	   sort atoms by column value in all steps
 d.sort(1000)			   sort atoms in timestep N
 
   scale(), unscale(), wrap(), unwrap(), owrap() operate on all steps and atoms
   wrap(), unwrap(), owrap() require ix,iy,iz be defined
   owrap() requires a column be defined which contains an atom ID
     name of that column is the argument to owrap()
     x,y,z for each atom is wrapped to same image as the associated atom ID
     useful for wrapping all molecule's atoms the same so it is contiguous
 
 m1,m2 = d.minmax("type")               find min/max values for a column
 d.set("$ke = $vx * $vx + $vy * $vy")   set a column to a computed value
 d.spread("ke",N,"color")	       2nd col = N ints spread over 1st col
 d.clone(1000,"color")	       	       clone timestep N values to other steps
 
   minmax() operates on selected timesteps and atoms
   set() operates on selected timesteps and atoms
     left hand side column is created if necessary
     left-hand side column is unset or unchanged for non-selected atoms
     equation is in Python syntax
     use $ for column names, $name must end with a space
   spread() operates on selected timesteps and atoms
     min and max are found for 1st specified column across all selected atoms
     atom's value is linear mapping (1-N) between min and max
     that is stored in 2nd column (created if needed)
     useful for creating a color map
   clone() operates on selected timesteps and atoms
     values at every timestep are set to value at timestep N for that atom ID
     useful for propagating a color map
 
 t = d.time()  	     	       	   return vector of selected timestep values
 fx,fy,... = d.atom(100,"fx","fy",...)   return vector(s) for atom ID N
 fx,fy,... = d.vecs(1000,"fx","fy",...)  return vector(s) for timestep N
 
   atom() returns vectors with one value for each selected timestep
   vecs() returns vectors with one value for each selected atom in the timestep
 
 index,time,flag = d.iterator(0/1)          loop over dump snapshots
 time,box,atoms,bonds,tris = d.viz(index)   return list of viz objects
 d.atype = "color"                          set column returned as "type" by viz
 d.extra("dump.bond")	    		   read bond list from dump file
 d.extra(data)				   extract bond/tri/line list from data
 
   iterator() loops over selected timesteps
   iterator() called with arg = 0 first time, with arg = 1 on subsequent calls
     index = index within dump object (0 to # of snapshots)
     time = timestep value
     flag = -1 when iteration is done, 1 otherwise
   viz() returns info for selected atoms for specified timestep index
     time = timestep value
     box = [xlo,ylo,zlo,xhi,yhi,zhi]
     atoms = id,type,x,y,z for each atom as 2d array
     bonds = id,type,x1,y1,z1,x2,y2,z2,t1,t2 for each bond as 2d array
       if bonds() was used to define bonds, else empty list
     tris = id,type,x1,y1,z1,x2,y2,z2,x3,y3,z3,nx,ny,nz for each tri as 2d array
       if extra() was used to define tris, else empty list
     lines = id,type,x1,y1,z1,x2,y2,z2 for each line as 2d array
       if extra() was used to define lines, else empty list
   atype is column name viz() will return as atom type (def = "type")
   extra() stores list of bonds/tris/lines to return each time viz() is called
 """
 
 # History
 #   8/05, Steve Plimpton (SNL): original version
 
 # ToDo list
 #   try to optimize this line in read_snap: words += f.readline().split()
 #   allow $name in aselect.test() and set() to end with non-space
 #   should next() snapshot be auto-unscaled ?
 
 # Variables
 #   flist = list of dump file names
 #   increment = 1 if reading snapshots one-at-a-time
 #   nextfile = which file to read from via next()
 #   eof = ptr into current file for where to read via next()
 #   nsnaps = # of snapshots
 #   nselect = # of selected snapshots
 #   snaps = list of snapshots
 #   names = dictionary of column names:
 #     key = "id", value = column # (0 to M-1)
 #   tselect = class for time selection
 #   aselect = class for atom selection
 #   atype = name of vector used as atom type by viz extract
 #   bondflag = 0 if no bonds, 1 if they are defined statically
 #   bondlist = static list of bonds to viz() return for all snapshots
 #     only a list of atom pairs, coords have to be created for each snapshot
 #   triflag = 0 if no tris, 1 if they are defined statically, 2 if dynamic
 #   trilist = static list of tris to return via viz() for all snapshots
 #   lineflag = 0 if no lines, 1 if they are defined statically
 #   linelist = static list of lines to return via viz() for all snapshots
 #   Snap = one snapshot
 #     time = time stamp
 #     tselect = 0/1 if this snapshot selected
 #     natoms = # of atoms
 #     nselect = # of selected atoms in this snapshot
 #     aselect[i] = 0/1 for each atom
 #     xlo,xhi,ylo,yhi,zlo,zhi = box bounds (float)
 #     atoms[i][j] = 2d array of floats, i = 0 to natoms-1, j = 0 to ncols-1
 
 # Imports and external programs
 
 import sys, commands, re, glob, types
 from os import popen
 from math import *             # any function could be used by set()
 import Numeric
 
 try: from DEFAULTS import PIZZA_GUNZIP
 except: PIZZA_GUNZIP = "gunzip"
 
 # Class definition
 
 class dump:
 
   # --------------------------------------------------------------------
 
   def __init__(self,*list):
     self.snaps = []
     self.nsnaps = self.nselect = 0
     self.names = {}
     self.tselect = tselect(self)
     self.aselect = aselect(self)
     self.atype = "type"
     self.bondflag = 0
     self.bondlist = []
     self.triflag = 0
     self.trilist = []
     self.triobj = 0
     self.lineflag = 0
     self.linelist = []
 
     # flist = list of all dump file names
 
     words = list[0].split()
     self.flist = []
     for word in words: self.flist += glob.glob(word)
     if len(self.flist) == 0 and len(list) == 1:
       raise StandardError,"no dump file specified"
     
     if len(list) == 1:
       self.increment = 0
       self.read_all()
     else:
       self.increment = 1
       self.nextfile = 0
       self.eof = 0
 
