diff --git a/doc/Section_commands.html b/doc/Section_commands.html
index 916644fab..7fd5c71b4 100644
--- a/doc/Section_commands.html
+++ b/doc/Section_commands.html
@@ -1,626 +1,627 @@
 <HTML>
 <CENTER><A HREF = "Section_start.html">Previous Section</A> - <A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A> - <A HREF = "Section_packages.html">Next Section</A> 
 </CENTER>
 
 
 
 
 
 
 <HR>
 
 <H3>3. Commands 
 </H3>
 <P>This section describes how a LAMMPS input script is formatted and the
 input script commands used to define a LAMMPS simulation.
 </P>
 3.1 <A HREF = "#cmd_1">LAMMPS input script</A><BR>
 3.2 <A HREF = "#cmd_2">Parsing rules</A><BR>
 3.3 <A HREF = "#cmd_3">Input script structure</A><BR>
 3.4 <A HREF = "#cmd_4">Commands listed by category</A><BR>
 3.5 <A HREF = "#cmd_5">Commands listed alphabetically</A> <BR>
 
 <HR>
 
 <HR>
 
 <A NAME = "cmd_1"></A><H4>3.1 LAMMPS input script 
 </H4>
 <P>LAMMPS executes by reading commands from a input script (text file),
 one line at a time.  When the input script ends, LAMMPS exits.  Each
 command causes LAMMPS to take some action.  It may set an internal
 variable, read in a file, or run a simulation.  Most commands have
 default settings, which means you only need to use the command if you
 wish to change the default.
 </P>
 <P>In many cases, the ordering of commands in an input script is not
 important.  However the following rules apply:
 </P>
 <P>(1) LAMMPS does not read your entire input script and then perform a
 simulation with all the settings.  Rather, the input script is read
 one line at a time and each command takes effect when it is read.
 Thus this sequence of commands:
 </P>
 <PRE>timestep 0.5 
 run      100 
 run      100 
 </PRE>
 <P>does something different than this sequence:
 </P>
 <PRE>run      100 
 timestep 0.5 
 run      100 
 </PRE>
 <P>In the first case, the specified timestep (0.5 fmsec) is used for two
 simulations of 100 timesteps each.  In the 2nd case, the default
 timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5
 fmsec timestep is used for the 2nd one.
 </P>
 <P>(2) Some commands are only valid when they follow other commands.  For
 example you cannot set the temperature of a group of atoms until atoms
 have been defined and a group command is used to define which atoms
 belong to the group.
 </P>
 <P>(3) Sometimes command B will use values that can be set by command A.
 This means command A must precede command B in the input script if it
 is to have the desired effect.  For example, the
 <A HREF = "read_data.html">read_data</A> command initializes the system by setting
 up the simulation box and assigning atoms to processors.  If default
 values are not desired, the <A HREF = "processors.html">processors</A> and
 <A HREF = "boundary.html">boundary</A> commands need to be used before read_data to
 tell LAMMPS how to map processors to the simulation box.
 </P>
 <P>Many input script errors are detected by LAMMPS and an ERROR or
 WARNING message is printed.  <A HREF = "Section_errors.html">This section</A> gives
 more information on what errors mean.  The documentation for each
 command lists restrictions on how the command can be used.
 </P>
 <HR>
 
 <A NAME = "cmd_2"></A><H4>3.2 Parsing rules 
 </H4>
 <P>Each non-blank line in the input script is treated as a command.
 LAMMPS commands are case sensitive.  Command names are lower-case, as
 are specified command arguments.  Upper case letters may be used in
 file names or user-chosen ID strings.
 </P>
 <P>Here is how each line in the input script is parsed by LAMMPS:
 </P>
 <P>(1) If the last printable character on the line is a "&" character
 (with no surrounding quotes), the command is assumed to continue on
 the next line.  The next line is concatenated to the previous line by
 removing the "&" character and newline.  This allows long commands to
 be continued across two or more lines.
 </P>
 <P>(2) All characters from the first "#" character onward are treated as
 comment and discarded.  See an exception in (6).  Note that a
 comment after a trailing "&" character will prevent the command from
 continuing on the next line.  Also note that for multi-line commands a
 single leading "#" will comment out the entire command.
 </P>
 <P>(3) The line is searched repeatedly for $ characters, which indicate
 variables that are replaced with a text string.  See an exception in
 (6).  If the $ is followed by curly brackets, then the variable name
 is the text inside the curly brackets.  If no curly brackets follow
 the $, then the variable name is the single character immediately
 following the $.  Thus ${myTemp} and $x refer to variable names
 "myTemp" and "x".  See the <A HREF = "variable.html">variable</A> command for
 details of how strings are assigned to variables and how they are
 substituted for in input script commands.
 </P>
 <P>(4) The line is broken into "words" separated by whitespace (tabs,
 spaces).  Note that words can thus contain letters, digits,
 underscores, or punctuation characters.
 </P>
 <P>(5) The first word is the command name.  All successive words in the
 line are arguments.
 </P>
 <P>(6) If you want text with spaces to be treated as a single argument,
 it can be enclosed in either double or single quotes.  E.g.
 </P>
 <PRE>print "Volume = $v"
 print 'Volume = $v' 
 </PRE>
 <P>The quotes are removed when the single argument is stored internally.
 See the <A HREF = "dump_modify.html">dump modify format</A> or <A HREF = "if.html">if</A> commands
 for examples.  A "#" or "$" character that is between quotes will not
 be treated as a comment indicator in (2) or substituted for as a
 variable in (3).
 </P>
 <P>IMPORTANT NOTE: If the argument is itself a command that requires a
 quoted argument (e.g. using a <A HREF = "print.html">print</A> command as part of an
 <A HREF = "if.html">if</A> or <A HREF = "run.html">run every</A> command), then the double and
 single quotes can be nested in the usual manner.  See the doc pages
 for those commands for examples.  Only one of level of nesting is
 allowed, but that should be sufficient for most use cases.
 </P>
 <HR>
 
 <H4><A NAME = "cmd_3"></A>3.3 Input script structure 
 </H4>
 <P>This section describes the structure of a typical LAMMPS input script.
 The "examples" directory in the LAMMPS distribution contains many
 sample input scripts; the corresponding problems are discussed in
 <A HREF = "Section_example.html">this section</A>, and animated on the <A HREF = "http://lammps.sandia.gov">LAMMPS WWW
 Site</A>.
 </P>
 <P>A LAMMPS input script typically has 4 parts:
 </P>
 <OL><LI>Initialization
 <LI>Atom definition
 <LI>Settings
 <LI>Run a simulation 
 </OL>
 <P>The last 2 parts can be repeated as many times as desired.  I.e. run a
 simulation, change some settings, run some more, etc.  Each of the 4
 parts is now described in more detail.  Remember that almost all the
 commands need only be used if a non-default value is desired.
 </P>
 <P>(1) Initialization
 </P>
 <P>Set parameters that need to be defined before atoms are created or
 read-in from a file.
 </P>
 <P>The relevant commands are <A HREF = "units.html">units</A>,
 <A HREF = "dimension.html">dimension</A>, <A HREF = "newton.html">newton</A>,
 <A HREF = "processors.html">processors</A>, <A HREF = "boundary.html">boundary</A>,
 <A HREF = "atom_style.html">atom_style</A>, <A HREF = "atom_modify.html">atom_modify</A>.
 </P>
 <P>If force-field parameters appear in the files that will be read, these
 commands tell LAMMPS what kinds of force fields are being used:
 <A HREF = "pair_style.html">pair_style</A>, <A HREF = "bond_style.html">bond_style</A>,
 <A HREF = "angle_style.html">angle_style</A>, <A HREF = "dihedral_style.html">dihedral_style</A>,
 <A HREF = "improper_style.html">improper_style</A>.
 </P>
 <P>(2) Atom definition
 </P>
 <P>There are 3 ways to define atoms in LAMMPS.  Read them in from a data
 or restart file via the <A HREF = "read_data.html">read_data</A> or
 <A HREF = "read_restart.html">read_restart</A> commands.  These files can contain
 molecular topology information.  Or create atoms on a lattice (with no
 molecular topology), using these commands: <A HREF = "lattice.html">lattice</A>,
 <A HREF = "region.html">region</A>, <A HREF = "create_box.html">create_box</A>,
 <A HREF = "create_atoms.html">create_atoms</A>.  The entire set of atoms can be
 duplicated to make a larger simulation using the
 <A HREF = "replicate.html">replicate</A> command.
 </P>
 <P>(3) Settings
 </P>
 <P>Once atoms and molecular topology are defined, a variety of settings
 can be specified: force field coefficients, simulation parameters,
 output options, etc.
 </P>
 <P>Force field coefficients are set by these commands (they can also be
 set in the read-in files): <A HREF = "pair_coeff.html">pair_coeff</A>,
 <A HREF = "bond_coeff.html">bond_coeff</A>, <A HREF = "angle_coeff.html">angle_coeff</A>,
 <A HREF = "dihedral_coeff.html">dihedral_coeff</A>,
 <A HREF = "improper_coeff.html">improper_coeff</A>,
 <A HREF = "kspace_style.html">kspace_style</A>, <A HREF = "dielectric.html">dielectric</A>,
 <A HREF = "special_bonds.html">special_bonds</A>.
 </P>
 <P>Various simulation parameters are set by these commands:
 <A HREF = "neighbor.html">neighbor</A>, <A HREF = "neigh_modify.html">neigh_modify</A>,
 <A HREF = "group.html">group</A>, <A HREF = "timestep.html">timestep</A>,
 <A HREF = "reset_timestep.html">reset_timestep</A>, <A HREF = "run_style.html">run_style</A>,
 <A HREF = "min_style.html">min_style</A>, <A HREF = "min_modify.html">min_modify</A>.
 </P>
 <P>Fixes impose a variety of boundary conditions, time integration, and
 diagnostic options.  The <A HREF = "fix.html">fix</A> command comes in many flavors.
 </P>
 <P>Various computations can be specified for execution during a
 simulation using the <A HREF = "compute.html">compute</A>,
 <A HREF = "compute_modify.html">compute_modify</A>, and <A HREF = "variable.html">variable</A>
 commands.
 </P>
 <P>Output options are set by the <A HREF = "thermo.html">thermo</A>, <A HREF = "dump.html">dump</A>,
 and <A HREF = "restart.html">restart</A> commands.
 </P>
 <P>(4) Run a simulation
 </P>
 <P>A molecular dynamics simulation is run using the <A HREF = "run.html">run</A>
 command.  Energy minimization (molecular statics) is performed using
 the <A HREF = "minimize.html">minimize</A> command.  A parallel tempering
 (replica-exchange) simulation can be run using the
 <A HREF = "temper.html">temper</A> command.
 </P>
 <HR>
 
 <A NAME = "cmd_4"></A><H4>3.4 Commands listed by category 
 </H4>
 <P>This section lists all LAMMPS commands, grouped by category.  The
 <A HREF = "#cmd_5">next section</A> lists the same commands alphabetically.  Note
 that some style options for some commands are part of specific LAMMPS
 packages, which means they cannot be used unless the package was
 included when LAMMPS was built.  Not all packages are included in a
 default LAMMPS build.  These dependencies are listed as Restrictions
 in the command's documentation.
 </P>
 <P>Initialization:
 </P>
 <P><A HREF = "atom_modify.html">atom_modify</A>, <A HREF = "atom_style.html">atom_style</A>,
 <A HREF = "boundary.html">boundary</A>, <A HREF = "dimension.html">dimension</A>,
 <A HREF = "newton.html">newton</A>, <A HREF = "processors.html">processors</A>, <A HREF = "units.html">units</A>
 </P>
 <P>Atom definition:
 </P>
 <P><A HREF = "create_atoms.html">create_atoms</A>, <A HREF = "create_box.html">create_box</A>,
 <A HREF = "lattice.html">lattice</A>, <A HREF = "read_data.html">read_data</A>,
 <A HREF = "read_restart.html">read_restart</A>, <A HREF = "region.html">region</A>,
 <A HREF = "replicate.html">replicate</A>
 </P>
 <P>Force fields:
 </P>
 <P><A HREF = "angle_coeff.html">angle_coeff</A>, <A HREF = "angle_style.html">angle_style</A>,
 <A HREF = "bond_coeff.html">bond_coeff</A>, <A HREF = "bond_style.html">bond_style</A>,
 <A HREF = "dielectric.html">dielectric</A>, <A HREF = "dihedral_coeff.html">dihedral_coeff</A>,
 <A HREF = "dihedral_style.html">dihedral_style</A>,
 <A HREF = "improper_coeff.html">improper_coeff</A>,
 <A HREF = "improper_style.html">improper_style</A>,
 <A HREF = "kspace_modify.html">kspace_modify</A>, <A HREF = "kspace_style.html">kspace_style</A>,
 <A HREF = "pair_coeff.html">pair_coeff</A>, <A HREF = "pair_modify.html">pair_modify</A>,
 <A HREF = "pair_style.html">pair_style</A>, <A HREF = "pair_write.html">pair_write</A>,
 <A HREF = "special_bonds.html">special_bonds</A>
 </P>
 <P>Settings:
 </P>
 <P><A HREF = "communicate.html">communicate</A>, <A HREF = "group.html">group</A>, <A HREF = "mass.html">mass</A>,
 <A HREF = "min_modify.html">min_modify</A>, <A HREF = "min_style.html">min_style</A>,
 <A HREF = "neigh_modify.html">neigh_modify</A>, <A HREF = "neighbor.html">neighbor</A>,
 <A HREF = "reset_timestep.html">reset_timestep</A>, <A HREF = "run_style.html">run_style</A>,
 <A HREF = "set.html">set</A>, <A HREF = "timestep.html">timestep</A>, <A HREF = "velocity.html">velocity</A>
 </P>
 <P>Fixes:
 </P>
 <P><A HREF = "fix.html">fix</A>, <A HREF = "fix_modify.html">fix_modify</A>, <A HREF = "unfix.html">unfix</A>
 </P>
 <P>Computes:
 </P>
 <P><A HREF = "compute.html">compute</A>, <A HREF = "compute_modify.html">compute_modify</A>,
 <A HREF = "uncompute.html">uncompute</A>
 </P>
 <P>Output:
 </P>
 <P><A HREF = "dump.html">dump</A>, <A HREF = "dump_image.html">dump image</A>,
 <A HREF = "dump_modify.html">dump_modify</A>, <A HREF = "restart.html">restart</A>,
 <A HREF = "thermo.html">thermo</A>, <A HREF = "thermo_modify.html">thermo_modify</A>,
 <A HREF = "thermo_style.html">thermo_style</A>, <A HREF = "undump.html">undump</A>,
 <A HREF = "write_restart.html">write_restart</A>
 </P>
 <P>Actions:
 </P>
 <P><A HREF = "delete_atoms.html">delete_atoms</A>, <A HREF = "delete_bonds.html">delete_bonds</A>,
 <A HREF = "displace_atoms.html">displace_atoms</A>,
 <A HREF = "displace_box.html">displace_box</A>, <A HREF = "minimize.html">minimize</A>,
 <A HREF = "neb.html">neb</A> <A HREF = "prd.html">prd</A>, <A HREF = "run.html">run</A>, <A HREF = "temper.html">temper</A>
 </P>
 <P>Miscellaneous:
 </P>
 <P><A HREF = "clear.html">clear</A>, <A HREF = "echo.html">echo</A>, <A HREF = "if.html">if</A>,
 <A HREF = "include.html">include</A>, <A HREF = "jump.html">jump</A>, <A HREF = "label.html">label</A>,
 <A HREF = "log.html">log</A>, <A HREF = "next.html">next</A>, <A HREF = "print.html">print</A>,
 <A HREF = "shell.html">shell</A>, <A HREF = "variable.html">variable</A>
 </P>
 <HR>
 
 <H4><A NAME = "cmd_5"></A><A NAME = "comm"></A>3.5 Individual commands 
 </H4>
 <P>This section lists all LAMMPS commands alphabetically, with a separate
 listing below of styles within certain commands.  The <A HREF = "#cmd_4">previous
 section</A> lists the same commands, grouped by category.  Note
 that some style options for some commands are part of specific LAMMPS
 packages, which means they cannot be used unless the package was
 included when LAMMPS was built.  Not all packages are included in a
 default LAMMPS build.  These dependencies are listed as Restrictions
 in the command's documentation.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "angle_coeff.html">angle_coeff</A></TD><TD ><A HREF = "angle_style.html">angle_style</A></TD><TD ><A HREF = "atom_modify.html">atom_modify</A></TD><TD ><A HREF = "atom_style.html">atom_style</A></TD><TD ><A HREF = "bond_coeff.html">bond_coeff</A></TD><TD ><A HREF = "bond_style.html">bond_style</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "boundary.html">boundary</A></TD><TD ><A HREF = "change_box.html">change_box</A></TD><TD ><A HREF = "clear.html">clear</A></TD><TD ><A HREF = "communicate.html">communicate</A></TD><TD ><A HREF = "compute.html">compute</A></TD><TD ><A HREF = "compute_modify.html">compute_modify</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "create_atoms.html">create_atoms</A></TD><TD ><A HREF = "create_box.html">create_box</A></TD><TD ><A HREF = "delete_atoms.html">delete_atoms</A></TD><TD ><A HREF = "delete_bonds.html">delete_bonds</A></TD><TD ><A HREF = "dielectric.html">dielectric</A></TD><TD ><A HREF = "dihedral_coeff.html">dihedral_coeff</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "dihedral_style.html">dihedral_style</A></TD><TD ><A HREF = "dimension.html">dimension</A></TD><TD ><A HREF = "displace_atoms.html">displace_atoms</A></TD><TD ><A HREF = "displace_box.html">displace_box</A></TD><TD ><A HREF = "dump.html">dump</A></TD><TD ><A HREF = "dump_image.html">dump image</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "dump_modify.html">dump_modify</A></TD><TD ><A HREF = "echo.html">echo</A></TD><TD ><A HREF = "fix.html">fix</A></TD><TD ><A HREF = "fix_modify.html">fix_modify</A></TD><TD ><A HREF = "group.html">group</A></TD><TD ><A HREF = "if.html">if</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "improper_coeff.html">improper_coeff</A></TD><TD ><A HREF = "improper_style.html">improper_style</A></TD><TD ><A HREF = "include.html">include</A></TD><TD ><A HREF = "jump.html">jump</A></TD><TD ><A HREF = "kspace_modify.html">kspace_modify</A></TD><TD ><A HREF = "kspace_style.html">kspace_style</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "label.html">label</A></TD><TD ><A HREF = "lattice.html">lattice</A></TD><TD ><A HREF = "log.html">log</A></TD><TD ><A HREF = "mass.html">mass</A></TD><TD ><A HREF = "minimize.html">minimize</A></TD><TD ><A HREF = "min_modify.html">min_modify</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "min_style.html">min_style</A></TD><TD ><A HREF = "neb.html">neb</A></TD><TD ><A HREF = "neigh_modify.html">neigh_modify</A></TD><TD ><A HREF = "neighbor.html">neighbor</A></TD><TD ><A HREF = "newton.html">newton</A></TD><TD ><A HREF = "next.html">next</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "package.html">package</A></TD><TD ><A HREF = "pair_coeff.html">pair_coeff</A></TD><TD ><A HREF = "pair_modify.html">pair_modify</A></TD><TD ><A HREF = "pair_style.html">pair_style</A></TD><TD ><A HREF = "pair_write.html">pair_write</A></TD><TD ><A HREF = "partition.html">partition</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "prd.html">prd</A></TD><TD ><A HREF = "print.html">print</A></TD><TD ><A HREF = "processors.html">processors</A></TD><TD ><A HREF = "read_data.html">read_data</A></TD><TD ><A HREF = "read_restart.html">read_restart</A></TD><TD ><A HREF = "region.html">region</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "replicate.html">replicate</A></TD><TD ><A HREF = "reset_timestep.html">reset_timestep</A></TD><TD ><A HREF = "restart.html">restart</A></TD><TD ><A HREF = "run.html">run</A></TD><TD ><A HREF = "run_style.html">run_style</A></TD><TD ><A HREF = "set.html">set</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "shell.html">shell</A></TD><TD ><A HREF = "special_bonds.html">special_bonds</A></TD><TD ><A HREF = "suffix.html">suffix</A></TD><TD ><A HREF = "tad.html">tad</A></TD><TD ><A HREF = "temper.html">temper</A></TD><TD ><A HREF = "thermo.html">thermo</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "thermo_modify.html">thermo_modify</A></TD><TD ><A HREF = "thermo_style.html">thermo_style</A></TD><TD ><A HREF = "timestep.html">timestep</A></TD><TD ><A HREF = "uncompute.html">uncompute</A></TD><TD ><A HREF = "undump.html">undump</A></TD><TD ><A HREF = "unfix.html">unfix</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "units.html">units</A></TD><TD ><A HREF = "variable.html">variable</A></TD><TD ><A HREF = "velocity.html">velocity</A></TD><TD ><A HREF = "write_restart.html">write_restart</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Fix styles 
 </H4>
 <P>See the <A HREF = "fix.html">fix</A> command for one-line descriptions
 of each style or click on the style itself for a full description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "fix_adapt.html">adapt</A></TD><TD ><A HREF = "fix_addforce.html">addforce</A></TD><TD ><A HREF = "fix_aveforce.html">aveforce</A></TD><TD ><A HREF = "fix_ave_atom.html">ave/atom</A></TD><TD ><A HREF = "fix_ave_correlate.html">ave/correlate</A></TD><TD ><A HREF = "fix_ave_histo.html">ave/histo</A></TD><TD ><A HREF = "fix_ave_spatial.html">ave/spatial</A></TD><TD ><A HREF = "fix_ave_time.html">ave/time</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_bond_break.html">bond/break</A></TD><TD ><A HREF = "fix_bond_create.html">bond/create</A></TD><TD ><A HREF = "fix_bond_swap.html">bond/swap</A></TD><TD ><A HREF = "fix_box_relax.html">box/relax</A></TD><TD ><A HREF = "fix_deform.html">deform</A></TD><TD ><A HREF = "fix_deposit.html">deposit</A></TD><TD ><A HREF = "fix_drag.html">drag</A></TD><TD ><A HREF = "fix_dt_reset.html">dt/reset</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_efield.html">efield</A></TD><TD ><A HREF = "fix_enforce2d.html">enforce2d</A></TD><TD ><A HREF = "fix_evaporate.html">evaporate</A></TD><TD ><A HREF = "fix_external.html">external</A></TD><TD ><A HREF = "fix_freeze.html">freeze</A></TD><TD ><A HREF = "fix_gcmc.html">gcmc</A></TD><TD ><A HREF = "fix_gravity.html">gravity</A></TD><TD ><A HREF = "fix_heat.html">heat</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_indent.html">indent</A></TD><TD ><A HREF = "fix_langevin.html">langevin</A></TD><TD ><A HREF = "fix_lineforce.html">lineforce</A></TD><TD ><A HREF = "fix_momentum.html">momentum</A></TD><TD ><A HREF = "fix_move.html">move</A></TD><TD ><A HREF = "fix_msst.html">msst</A></TD><TD ><A HREF = "fix_neb.html">neb</A></TD><TD ><A HREF = "fix_nh.html">nph</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_nphug.html">nphug</A></TD><TD ><A HREF = "fix_nph_asphere.html">nph/asphere</A></TD><TD ><A HREF = "fix_nph_sphere.html">nph/sphere</A></TD><TD ><A HREF = "fix_nh.html">npt</A></TD><TD ><A HREF = "fix_npt_asphere.html">npt/asphere</A></TD><TD ><A HREF = "fix_npt_sphere.html">npt/sphere</A></TD><TD ><A HREF = "fix_nve.html">nve</A></TD><TD ><A HREF = "fix_nve_asphere.html">nve/asphere</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_nve_asphere_noforce.html">nve/asphere/noforce</A></TD><TD ><A HREF = "fix_nve_limit.html">nve/limit</A></TD><TD ><A HREF = "fix_nve_line.html">nve/line</A></TD><TD ><A HREF = "fix_nve_noforce.html">nve/noforce</A></TD><TD ><A HREF = "fix_nve_sphere.html">nve/sphere</A></TD><TD ><A HREF = "fix_nve_tri.html">nve/tri</A></TD><TD ><A HREF = "fix_nh.html">nvt</A></TD><TD ><A HREF = "fix_nvt_asphere.html">nvt/asphere</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_nvt_sllod.html">nvt/sllod</A></TD><TD ><A HREF = "fix_nvt_sphere.html">nvt/sphere</A></TD><TD ><A HREF = "fix_orient_fcc.html">orient/fcc</A></TD><TD ><A HREF = "fix_planeforce.html">planeforce</A></TD><TD ><A HREF = "fix_poems.html">poems</A></TD><TD ><A HREF = "fix_pour.html">pour</A></TD><TD ><A HREF = "fix_press_berendsen.html">press/berendsen</A></TD><TD ><A HREF = "fix_print.html">print</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_qeq_comb.html">qeq/comb</A></TD><TD ><A HREF = "fix_reax_bonds.html">reax/bonds</A></TD><TD ><A HREF = "fix_recenter.html">recenter</A></TD><TD ><A HREF = "fix_restrain.html">restrain</A></TD><TD ><A HREF = "fix_rigid.html">rigid</A></TD><TD ><A HREF = "fix_rigid.html">rigid/nve</A></TD><TD ><A HREF = "fix_rigid.html">rigid/nvt</A></TD><TD ><A HREF = "fix_setforce.html">setforce</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_shake.html">shake</A></TD><TD ><A HREF = "fix_spring.html">spring</A></TD><TD ><A HREF = "fix_spring_rg.html">spring/rg</A></TD><TD ><A HREF = "fix_spring_self.html">spring/self</A></TD><TD ><A HREF = "fix_srd.html">srd</A></TD><TD ><A HREF = "fix_store_force.html">store/force</A></TD><TD ><A HREF = "fix_store_state.html">store/state</A></TD><TD ><A HREF = "fix_temp_berendsen.html">temp/berendsen</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_temp_rescale.html">temp/rescale</A></TD><TD ><A HREF = "fix_thermal_conductivity.html">thermal/conductivity</A></TD><TD ><A HREF = "fix_tmd.html">tmd</A></TD><TD ><A HREF = "fix_ttm.html">ttm</A></TD><TD ><A HREF = "fix_viscosity.html">viscosity</A></TD><TD ><A HREF = "fix_viscous.html">viscous</A></TD><TD ><A HREF = "fix_wall.html">wall/colloid</A></TD><TD ><A HREF = "fix_wall_gran.html">wall/gran</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_wall.html">wall/harmonic</A></TD><TD ><A HREF = "fix_wall.html">wall/lj126</A></TD><TD ><A HREF = "fix_wall.html">wall/lj93</A></TD><TD ><A HREF = "fix_wall_reflect.html">wall/reflect</A></TD><TD ><A HREF = "fix_wall_region.html">wall/region</A></TD><TD ><A HREF = "fix_wall_srd.html">wall/srd</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are fix styles contributed by users, which can be used if
 <A HREF = "Section_start.html#start_3">LAMMPS is built with the appropriate
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "fix_addtorque.html">addtorque</A></TD><TD ><A HREF = "fix_atc.html">atc</A></TD><TD ><A HREF = "fix_imd.html">imd</A></TD><TD ><A HREF = "fix_langevin_eff.html">langevin/eff</A></TD><TD ><A HREF = "fix_meso.html">meso</A></TD><TD ><A HREF = "fix_meso_stationary.html">meso/stationary</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_nh_eff.html">nph/eff</A></TD><TD ><A HREF = "fix_nh_eff.html">npt/eff</A></TD><TD ><A HREF = "fix_nve_eff.html">nve/eff</A></TD><TD ><A HREF = "fix_nh_eff.html">nvt/eff</A></TD><TD ><A HREF = "fix_nvt_sllod_eff.html">nvt/sllod/eff</A></TD><TD ><A HREF = "fix_qeq_reax.html">qeq/reax</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_smd.html">smd</A></TD><TD ><A HREF = "fix_temp_rescale_eff.html">temp/rescale/eff</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are accelerated fix styles, which can be used if LAMMPS is
 built with the <A HREF = "Section_accelerate.html">appropriate accelerated
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "fix_freeze.html">freeze/cuda</A></TD><TD ><A HREF = "fix_addforce.html">addforce/cuda</A></TD><TD ><A HREF = "fix_aveforce.html">aveforce/cuda</A></TD><TD ><A HREF = "fix_enforce2d.html">enforce2d/cuda</A></TD><TD ><A HREF = "fix_gravity.html">gravity/cuda</A></TD><TD ><A HREF = "fix_gravity.html">gravity/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_nh.html">npt/cuda</A></TD><TD ><A HREF = "fix_nh.html">nve/cuda</A></TD><TD ><A HREF = "fix_nve_sphere.html">nve/sphere/omp</A></TD><TD ><A HREF = "fix_nh.html">nvt/cuda</A></TD><TD ><A HREF = "fix_qeq_comb.html">qeq/comb/omp</A></TD><TD ><A HREF = "fix_setforce.html">setforce/cuda</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_shake.html">shake/cuda</A></TD><TD ><A HREF = "fix_temp_berendsen.html">temp/berendsen/cuda</A></TD><TD ><A HREF = "fix_temp_rescale.html">temp/rescale/cuda</A></TD><TD ><A HREF = "fix_temp_rescale.html">temp/rescale/limit/cuda</A></TD><TD ><A HREF = "fix_viscous.html">viscous/cuda</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Compute styles 
 </H4>
 <P>See the <A HREF = "compute.html">compute</A> command for one-line descriptions of
 each style or click on the style itself for a full description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "compute_angle_local.html">angle/local</A></TD><TD ><A HREF = "compute_atom_molecule.html">atom/molecule</A></TD><TD ><A HREF = "compute_bond_local.html">bond/local</A></TD><TD ><A HREF = "compute_centro_atom.html">centro/atom</A></TD><TD ><A HREF = "compute_cluster_atom.html">cluster/atom</A></TD><TD ><A HREF = "compute_cna_atom.html">cna/atom</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_com.html">com</A></TD><TD ><A HREF = "compute_com_molecule.html">com/molecule</A></TD><TD ><A HREF = "compute_coord_atom.html">coord/atom</A></TD><TD ><A HREF = "compute_damage_atom.html">damage/atom</A></TD><TD ><A HREF = "compute_dihedral_local.html">dihedral/local</A></TD><TD ><A HREF = "compute_displace_atom.html">displace/atom</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_erotate_asphere.html">erotate/asphere</A></TD><TD ><A HREF = "compute_erotate_sphere.html">erotate/sphere</A></TD><TD ><A HREF = "compute_event_displace.html">event/displace</A></TD><TD ><A HREF = "compute_group_group.html">group/group</A></TD><TD ><A HREF = "compute_gyration.html">gyration</A></TD><TD ><A HREF = "compute_gyration_molecule.html">gyration/molecule</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_heat_flux.html">heat/flux</A></TD><TD ><A HREF = "compute_improper_local.html">improper/local</A></TD><TD ><A HREF = "compute_ke.html">ke</A></TD><TD ><A HREF = "compute_ke_atom.html">ke/atom</A></TD><TD ><A HREF = "compute_msd.html">msd</A></TD><TD ><A HREF = "compute_msd_molecule.html">msd/molecule</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_pair.html">pair</A></TD><TD ><A HREF = "compute_pair_local.html">pair/local</A></TD><TD ><A HREF = "compute_pe.html">pe</A></TD><TD ><A HREF = "compute_pe_atom.html">pe/atom</A></TD><TD ><A HREF = "compute_pressure.html">pressure</A></TD><TD ><A HREF = "compute_property_atom.html">property/atom</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_property_local.html">property/local</A></TD><TD ><A HREF = "compute_property_molecule.html">property/molecule</A></TD><TD ><A HREF = "compute_rdf.html">rdf</A></TD><TD ><A HREF = "compute_reduce.html">reduce</A></TD><TD ><A HREF = "compute_reduce.html">reduce/region</A></TD><TD ><A HREF = "compute_slice.html">slice</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_stress_atom.html">stress/atom</A></TD><TD ><A HREF = "compute_temp.html">temp</A></TD><TD ><A HREF = "compute_temp_asphere.html">temp/asphere</A></TD><TD ><A HREF = "compute_temp_com.html">temp/com</A></TD><TD ><A HREF = "compute_temp_deform.html">temp/deform</A></TD><TD ><A HREF = "compute_temp_partial.html">temp/partial</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_temp_profile.html">temp/profile</A></TD><TD ><A HREF = "compute_temp_ramp.html">temp/ramp</A></TD><TD ><A HREF = "compute_temp_region.html">temp/region</A></TD><TD ><A HREF = "compute_temp_sphere.html">temp/sphere</A></TD><TD ><A HREF = "compute_ti.html">ti</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are compute styles contributed by users, which can be used if
 <A HREF = "Section_start.html#start_3">LAMMPS is built with the appropriate
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "compute_ackland_atom.html">ackland/atom</A></TD><TD ><A HREF = "compute_ke_eff.html">ke/eff</A></TD><TD ><A HREF = "compute_ke_atom_eff.html">ke/atom/eff</A></TD><TD ><A HREF = "compute_meso_e_atom.html">meso_e/atom</A></TD><TD ><A HREF = "compute_meso_rho_atom.html">meso_rho/atom</A></TD><TD ><A HREF = "compute_meso_t_atom.html">meso_t/atom</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_temp_eff.html">temp/eff</A></TD><TD ><A HREF = "compute_temp_deform_eff.html">temp/deform/eff</A></TD><TD ><A HREF = "compute_temp_region_eff.html">temp/region/eff</A></TD><TD ><A HREF = "compute_temp_rotate.html">temp/rotate</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are accelerated compute styles, which can be used if LAMMPS is
 built with the <A HREF = "Section_accelerate.html">appropriate accelerated
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "compute_pe.html">pe/cuda</A></TD><TD ><A HREF = "compute_pressure.html">pressure/cuda</A></TD><TD ><A HREF = "compute_temp.html">temp/cuda</A></TD><TD ><A HREF = "compute_temp_partial.html">temp/partial/cuda</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Pair_style potentials 
 </H4>
 <P>See the <A HREF = "pair_style.html">pair_style</A> command for an overview of pair
 potentials.  Click on the style itself for a full description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "pair_none.html">none</A></TD><TD ><A HREF = "pair_hybrid.html">hybrid</A></TD><TD ><A HREF = "pair_hybrid.html">hybrid/overlay</A></TD><TD ><A HREF = "pair_adp.html">adp</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_airebo.html">airebo</A></TD><TD ><A HREF = "pair_born.html">born</A></TD><TD ><A HREF = "pair_born.html">born/coul/long</A></TD><TD ><A HREF = "pair_brownian.html">brownian</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_brownian.html">brownian/poly</A></TD><TD ><A HREF = "pair_buck.html">buck</A></TD><TD ><A HREF = "pair_buck.html">buck/coul/cut</A></TD><TD ><A HREF = "pair_buck.html">buck/coul/long</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_colloid.html">colloid</A></TD><TD ><A HREF = "pair_comb.html">comb</A></TD><TD ><A HREF = "pair_coul.html">coul/cut</A></TD><TD ><A HREF = "pair_coul.html">coul/debye</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_coul.html">coul/long</A></TD><TD ><A HREF = "pair_dipole.html">dipole/cut</A></TD><TD ><A HREF = "pair_dpd.html">dpd</A></TD><TD ><A HREF = "pair_dpd.html">dpd/tstat</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_dsmc.html">dsmc</A></TD><TD ><A HREF = "pair_eam.html">eam</A></TD><TD ><A HREF = "pair_eam.html">eam/alloy</A></TD><TD ><A HREF = "pair_eam.html">eam/fs</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_eim.html">eim</A></TD><TD ><A HREF = "pair_gauss.html">gauss</A></TD><TD ><A HREF = "pair_gayberne.html">gayberne</A></TD><TD ><A HREF = "pair_gran.html">gran/hertz/history</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_gran.html">gran/hooke</A></TD><TD ><A HREF = "pair_gran.html">gran/hooke/history</A></TD><TD ><A HREF = "pair_hbond_dreiding.html">hbond/dreiding/lj</A></TD><TD ><A HREF = "pair_hbond_dreiding.html">hbond/dreiding/morse</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_line_lj.html">line/lj</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm/implicit</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/long</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_class2.html">lj/class2</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/coul/cut</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/coul/long</A></TD><TD ><A HREF = "pair_lj.html">lj/cut</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut/coul/cut</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/debye</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/long</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/long/tip4p</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_lj_expand.html">lj/expand</A></TD><TD ><A HREF = "pair_gromacs.html">lj/gromacs</A></TD><TD ><A HREF = "pair_gromacs.html">lj/gromacs/coul/gromacs</A></TD><TD ><A HREF = "pair_lj_smooth.html">lj/smooth</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_lj96.html">lj96/cut</A></TD><TD ><A HREF = "pair_lubricate.html">lubricate</A></TD><TD ><A HREF = "pair_lubricate.html">lubricate/poly</A></TD><TD ><A HREF = "pair_lubricateU.html">lubricateU</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_lubricateU.html">lubricateU/poly</A></TD><TD ><A HREF = "pair_meam.html">meam</A></TD><TD ><A HREF = "pair_morse.html">morse</A></TD><TD ><A HREF = "pair_peri.html">peri/lps</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_peri.html">peri/pmb</A></TD><TD ><A HREF = "pair_reax.html">reax</A></TD><TD ><A HREF = "pair_airebo.html">rebo</A></TD><TD ><A HREF = "pair_resquared.html">resquared</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_soft.html">soft</A></TD><TD ><A HREF = "pair_sw.html">sw</A></TD><TD ><A HREF = "pair_table.html">table</A></TD><TD ><A HREF = "pair_tersoff.html">tersoff</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_tersoff_zbl.html">tersoff/zbl</A></TD><TD ><A HREF = "pair_tri_lj.html">tri/lj</A></TD><TD ><A HREF = "pair_yukawa.html">yukawa</A></TD><TD ><A HREF = "pair_yukawa_colloid.html">yukawa/colloid</A> 