   # --------------------------------------------------------------------
 
   def read_all(self):
 
     # read all snapshots from each file
     # test for gzipped files
 
     for file in self.flist:
       if file[-3:] == ".gz":
         f = popen("%s -c %s" % (PIZZA_GUNZIP,file),'r')
       else: f = open(file)
 
       snap = self.read_snapshot(f)
       while snap:
         self.snaps.append(snap)
         print snap.time,
         sys.stdout.flush()
         snap = self.read_snapshot(f)
 
       f.close()
     print
 
     # sort entries by timestep, cull duplicates
 
     self.snaps.sort(self.compare_time)
     self.cull()
     self.nsnaps = len(self.snaps)
     print "read %d snapshots" % self.nsnaps
 
     # select all timesteps and atoms
 
     self.tselect.all()
 
     # set default names for atom columns if file wasn't self-describing
     
     if len(self.snaps) == 0:
       print "no column assignments made"
     elif len(self.names):
-      print "column assignments made from self-describing file"
+      print "assigned columns:",self.names2str()
     elif self.snaps[0].atoms == None:
       print "no column assignments made"
     elif len(self.snaps[0].atoms[0]) == 5:
       self.map(1,"id",2,"type",3,"x",4,"y",5,"z")
-      print "assigned columns id,type,x,y,z"
+      print "assigned columns:",self.names2str()
     elif len(self.snaps[0].atoms[0]) == 8:
       self.map(1,"id",2,"type",3,"x",4,"y",5,"z",6,"ix",7,"iy",8,"iz")
-      print "assigned columns id,type,x,y,z,ix,iy,iz"
+      print "assigned columns:",self.names2str()
     else:
       print "no column assignments made"
 
     # if snapshots are scaled, unscale them
 
     if (not self.names.has_key("x")) or \
        (not self.names.has_key("y")) or \
        (not self.names.has_key("z")):
       print "no unscaling could be performed"
     elif self.nsnaps > 0:
       if self.scaled(self.nsnaps-1): self.unscale()
       else: print "dump is already unscaled"
 
   # --------------------------------------------------------------------
   # read next snapshot from list of files
 
   def next(self):
 
     if not self.increment: raise StandardError,"cannot read incrementally"
 
     # read next snapshot in current file using eof as pointer
     # if fail, try next file
     # if new snapshot time stamp already exists, read next snapshot
 
     while 1:
-      f = open(self.flist[self.nextfile],'r')
+      f = open(self.flist[self.nextfile],'rb')
       f.seek(self.eof)
       snap = self.read_snapshot(f)
       if not snap:
         self.nextfile += 1
 	if self.nextfile == len(self.flist): return -1
         f.close()
 	self.eof = 0
 	continue
       self.eof = f.tell()
       f.close()
       try:
         self.findtime(snap.time)
 	continue
       except: break
 
     # select the new snapshot with all its atoms
 
     self.snaps.append(snap)
     snap = self.snaps[self.nsnaps]
     snap.tselect = 1
     snap.nselect = snap.natoms
     for i in xrange(snap.natoms): snap.aselect[i] = 1
     self.nsnaps += 1
     self.nselect += 1
 
     return snap.time
 
   # --------------------------------------------------------------------
   # read a single snapshot from file f
   # return snapshot or 0 if failed
   # assign column names if not already done and file is self-describing
+  # convert xs,xu to x
   
   def read_snapshot(self,f):
     try:
       snap = Snap()
       item = f.readline()
       snap.time = int(f.readline().split()[0])    # just grab 1st field
       item = f.readline()
       snap.natoms = int(f.readline())
 
       snap.aselect = Numeric.zeros(snap.natoms)
 
       item = f.readline()
       words = f.readline().split()
       snap.xlo,snap.xhi = float(words[0]),float(words[1])
       words = f.readline().split()
       snap.ylo,snap.yhi = float(words[0]),float(words[1])
       words = f.readline().split()
       snap.zlo,snap.zhi = float(words[0]),float(words[1])
 
       item = f.readline()
       if len(self.names) == 0:
         words = item.split()[2:]
         if len(words):
           for i in range(len(words)):
-            self.names[words[i]] = i
+            if words[i] == "xs" or words[i] == "xu":
+              self.names["x"] = i
+            elif words[i] == "ys" or words[i] == "yu":
+              self.names["y"] = i
+            elif words[i] == "zs" or words[i] == "zu":
+              self.names["z"] = i
+            else: self.names[words[i]] = i
 
       if snap.natoms:
         words = f.readline().split()
         ncol = len(words)
         for i in xrange(1,snap.natoms):
           words += f.readline().split()
         floats = map(float,words)
         atoms = Numeric.zeros((snap.natoms,ncol),Numeric.Float)
         start = 0
         stop = ncol
         for i in xrange(snap.natoms):
           atoms[i] = floats[start:stop]
           start = stop
           stop += ncol
       else: atoms = None
       snap.atoms = atoms
       return snap
     except:
       return 0
 
   # --------------------------------------------------------------------
   # decide if snapshot i is scaled/unscaled from coords of first and last atom
 
   def scaled(self,i):
     ix = self.names["x"]
     iy = self.names["y"]
     iz = self.names["z"]
     natoms = self.snaps[i].natoms
     if natoms == 0: return 0
     x1 = self.snaps[i].atoms[0][ix]
     y1 = self.snaps[i].atoms[0][iy]
     z1 = self.snaps[i].atoms[0][iz]
     x2 = self.snaps[i].atoms[natoms-1][ix]
     y2 = self.snaps[i].atoms[natoms-1][iy]
     z2 = self.snaps[i].atoms[natoms-1][iz]
     if x1 >= -0.1 and x1 <= 1.1 and y1 >= -0.1 and y1 <= 1.1 and \
        z1 >= -0.1 and z1 <= 1.1 and x2 >= -0.1 and x2 <= 1.1 and \
        y2 >= -0.1 and y2 <= 1.1 and z2 >= -0.1 and z2 <= 1.1:
       return 1
     else: return 0
 