+<TR ALIGN="center"><TD ><A HREF = "pair_airebo.html">airebo</A></TD><TD ><A HREF = "pair_born.html">born</A></TD><TD ><A HREF = "pair_born.html">born/coul/long</A></TD><TD ><A HREF = "pair_born.html">born/coul/wolf</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_brownian.html">brownian</A></TD><TD ><A HREF = "pair_brownian.html">brownian/poly</A></TD><TD ><A HREF = "pair_buck.html">buck</A></TD><TD ><A HREF = "pair_buck.html">buck/coul/cut</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_buck.html">buck/coul/long</A></TD><TD ><A HREF = "pair_colloid.html">colloid</A></TD><TD ><A HREF = "pair_comb.html">comb</A></TD><TD ><A HREF = "pair_coul.html">coul/cut</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_coul.html">coul/debye</A></TD><TD ><A HREF = "pair_coul.html">coul/long</A></TD><TD ><A HREF = "pair_coul.html">coul/wolf</A></TD><TD ><A HREF = "pair_dipole.html">dipole/cut</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_dpd.html">dpd</A></TD><TD ><A HREF = "pair_dpd.html">dpd/tstat</A></TD><TD ><A HREF = "pair_dsmc.html">dsmc</A></TD><TD ><A HREF = "pair_eam.html">eam</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_eam.html">eam/alloy</A></TD><TD ><A HREF = "pair_eam.html">eam/fs</A></TD><TD ><A HREF = "pair_eim.html">eim</A></TD><TD ><A HREF = "pair_gauss.html">gauss</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_gayberne.html">gayberne</A></TD><TD ><A HREF = "pair_gran.html">gran/hertz/history</A></TD><TD ><A HREF = "pair_gran.html">gran/hooke</A></TD><TD ><A HREF = "pair_gran.html">gran/hooke/history</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_hbond_dreiding.html">hbond/dreiding/lj</A></TD><TD ><A HREF = "pair_hbond_dreiding.html">hbond/dreiding/morse</A></TD><TD ><A HREF = "pair_line_lj.html">line/lj</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm/implicit</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/long</A></TD><TD ><A HREF = "pair_class2.html">lj/class2</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/coul/cut</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_class2.html">lj/class2/coul/long</A></TD><TD ><A HREF = "pair_lj.html">lj/cut</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/cut</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/debye</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut/coul/long</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/long/tip4p</A></TD><TD ><A HREF = "pair_lj_expand.html">lj/expand</A></TD><TD ><A HREF = "pair_gromacs.html">lj/gromacs</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_gromacs.html">lj/gromacs/coul/gromacs</A></TD><TD ><A HREF = "pair_lj_smooth.html">lj/smooth</A></TD><TD ><A HREF = "pair_lj96.html">lj96/cut</A></TD><TD ><A HREF = "pair_lubricate.html">lubricate</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_lubricate.html">lubricate/poly</A></TD><TD ><A HREF = "pair_lubricateU.html">lubricateU</A></TD><TD ><A HREF = "pair_lubricateU.html">lubricateU/poly</A></TD><TD ><A HREF = "pair_meam.html">meam</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_morse.html">morse</A></TD><TD ><A HREF = "pair_peri.html">peri/lps</A></TD><TD ><A HREF = "pair_peri.html">peri/pmb</A></TD><TD ><A HREF = "pair_reax.html">reax</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_airebo.html">rebo</A></TD><TD ><A HREF = "pair_resquared.html">resquared</A></TD><TD ><A HREF = "pair_soft.html">soft</A></TD><TD ><A HREF = "pair_sw.html">sw</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_table.html">table</A></TD><TD ><A HREF = "pair_tersoff.html">tersoff</A></TD><TD ><A HREF = "pair_tersoff_zbl.html">tersoff/zbl</A></TD><TD ><A HREF = "pair_tri_lj.html">tri/lj</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_yukawa.html">yukawa</A></TD><TD ><A HREF = "pair_yukawa_colloid.html">yukawa/colloid</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are pair styles contributed by users, which can be used if
 <A HREF = "Section_start.html#start_3">LAMMPS is built with the appropriate
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "pair_awpmd.html">awpmd/cut</A></TD><TD ><A HREF = "pair_buck_coul.html">buck/coul</A></TD><TD ><A HREF = "pair_coul_diel.html">coul/diel</A></TD><TD ><A HREF = "pair_sdk.html">lj/sdk</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_sdk.html">lj/sdk/coul/long</A></TD><TD ><A HREF = "pair_dipole.html">dipole/sf</A></TD><TD ><A HREF = "pair_eam.html">eam/cd</A></TD><TD ><A HREF = "pair_edip.html">edip</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_eff.html">eff/cut</A></TD><TD ><A HREF = "pair_gauss.html">gauss/cut</A></TD><TD ><A HREF = "pair_lj_coul.html">lj/coul</A></TD><TD ><A HREF = "pair_lj_sf.html">lj/sf</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_reax_c.html">reax/c</A></TD><TD ><A HREF = "pair_heatconduction.html">sph/heatconduction</A></TD><TD ><A HREF = "pair_idealgas.html">sph/idealgas</A></TD><TD ><A HREF = "pair_lj.html">sph/lj</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_rhosum.html">sph/rhosum</A></TD><TD ><A HREF = "pair_taitwater.html">sph/taitwater</A></TD><TD ><A HREF = "pair_taitwater_morris.html">sph/taitwater/morris</A></TD><TD ><A HREF = "pair_tersoff.html">tersoff/table</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are accelerated pair styles, which can be used if LAMMPS is
 built with the <A HREF = "Section_accelerate.html">appropriate accelerated
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "pair_adp.html">adp/omp</A></TD><TD ><A HREF = "pair_airebo.html">airebo/omp</A></TD><TD ><A HREF = "pair_born.html">born/coul/long/cuda</A></TD><TD ><A HREF = "pair_born.html">born/coul/long/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_born.html">born/omp</A></TD><TD ><A HREF = "pair_buck.html">buck/coul/cut/cuda</A></TD><TD ><A HREF = "pair_buck.html">buck/coul/cut/omp</A></TD><TD ><A HREF = "pair_buck.html">buck/coul/long/cuda</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_buck.html">buck/coul/long/omp</A></TD><TD ><A HREF = "pair_buck_coul.html">buck/coul/omp</A></TD><TD ><A HREF = "pair_buck.html">buck/cuda</A></TD><TD ><A HREF = "pair_buck.html">buck/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_sdk.html">lj/sdk/gpu</A></TD><TD ><A HREF = "pair_sdk.html">lj/sdk/omp</A></TD><TD ><A HREF = "pair_sdk.html">lj/sdk/coul/long/gpu</A></TD><TD ><A HREF = "pair_sdk.html">lj/sdk/coul/long/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_colloid.html">colloid/omp</A></TD><TD ><A HREF = "pair_comb.html">comb/omp</A></TD><TD ><A HREF = "pair_coul.html">coul/cut/omp</A></TD><TD ><A HREF = "pair_coul.html">coul/debye/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_coul.html">coul/long/gpu</A></TD><TD ><A HREF = "pair_coul.html">coul/long/omp</A></TD><TD ><A HREF = "pair_dipole.html">dipole/cut/omp</A></TD><TD ><A HREF = "pair_dipole.html">dipole/sf/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_dpd.html">dpd/omp</A></TD><TD ><A HREF = "pair_dpd.html">dpd/tstat/omp</A></TD><TD ><A HREF = "pair_eam.html">eam/alloy/cuda</A></TD><TD ><A HREF = "pair_eam.html">eam/alloy/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_eam.html">eam/alloy/opt</A></TD><TD ><A HREF = "pair_eam.html">eam/cd/omp</A></TD><TD ><A HREF = "pair_eam.html">eam/cuda</A></TD><TD ><A HREF = "pair_eam.html">eam/fs/cuda</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_eam.html">eam/fs/omp</A></TD><TD ><A HREF = "pair_eam.html">eam/fs/opt</A></TD><TD ><A HREF = "pair_eam.html">eam/omp</A></TD><TD ><A HREF = "pair_eam.html">eam/opt</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_edip.html">edip/omp</A></TD><TD ><A HREF = "pair_eim.html">eim/omp</A></TD><TD ><A HREF = "pair_gauss.html">gauss/omp</A></TD><TD ><A HREF = "pair_gayberne.html">gayberne/gpu</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_gayberne.html">gayberne/omp</A></TD><TD ><A HREF = "pair_gran.html">gran/hertz/history/omp</A></TD><TD ><A HREF = "pair_gran.html">gran/hooke/cuda</A></TD><TD ><A HREF = "pair_gran.html">gran/hooke/history/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_gran.html">gran/hooke/omp</A></TD><TD ><A HREF = "pair_hbond_dreiding.html">hbond/dreiding/lj/omp</A></TD><TD ><A HREF = "pair_hbond_dreiding.html">hbond/dreiding/morse/omp</A></TD><TD ><A HREF = "pair_line_lj.html">line/lj/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm/cuda</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm/omp</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm/implicit/cuda</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm/implicit/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/long/cuda</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/long/gpu</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/long/omp</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/long/opt</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/pppm/omp</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/coul/cut/cuda</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/coul/cut/omp</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/coul/long/cuda</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_class2.html">lj/class2/coul/long/gpu</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/coul/long/omp</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/cuda</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/gpu</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_class2.html">lj/class2/omp</A></TD><TD ><A HREF = "pair_lj_coul.html">lj/coul/omp</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/cut/cuda</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/cut/gpu</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut/coul/cut/omp</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/debye/cuda</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/debye/omp</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/long/cuda</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut/coul/long/gpu</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/long/omp</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/long/opt</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/long/tip4p/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut/coul/long/tip4p/opt</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/pppm/omp</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/pppm/tip4p/omp</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/cuda</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut/experimental/cuda</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/gpu</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/omp</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/opt</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_lj_expand.html">lj/expand/cuda</A></TD><TD ><A HREF = "pair_lj_expand.html">lj/expand/gpu</A></TD><TD ><A HREF = "pair_lj_expand.html">lj/expand/omp</A></TD><TD ><A HREF = "pair_gromacs.html">lj/gromacs/coul/gromacs/cuda</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_gromacs.html">lj/gromacs/coul/gromacs/omp</A></TD><TD ><A HREF = "pair_gromacs.html">lj/gromacs/cuda</A></TD><TD ><A HREF = "pair_gromacs.html">lj/gromacs/omp</A></TD><TD ><A HREF = "pair_lj_sf.html">lj/sf/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_lj_smooth.html">lj/smooth/cuda</A></TD><TD ><A HREF = "pair_lj_smooth.html">lj/smooth/omp</A></TD><TD ><A HREF = "pair_lj96.html">lj96/cut/cuda</A></TD><TD ><A HREF = "pair_lj96.html">lj96/cut/gpu</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_lj96.html">lj96/cut/omp</A></TD><TD ><A HREF = "pair_morse.html">morse/cuda</A></TD><TD ><A HREF = "pair_morse.html">morse/gpu</A></TD><TD ><A HREF = "pair_morse.html">morse/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_morse.html">morse/opt</A></TD><TD ><A HREF = "pair_peri.html">peri/lps/omp</A></TD><TD ><A HREF = "pair_peri.html">peri/pmb/omp</A></TD><TD ><A HREF = "pair_airebo.html">rebo/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_resquared.html">resquared/gpu</A></TD><TD ><A HREF = "pair_resquared.html">resquared/omp</A></TD><TD ><A HREF = "pair_soft.html">soft/omp</A></TD><TD ><A HREF = "pair_sw.html">sw/cuda</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_sw.html">sw/omp</A></TD><TD ><A HREF = "pair_table.html">table/omp</A></TD><TD ><A HREF = "pair_tersoff.html">tersoff/cuda</A></TD><TD ><A HREF = "pair_tersoff.html">tersoff/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_tersoff.html">tersoff/table/omp</A></TD><TD ><A HREF = "pair_tersoff_zbl.html">tersoff/zbl/omp</A></TD><TD ><A HREF = "pair_tri_lj.html">tri/lj/omp</A></TD><TD ><A HREF = "pair_yukawa.html">yukawa/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_yukawa_colloid.html">yukawa/colloid/omp</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Bond_style potentials 
 </H4>
 <P>See the <A HREF = "bond_style.html">bond_style</A> command for an overview of bond
 potentials.  Click on the style itself for a full description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "bond_none.html">none</A></TD><TD WIDTH="100"><A HREF = "bond_hybrid.html">hybrid</A></TD><TD WIDTH="100"><A HREF = "bond_class2.html">class2</A></TD><TD WIDTH="100"><A HREF = "bond_fene.html">fene</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "bond_fene_expand.html">fene/expand</A></TD><TD WIDTH="100"><A HREF = "bond_harmonic.html">harmonic</A></TD><TD WIDTH="100"><A HREF = "bond_morse.html">morse</A></TD><TD WIDTH="100"><A HREF = "bond_nonlinear.html">nonlinear</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "bond_quartic.html">quartic</A></TD><TD WIDTH="100"><A HREF = "bond_table.html">table</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are bond styles contributed by users, which can be used if
 <A HREF = "Section_start.html#start_3">LAMMPS is built with the appropriate
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "bond_harmonic_shift.html">harmonic/shift</A></TD><TD ><A HREF = "bond_harmonic_shift_cut.html">harmonic/shift/cut</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are accelerated bond styles, which can be used if LAMMPS is
 built with the <A HREF = "Section_accelerate.html">appropriate accelerated
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "bond_class2.html">class2/omp</A></TD><TD WIDTH="100"><A HREF = "bond_fene.html">fene/omp</A></TD><TD WIDTH="100"><A HREF = "bond_fene_expand.html">fene/expand/omp</A></TD><TD WIDTH="100"><A HREF = "bond_harmonic.html">harmonic/omp</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "bond_harmonic_shift.html">harmonic/shift/omp</A></TD><TD WIDTH="100"><A HREF = "bond_harmonic_shift_cut.html">harmonic/shift/cut/omp</A></TD><TD WIDTH="100"><A HREF = "bond_morse.html">morse/omp</A></TD><TD WIDTH="100"><A HREF = "bond_nonlinear.html">nonlinear/omp</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "bond_quartic.html">quartic/omp</A></TD><TD WIDTH="100"><A HREF = "bond_table.html">table/omp</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Angle_style potentials 
 </H4>
 <P>See the <A HREF = "angle_style.html">angle_style</A> command for an overview of
 angle potentials.  Click on the style itself for a full description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "angle_none.html">none</A></TD><TD WIDTH="100"><A HREF = "angle_hybrid.html">hybrid</A></TD><TD WIDTH="100"><A HREF = "angle_charmm.html">charmm</A></TD><TD WIDTH="100"><A HREF = "angle_class2.html">class2</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "angle_cosine.html">cosine</A></TD><TD WIDTH="100"><A HREF = "angle_cosine_delta.html">cosine/delta</A></TD><TD WIDTH="100"><A HREF = "angle_cosine_periodic.html">cosine/periodic</A></TD><TD WIDTH="100"><A HREF = "angle_cosine_squared.html">cosine/squared</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "angle_harmonic.html">harmonic</A></TD><TD WIDTH="100"><A HREF = "angle_table.html">table</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are angle styles contributed by users, which can be used if
 <A HREF = "Section_start.html#start_3">LAMMPS is built with the appropriate
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "angle_sdk.html">sdk</A></TD><TD ><A HREF = "angle_cosine_shift.html">cosine/shift</A></TD><TD ><A HREF = "angle_cosine_shift_exp.html">cosine/shift/exp</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are accelerated angle styles, which can be used if LAMMPS is
 built with the <A HREF = "Section_accelerate.html">appropriate accelerated
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "angle_charmm.html">charmm/omp</A></TD><TD WIDTH="100"><A HREF = "angle_class2.html">class2/omp</A></TD><TD WIDTH="100"><A HREF = "angle_cosine.html">cosine/omp</A></TD><TD WIDTH="100"><A HREF = "angle_cosine_delta.html">cosine/delta/omp</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "angle_cosine_periodic.html">cosine/periodic/omp</A></TD><TD WIDTH="100"><A HREF = "angle_cosine_shift.html">cosine/shift/omp</A></TD><TD WIDTH="100"><A HREF = "angle_cosine_shift_exp.html">cosine/shift/exp/omp</A></TD><TD WIDTH="100"><A HREF = "angle_cosine_squared.html">cosine/squared/omp</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "angle_harmonic.html">harmonic/omp</A></TD><TD WIDTH="100"><A HREF = "angle_table.html">table/omp</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Dihedral_style potentials 
 </H4>
 <P>See the <A HREF = "dihedral_style.html">dihedral_style</A> command for an overview
 of dihedral potentials.  Click on the style itself for a full
 description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "dihedral_none.html">none</A></TD><TD WIDTH="100"><A HREF = "dihedral_hybrid.html">hybrid</A></TD><TD WIDTH="100"><A HREF = "dihedral_charmm.html">charmm</A></TD><TD WIDTH="100"><A HREF = "dihedral_class2.html">class2</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "dihedral_harmonic.html">harmonic</A></TD><TD WIDTH="100"><A HREF = "dihedral_helix.html">helix</A></TD><TD WIDTH="100"><A HREF = "dihedral_multi_harmonic.html">multi/harmonic</A></TD><TD WIDTH="100"><A HREF = "dihedral_opls.html">opls</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are dihedral styles contributed by users, which can be used if
 <A HREF = "Section_start.html#start_3">LAMMPS is built with the appropriate
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "dihedral_cosine_shift_exp.html">cosine/shift/exp</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are accelerated dihedral styles, which can be used if LAMMPS is
 built with the <A HREF = "Section_accelerate.html">appropriate accelerated
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "dihedral_charmm.html">charmm/omp</A></TD><TD WIDTH="100"><A HREF = "dihedral_class2.html">class2/omp</A></TD><TD WIDTH="100"><A HREF = "dihedral_cosine_shift_exp.html">cosine/shift/exp/omp</A></TD><TD WIDTH="100"><A HREF = "dihedral_harmonic.html">harmonic/omp</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "dihedral_helix.html">helix/omp</A></TD><TD WIDTH="100"><A HREF = "dihedral_multi_harmonic.html">multi/harmonic/omp</A></TD><TD WIDTH="100"><A HREF = "dihedral_opls.html">opls/omp</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Improper_style potentials 
 </H4>
 <P>See the <A HREF = "improper_style.html">improper_style</A> command for an overview
 of improper potentials.  Click on the style itself for a full
 description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "improper_none.html">none</A></TD><TD WIDTH="100"><A HREF = "improper_hybrid.html">hybrid</A></TD><TD WIDTH="100"><A HREF = "improper_class2.html">class2</A></TD><TD WIDTH="100"><A HREF = "improper_cvff.html">cvff</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "improper_harmonic.html">harmonic</A></TD><TD WIDTH="100"><A HREF = "improper_umbrella.html">umbrella</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are accelerated improper styles, which can be used if LAMMPS is
 built with the <A HREF = "Section_accelerate.html">appropriate accelerated
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "improper_class2.html">class2/omp</A></TD><TD WIDTH="100"><A HREF = "improper_cvff.html">cvff/omp</A></TD><TD WIDTH="100"><A HREF = "improper_harmonic.html">harmonic/omp</A></TD><TD WIDTH="100"><A HREF = "improper_umbrella.html">umbrella/omp</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Kspace solvers 
 </H4>
 <P>See the <A HREF = "kspace_style.html">kspace_style</A> command for an overview of
 Kspace solvers.  Click on the style itself for a full description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "kspace_style.html">ewald</A></TD><TD WIDTH="100"><A HREF = "kspace_style.html">pppm</A></TD><TD WIDTH="100"><A HREF = "kspace_style.html">pppm/cg</A></TD><TD WIDTH="100"><A HREF = "kspace_style.html">pppm/tip4p</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are Kspace solvers contributed by users, which can be used if
 <A HREF = "Section_start.html#start_3">LAMMPS is built with the appropriate
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "kspace_style.html">ewald/n</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are accelerated Kspace solvers, which can be used if LAMMPS is
 built with the <A HREF = "Section_accelerate.html">appropriate accelerated
 package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "kspace_style.html">ewald/omp</A></TD><TD ><A HREF = "kspace_style.html">pppm/cuda</A></TD><TD ><A HREF = "kspace_style.html">pppm/gpu</A></TD><TD ><A HREF = "kspace_style.html">pppm/omp</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "kspace_style.html">pppm/proxy</A> 
 </TD></TR></TABLE></DIV>
 