   # --------------------------------------------------------------------
   # map atom column names
   
   def map(self,*pairs):
     if len(pairs) % 2 != 0:
       raise StandardError, "dump map() requires pairs of mappings"
     for i in range(0,len(pairs),2):
       j = i + 1
       self.names[pairs[j]] = pairs[i]-1
 
   # delete unselected snapshots
 
   # --------------------------------------------------------------------
 
   def delete(self):
     ndel = i = 0
     while i < self.nsnaps:
       if not self.snaps[i].tselect:
         del self.snaps[i]
         self.nsnaps -= 1
         ndel += 1
       else: i += 1
     print "%d snapshots deleted" % ndel
     print "%d snapshots remaining" % self.nsnaps
 
   # --------------------------------------------------------------------
   # scale coords to 0-1 for all snapshots or just one
 
   def scale(self,*list):
     if len(list) == 0:
       print "Scaling dump ..."
       x = self.names["x"]
       y = self.names["y"]
       z = self.names["z"]
       for snap in self.snaps: self.scale_one(snap,x,y,z)
     else:
       i = self.findtime(list[0])
       x = self.names["x"]
       y = self.names["y"]
       z = self.names["z"]
       self.scale_one(self.snaps[i],x,y,z)
 
   # --------------------------------------------------------------------
 
   def scale_one(self,snap,x,y,z):
     xprdinv = 1.0 / (snap.xhi - snap.xlo)
     yprdinv = 1.0 / (snap.yhi - snap.ylo)
     zprdinv = 1.0 / (snap.zhi - snap.zlo)
     atoms = snap.atoms
     atoms[:,x] = (atoms[:,x] - snap.xlo) * xprdinv
     atoms[:,y] = (atoms[:,y] - snap.ylo) * yprdinv
     atoms[:,z] = (atoms[:,z] - snap.zlo) * zprdinv
 
   # --------------------------------------------------------------------
   # unscale coords from 0-1 to box size for all snapshots or just one
 
   def unscale(self,*list):
     if len(list) == 0:
       print "Unscaling dump ..."
       x = self.names["x"]
       y = self.names["y"]
       z = self.names["z"]
       for snap in self.snaps: self.unscale_one(snap,x,y,z)
     else:
       i = self.findtime(list[0])
       x = self.names["x"]
       y = self.names["y"]
       z = self.names["z"]
       self.unscale_one(self.snaps[i],x,y,z)
 
   # --------------------------------------------------------------------
 
   def unscale_one(self,snap,x,y,z):
     xprd = snap.xhi - snap.xlo
     yprd = snap.yhi - snap.ylo
     zprd = snap.zhi - snap.zlo
     atoms = snap.atoms
     atoms[:,x] = snap.xlo + atoms[:,x]*xprd
     atoms[:,y] = snap.ylo + atoms[:,y]*yprd
     atoms[:,z] = snap.zlo + atoms[:,z]*zprd
   
   # --------------------------------------------------------------------
   # wrap coords from outside box to inside
 
   def wrap(self):
     print "Wrapping dump ..."
 
     x = self.names["x"]
     y = self.names["y"]
     z = self.names["z"]
     ix = self.names["ix"]
     iy = self.names["iy"]
     iz = self.names["iz"]
     
     for snap in self.snaps:
       xprd = snap.xhi - snap.xlo
       yprd = snap.yhi - snap.ylo
       zprd = snap.zhi - snap.zlo
       atoms = snap.atoms
       atoms[:,x] -= atoms[:,ix]*xprd
       atoms[:,y] -= atoms[:,iy]*yprd
       atoms[:,z] -= atoms[:,iz]*zprd
 
   # --------------------------------------------------------------------
   # unwrap coords from inside box to outside
 
   def unwrap(self):
     print "Unwrapping dump ..."
 
     x = self.names["x"]
     y = self.names["y"]
     z = self.names["z"]
     ix = self.names["ix"]
     iy = self.names["iy"]
     iz = self.names["iz"]
     
     for snap in self.snaps:
       xprd = snap.xhi - snap.xlo
       yprd = snap.yhi - snap.ylo
       zprd = snap.zhi - snap.zlo
       atoms = snap.atoms
       atoms[:,x] += atoms[:,ix]*xprd
       atoms[:,y] += atoms[:,iy]*yprd
       atoms[:,z] += atoms[:,iz]*zprd
 
   # --------------------------------------------------------------------
   # wrap coords to same image as atom ID stored in "other" column
 
   def owrap(self,other):
     print "Wrapping to other ..."
     
     id = self.names["id"]
     x = self.names["x"]
     y = self.names["y"]
     z = self.names["z"]
     ix = self.names["ix"]
     iy = self.names["iy"]
     iz = self.names["iz"]
     iother = self.names[other]
     
     for snap in self.snaps:
       xprd = snap.xhi - snap.xlo
       yprd = snap.yhi - snap.ylo
       zprd = snap.zhi - snap.zlo
       atoms = snap.atoms
       ids = {}
       for i in xrange(snap.natoms):
         ids[atoms[i][id]] = i
       for i in xrange(snap.natoms):
         j = ids[atoms[i][iother]]
         atoms[i][x] += (atoms[i][ix]-atoms[j][ix])*xprd
         atoms[i][y] += (atoms[i][iy]-atoms[j][iy])*yprd
         atoms[i][z] += (atoms[i][iz]-atoms[j][iz])*zprd
 