 </HTML>
diff --git a/doc/Section_commands.txt b/doc/Section_commands.txt
index b767c220e..75d93315a 100644
--- a/doc/Section_commands.txt
+++ b/doc/Section_commands.txt
@@ -1,998 +1,1000 @@
 "Previous Section"_Section_start.html - "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc - "Next Section"_Section_packages.html :c
 
 :link(lws,http://lammps.sandia.gov)
 :link(ld,Manual.html)
 :link(lc,Section_commands.html#comm)
 
 :line
 
 3. Commands :h3
 
 This section describes how a LAMMPS input script is formatted and the
 input script commands used to define a LAMMPS simulation.
 
 3.1 "LAMMPS input script"_#cmd_1
 3.2 "Parsing rules"_#cmd_2
 3.3 "Input script structure"_#cmd_3
 3.4 "Commands listed by category"_#cmd_4
 3.5 "Commands listed alphabetically"_#cmd_5 :all(b)
 
 :line
 :line
 
 3.1 LAMMPS input script :link(cmd_1),h4
 
 LAMMPS executes by reading commands from a input script (text file),
 one line at a time.  When the input script ends, LAMMPS exits.  Each
 command causes LAMMPS to take some action.  It may set an internal
 variable, read in a file, or run a simulation.  Most commands have
 default settings, which means you only need to use the command if you
 wish to change the default.
 
 In many cases, the ordering of commands in an input script is not
 important.  However the following rules apply:
 
 (1) LAMMPS does not read your entire input script and then perform a
 simulation with all the settings.  Rather, the input script is read
 one line at a time and each command takes effect when it is read.
 Thus this sequence of commands:
 
 timestep 0.5 
 run      100 
 run      100 :pre
 
 does something different than this sequence:
 
 run      100 
 timestep 0.5 
 run      100 :pre
 
 In the first case, the specified timestep (0.5 fmsec) is used for two
 simulations of 100 timesteps each.  In the 2nd case, the default
 timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5
 fmsec timestep is used for the 2nd one.
 
 (2) Some commands are only valid when they follow other commands.  For
 example you cannot set the temperature of a group of atoms until atoms
 have been defined and a group command is used to define which atoms
 belong to the group.
 
 (3) Sometimes command B will use values that can be set by command A.
 This means command A must precede command B in the input script if it
 is to have the desired effect.  For example, the
 "read_data"_read_data.html command initializes the system by setting
 up the simulation box and assigning atoms to processors.  If default
 values are not desired, the "processors"_processors.html and
 "boundary"_boundary.html commands need to be used before read_data to
 tell LAMMPS how to map processors to the simulation box.
 
 Many input script errors are detected by LAMMPS and an ERROR or
 WARNING message is printed.  "This section"_Section_errors.html gives
 more information on what errors mean.  The documentation for each
 command lists restrictions on how the command can be used.
 
 :line
 
 3.2 Parsing rules :link(cmd_2),h4
 
 Each non-blank line in the input script is treated as a command.
 LAMMPS commands are case sensitive.  Command names are lower-case, as
 are specified command arguments.  Upper case letters may be used in
 file names or user-chosen ID strings.
 
 Here is how each line in the input script is parsed by LAMMPS:
 
 (1) If the last printable character on the line is a "&" character
 (with no surrounding quotes), the command is assumed to continue on
 the next line.  The next line is concatenated to the previous line by
 removing the "&" character and newline.  This allows long commands to
 be continued across two or more lines.
 
 (2) All characters from the first "#" character onward are treated as
 comment and discarded.  See an exception in (6).  Note that a
 comment after a trailing "&" character will prevent the command from
 continuing on the next line.  Also note that for multi-line commands a
 single leading "#" will comment out the entire command.
 
 (3) The line is searched repeatedly for $ characters, which indicate
 variables that are replaced with a text string.  See an exception in
 (6).  If the $ is followed by curly brackets, then the variable name
 is the text inside the curly brackets.  If no curly brackets follow
 the $, then the variable name is the single character immediately
 following the $.  Thus $\{myTemp\} and $x refer to variable names
 "myTemp" and "x".  See the "variable"_variable.html command for
 details of how strings are assigned to variables and how they are
 substituted for in input script commands.
 
 (4) The line is broken into "words" separated by whitespace (tabs,
 spaces).  Note that words can thus contain letters, digits,
 underscores, or punctuation characters.
 
 (5) The first word is the command name.  All successive words in the
 line are arguments.
 
 (6) If you want text with spaces to be treated as a single argument,
 it can be enclosed in either double or single quotes.  E.g.
 
 print "Volume = $v"
 print 'Volume = $v' :pre
 
 The quotes are removed when the single argument is stored internally.
 See the "dump modify format"_dump_modify.html or "if"_if.html commands
 for examples.  A "#" or "$" character that is between quotes will not
 be treated as a comment indicator in (2) or substituted for as a
 variable in (3).
 
 IMPORTANT NOTE: If the argument is itself a command that requires a
 quoted argument (e.g. using a "print"_print.html command as part of an
 "if"_if.html or "run every"_run.html command), then the double and
 single quotes can be nested in the usual manner.  See the doc pages
 for those commands for examples.  Only one of level of nesting is
 allowed, but that should be sufficient for most use cases.
 
 :line
 
 3.3 Input script structure :h4,link(cmd_3)
 
 This section describes the structure of a typical LAMMPS input script.
 The "examples" directory in the LAMMPS distribution contains many
 sample input scripts; the corresponding problems are discussed in
 "this section"_Section_example.html, and animated on the "LAMMPS WWW
 Site"_lws.
 
 A LAMMPS input script typically has 4 parts:
 
 Initialization
 Atom definition
 Settings
 Run a simulation :ol
 
 The last 2 parts can be repeated as many times as desired.  I.e. run a
 simulation, change some settings, run some more, etc.  Each of the 4
 parts is now described in more detail.  Remember that almost all the
 commands need only be used if a non-default value is desired.
 
 (1) Initialization
 
 Set parameters that need to be defined before atoms are created or
 read-in from a file.
 
 The relevant commands are "units"_units.html,
 "dimension"_dimension.html, "newton"_newton.html,
 "processors"_processors.html, "boundary"_boundary.html,
 "atom_style"_atom_style.html, "atom_modify"_atom_modify.html.
 
 If force-field parameters appear in the files that will be read, these
 commands tell LAMMPS what kinds of force fields are being used:
 "pair_style"_pair_style.html, "bond_style"_bond_style.html,
 "angle_style"_angle_style.html, "dihedral_style"_dihedral_style.html,
 "improper_style"_improper_style.html.
 
 (2) Atom definition
 
 There are 3 ways to define atoms in LAMMPS.  Read them in from a data
 or restart file via the "read_data"_read_data.html or
 "read_restart"_read_restart.html commands.  These files can contain
 molecular topology information.  Or create atoms on a lattice (with no
 molecular topology), using these commands: "lattice"_lattice.html,
 "region"_region.html, "create_box"_create_box.html,
 "create_atoms"_create_atoms.html.  The entire set of atoms can be
 duplicated to make a larger simulation using the
 "replicate"_replicate.html command.
 
 (3) Settings
 
 Once atoms and molecular topology are defined, a variety of settings
 can be specified: force field coefficients, simulation parameters,
 output options, etc.
 
 Force field coefficients are set by these commands (they can also be
 set in the read-in files): "pair_coeff"_pair_coeff.html,
 "bond_coeff"_bond_coeff.html, "angle_coeff"_angle_coeff.html,
 "dihedral_coeff"_dihedral_coeff.html,
 "improper_coeff"_improper_coeff.html,
 "kspace_style"_kspace_style.html, "dielectric"_dielectric.html,
 "special_bonds"_special_bonds.html.
 
 Various simulation parameters are set by these commands:
 "neighbor"_neighbor.html, "neigh_modify"_neigh_modify.html,
 "group"_group.html, "timestep"_timestep.html,
 "reset_timestep"_reset_timestep.html, "run_style"_run_style.html,
 "min_style"_min_style.html, "min_modify"_min_modify.html.
 
 Fixes impose a variety of boundary conditions, time integration, and
 diagnostic options.  The "fix"_fix.html command comes in many flavors.
 
 Various computations can be specified for execution during a
 simulation using the "compute"_compute.html,
 "compute_modify"_compute_modify.html, and "variable"_variable.html
 commands.
 
 Output options are set by the "thermo"_thermo.html, "dump"_dump.html,
 and "restart"_restart.html commands.
 
 (4) Run a simulation
 
 A molecular dynamics simulation is run using the "run"_run.html
 command.  Energy minimization (molecular statics) is performed using
 the "minimize"_minimize.html command.  A parallel tempering
 (replica-exchange) simulation can be run using the
 "temper"_temper.html command.
 
 :line
 
 3.4 Commands listed by category :link(cmd_4),h4
 
 This section lists all LAMMPS commands, grouped by category.  The
 "next section"_#cmd_5 lists the same commands alphabetically.  Note
 that some style options for some commands are part of specific LAMMPS
 packages, which means they cannot be used unless the package was
 included when LAMMPS was built.  Not all packages are included in a
 default LAMMPS build.  These dependencies are listed as Restrictions
 in the command's documentation.
 
 Initialization:
 
 "atom_modify"_atom_modify.html, "atom_style"_atom_style.html,
 "boundary"_boundary.html, "dimension"_dimension.html,
 "newton"_newton.html, "processors"_processors.html, "units"_units.html
 
 Atom definition:
 
 "create_atoms"_create_atoms.html, "create_box"_create_box.html,
 "lattice"_lattice.html, "read_data"_read_data.html,
 "read_restart"_read_restart.html, "region"_region.html,
 "replicate"_replicate.html
 
 Force fields:
 
 "angle_coeff"_angle_coeff.html, "angle_style"_angle_style.html,
 "bond_coeff"_bond_coeff.html, "bond_style"_bond_style.html,
 "dielectric"_dielectric.html, "dihedral_coeff"_dihedral_coeff.html,
 "dihedral_style"_dihedral_style.html,
 "improper_coeff"_improper_coeff.html,
 "improper_style"_improper_style.html,
 "kspace_modify"_kspace_modify.html, "kspace_style"_kspace_style.html,
 "pair_coeff"_pair_coeff.html, "pair_modify"_pair_modify.html,
 "pair_style"_pair_style.html, "pair_write"_pair_write.html,
 "special_bonds"_special_bonds.html
 
 Settings:
 
 "communicate"_communicate.html, "group"_group.html, "mass"_mass.html,
 "min_modify"_min_modify.html, "min_style"_min_style.html,
 "neigh_modify"_neigh_modify.html, "neighbor"_neighbor.html,
 "reset_timestep"_reset_timestep.html, "run_style"_run_style.html,
 "set"_set.html, "timestep"_timestep.html, "velocity"_velocity.html
 
 Fixes:
 
 "fix"_fix.html, "fix_modify"_fix_modify.html, "unfix"_unfix.html
 
 Computes:
 
 "compute"_compute.html, "compute_modify"_compute_modify.html,
 "uncompute"_uncompute.html
 
 Output:
 
 "dump"_dump.html, "dump image"_dump_image.html,
 "dump_modify"_dump_modify.html, "restart"_restart.html,
 "thermo"_thermo.html, "thermo_modify"_thermo_modify.html,
 "thermo_style"_thermo_style.html, "undump"_undump.html,
 "write_restart"_write_restart.html
 
 Actions:
 
 "delete_atoms"_delete_atoms.html, "delete_bonds"_delete_bonds.html,
 "displace_atoms"_displace_atoms.html,
 "displace_box"_displace_box.html, "minimize"_minimize.html,
 "neb"_neb.html "prd"_prd.html, "run"_run.html, "temper"_temper.html
 
 Miscellaneous:
 
 "clear"_clear.html, "echo"_echo.html, "if"_if.html,
 "include"_include.html, "jump"_jump.html, "label"_label.html,
 "log"_log.html, "next"_next.html, "print"_print.html,
 "shell"_shell.html, "variable"_variable.html
 
 :line
 
 3.5 Individual commands :h4,link(cmd_5),link(comm)
 
 This section lists all LAMMPS commands alphabetically, with a separate
 listing below of styles within certain commands.  The "previous
 section"_#cmd_4 lists the same commands, grouped by category.  Note
 that some style options for some commands are part of specific LAMMPS
 packages, which means they cannot be used unless the package was
 included when LAMMPS was built.  Not all packages are included in a
 default LAMMPS build.  These dependencies are listed as Restrictions
 in the command's documentation.
 
 "angle_coeff"_angle_coeff.html,
 "angle_style"_angle_style.html,
 "atom_modify"_atom_modify.html,
 "atom_style"_atom_style.html,
 "bond_coeff"_bond_coeff.html,
 "bond_style"_bond_style.html,
 "boundary"_boundary.html,
 "change_box"_change_box.html,
 "clear"_clear.html,
 "communicate"_communicate.html,
 "compute"_compute.html,
 "compute_modify"_compute_modify.html,
 "create_atoms"_create_atoms.html,
 "create_box"_create_box.html,
 "delete_atoms"_delete_atoms.html,
 "delete_bonds"_delete_bonds.html,
 "dielectric"_dielectric.html,
 "dihedral_coeff"_dihedral_coeff.html,
 "dihedral_style"_dihedral_style.html,
 "dimension"_dimension.html,
 "displace_atoms"_displace_atoms.html,
 "displace_box"_displace_box.html,
 "dump"_dump.html,
 "dump image"_dump_image.html,
 "dump_modify"_dump_modify.html,
 "echo"_echo.html,
 "fix"_fix.html,
 "fix_modify"_fix_modify.html,
 "group"_group.html,
 "if"_if.html,
 "improper_coeff"_improper_coeff.html,
 "improper_style"_improper_style.html,
 "include"_include.html,
 "jump"_jump.html,
 "kspace_modify"_kspace_modify.html,
 "kspace_style"_kspace_style.html,
 "label"_label.html,
 "lattice"_lattice.html,
 "log"_log.html,
 "mass"_mass.html,
 "minimize"_minimize.html,
 "min_modify"_min_modify.html,
 "min_style"_min_style.html,
 "neb"_neb.html,
 "neigh_modify"_neigh_modify.html,
 "neighbor"_neighbor.html,
 "newton"_newton.html,
 "next"_next.html,
 "package"_package.html,
 "pair_coeff"_pair_coeff.html,
 "pair_modify"_pair_modify.html,
 "pair_style"_pair_style.html,
 "pair_write"_pair_write.html,
 "partition"_partition.html,
 "prd"_prd.html,
 "print"_print.html,
 "processors"_processors.html,
 "read_data"_read_data.html,
 "read_restart"_read_restart.html,
 "region"_region.html,
 "replicate"_replicate.html,
 "reset_timestep"_reset_timestep.html,
 "restart"_restart.html,
 "run"_run.html,
 "run_style"_run_style.html,
 "set"_set.html,
 "shell"_shell.html,
 "special_bonds"_special_bonds.html,
 "suffix"_suffix.html,
 "tad"_tad.html,
 "temper"_temper.html,
 "thermo"_thermo.html,
 "thermo_modify"_thermo_modify.html,
 "thermo_style"_thermo_style.html,
 "timestep"_timestep.html,
 "uncompute"_uncompute.html,
 "undump"_undump.html,
 "unfix"_unfix.html,
 "units"_units.html,
 "variable"_variable.html,
 "velocity"_velocity.html,
 "write_restart"_write_restart.html :tb(c=6,ea=c)
 
 :line
 
 Fix styles :h4
 
 See the "fix"_fix.html command for one-line descriptions
 of each style or click on the style itself for a full description:
 
 "adapt"_fix_adapt.html,
 "addforce"_fix_addforce.html,
 "aveforce"_fix_aveforce.html,
 "ave/atom"_fix_ave_atom.html,
 "ave/correlate"_fix_ave_correlate.html,
 "ave/histo"_fix_ave_histo.html,
 "ave/spatial"_fix_ave_spatial.html,
 "ave/time"_fix_ave_time.html,
 "bond/break"_fix_bond_break.html,
 "bond/create"_fix_bond_create.html,
 "bond/swap"_fix_bond_swap.html,
 "box/relax"_fix_box_relax.html,
 "deform"_fix_deform.html,
 "deposit"_fix_deposit.html,
 "drag"_fix_drag.html,
 "dt/reset"_fix_dt_reset.html,
 "efield"_fix_efield.html,
 "enforce2d"_fix_enforce2d.html,
 "evaporate"_fix_evaporate.html,
 "external"_fix_external.html,
 "freeze"_fix_freeze.html,
 "gcmc"_fix_gcmc.html,
 "gravity"_fix_gravity.html,
 "heat"_fix_heat.html,
 "indent"_fix_indent.html,
 "langevin"_fix_langevin.html,
 "lineforce"_fix_lineforce.html,
 "momentum"_fix_momentum.html,
 "move"_fix_move.html,
 "msst"_fix_msst.html,
 "neb"_fix_neb.html,
 "nph"_fix_nh.html,
 "nphug"_fix_nphug.html,
 "nph/asphere"_fix_nph_asphere.html,
 "nph/sphere"_fix_nph_sphere.html,
 "npt"_fix_nh.html,
 "npt/asphere"_fix_npt_asphere.html,
 "npt/sphere"_fix_npt_sphere.html,
 "nve"_fix_nve.html,
 "nve/asphere"_fix_nve_asphere.html,
 "nve/asphere/noforce"_fix_nve_asphere_noforce.html,
 "nve/limit"_fix_nve_limit.html,
 "nve/line"_fix_nve_line.html,
 "nve/noforce"_fix_nve_noforce.html,
 "nve/sphere"_fix_nve_sphere.html,
 "nve/tri"_fix_nve_tri.html,
 "nvt"_fix_nh.html,
 "nvt/asphere"_fix_nvt_asphere.html,
 "nvt/sllod"_fix_nvt_sllod.html,
 "nvt/sphere"_fix_nvt_sphere.html,
 "orient/fcc"_fix_orient_fcc.html,
 "planeforce"_fix_planeforce.html,
 "poems"_fix_poems.html,
 "pour"_fix_pour.html,
 "press/berendsen"_fix_press_berendsen.html,
 "print"_fix_print.html,
 "qeq/comb"_fix_qeq_comb.html,
 "reax/bonds"_fix_reax_bonds.html,
 "recenter"_fix_recenter.html,
 "restrain"_fix_restrain.html,
 "rigid"_fix_rigid.html,
 "rigid/nve"_fix_rigid.html,
 "rigid/nvt"_fix_rigid.html,
 "setforce"_fix_setforce.html,
 "shake"_fix_shake.html,
 "spring"_fix_spring.html,
 "spring/rg"_fix_spring_rg.html,
 "spring/self"_fix_spring_self.html,
 "srd"_fix_srd.html,
 "store/force"_fix_store_force.html,
 "store/state"_fix_store_state.html,
 "temp/berendsen"_fix_temp_berendsen.html,
 "temp/rescale"_fix_temp_rescale.html,
 "thermal/conductivity"_fix_thermal_conductivity.html,
 "tmd"_fix_tmd.html,
 "ttm"_fix_ttm.html,
 "viscosity"_fix_viscosity.html,
 "viscous"_fix_viscous.html,
 "wall/colloid"_fix_wall.html,
 "wall/gran"_fix_wall_gran.html,
 "wall/harmonic"_fix_wall.html,
 "wall/lj126"_fix_wall.html,
 "wall/lj93"_fix_wall.html,
 "wall/reflect"_fix_wall_reflect.html,
 "wall/region"_fix_wall_region.html,
 "wall/srd"_fix_wall_srd.html :tb(c=8,ea=c)
 
 These are fix styles contributed by users, which can be used if
 "LAMMPS is built with the appropriate
 package"_Section_start.html#start_3.
 
 "addtorque"_fix_addtorque.html,
 "atc"_fix_atc.html,
 "imd"_fix_imd.html,
 "langevin/eff"_fix_langevin_eff.html,
 "meso"_fix_meso.html,
 "meso/stationary"_fix_meso_stationary.html,
 "nph/eff"_fix_nh_eff.html,
 "npt/eff"_fix_nh_eff.html,
 "nve/eff"_fix_nve_eff.html,
 "nvt/eff"_fix_nh_eff.html,
 "nvt/sllod/eff"_fix_nvt_sllod_eff.html,
 "qeq/reax"_fix_qeq_reax.html,
 "smd"_fix_smd.html,
 "temp/rescale/eff"_fix_temp_rescale_eff.html :tb(c=6,ea=c)
 
 These are accelerated fix styles, which can be used if LAMMPS is
 built with the "appropriate accelerated
 package"_Section_accelerate.html.
 
 "freeze/cuda"_fix_freeze.html,
 "addforce/cuda"_fix_addforce.html,
 "aveforce/cuda"_fix_aveforce.html,
 "enforce2d/cuda"_fix_enforce2d.html,
 "gravity/cuda"_fix_gravity.html,
 "gravity/omp"_fix_gravity.html,
 "npt/cuda"_fix_nh.html,
 "nve/cuda"_fix_nh.html,
 "nve/sphere/omp"_fix_nve_sphere.html,
 "nvt/cuda"_fix_nh.html,
 "qeq/comb/omp"_fix_qeq_comb.html,
 "setforce/cuda"_fix_setforce.html,
 "shake/cuda"_fix_shake.html,
 "temp/berendsen/cuda"_fix_temp_berendsen.html,
 "temp/rescale/cuda"_fix_temp_rescale.html,
 "temp/rescale/limit/cuda"_fix_temp_rescale.html,
 "viscous/cuda"_fix_viscous.html :tb(c=6,ea=c)
 
 :line
 
 Compute styles :h4
 
 See the "compute"_compute.html command for one-line descriptions of
 each style or click on the style itself for a full description:
 
 "angle/local"_compute_angle_local.html,
 "atom/molecule"_compute_atom_molecule.html,
 "bond/local"_compute_bond_local.html,
 "centro/atom"_compute_centro_atom.html,
 "cluster/atom"_compute_cluster_atom.html,
 "cna/atom"_compute_cna_atom.html,
 "com"_compute_com.html,
 "com/molecule"_compute_com_molecule.html,
 "coord/atom"_compute_coord_atom.html,
 "damage/atom"_compute_damage_atom.html,
 "dihedral/local"_compute_dihedral_local.html,
 "displace/atom"_compute_displace_atom.html,
 "erotate/asphere"_compute_erotate_asphere.html,
 "erotate/sphere"_compute_erotate_sphere.html,
 "event/displace"_compute_event_displace.html,
 "group/group"_compute_group_group.html,
 "gyration"_compute_gyration.html,
 "gyration/molecule"_compute_gyration_molecule.html,
 "heat/flux"_compute_heat_flux.html,
 "improper/local"_compute_improper_local.html,
 "ke"_compute_ke.html,
 "ke/atom"_compute_ke_atom.html,
 "msd"_compute_msd.html,
 "msd/molecule"_compute_msd_molecule.html,
 "pair"_compute_pair.html,
 "pair/local"_compute_pair_local.html,
 "pe"_compute_pe.html,
 "pe/atom"_compute_pe_atom.html,
 "pressure"_compute_pressure.html,
 "property/atom"_compute_property_atom.html,
 "property/local"_compute_property_local.html,
 "property/molecule"_compute_property_molecule.html,
 "rdf"_compute_rdf.html,
 "reduce"_compute_reduce.html,
 "reduce/region"_compute_reduce.html,
 "slice"_compute_slice.html,
 "stress/atom"_compute_stress_atom.html,
 "temp"_compute_temp.html,
 "temp/asphere"_compute_temp_asphere.html,
 "temp/com"_compute_temp_com.html,
 "temp/deform"_compute_temp_deform.html,
 "temp/partial"_compute_temp_partial.html,
 "temp/profile"_compute_temp_profile.html,
 "temp/ramp"_compute_temp_ramp.html,
 "temp/region"_compute_temp_region.html,
 "temp/sphere"_compute_temp_sphere.html,
 "ti"_compute_ti.html :tb(c=6,ea=c)
 
 These are compute styles contributed by users, which can be used if
 "LAMMPS is built with the appropriate
 package"_Section_start.html#start_3.
 
 "ackland/atom"_compute_ackland_atom.html,
 "ke/eff"_compute_ke_eff.html,
 "ke/atom/eff"_compute_ke_atom_eff.html,
 "meso_e/atom"_compute_meso_e_atom.html,
 "meso_rho/atom"_compute_meso_rho_atom.html,
 "meso_t/atom"_compute_meso_t_atom.html,
 "temp/eff"_compute_temp_eff.html,
 "temp/deform/eff"_compute_temp_deform_eff.html,
 "temp/region/eff"_compute_temp_region_eff.html,
 "temp/rotate"_compute_temp_rotate.html :tb(c=6,ea=c)
 
 These are accelerated compute styles, which can be used if LAMMPS is
 built with the "appropriate accelerated
 package"_Section_accelerate.html.
 