+  # --------------------------------------------------------------------
+  # convert column names assignment to a string, in column order
+  
+  def names2str(self):
+    ncol = len(self.snaps[0].atoms[0])
+    pairs = self.names.items()
+    values = self.names.values()
+    str = ""
+    for i in xrange(ncol):
+      if i in values: str += pairs[values.index(i)][0] + ' '
+    return str
+
   # --------------------------------------------------------------------
   # sort atoms by atom ID in all selected timesteps by default
   # if arg = string, sort all steps by that column
   # if arg = numeric, sort atoms in single step
 
   def sort(self,*list):
     if len(list) == 0:
       print "Sorting selected snapshots ..."
       id = self.names["id"]
       for snap in self.snaps:
         if snap.tselect: self.sort_one(snap,id)
     elif type(list[0]) is types.StringType:
       print "Sorting selected snapshots by %s ..." % list[0]
       id = self.names[list[0]]
       for snap in self.snaps:
         if snap.tselect: self.sort_one(snap,id)
     else:
       i = self.findtime(list[0])
       id = self.names["id"]
       self.sort_one(self.snaps[i],id)
 
   # --------------------------------------------------------------------
   # sort a single snapshot by ID column
 
   def sort_one(self,snap,id):
     atoms = snap.atoms
     ids = atoms[:,id]
     ordering = Numeric.argsort(ids)
     for i in xrange(len(atoms[0])):
       atoms[:,i] = Numeric.take(atoms[:,i],ordering)
 
   # --------------------------------------------------------------------
   # write a single dump file from current selection
 
   def write(self,file):
+    if len(self.snaps): namestr = self.names2str()
     f = open(file,"w")
     for snap in self.snaps:
       if not snap.tselect: continue
       print snap.time,
       sys.stdout.flush()
 
       print >>f,"ITEM: TIMESTEP"
       print >>f,snap.time
       print >>f,"ITEM: NUMBER OF ATOMS"
       print >>f,snap.nselect
       print >>f,"ITEM: BOX BOUNDS"
       print >>f,snap.xlo,snap.xhi
       print >>f,snap.ylo,snap.yhi
       print >>f,snap.zlo,snap.zhi
-      print >>f,"ITEM: ATOMS"
+      print >>f,"ITEM: ATOMS",namestr
       
       atoms = snap.atoms
       nvalues = len(atoms[0])
       for i in xrange(snap.natoms):
         if not snap.aselect[i]: continue
         line = ""
         for j in xrange(nvalues):
           if (j < 2):
             line += str(int(atoms[i][j])) + " "
           else:
             line += str(atoms[i][j]) + " "
         print >>f,line
     f.close()
     print "\n%d snapshots" % self.nselect
 
   # --------------------------------------------------------------------
   # write one dump file per snapshot from current selection
 
   def scatter(self,root):
+    if len(self.snaps): namestr = self.names2str()
     for snap in self.snaps:
       if not snap.tselect: continue
       print snap.time,
       sys.stdout.flush()
       
       file = root + "." + str(snap.time)
       f = open(file,"w")
       print >>f,"ITEM: TIMESTEP"
       print >>f,snap.time
       print >>f,"ITEM: NUMBER OF ATOMS"
       print >>f,snap.nselect
       print >>f,"ITEM: BOX BOUNDS"
       print >>f,snap.xlo,snap.xhi
       print >>f,snap.ylo,snap.yhi
       print >>f,snap.zlo,snap.zhi
-      print >>f,"ITEM: ATOMS"
+      print >>f,"ITEM: ATOMS",namestr
       
       atoms = snap.atoms
       nvalues = len(atoms[0])
       for i in xrange(snap.natoms):
         if not snap.aselect[i]: continue
         line = ""
         for j in xrange(nvalues):
           if (j < 2):
             line += str(int(atoms[i][j])) + " "
           else:
             line += str(atoms[i][j]) + " "
         print >>f,line
       f.close()
     print "\n%d snapshots" % self.nselect
 
   # --------------------------------------------------------------------
   # find min/max across all selected snapshots/atoms for a particular column
 
   def minmax(self,colname):
     icol = self.names[colname]
     min = 1.0e20
     max = -min
     for snap in self.snaps:
       if not snap.tselect: continue
       atoms = snap.atoms
       for i in xrange(snap.natoms):
         if not snap.aselect[i]: continue
         if atoms[i][icol] < min: min = atoms[i][icol]
         if atoms[i][icol] > max: max = atoms[i][icol]
     return (min,max)
 
   # --------------------------------------------------------------------
   # set a column value via an equation
 
   def set(self,eq):
     print "Setting ..."
     pattern = "\$\w*"
     list = re.findall(pattern,eq)
 
     lhs = list[0][1:]
     if not self.names.has_key(lhs):
       self.newcolumn(lhs)
       
     for item in list:
       name = item[1:]
       column = self.names[name]
       insert = "snap.atoms[i][%d]" % (column)
       eq = eq.replace(item,insert)
     ceq = compile(eq,'','single')
 
     for snap in self.snaps:
       if not snap.tselect: continue
       for i in xrange(snap.natoms):
         if snap.aselect[i]: exec ceq
           
   # --------------------------------------------------------------------
   # clone value in col across selected timesteps for atoms with same ID
 
   def clone(self,nstep,col):
     istep = self.findtime(nstep)
     icol = self.names[col]
     id = self.names["id"]
     ids = {}
     for i in xrange(self.snaps[istep].natoms):
       ids[self.snaps[istep].atoms[i][id]] = i
     for snap in self.snaps:
       if not snap.tselect: continue
       atoms = snap.atoms
       for i in xrange(snap.natoms):
         if not snap.aselect[i]: continue
         j = ids[atoms[i][id]]
         atoms[i][icol] = self.snaps[istep].atoms[j][icol]
 
   # --------------------------------------------------------------------
   # values in old column are spread as ints from 1-N and assigned to new column
 
   def spread(self,old,n,new):
     iold = self.names[old]
     if not self.names.has_key(new): self.newcolumn(new)
     inew = self.names[new]
 
     min,max = self.minmax(old)
     print "min/max = ",min,max
 
     gap = max - min
     invdelta = n/gap
     for snap in self.snaps:
       if not snap.tselect: continue
       atoms = snap.atoms
       for i in xrange(snap.natoms):
         if not snap.aselect[i]: continue
         ivalue = int((atoms[i][iold] - min) * invdelta) + 1
         if ivalue > n: ivalue = n
         if ivalue < 1: ivalue = 1
         atoms[i][inew] = ivalue
 