 "pe/cuda"_compute_pe.html,
 "pressure/cuda"_compute_pressure.html,
 "temp/cuda"_compute_temp.html,
 "temp/partial/cuda"_compute_temp_partial.html :tb(c=6,ea=c)
 
 :line
 
 Pair_style potentials :h4
 
 See the "pair_style"_pair_style.html command for an overview of pair
 potentials.  Click on the style itself for a full description:
 
 "none"_pair_none.html,
 "hybrid"_pair_hybrid.html,
 "hybrid/overlay"_pair_hybrid.html,
 "adp"_pair_adp.html,
 "airebo"_pair_airebo.html,
 "born"_pair_born.html,
 "born/coul/long"_pair_born.html,
+"born/coul/wolf"_pair_born.html,
 "brownian"_pair_brownian.html,
 "brownian/poly"_pair_brownian.html,
 "buck"_pair_buck.html,
 "buck/coul/cut"_pair_buck.html,
 "buck/coul/long"_pair_buck.html,
 "colloid"_pair_colloid.html,
 "comb"_pair_comb.html,
 "coul/cut"_pair_coul.html,
 "coul/debye"_pair_coul.html,
 "coul/long"_pair_coul.html,
+"coul/wolf"_pair_coul.html,
 "dipole/cut"_pair_dipole.html,
 "dpd"_pair_dpd.html,
 "dpd/tstat"_pair_dpd.html,
 "dsmc"_pair_dsmc.html,
 "eam"_pair_eam.html,
 "eam/alloy"_pair_eam.html,
 "eam/fs"_pair_eam.html,
 "eim"_pair_eim.html,
 "gauss"_pair_gauss.html,
 "gayberne"_pair_gayberne.html,
 "gran/hertz/history"_pair_gran.html,
 "gran/hooke"_pair_gran.html,
 "gran/hooke/history"_pair_gran.html,
 "hbond/dreiding/lj"_pair_hbond_dreiding.html,
 "hbond/dreiding/morse"_pair_hbond_dreiding.html,
 "line/lj"_pair_line_lj.html,
 "lj/charmm/coul/charmm"_pair_charmm.html,
 "lj/charmm/coul/charmm/implicit"_pair_charmm.html,
 "lj/charmm/coul/long"_pair_charmm.html,
 "lj/class2"_pair_class2.html,
 "lj/class2/coul/cut"_pair_class2.html,
 "lj/class2/coul/long"_pair_class2.html,
 "lj/cut"_pair_lj.html,
 "lj/cut/coul/cut"_pair_lj.html,
 "lj/cut/coul/debye"_pair_lj.html,
 "lj/cut/coul/long"_pair_lj.html,
 "lj/cut/coul/long/tip4p"_pair_lj.html,
 "lj/expand"_pair_lj_expand.html,
 "lj/gromacs"_pair_gromacs.html,
 "lj/gromacs/coul/gromacs"_pair_gromacs.html,
 "lj/smooth"_pair_lj_smooth.html,
 "lj96/cut"_pair_lj96.html,
 "lubricate"_pair_lubricate.html,
 "lubricate/poly"_pair_lubricate.html,
 "lubricateU"_pair_lubricateU.html,
 "lubricateU/poly"_pair_lubricateU.html,
 "meam"_pair_meam.html,
 "morse"_pair_morse.html,
 "peri/lps"_pair_peri.html,
 "peri/pmb"_pair_peri.html,
 "reax"_pair_reax.html,
 "rebo"_pair_airebo.html,
 "resquared"_pair_resquared.html,
 "soft"_pair_soft.html,
 "sw"_pair_sw.html,
 "table"_pair_table.html,
 "tersoff"_pair_tersoff.html,
 "tersoff/zbl"_pair_tersoff_zbl.html,
 "tri/lj"_pair_tri_lj.html,
 "yukawa"_pair_yukawa.html,
 "yukawa/colloid"_pair_yukawa_colloid.html :tb(c=4,ea=c)
 
 These are pair styles contributed by users, which can be used if
 "LAMMPS is built with the appropriate
 package"_Section_start.html#start_3.
 
 "awpmd/cut"_pair_awpmd.html,
 "buck/coul"_pair_buck_coul.html,
 "coul/diel"_pair_coul_diel.html,
 "lj/sdk"_pair_sdk.html,
 "lj/sdk/coul/long"_pair_sdk.html,
 "dipole/sf"_pair_dipole.html,
 "eam/cd"_pair_eam.html,
 "edip"_pair_edip.html,
 "eff/cut"_pair_eff.html,
 "gauss/cut"_pair_gauss.html,
 "lj/coul"_pair_lj_coul.html,
 "lj/sf"_pair_lj_sf.html,
 "reax/c"_pair_reax_c.html,
 "sph/heatconduction"_pair_heatconduction.html,
 "sph/idealgas"_pair_idealgas.html,
 "sph/lj"_pair_lj.html,
 "sph/rhosum"_pair_rhosum.html,
 "sph/taitwater"_pair_taitwater.html,
 "sph/taitwater/morris"_pair_taitwater_morris.html,
 "tersoff/table"_pair_tersoff.html :tb(c=4,ea=c)
 
 These are accelerated pair styles, which can be used if LAMMPS is
 built with the "appropriate accelerated
 package"_Section_accelerate.html.
 
 "adp/omp"_pair_adp.html,
 "airebo/omp"_pair_airebo.html,
 "born/coul/long/cuda"_pair_born.html,
 "born/coul/long/omp"_pair_born.html,
 "born/omp"_pair_born.html,
 "buck/coul/cut/cuda"_pair_buck.html,
 "buck/coul/cut/omp"_pair_buck.html,
 "buck/coul/long/cuda"_pair_buck.html,
 "buck/coul/long/omp"_pair_buck.html,
 "buck/coul/omp"_pair_buck_coul.html,
 "buck/cuda"_pair_buck.html,
 "buck/omp"_pair_buck.html,
 "lj/sdk/gpu"_pair_sdk.html,
 "lj/sdk/omp"_pair_sdk.html,
 "lj/sdk/coul/long/gpu"_pair_sdk.html,
 "lj/sdk/coul/long/omp"_pair_sdk.html,
 "colloid/omp"_pair_colloid.html,
 "comb/omp"_pair_comb.html,
 "coul/cut/omp"_pair_coul.html,
 "coul/debye/omp"_pair_coul.html,
 "coul/long/gpu"_pair_coul.html,
 "coul/long/omp"_pair_coul.html,
 "dipole/cut/omp"_pair_dipole.html,
 "dipole/sf/omp"_pair_dipole.html,
 "dpd/omp"_pair_dpd.html,
 "dpd/tstat/omp"_pair_dpd.html,
 "eam/alloy/cuda"_pair_eam.html,
 "eam/alloy/omp"_pair_eam.html,
 "eam/alloy/opt"_pair_eam.html,
 "eam/cd/omp"_pair_eam.html,
 "eam/cuda"_pair_eam.html,
 "eam/fs/cuda"_pair_eam.html,
 "eam/fs/omp"_pair_eam.html,
 "eam/fs/opt"_pair_eam.html,
 "eam/omp"_pair_eam.html,
 "eam/opt"_pair_eam.html,
 "edip/omp"_pair_edip.html,
 "eim/omp"_pair_eim.html,
 "gauss/omp"_pair_gauss.html,
 "gayberne/gpu"_pair_gayberne.html,
 "gayberne/omp"_pair_gayberne.html,
 "gran/hertz/history/omp"_pair_gran.html,
 "gran/hooke/cuda"_pair_gran.html,
 "gran/hooke/history/omp"_pair_gran.html,
 "gran/hooke/omp"_pair_gran.html,
 "hbond/dreiding/lj/omp"_pair_hbond_dreiding.html,
 "hbond/dreiding/morse/omp"_pair_hbond_dreiding.html,
 "line/lj/omp"_pair_line_lj.html,
 "lj/charmm/coul/charmm/cuda"_pair_charmm.html,
 "lj/charmm/coul/charmm/omp"_pair_charmm.html,
 "lj/charmm/coul/charmm/implicit/cuda"_pair_charmm.html,
 "lj/charmm/coul/charmm/implicit/omp"_pair_charmm.html,
 "lj/charmm/coul/long/cuda"_pair_charmm.html,
 "lj/charmm/coul/long/gpu"_pair_charmm.html,
 "lj/charmm/coul/long/omp"_pair_charmm.html,
 "lj/charmm/coul/long/opt"_pair_charmm.html,
 "lj/charmm/coul/pppm/omp"_pair_charmm.html,
 "lj/class2/coul/cut/cuda"_pair_class2.html,
 "lj/class2/coul/cut/omp"_pair_class2.html,
 "lj/class2/coul/long/cuda"_pair_class2.html,
 "lj/class2/coul/long/gpu"_pair_class2.html,
 "lj/class2/coul/long/omp"_pair_class2.html,
 "lj/class2/cuda"_pair_class2.html,
 "lj/class2/gpu"_pair_class2.html,
 "lj/class2/omp"_pair_class2.html,
 "lj/coul/omp"_pair_lj_coul.html,
 "lj/cut/coul/cut/cuda"_pair_lj.html,
 "lj/cut/coul/cut/gpu"_pair_lj.html,
 "lj/cut/coul/cut/omp"_pair_lj.html,
 "lj/cut/coul/debye/cuda"_pair_lj.html,
 "lj/cut/coul/debye/omp"_pair_lj.html,
 "lj/cut/coul/long/cuda"_pair_lj.html,
 "lj/cut/coul/long/gpu"_pair_lj.html,
 "lj/cut/coul/long/omp"_pair_lj.html,
 "lj/cut/coul/long/opt"_pair_lj.html,
 "lj/cut/coul/long/tip4p/omp"_pair_lj.html,
 "lj/cut/coul/long/tip4p/opt"_pair_lj.html,
 "lj/cut/coul/pppm/omp"_pair_lj.html,
 "lj/cut/coul/pppm/tip4p/omp"_pair_lj.html,
 "lj/cut/cuda"_pair_lj.html,
 "lj/cut/experimental/cuda"_pair_lj.html,
 "lj/cut/gpu"_pair_lj.html,
 "lj/cut/omp"_pair_lj.html,
 "lj/cut/opt"_pair_lj.html,
 "lj/expand/cuda"_pair_lj_expand.html,
 "lj/expand/gpu"_pair_lj_expand.html,
 "lj/expand/omp"_pair_lj_expand.html,
 "lj/gromacs/coul/gromacs/cuda"_pair_gromacs.html,
 "lj/gromacs/coul/gromacs/omp"_pair_gromacs.html,
 "lj/gromacs/cuda"_pair_gromacs.html,
 "lj/gromacs/omp"_pair_gromacs.html,
 "lj/sf/omp"_pair_lj_sf.html,
 "lj/smooth/cuda"_pair_lj_smooth.html,
 "lj/smooth/omp"_pair_lj_smooth.html,
 "lj96/cut/cuda"_pair_lj96.html,
 "lj96/cut/gpu"_pair_lj96.html,
 "lj96/cut/omp"_pair_lj96.html,
 "morse/cuda"_pair_morse.html,
 "morse/gpu"_pair_morse.html,
 "morse/omp"_pair_morse.html,
 "morse/opt"_pair_morse.html,
 "peri/lps/omp"_pair_peri.html,
 "peri/pmb/omp"_pair_peri.html,
 "rebo/omp"_pair_airebo.html,
 "resquared/gpu"_pair_resquared.html,
 "resquared/omp"_pair_resquared.html,
 "soft/omp"_pair_soft.html,
 "sw/cuda"_pair_sw.html,
 "sw/omp"_pair_sw.html,
 "table/omp"_pair_table.html,
 "tersoff/cuda"_pair_tersoff.html,
 "tersoff/omp"_pair_tersoff.html,
 "tersoff/table/omp"_pair_tersoff.html,
 "tersoff/zbl/omp"_pair_tersoff_zbl.html,
 "tri/lj/omp"_pair_tri_lj.html,
 "yukawa/omp"_pair_yukawa.html,
 "yukawa/colloid/omp"_pair_yukawa_colloid.html :tb(c=4,ea=c)
 
 :line
 
 Bond_style potentials :h4
 
 See the "bond_style"_bond_style.html command for an overview of bond
 potentials.  Click on the style itself for a full description:
 
 "none"_bond_none.html,
 "hybrid"_bond_hybrid.html,
 "class2"_bond_class2.html,
 "fene"_bond_fene.html,
 "fene/expand"_bond_fene_expand.html,
 "harmonic"_bond_harmonic.html,
 "morse"_bond_morse.html,
 "nonlinear"_bond_nonlinear.html,
 "quartic"_bond_quartic.html,
 "table"_bond_table.html :tb(c=4,ea=c,w=100)
 
 These are bond styles contributed by users, which can be used if
 "LAMMPS is built with the appropriate
 package"_Section_start.html#start_3.
 
 "harmonic/shift"_bond_harmonic_shift.html,
 "harmonic/shift/cut"_bond_harmonic_shift_cut.html :tb(c=4,ea=c)
 
 These are accelerated bond styles, which can be used if LAMMPS is
 built with the "appropriate accelerated
 package"_Section_accelerate.html.
 
 "class2/omp"_bond_class2.html,
 "fene/omp"_bond_fene.html,
 "fene/expand/omp"_bond_fene_expand.html,
 "harmonic/omp"_bond_harmonic.html,
 "harmonic/shift/omp"_bond_harmonic_shift.html,
 "harmonic/shift/cut/omp"_bond_harmonic_shift_cut.html,
 "morse/omp"_bond_morse.html,
 "nonlinear/omp"_bond_nonlinear.html,
 "quartic/omp"_bond_quartic.html,
 "table/omp"_bond_table.html :tb(c=4,ea=c,w=100)
 
 :line
 
 Angle_style potentials :h4
 
 See the "angle_style"_angle_style.html command for an overview of
 angle potentials.  Click on the style itself for a full description:
 
 "none"_angle_none.html,
 "hybrid"_angle_hybrid.html,
 "charmm"_angle_charmm.html,
 "class2"_angle_class2.html,
 "cosine"_angle_cosine.html,
 "cosine/delta"_angle_cosine_delta.html,
 "cosine/periodic"_angle_cosine_periodic.html,
 "cosine/squared"_angle_cosine_squared.html,
 "harmonic"_angle_harmonic.html,
 "table"_angle_table.html :tb(c=4,ea=c,w=100)
 
 These are angle styles contributed by users, which can be used if
 "LAMMPS is built with the appropriate
 package"_Section_start.html#start_3.
 
 "sdk"_angle_sdk.html,
 "cosine/shift"_angle_cosine_shift.html,
 "cosine/shift/exp"_angle_cosine_shift_exp.html :tb(c=4,ea=c)
 
 These are accelerated angle styles, which can be used if LAMMPS is
 built with the "appropriate accelerated
 package"_Section_accelerate.html.
 
 "charmm/omp"_angle_charmm.html,
 "class2/omp"_angle_class2.html,
 "cosine/omp"_angle_cosine.html,
 "cosine/delta/omp"_angle_cosine_delta.html,
 "cosine/periodic/omp"_angle_cosine_periodic.html,
 "cosine/shift/omp"_angle_cosine_shift.html,
 "cosine/shift/exp/omp"_angle_cosine_shift_exp.html,
 "cosine/squared/omp"_angle_cosine_squared.html,
 "harmonic/omp"_angle_harmonic.html,
 "table/omp"_angle_table.html :tb(c=4,ea=c,w=100)
 
 :line
 
 Dihedral_style potentials :h4
 
 See the "dihedral_style"_dihedral_style.html command for an overview
 of dihedral potentials.  Click on the style itself for a full
 description:
 
 "none"_dihedral_none.html,
 "hybrid"_dihedral_hybrid.html,
 "charmm"_dihedral_charmm.html,
 "class2"_dihedral_class2.html,
 "harmonic"_dihedral_harmonic.html,
 "helix"_dihedral_helix.html,
 "multi/harmonic"_dihedral_multi_harmonic.html,
 "opls"_dihedral_opls.html :tb(c=4,ea=c,w=100)
 
 These are dihedral styles contributed by users, which can be used if
 "LAMMPS is built with the appropriate
 package"_Section_start.html#start_3.
 
 "cosine/shift/exp"_dihedral_cosine_shift_exp.html :tb(c=4,ea=c)
 
 These are accelerated dihedral styles, which can be used if LAMMPS is
 built with the "appropriate accelerated
 package"_Section_accelerate.html.
 
 "charmm/omp"_dihedral_charmm.html,
 "class2/omp"_dihedral_class2.html,
 "cosine/shift/exp/omp"_dihedral_cosine_shift_exp.html,
 "harmonic/omp"_dihedral_harmonic.html,
 "helix/omp"_dihedral_helix.html,
 "multi/harmonic/omp"_dihedral_multi_harmonic.html,
 "opls/omp"_dihedral_opls.html :tb(c=4,ea=c,w=100)
 
 :line
 
 Improper_style potentials :h4
 
 See the "improper_style"_improper_style.html command for an overview
 of improper potentials.  Click on the style itself for a full
 description:
 
 "none"_improper_none.html,
 "hybrid"_improper_hybrid.html,
 "class2"_improper_class2.html,
 "cvff"_improper_cvff.html,
 "harmonic"_improper_harmonic.html,
 "umbrella"_improper_umbrella.html :tb(c=4,ea=c,w=100)
 
 These are accelerated improper styles, which can be used if LAMMPS is
 built with the "appropriate accelerated
 package"_Section_accelerate.html.
 
 "class2/omp"_improper_class2.html,
 "cvff/omp"_improper_cvff.html,
 "harmonic/omp"_improper_harmonic.html,
 "umbrella/omp"_improper_umbrella.html :tb(c=4,ea=c,w=100)
 
 :line
 
 Kspace solvers :h4
 
 See the "kspace_style"_kspace_style.html command for an overview of
 Kspace solvers.  Click on the style itself for a full description:
 
 "ewald"_kspace_style.html,
 "pppm"_kspace_style.html,
 "pppm/cg"_kspace_style.html,
 "pppm/tip4p"_kspace_style.html :tb(c=4,ea=c,w=100)
 
 These are Kspace solvers contributed by users, which can be used if
 "LAMMPS is built with the appropriate
 package"_Section_start.html#start_3.
 
 "ewald/n"_kspace_style.html :tb(c=4,ea=c,w=100)
 
 These are accelerated Kspace solvers, which can be used if LAMMPS is
 built with the "appropriate accelerated
 package"_Section_accelerate.html.
 
 "ewald/omp"_kspace_style.html,
 "pppm/cuda"_kspace_style.html,
 "pppm/gpu"_kspace_style.html,
 "pppm/omp"_kspace_style.html,
 "pppm/proxy"_kspace_style.html :tb(c=4,ea=c)
diff --git a/doc/pair_born.html b/doc/pair_born.html
index e5d4038a7..e2f84b484 100644
--- a/doc/pair_born.html
+++ b/doc/pair_born.html
@@ -1,164 +1,183 @@
 <HTML>
 <CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A> 
 </CENTER>
 
 
 
 
 
 
 <HR>
 
 <H3>pair_style born command 
 </H3>
 <H3>pair_style born/omp command 
 </H3>
 <H3>pair_style born/coul/long command 
 </H3>
 <H3>pair_style born/coul/long/cuda command 
 </H3>
 <H3>pair_style born/coul/long/omp command 
 </H3>
+<H3>pair_style born/coul/wolf command 
+</H3>
 <P><B>Syntax:</B>
 </P>
 <PRE>pair_style style args 
 </PRE>
 <UL><LI>style = <I>born</I> or <I>born/coul/long</I>
 <LI>args = list of arguments for a particular style 
 </UL>
 <PRE>  <I>born</I> args = cutoff
     cutoff = global cutoff for non-Coulombic interactions (distance units)
   <I>born/coul/long</I> args = cutoff (cutoff2)
+    cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
+    cutoff2 = global cutoff for Coulombic (optional) (distance units)
+  <I>born/coul/wolf</I> args = alpha cutoff (cutoff2)
+    alpha = damping parameter (inverse distance units)
     cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
     cutoff2 = global cutoff for Coulombic (optional) (distance units) 
 </PRE>
 <P><B>Examples:</B>
 </P>
 <PRE>pair_style born 10.0
 pair_coeff * * 6.08 0.317 2.340 24.18 11.51
 pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51 
 </PRE>
 <PRE>pair_style born/coul/long 10.0
 pair_style born/coul/long 10.0 8.0
 pair_coeff * * 6.08 0.317 2.340 24.18 11.51
 pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51 
 </PRE>
+<PRE>pair_style born/coul/wolf 0.25 10.0
+pair_style born/coul/wolf 0.25 10.0 9.0
+pair_coeff * * 6.08 0.317 2.340 24.18 11.51
+pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51 
+</PRE>
 <P><B>Description:</B>
 </P>
 <P>The <I>born</I> style computes the Born-Mayer-Huggins or Tosi/Fumi
 potential described in <A HREF = "#FumiTosi">(Fumi and Tosi)</A>, given by
 </P>
 <CENTER><IMG SRC = "Eqs/pair_born.jpg">
 </CENTER>
 <P>where sigma is an interaction-dependent length parameter, rho is an
 ionic-pair dependent length parameter, and Rc is the cutoff.
 </P>
 <P>The <I>born/coul/long</I> style adds a Coulombic term as described for the
-<A HREF = "pair_lj.html">lj/cut</A> pair styles.  An additional damping factor is
-applied to the Coulombic term so it can be used in conjunction with
+<A HREF = "pair_coul.html">coul/long</A> pair style.  An additional damping factor
+is applied to the Coulombic term so it can be used in conjunction with
 the <A HREF = "kspace_style.html">kspace_style</A> command and its <I>ewald</I> or <I>pppm</I>
 option.  The Coulombic cutoff specified for this style means that
 pairwise interactions within this distance are computed directly;
 interactions outside that distance are computed in reciprocal space.
 </P>
+<P>If one cutoff is specified for the <I>born/coul/long</I> style, it is used
+for both the A,C,D and Coulombic terms.  If two cutoffs are specified,
+the first is used as the cutoff for the A,C,D terms, and the second is
+the cutoff for the Coulombic term.
+</P>
+<P>The <I>born/coul/wolf</I> style adds a Coulombic term as described for the
+Wolf potential in the <A HREF = "pair_coul.html">coul/wolf</A> pair style.
+</P>
 <P>If one cutoff is specified for the <I>born/coulk/long</I> style, it is used
 for both the A,C,D and Coulombic terms.  If two cutoffs are specified,
 the first is used as the cutoff for the A,C,D terms, and the second is
 the cutoff for the Coulombic term.
 </P>
 <P>Note that these potentials are related to the <A HREF = "pair_born.html">Buckingham
 potential</A>.
 </P>
 <P>The following coefficients must be defined for each pair of atoms
 types via the <A HREF = "pair_coeff.html">pair_coeff</A> command as in the examples
 above, or in the data file or restart files read by the
 <A HREF = "read_data.html">read_data</A> or <A HREF = "read_restart.html">read_restart</A>
 commands, or by mixing as described below:
 </P>
 <UL><LI>A (energy units)
 <LI>rho (distance units)
 <LI>sigma (distance units)
 <LI>C (energy units * distance units^6)
 <LI>D (energy units * distance units^8)
 <LI>cutoff (distance units) 
 </UL>
 <P>The second coefficient, rho, must be greater than zero.
 </P>
 <P>The last coefficient is optional.  If not specified, the global A,C,D
 cutoff specified in the pair_style command is used.
 </P>
-<P>For <I>buck/coul/long</I> no Coulombic cutoff can be specified for an
-individual I,J type pair.  All type pairs use the same global
-Coulombic cutoff specified in the pair_style command.
+<P>For <I>buck/coul/long</I> and <I>born/coul/wolf</I> no Coulombic cutoff can be
+specified for an individual I,J type pair.  All type pairs use the
+same global Coulombic cutoff specified in the pair_style command.
 </P>
 <HR>
 
 <P>Styles with a <I>cuda</I>, <I>gpu</I>, <I>omp</I>, or <I>opt</I> suffix are functionally 
 the same as the corresponding style without the suffix.  They have 
 been optimized to run faster, depending on your available hardware, 
 as discussed in <A HREF = "Section_accelerate.html">this section</A> of the manual.
 The accelerated styles take the same arguments and should produce the
 same results, except for round-off and precision issues.
 </P>
 <P>These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT
 packages, respectively.  They are only enabled if LAMMPS was built with
 those packages.  See the <A HREF = "Section_start.html#start_3">Making LAMMPS</A>
 section for more info.
 </P>
 <P>You can specify the accelerated styles explicitly in your input script
 by including their suffix, or you can use the <A HREF = "Section_start.html#start_6">-suffix command-line
 switch</A> when you invoke LAMMPS, or you can
 use the <A HREF = "suffix.html">suffix</A> command in your input script.
 </P>
 <P>See <A HREF = "Section_accelerate.html">this section</A> of the manual for more
 instructions on how to use the accelerated styles effectively.
 </P>
 <HR>
 
 <P><B>Mixing, shift, table, tail correction, restart, rRESPA info</B>:
 </P>
 <P>These pair styles do not support mixing.  Thus, coefficients for all
 I,J pairs must be specified explicitly.
 </P>
 <P>These styles support the <A HREF = "pair_modify.html">pair_modify</A> shift option
 for the energy of the exp(), 1/r^6, and 1/r^8 portion of the pair
 interaction.
 </P>
 <P>The <I>born/coul/long</I> pair style does not support the
 <A HREF = "pair_modify.html">pair_modify</A> table option since a tabulation
 capability has not yet been added to this potential.
 </P>
 <P>These styles support the pair_modify tail option for adding long-range
 tail corrections to energy and pressure.
 </P>
 <P>Thess styles writes thei information to binary <A HREF = "restart.html">restart</A>
 files, so pair_style and pair_coeff commands do not need to be
 specified in an input script that reads a restart file.
 </P>
 <P>These styles can only be used via the <I>pair</I> keyword of the <A HREF = "run_style.html">run_style
 respa</A> command.  They do not support the <I>inner</I>,
 <I>middle</I>, <I>outer</I> keywords.
 </P>
 <HR>
 
 <P><B>Restrictions:</B>
 </P>
 <P>The <I>born/coul/long</I> style is part of the KSPACE package.  It is only
 enabled if LAMMPS was built with that package (which it is by
 default).  See the <A HREF = "Section_start.html#start_3">Making LAMMPS</A> section
 for more info.
 </P>
 <P><B>Related commands:</B>
 </P>
 <P><A HREF = "pair_coeff.html">pair_coeff</A>, <A HREF = "pair_buck.html">pair_style buck</A>
 </P>
 <P><B>Default:</B> none
 </P>
 <HR>
 
 <A NAME = "FumiTosi"></A>
 
 <P>Fumi and Tosi, J Phys Chem Solids, 25, 31 (1964),
 Fumi and Tosi, J Phys Chem Solids, 25, 45 (1964).
 </P>
 </HTML>
diff --git a/doc/pair_born.txt b/doc/pair_born.txt
index 652e7b4dd..ec1e4f654 100644
--- a/doc/pair_born.txt
+++ b/doc/pair_born.txt
@@ -1,154 +1,172 @@
 "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
 
 
 :link(lws,http://lammps.sandia.gov)
 :link(ld,Manual.html)
 :link(lc,Section_commands.html#comm)
 
 :line
 
 pair_style born command :h3
 pair_style born/omp command :h3
 pair_style born/coul/long command :h3
 pair_style born/coul/long/cuda command :h3
 pair_style born/coul/long/omp command :h3
+pair_style born/coul/wolf command :h3
 
 [Syntax:]
 
 pair_style style args :pre
 
 style = {born} or {born/coul/long}
 args = list of arguments for a particular style :ul
   {born} args = cutoff
     cutoff = global cutoff for non-Coulombic interactions (distance units)
   {born/coul/long} args = cutoff (cutoff2)
+    cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
+    cutoff2 = global cutoff for Coulombic (optional) (distance units)
+  {born/coul/wolf} args = alpha cutoff (cutoff2)
+    alpha = damping parameter (inverse distance units)
     cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
     cutoff2 = global cutoff for Coulombic (optional) (distance units) :pre
 
 [Examples:]
 
 pair_style born 10.0
 pair_coeff * * 6.08 0.317 2.340 24.18 11.51
 pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51 :pre
 
 pair_style born/coul/long 10.0
 pair_style born/coul/long 10.0 8.0
 pair_coeff * * 6.08 0.317 2.340 24.18 11.51
 pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51 :pre
 
+pair_style born/coul/wolf 0.25 10.0
+pair_style born/coul/wolf 0.25 10.0 9.0
+pair_coeff * * 6.08 0.317 2.340 24.18 11.51
+pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51 :pre
+
 [Description:]
 
 The {born} style computes the Born-Mayer-Huggins or Tosi/Fumi
 potential described in "(Fumi and Tosi)"_#FumiTosi, given by
 
 :c,image(Eqs/pair_born.jpg)
 
 where sigma is an interaction-dependent length parameter, rho is an
 ionic-pair dependent length parameter, and Rc is the cutoff.
 
 The {born/coul/long} style adds a Coulombic term as described for the
-"lj/cut"_pair_lj.html pair styles.  An additional damping factor is
-applied to the Coulombic term so it can be used in conjunction with
+"coul/long"_pair_coul.html pair style.  An additional damping factor
+is applied to the Coulombic term so it can be used in conjunction with
 the "kspace_style"_kspace_style.html command and its {ewald} or {pppm}
 option.  The Coulombic cutoff specified for this style means that
 pairwise interactions within this distance are computed directly;
 interactions outside that distance are computed in reciprocal space.
 
+If one cutoff is specified for the {born/coul/long} style, it is used
+for both the A,C,D and Coulombic terms.  If two cutoffs are specified,
+the first is used as the cutoff for the A,C,D terms, and the second is
+the cutoff for the Coulombic term.
+
+The {born/coul/wolf} style adds a Coulombic term as described for the
+Wolf potential in the "coul/wolf"_pair_coul.html pair style.
+
 If one cutoff is specified for the {born/coulk/long} style, it is used
 for both the A,C,D and Coulombic terms.  If two cutoffs are specified,
 the first is used as the cutoff for the A,C,D terms, and the second is
 the cutoff for the Coulombic term.
 
 Note that these potentials are related to the "Buckingham
 potential"_pair_born.html.
 
 The following coefficients must be defined for each pair of atoms
 types via the "pair_coeff"_pair_coeff.html command as in the examples
 above, or in the data file or restart files read by the
 "read_data"_read_data.html or "read_restart"_read_restart.html
 commands, or by mixing as described below:
 
 A (energy units)
 rho (distance units)
 sigma (distance units)
 C (energy units * distance units^6)
 D (energy units * distance units^8)
 cutoff (distance units) :ul
 
 The second coefficient, rho, must be greater than zero.
 
 The last coefficient is optional.  If not specified, the global A,C,D
 cutoff specified in the pair_style command is used.
 
-For {buck/coul/long} no Coulombic cutoff can be specified for an
-individual I,J type pair.  All type pairs use the same global
-Coulombic cutoff specified in the pair_style command.
+For {buck/coul/long} and {born/coul/wolf} no Coulombic cutoff can be
+specified for an individual I,J type pair.  All type pairs use the
+same global Coulombic cutoff specified in the pair_style command.
 
 :line
 
 Styles with a {cuda}, {gpu}, {omp}, or {opt} suffix are functionally 
 the same as the corresponding style without the suffix.  They have 
 been optimized to run faster, depending on your available hardware, 
 as discussed in "this section"_Section_accelerate.html of the manual.
 The accelerated styles take the same arguments and should produce the
 same results, except for round-off and precision issues.
 
 These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT
 packages, respectively.  They are only enabled if LAMMPS was built with
 those packages.  See the "Making LAMMPS"_Section_start.html#start_3
 section for more info.
 
 You can specify the accelerated styles explicitly in your input script
 by including their suffix, or you can use the "-suffix command-line
 switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
 use the "suffix"_suffix.html command in your input script.
 
 See "this section"_Section_accelerate.html of the manual for more
 instructions on how to use the accelerated styles effectively.
 
 :line
 
 [Mixing, shift, table, tail correction, restart, rRESPA info]:
 
 These pair styles do not support mixing.  Thus, coefficients for all
 I,J pairs must be specified explicitly.
 
 These styles support the "pair_modify"_pair_modify.html shift option
 for the energy of the exp(), 1/r^6, and 1/r^8 portion of the pair
 interaction.
 
 The {born/coul/long} pair style does not support the
 "pair_modify"_pair_modify.html table option since a tabulation
 capability has not yet been added to this potential.
 
 These styles support the pair_modify tail option for adding long-range
 tail corrections to energy and pressure.
 
 Thess styles writes thei information to binary "restart"_restart.html
 files, so pair_style and pair_coeff commands do not need to be
 specified in an input script that reads a restart file.
 
 These styles can only be used via the {pair} keyword of the "run_style
 respa"_run_style.html command.  They do not support the {inner},
 {middle}, {outer} keywords.
 
 :line
 
 [Restrictions:]
 
 The {born/coul/long} style is part of the KSPACE package.  It is only
 enabled if LAMMPS was built with that package (which it is by
 default).  See the "Making LAMMPS"_Section_start.html#start_3 section
 for more info.
 