   # --------------------------------------------------------------------
   # return vector of selected snapshot time stamps
 
   def time(self):
     vec = self.nselect * [0]
     i = 0
     for snap in self.snaps:
       if not snap.tselect: continue
       vec[i] = snap.time
       i += 1
     return vec
 
   # --------------------------------------------------------------------
   # extract vector(s) of values for atom ID n at each selected timestep
 
   def atom(self,n,*list):
     if len(list) == 0:
       raise StandardError, "no columns specified"
     columns = []
     values = []
     for name in list:
       columns.append(self.names[name])
       values.append(self.nselect * [0])
     ncol = len(columns)
     
     id = self.names["id"]
     m = 0
     for snap in self.snaps:
       if not snap.tselect: continue
       atoms = snap.atoms
       for i in xrange(snap.natoms):
         if atoms[i][id] == n: break
       if atoms[i][id] != n:
         raise StandardError, "could not find atom ID in snapshot"
       for j in xrange(ncol):
         values[j][m] = atoms[i][columns[j]]
       m += 1
 
     if len(list) == 1: return values[0]
     else: return values
   
   # --------------------------------------------------------------------
   # extract vector(s) of values for selected atoms at chosen timestep
 
   def vecs(self,n,*list):
     snap = self.snaps[self.findtime(n)]
     
     if len(list) == 0:
       raise StandardError, "no columns specified"
     columns = []
     values = []
     for name in list:
       columns.append(self.names[name])
       values.append(snap.nselect * [0])
     ncol = len(columns)
 
     m = 0
     for i in xrange(snap.natoms):
       if not snap.aselect[i]: continue
       for j in xrange(ncol):
         values[j][m] = snap.atoms[i][columns[j]]
       m += 1
 
     if len(list) == 1: return values[0]
     else: return values
 
   # --------------------------------------------------------------------
   # add a new column to every snapshot and set value to 0
   # set the name of the column to str
 
   def newcolumn(self,str):
     ncol = len(self.snaps[0].atoms[0])
     self.map(ncol+1,str)
     for snap in self.snaps:
       atoms = snap.atoms
       newatoms = Numeric.zeros((snap.natoms,ncol+1),Numeric.Float)
       newatoms[:,0:ncol] = snap.atoms
       snap.atoms = newatoms
 
   # --------------------------------------------------------------------
   # sort snapshots on time stamp
 
   def compare_time(self,a,b):
     if a.time < b.time:
       return -1
     elif a.time > b.time:
       return 1
     else:
       return 0
 
   # --------------------------------------------------------------------
   # delete successive snapshots with duplicate time stamp
 
   def cull(self):
     i = 1
     while i < len(self.snaps):
       if self.snaps[i].time == self.snaps[i-1].time:
         del self.snaps[i]
       else:
         i += 1
   
   # --------------------------------------------------------------------
   # iterate over selected snapshots
 
   def iterator(self,flag):
     start = 0
     if flag: start = self.iterate + 1
     for i in xrange(start,self.nsnaps):
       if self.snaps[i].tselect:
         self.iterate = i
         return i,self.snaps[i].time,1
     return 0,0,-1
   
   # --------------------------------------------------------------------
   # return list of atoms to viz for snapshot isnap
   # augment with bonds, tris, lines if extra() was invoked
   
   def viz(self,isnap):
     snap = self.snaps[isnap]
 
     time = snap.time
     box = [snap.xlo,snap.ylo,snap.zlo,snap.xhi,snap.yhi,snap.zhi]
     id = self.names["id"]
     type = self.names[self.atype]
     x = self.names["x"]
     y = self.names["y"]
     z = self.names["z"]
 
     # create atom list needed by viz from id,type,x,y,z
     # need Numeric mode here
     
     atoms = []
     for i in xrange(snap.natoms):
       if not snap.aselect[i]: continue
       atom = snap.atoms[i]
       atoms.append([atom[id],atom[type],atom[x],atom[y],atom[z]])
 
     # create list of current bond coords from static bondlist
     # alist = dictionary of atom IDs for atoms list
     # lookup bond atom IDs in alist and grab their coords
     # try is used since some atoms may be unselected
     #   any bond with unselected atom is not returned to viz caller
     # need Numeric mode here
 
     bonds = []
     if self.bondflag:
       alist = {}
       for i in xrange(len(atoms)): alist[int(atoms[i][0])] = i
       for bond in self.bondlist:
         try:
           i = alist[bond[2]]
           j = alist[bond[3]]
           atom1 = atoms[i]
           atom2 = atoms[j]
           bonds.append([bond[0],bond[1],atom1[2],atom1[3],atom1[4],
                         atom2[2],atom2[3],atom2[4],atom1[1],atom2[1]])
         except: continue
 
     tris = []
     if self.triflag:
       if self.triflag == 1: tris = self.trilist
       elif self.triflag == 2:
         timetmp,boxtmp,atomstmp,bondstmp, \
         tris,linestmp = self.triobj.viz(time,1)
         
     lines = []
     if self.lineflag: lines = self.linelist
 
     return time,box,atoms,bonds,tris,lines
   
   # --------------------------------------------------------------------
 
   def findtime(self,n):
     for i in xrange(self.nsnaps):
       if self.snaps[i].time == n: return i
     raise StandardError, "no step %d exists" % n
 
   # --------------------------------------------------------------------
   # return maximum box size across all selected snapshots
 
   def maxbox(self):
     xlo = ylo = zlo = None
     xhi = yhi = zhi = None
     for snap in self.snaps:
       if not snap.tselect: continue
       if xlo == None or snap.xlo < xlo: xlo = snap.xlo
       if xhi == None or snap.xhi > xhi: xhi = snap.xhi
       if ylo == None or snap.ylo < ylo: ylo = snap.ylo
       if yhi == None or snap.yhi > yhi: yhi = snap.yhi
       if zlo == None or snap.zlo < zlo: zlo = snap.zlo
       if zhi == None or snap.zhi > zhi: zhi = snap.zhi
     return [xlo,ylo,zlo,xhi,yhi,zhi]
 
   # --------------------------------------------------------------------
   # return maximum atom type across all selected snapshots and atoms
 
   def maxtype(self):
     icol = self.names["type"]
     max = 0
     for snap in self.snaps:
       if not snap.tselect: continue
       atoms = snap.atoms
       for i in xrange(snap.natoms):
         if not snap.aselect[i]: continue
         if atoms[i][icol] > max: max = atoms[i][icol]
     return int(max)
 
   # --------------------------------------------------------------------
   # grab bonds/tris/lines from another object
 
   def extra(self,arg):
 
     # read bonds from bond dump file
     
     if type(arg) is types.StringType:
       try:
         f = open(arg,'r')
 
         item = f.readline()
         time = int(f.readline())
         item = f.readline()
         nbonds = int(f.readline())
         item = f.readline()
         if not re.search("BONDS",item):
           raise StandardError, "could not read bonds from dump file"
 
         words = f.readline().split()
         ncol = len(words)
         for i in xrange(1,nbonds):
           words += f.readline().split()
         f.close()
 
         # convert values to int and absolute value since can be negative types
         
         bondlist = Numeric.zeros((nbonds,4),Numeric.Int)
         ints = [abs(int(value)) for value in words]
         start = 0
         stop = 4
         for i in xrange(nbonds):
           bondlist[i] = ints[start:stop]
           start += ncol
           stop += ncol
         if bondlist:
           self.bondflag = 1
           self.bondlist = bondlist
       except:
         raise StandardError,"could not read from bond dump file"
       
     # request bonds from data object
     
     elif type(arg) is types.InstanceType and ".data" in str(arg.__class__):
       try:
         bondlist = []
         bondlines = arg.sections["Bonds"]
         for line in bondlines:
           words = line.split()
           bondlist.append([int(words[0]),int(words[1]),
                            int(words[2]),int(words[3])])
         if bondlist:
           self.bondflag = 1
           self.bondlist = bondlist
       except:
         raise StandardError,"could not extract bonds from data object"
 
     # request tris/lines from cdata object
     
     elif type(arg) is types.InstanceType and ".cdata" in str(arg.__class__):
       try:
         tmp,tmp,tmp,tmp,tris,lines = arg.viz(0)
         if tris:
           self.triflag = 1
           self.trilist = tris
         if lines:
           self.lineflag = 1
           self.linelist = lines
       except:
         raise StandardError,"could not extract tris/lines from cdata object"
 
     # request tris from mdump object
     
     elif type(arg) is types.InstanceType and ".mdump" in str(arg.__class__):
       try:
         self.triflag = 2
         self.triobj = arg
       except:
         raise StandardError,"could not extract tris from mdump object"
 
     else:
       raise StandardError,"unrecognized argument to dump.extra()"
       
   # --------------------------------------------------------------------
 
   def compare_atom(self,a,b):
     if a[0] < b[0]:
       return -1
     elif a[0] > b[0]:
       return 1
     else:
       return 0  
 
 # --------------------------------------------------------------------
 # one snapshot
 
 class Snap:
   pass
 
 # --------------------------------------------------------------------
 # time selection class
 
 class tselect:
 
   def __init__(self,data):
     self.data = data
     
   # --------------------------------------------------------------------
 
   def all(self):
     data = self.data
     for snap in data.snaps:
       snap.tselect = 1
     data.nselect = len(data.snaps)
     data.aselect.all()
     print "%d snapshots selected out of %d" % (data.nselect,data.nsnaps)
 
   # --------------------------------------------------------------------
 
   def one(self,n):
     data = self.data
     for snap in data.snaps:
       snap.tselect = 0
     i = data.findtime(n)
     data.snaps[i].tselect = 1
     data.nselect = 1
     data.aselect.all()
     print "%d snapshots selected out of %d" % (data.nselect,data.nsnaps)
 
   # --------------------------------------------------------------------
 
   def none(self):
     data = self.data
     for snap in data.snaps:
       snap.tselect = 0
     data.nselect = 0
     print "%d snapshots selected out of %d" % (data.nselect,data.nsnaps)
 
   # --------------------------------------------------------------------
 
   def skip(self,n):
     data = self.data
     count = n-1
     for snap in data.snaps:
       if not snap.tselect: continue
       count += 1
       if count == n:
         count = 0
         continue
       snap.tselect = 0
       data.nselect -= 1
     data.aselect.all()
     print "%d snapshots selected out of %d" % (data.nselect,data.nsnaps)
   
   # --------------------------------------------------------------------
 
   def test(self,teststr):
     data = self.data
     snaps = data.snaps
     cmd = "flag = " + teststr.replace("$t","snaps[i].time")
     ccmd = compile(cmd,'','single')
     for i in xrange(data.nsnaps):
       if not snaps[i].tselect: continue
       exec ccmd
       if not flag:
         snaps[i].tselect = 0
         data.nselect -= 1
     data.aselect.all()
     print "%d snapshots selected out of %d" % (data.nselect,data.nsnaps)
 
 # --------------------------------------------------------------------
 # atom selection class
 
 class aselect:
 
   def __init__(self,data):
     self.data = data
 
   # --------------------------------------------------------------------
 
   def all(self,*args):
     data = self.data
     if len(args) == 0:                           # all selected timesteps
       for snap in data.snaps:
         if not snap.tselect: continue
         for i in xrange(snap.natoms): snap.aselect[i] = 1
         snap.nselect = snap.natoms
     else:                                        # one timestep
       n = data.findtime(args[0])
       snap = data.snaps[n]
       for i in xrange(snap.natoms): snap.aselect[i] = 1
       snap.nselect = snap.natoms
 
   # --------------------------------------------------------------------
 
   def test(self,teststr,*args):
     data = self.data
 
     # replace all $var with snap.atoms references and compile test string
     
     pattern = "\$\w*"
     list = re.findall(pattern,teststr)
     for item in list:
       name = item[1:]
       column = data.names[name]
       insert = "snap.atoms[i][%d]" % column
       teststr = teststr.replace(item,insert)
     cmd = "flag = " + teststr
     ccmd = compile(cmd,'','single')
 
     if len(args) == 0:                           # all selected timesteps
       for snap in data.snaps:
         if not snap.tselect: continue
         for i in xrange(snap.natoms):
           if not snap.aselect[i]: continue
           exec ccmd
           if not flag:
             snap.aselect[i] = 0
             snap.nselect -= 1
       for i in xrange(data.nsnaps):
         if data.snaps[i].tselect:
           print "%d atoms of %d selected in first step %d" % \
                 (data.snaps[i].nselect,data.snaps[i].natoms,data.snaps[i].time)
           break
       for i in xrange(data.nsnaps-1,-1,-1):
         if data.snaps[i].tselect:
           print "%d atoms of %d selected in last step %d" % \
                 (data.snaps[i].nselect,data.snaps[i].natoms,data.snaps[i].time)
           break
 
     else:                                        # one timestep
       n = data.findtime(args[0])
       snap = data.snaps[n]
       for i in xrange(snap.natoms):
         if not snap.aselect[i]: continue
         exec ccmd
         if not flag:
           snap.aselect[i] = 0
           snap.nselect -= 1
diff --git a/tools/python/pizza/log.py b/tools/python/pizza/log.py
index 6ff694240..7020c218a 100644
--- a/tools/python/pizza/log.py
+++ b/tools/python/pizza/log.py
@@ -1,334 +1,334 @@
 # Pizza.py toolkit, www.cs.sandia.gov/~sjplimp/pizza.html
 # Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
 #
 # Copyright (2005) Sandia Corporation.  Under the terms of Contract
 # DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
 # certain rights in this software.  This software is distributed under 
 # the GNU General Public License.
 
 # log tool
 
 oneline = "Read LAMMPS log files and extract thermodynamic data"
 
 docstr = """
 l = log("file1")                     read in one or more log files
 l = log("log1 log2.gz")              can be gzipped
 l = log("file*")                     wildcard expands to multiple files
 l = log("log.lammps",0)              two args = store filename, but don't read
 
   incomplete and duplicate thermo entries are deleted
 
 time = l.next()                      read new thermo info from file
 
   used with 2-argument constructor to allow reading thermo incrementally
   return time stamp of last thermo read
   return -1 if no new thermo since last read
 
 nvec = l.nvec                        # of vectors of thermo info
 nlen = l.nlen                        length of each vectors
 names = l.names                      list of vector names
 t,pe,... = l.get("Time","KE",...)    return one or more vectors of values
 l.write("file.txt")	 	     write all vectors to a file
 l.write("file.txt","Time","PE",...)  write listed vectors to a file
 
   get and write allow abbreviated (uniquely) vector names
 """
 
 # History
 #   8/05, Steve Plimpton (SNL): original version
 
 # ToDo list
 
 # Variables
 #   nvec = # of vectors
 #   nlen = length of each vector
 #   names = list of vector names
 #   ptr = dictionary, key = name, value = index into data for which column
 #   data[i][j] = 2d array of floats, i = 0 to # of entries, j = 0 to nvecs-1
 #   style = style of LAMMPS log file, 1 = multi, 2 = one, 3 = gran
 #   firststr = string that begins a thermo section in log file
 #   increment = 1 if log file being read incrementally
 #   eof = ptr into incremental file for where to start next read
 
 # Imports and external programs
 
 import sys, re, glob
 from os import popen
 
 try: tmp = PIZZA_GUNZIP
 except: PIZZA_GUNZIP = "gunzip"
 
 # Class definition
 
 class log:
 
   # --------------------------------------------------------------------
 
   def __init__(self,*list):
     self.nvec = 0
     self.names = []
     self.ptr = {}
     self.data = []
 
     # flist = list of all log file names
 
     words = list[0].split()
     self.flist = []
     for word in words: self.flist += glob.glob(word)
     if len(self.flist) == 0 and len(list) == 1:
       raise StandardError,"no log file specified"
 
     if len(list) == 1:
       self.increment = 0
       self.read_all()
     else:
       if len(self.flist) > 1:
         raise StandardError,"can only incrementally read one log file"
       self.increment = 1
       self.eof = 0
 
   # --------------------------------------------------------------------
   # read all thermo from all files
   
   def read_all(self):
     self.read_header(self.flist[0])
     if self.nvec == 0: raise StandardError,"log file has no values"
 
     # read all files
 
     for file in self.flist: self.read_one(file)
     print
 
     # sort entries by timestep, cull duplicates
     
     self.data.sort(self.compare)
     self.cull()
     self.nlen = len(self.data)
     print "read %d log entries" % self.nlen
 
   # --------------------------------------------------------------------
 
   def next(self):
     if not self.increment: raise StandardError,"cannot read incrementally"
 
     if self.nvec == 0:
       try: open(self.flist[0],'r')
       except: return -1
       self.read_header(self.flist[0])
       if self.nvec == 0: return -1
 
     self.eof = self.read_one(self.flist[0],self.eof)
     return int(self.data[-1][0])
 
   # --------------------------------------------------------------------
 
   def get(self,*keys):
     if len(keys) == 0:
       raise StandardError, "no log vectors specified"
 
     map = []
     for key in keys:
       if self.ptr.has_key(key):
         map.append(self.ptr[key])
       else:
         count = 0
         for i in range(self.nvec):
 	  if self.names[i].find(key) == 0:
 	    count += 1
 	    index = i
         if count == 1:
           map.append(index)
         else:
           raise StandardError, "unique log vector %s not found" % key
 
     vecs = []
     for i in range(len(keys)):
       vecs.append(self.nlen * [0])
       for j in xrange(self.nlen):
         vecs[i][j] = self.data[j][map[i]]
 
     if len(keys) == 1: return vecs[0]
     else: return vecs
 
   # --------------------------------------------------------------------
 
   def write(self,filename,*keys):
     if len(keys):
       map = []
       for key in keys:
         if self.ptr.has_key(key):
           map.append(self.ptr[key])
         else:
           count = 0
           for i in range(self.nvec):
 	    if self.names[i].find(key) == 0:
 	      count += 1
 	      index = i
           if count == 1:
             map.append(index)
           else:
             raise StandardError, "unique log vector %s not found" % key
     else:
       map = range(self.nvec)
 
     f = open(filename,"w")
     for i in xrange(self.nlen):
       for j in xrange(len(map)):
         print >>f,self.data[i][map[j]],
       print >>f
     f.close()
 
   # --------------------------------------------------------------------
 
   def compare(self,a,b):
     if a[0] < b[0]:
       return -1
     elif a[0] > b[0]:
       return 1
     else:
       return 0
 
   # --------------------------------------------------------------------
 
   def cull(self):
     i = 1
     while i < len(self.data):
       if self.data[i][0] == self.data[i-1][0]: del self.data[i]
       else: i += 1
 
   # --------------------------------------------------------------------
 
   def read_header(self,file):
     str_multi = "----- Step"
     str_one = "Step "
 
     if file[-3:] == ".gz":
       txt = popen("%s -c %s" % (PIZZA_GUNZIP,file),'r').read()
     else:
       txt = open(file).read()
 
     if txt.find(str_multi) >= 0:
       self.firststr = str_multi
       self.style = 1
     elif txt.find(str_one) >= 0:
       self.firststr = str_one
       self.style = 2
     else:
       return
 
     if self.style == 1:
       s1 = txt.find(self.firststr)
       s2 = txt.find("\n--",s1)
       pattern = "\s(\S*)\s*="
       keywords = re.findall(pattern,txt[s1:s2])
       keywords.insert(0,"Step")
       i = 0
       for keyword in keywords:
 	self.names.append(keyword)
         self.ptr[keyword] = i
         i += 1
 
     else:
       s1 = txt.find(self.firststr)
       s2 = txt.find("\n",s1)
       line = txt[s1:s2]
       words = line.split()
       for i in range(len(words)):
 	self.names.append(words[i])
         self.ptr[words[i]] = i
 
     self.nvec = len(self.names)
 
   # --------------------------------------------------------------------
 
   def read_one(self,*list):
 
     # if 2nd arg exists set file ptr to that value
     # read entire (rest of) file into txt
 
     file = list[0]
     if file[-3:] == ".gz":
-      f = popen("%s -c %s" % (PIZZA_GUNZIP,file),'r')
+      f = popen("%s -c %s" % (PIZZA_GUNZIP,file),'rb')
     else:
-      f = open(file)
+      f = open(file,'rb')
 
     if len(list) == 2: f.seek(list[1])
     txt = f.read()
     if file[-3:] == ".gz": eof = 0
     else: eof = f.tell()
     f.close()
 
     start = last = 0
     while not last:
 
       # chunk = contiguous set of thermo entries (line or multi-line)
       # s1 = 1st char on 1st line of chunk
       # s2 = 1st char on line after chunk
       # set last = 1 if this is last chunk in file, leave 0 otherwise
       # set start = position in file to start looking for next chunk
       # rewind eof if final entry is incomplete
 
       s1 = txt.find(self.firststr,start)
       s2 = txt.find("Loop time of",start+1)
 
       if s1 >= 0 and s2 >= 0 and s1 < s2:    # found s1,s2 with s1 before s2
         if self.style == 2:
 	  s1 = txt.find("\n",s1) + 1
       elif s1 >= 0 and s2 >= 0 and s2 < s1:  # found s1,s2 with s2 before s1
         s1 = 0
       elif s1 == -1 and s2 >= 0:             # found s2, but no s1
 	last = 1
         s1 = 0
       elif s1 >= 0 and s2 == -1:             # found s1, but no s2
         last = 1
         if self.style == 1:
           s2 = txt.rfind("\n--",s1) + 1
         else:
 	  s1 = txt.find("\n",s1) + 1
           s2 = txt.rfind("\n",s1) + 1
 	eof -= len(txt) - s2
       elif s1 == -1 and s2 == -1:            # found neither
                                              # could be end-of-file section
 					     # or entire read was one chunk
 
         if txt.find("Loop time of",start) == start:   # end of file, so exit
 	  eof -= len(txt) - start                     # reset eof to "Loop"
 	  break
 
 	last = 1                                      # entire read is a chunk
         s1 = 0
         if self.style == 1:
           s2 = txt.rfind("\n--",s1) + 1
         else:
           s2 = txt.rfind("\n",s1) + 1
 	eof -= len(txt) - s2
 	if s1 == s2: break
 
       chunk = txt[s1:s2-1]
       start = s2
 
       # split chunk into entries
       # parse each entry for numeric fields, append to data
   
       if self.style == 1:
         sections = chunk.split("\n--")
         pat1 = re.compile("Step\s*(\S*)\s")
         pat2 = re.compile("=\s*(\S*)")
         for section in sections:
           word1 = [re.search(pat1,section).group(1)]
           word2 = re.findall(pat2,section)
           words = word1 + word2
           self.data.append(map(float,words))
 
       else:
         lines = chunk.split("\n")
         for line in lines:
           words = line.split()
           self.data.append(map(float,words))
 
       # print last timestep of chunk
 
       print int(self.data[len(self.data)-1][0]),
       sys.stdout.flush()
 
     return eof