 [Related commands:]
 
 "pair_coeff"_pair_coeff.html, "pair_style buck"_pair_buck.html
 
 [Default:] none
 
 :line
 
 :link(FumiTosi)
 Fumi and Tosi, J Phys Chem Solids, 25, 31 (1964),
 Fumi and Tosi, J Phys Chem Solids, 25, 45 (1964).
diff --git a/doc/pair_coeff.html b/doc/pair_coeff.html
index 1c9c6777e..0ac1a684b 100644
--- a/doc/pair_coeff.html
+++ b/doc/pair_coeff.html
@@ -1,182 +1,184 @@
 <HTML>
 <CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A> 
 </CENTER>
 
 
 
 
 
 
 <HR>
 
 <H3>pair_coeff command 
 </H3>
 <P><B>Syntax:</B>
 </P>
 <PRE>pair_coeff I J args 
 </PRE>
 <UL><LI>I,J = atom types (see asterisk form below)
 <LI>args = coefficients for one or more pairs of atom types 
 </UL>
 <P><B>Examples:</B>
 </P>
 <PRE>pair_coeff 1 2 1.0 1.0 2.5
 pair_coeff 2 * 1.0 1.0
 pair_coeff 3* 1*2 1.0 1.0 2.5
 pair_coeff * * 1.0 1.0
 pair_coeff * * nialhjea 1 1 2
 pair_coeff * 3 morse.table ENTRY1
 pair_coeff 1 2 lj/cut 1.0 1.0 2.5 (for pair_style hybrid) 
 </PRE>
 <P><B>Description:</B>
 </P>
 <P>Specify the pairwise force field coefficients for one or more pairs of
 atom types.  The number and meaning of the coefficients depends on the
 pair style.  Pair coefficients can also be set in the data file read
 by the <A HREF = "read_data.html">read_data</A> command or in a restart file.
 </P>
 <P>I and J can be specified in one of two ways.  Explicit numeric values
 can be used for each, as in the 1st example above.  I <= J is
 required.  LAMMPS sets the coefficients for the symmetric J,I
 interaction to the same values.
 </P>
 <P>A wildcard asterisk can be used in place of or in conjunction with the
 I,J arguments to set the coefficients for multiple pairs of atom
 types.  This takes the form "*" or "*n" or "n*" or "m*n".  If N = the
 number of atom types, then an asterisk with no numeric values means all
 types from 1 to N.  A leading asterisk means all types from 1 to n
 (inclusive).  A trailing asterisk means all types from n to N
 (inclusive).  A middle asterisk means all types from m to n
 (inclusive).  Note that only type pairs with I <= J are considered; if
 asterisks imply type pairs where J < I, they are ignored.
 </P>
 <P>Note that a pair_coeff command can override a previous setting for the
 same I,J pair.  For example, these commands set the coeffs for all I,J
 pairs, then overwrite the coeffs for just the I,J = 2,3 pair:
 </P>
 <PRE>pair_coeff * * 1.0 1.0 2.5
 pair_coeff 2 3 2.0 1.0 1.12 
 </PRE>
 <P>A line in a data file that specifies pair coefficients uses the exact
 same format as the arguments of the pair_coeff command in an input
 script, with the exception of the I,J type arguments.  In each line of
 the "Pair Coeffs" section of a data file, only a single type I is
 specified, which sets the coefficients for type I interacting with
 type I.  This is because the section has exactly N lines, where N =
 the number of atom types.  For this reason, the wild-card asterisk
 should also not be used as part of the I argument.  Thus in a data
 file, the line corresponding to the 1st example above would be listed
 as
 </P>
 <PRE>2 1.0 1.0 2.5 
 </PRE>
 <P>For many potentials, if coefficients for type pairs with I != J are
 not set explicitly by a pair_coeff command, the values are inferred
 from the I,I and J,J settings by mixing rules; see the
 <A HREF = "pair_modify.html">pair_modify</A> command for a discussion.  Details on
 this option as it pertains to individual potentials are described on
 the doc page for the potential.
 </P>
 <HR>
 
 <P>Here is an alphabetic list of pair styles defined in LAMMPS.  Click on
 the style to display the formula it computes, arguments specified in
 the pair_style command, and coefficients specified by the associated
 <A HREF = "pair_coeff.html">pair_coeff</A> command:
 </P>
 <UL><LI><A HREF = "pair_hybrid.html">pair_style hybrid</A> - multiple styles of pairwise interactions
 <LI><A HREF = "pair_hybrid.html">pair_style hybrid/overlay</A> - multiple styles of superposed pairwise interactions 
 </UL>
 <UL><LI><A HREF = "pair_adp.html">pair_style adp</A> - angular dependent potential (ADP) of Mishin
 <LI><A HREF = "pair_airebo.html">pair_style airebo</A> - AIREBO potential of Stuart
 <LI><A HREF = "pair_born.html">pair_style born</A> - Born-Mayer-Huggins potential
-<LI><A HREF = "pair_born.html">pair_style born/coul/long</A> - Born-Mayer-Huggins with long-range Coulomb
+<LI><A HREF = "pair_born.html">pair_style born/coul/long</A> - Born-Mayer-Huggins with long-range Coulombics
+<LI><A HREF = "pair_born.html">pair_style born/coul/wolf</A> - Born-Mayer-Huggins with Coulombics via Wolf potential
 <LI><A HREF = "pair_brownian.html">pair_style brownian</A> - Brownian potential for Fast Lubrication Dynamics
 <LI><A HREF = "pair_brownian.html">pair_style brownian/poly</A> - Brownian potential for Fast Lubrication Dynamics with polydispersity
 <LI><A HREF = "pair_buck.html">pair_style buck</A> - Buckingham potential
 <LI><A HREF = "pair_buck.html">pair_style buck/coul/cut</A> - Buckingham with cutoff Coulomb
 <LI><A HREF = "pair_buck.html">pair_style buck/coul/long</A> - Buckingham with long-range Coulomb
 <LI><A HREF = "pair_colloid.html">pair_style colloid</A> - integrated colloidal potential
 <LI><A HREF = "pair_comb.html">pair_style comb</A> - charge-optimized many-body (COMB) potential
 <LI><A HREF = "pair_coul.html">pair_style coul/cut</A> - cutoff Coulombic potential
 <LI><A HREF = "pair_coul.html">pair_style coul/debye</A> - cutoff Coulombic potential with Debye screening
 <LI><A HREF = "pair_coul.html">pair_style coul/long</A> - long-range Coulombic potential
+<LI><A HREF = "pair_coul.html">pair_style coul/wolf</A> - Coulombics via Wolf potential
 <LI><A HREF = "pair_dipole.html">pair_style dipole/cut</A> - point dipoles with cutoff
 <LI><A HREF = "pair_dpd.html">pair_style dpd</A> - dissipative particle dynamics (DPD)
 <LI><A HREF = "pair_dpd.html">pair_style dpd/tstat</A> - DPD thermostatting
 <LI><A HREF = "pair_dsmc.html">pair_style dsmc</A> - Direct Simulation Monte Carlo (DSMC)
 <LI><A HREF = "pair_eam.html">pair_style eam</A> - embedded atom method (EAM)
 <LI><A HREF = "pair_eam.html">pair_style eam/alloy</A> - alloy EAM
 <LI><A HREF = "pair_eam.html">pair_style eam/fs</A> - Finnis-Sinclair EAM
 <LI><A HREF = "pair_eim.html">pair_style eim</A> - embedded ion method (EIM)
 <LI><A HREF = "pair_gauss.html">pair_style gauss</A> - Gaussian potential
 <LI><A HREF = "pair_gayberne.html">pair_style gayberne</A> - Gay-Berne ellipsoidal potential
 <LI><A HREF = "pair_gran.html">pair_style gran/hertz/history</A> - granular potential with Hertzian interactions
 <LI><A HREF = "pair_gran.html">pair_style gran/hooke</A> - granular potential with history effects
 <LI><A HREF = "pair_gran.html">pair_style gran/hooke/history</A> - granular potential without history effects
 <LI><A HREF = "pair_hbond_dreiding.html">pair_style hbond/dreiding/lj</A> - DREIDING hydrogen bonding LJ potential
 <LI><A HREF = "pair_hbond_dreiding.html">pair_style hbond/dreiding/morse</A> - DREIDING hydrogen bonding Morse potential
 <LI><A HREF = "pair_line_lj.html">pair_style line/lj</A> - LJ potential between line segments
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/charmm</A> - CHARMM potential with cutoff Coulomb
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/charmm/implicit</A> - CHARMM for implicit solvent
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/long</A> - CHARMM with long-range Coulomb
 <LI><A HREF = "pair_class2.html">pair_style lj/class2</A> - COMPASS (class 2) force field with no Coulomb
 <LI><A HREF = "pair_class2.html">pair_style lj/class2/coul/cut</A> - COMPASS with cutoff Coulomb
 <LI><A HREF = "pair_class2.html">pair_style lj/class2/coul/long</A> - COMPASS with long-range Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut</A> - cutoff Lennard-Jones potential with no Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/cut</A> - LJ with cutoff Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/debye</A> - LJ with Debye screening added to Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/long</A> - LJ with long-range Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/long/tip4p</A> - LJ with long-range Coulomb for TIP4P water
 <LI><A HREF = "pair_lj_expand.html">pair_style lj/expand</A> - Lennard-Jones for variable size particles
 <LI><A HREF = "pair_gromacs.html">pair_style lj/gromacs</A> - GROMACS-style Lennard-Jones potential
 <LI><A HREF = "pair_gromacs.html">pair_style lj/gromacs/coul/gromacs</A> - GROMACS-style LJ and Coulombic potential
 <LI><A HREF = "pair_lj_smooth.html">pair_style lj/smooth</A> - smoothed Lennard-Jones potential
 <LI><A HREF = "pair_lj96.html">pair_style lj96/cut</A> - Lennard-Jones 9/6 potential
 <LI><A HREF = "pair_lubricate.html">pair_style lubricate</A> - hydrodynamic lubrication forces
 <LI><A HREF = "pair_lubricate.html">pair_style lubricate/poly</A> - hydrodynamic lubrication forces with polydispersity
 <LI><A HREF = "pair_lubricateU.html">pair_style lubricateU</A> - hydrodynamic lubrication forces for Fast Lubrication Dynamics
 <LI><A HREF = "pair_lubricateU.html">pair_style lubricateU/poly</A> - hydrodynamic lubrication forces for Fast Lubrication Dynamics with polydispersity
 <LI><A HREF = "pair_meam.html">pair_style meam</A> - modified embedded atom method (MEAM)
 <LI><A HREF = "pair_morse.html">pair_style morse</A> - Morse potential
 <LI><A HREF = "pair_peri.html">pair_style peri/lps</A> - peridynamic LPS potential
 <LI><A HREF = "pair_peri.html">pair_style peri/pmb</A> - peridynamic PMB potential
 <LI><A HREF = "pair_reax.html">pair_style reax</A> - ReaxFF potential
 <LI><A HREF = "pair_airebo.html">pair_style rebo</A> - 2nd-generation REBO potential of Brenner
 <LI><A HREF = "pair_resquared.html">pair_style resquared</A> - Everaers RE-Squared ellipsoidal potential
 <LI><A HREF = "pair_soft.html">pair_style soft</A> - Soft (cosine) potential
 <LI><A HREF = "pair_sw.html">pair_style sw</A> - Stillinger-Weber 3-body potential
 <LI><A HREF = "pair_table.html">pair_style table</A> - tabulated pair potential
 <LI><A HREF = "pair_tersoff.html">pair_style tersoff</A> - Tersoff 3-body potential
 <LI><A HREF = "pair_tersoff_zbl.html">pair_style tersoff/zbl</A> - Tersoff/ZBL 3-body potential
 <LI><A HREF = "pair_tri_lj.html">pair_style tri/lj</A> - LJ potential between triangles
 <LI><A HREF = "pair_yukawa.html">pair_style yukawa</A> - Yukawa potential
 <LI><A HREF = "pair_yukawa_colloid.html">pair_style yukawa/colloid</A> - screened Yukawa potential for finite-size particles 
 </UL>
 <P>There are also additional pair styles submitted by users which are
 included in the LAMMPS distribution.  The list of these with links to
 the individual styles are given in the pair section of <A HREF = "Section_commands.html#cmd_5">this
 page</A>.
 </P>
 <P>There are also additional accelerated pair styles included in the
 LAMMPS distribution for faster performance on CPUs and GPUs.  The list
 of these with links to the individual styles are given in the pair
 section of <A HREF = "Section_commands.html#cmd_5">this page</A>.
 </P>
 <HR>
 
 <P><B>Restrictions:</B>
 </P>
 <P>This command must come after the simulation box is defined by a
 <A HREF = "read_data.html">read_data</A>, <A HREF = "read_restart.html">read_restart</A>, or
 <A HREF = "create_box.html">create_box</A> command.
 </P>
 <P><B>Related commands:</B>
 </P>
 <P><A HREF = "pair_style.html">pair_style</A>, <A HREF = "pair_modify.html">pair_modify</A>,
 <A HREF = "read_data.html">read_data</A>, <A HREF = "read_restart.html">read_restart</A>,
 <A HREF = "pair_write.html">pair_write</A>
 </P>
 <P><B>Default:</B> none
 </P>
 </HTML>
diff --git a/doc/pair_coeff.txt b/doc/pair_coeff.txt
index 4c8ca53f5..1b66fe2a3 100644
--- a/doc/pair_coeff.txt
+++ b/doc/pair_coeff.txt
@@ -1,177 +1,179 @@
 "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
 
 :link(lws,http://lammps.sandia.gov)
 :link(ld,Manual.html)
 :link(lc,Section_commands.html#comm)
 
 :line
 
 pair_coeff command :h3
 
 [Syntax:]
 
 pair_coeff I J args :pre
 
 I,J = atom types (see asterisk form below)
 args = coefficients for one or more pairs of atom types :ul
 
 [Examples:]
 
 pair_coeff 1 2 1.0 1.0 2.5
 pair_coeff 2 * 1.0 1.0
 pair_coeff 3* 1*2 1.0 1.0 2.5
 pair_coeff * * 1.0 1.0
 pair_coeff * * nialhjea 1 1 2
 pair_coeff * 3 morse.table ENTRY1
 pair_coeff 1 2 lj/cut 1.0 1.0 2.5 (for pair_style hybrid) :pre
 
 [Description:]
 
 Specify the pairwise force field coefficients for one or more pairs of
 atom types.  The number and meaning of the coefficients depends on the
 pair style.  Pair coefficients can also be set in the data file read
 by the "read_data"_read_data.html command or in a restart file.
 
 I and J can be specified in one of two ways.  Explicit numeric values
 can be used for each, as in the 1st example above.  I <= J is
 required.  LAMMPS sets the coefficients for the symmetric J,I
 interaction to the same values.
 
 A wildcard asterisk can be used in place of or in conjunction with the
 I,J arguments to set the coefficients for multiple pairs of atom
 types.  This takes the form "*" or "*n" or "n*" or "m*n".  If N = the
 number of atom types, then an asterisk with no numeric values means all
 types from 1 to N.  A leading asterisk means all types from 1 to n
 (inclusive).  A trailing asterisk means all types from n to N
 (inclusive).  A middle asterisk means all types from m to n
 (inclusive).  Note that only type pairs with I <= J are considered; if
 asterisks imply type pairs where J < I, they are ignored.
 
 Note that a pair_coeff command can override a previous setting for the
 same I,J pair.  For example, these commands set the coeffs for all I,J
 pairs, then overwrite the coeffs for just the I,J = 2,3 pair:
 
 pair_coeff * * 1.0 1.0 2.5
 pair_coeff 2 3 2.0 1.0 1.12 :pre
 
 A line in a data file that specifies pair coefficients uses the exact
 same format as the arguments of the pair_coeff command in an input
 script, with the exception of the I,J type arguments.  In each line of
 the "Pair Coeffs" section of a data file, only a single type I is
 specified, which sets the coefficients for type I interacting with
 type I.  This is because the section has exactly N lines, where N =
 the number of atom types.  For this reason, the wild-card asterisk
 should also not be used as part of the I argument.  Thus in a data
 file, the line corresponding to the 1st example above would be listed
 as
 
 2 1.0 1.0 2.5 :pre
 
 For many potentials, if coefficients for type pairs with I != J are
 not set explicitly by a pair_coeff command, the values are inferred
 from the I,I and J,J settings by mixing rules; see the
 "pair_modify"_pair_modify.html command for a discussion.  Details on
 this option as it pertains to individual potentials are described on
 the doc page for the potential.
 
 :line
 
 Here is an alphabetic list of pair styles defined in LAMMPS.  Click on
 the style to display the formula it computes, arguments specified in
 the pair_style command, and coefficients specified by the associated
 "pair_coeff"_pair_coeff.html command:
 
 "pair_style hybrid"_pair_hybrid.html - multiple styles of pairwise interactions
 "pair_style hybrid/overlay"_pair_hybrid.html - multiple styles of superposed pairwise interactions :ul
 
 "pair_style adp"_pair_adp.html - angular dependent potential (ADP) of Mishin
 "pair_style airebo"_pair_airebo.html - AIREBO potential of Stuart
 "pair_style born"_pair_born.html - Born-Mayer-Huggins potential
-"pair_style born/coul/long"_pair_born.html - Born-Mayer-Huggins with long-range Coulomb
+"pair_style born/coul/long"_pair_born.html - Born-Mayer-Huggins with long-range Coulombics
+"pair_style born/coul/wolf"_pair_born.html - Born-Mayer-Huggins with Coulombics via Wolf potential
 "pair_style brownian"_pair_brownian.html - Brownian potential for Fast Lubrication Dynamics
 "pair_style brownian/poly"_pair_brownian.html - Brownian potential for Fast Lubrication Dynamics with polydispersity
 "pair_style buck"_pair_buck.html - Buckingham potential
 "pair_style buck/coul/cut"_pair_buck.html - Buckingham with cutoff Coulomb
 "pair_style buck/coul/long"_pair_buck.html - Buckingham with long-range Coulomb
 "pair_style colloid"_pair_colloid.html - integrated colloidal potential
 "pair_style comb"_pair_comb.html - charge-optimized many-body (COMB) potential
 "pair_style coul/cut"_pair_coul.html - cutoff Coulombic potential
 "pair_style coul/debye"_pair_coul.html - cutoff Coulombic potential with Debye screening
 "pair_style coul/long"_pair_coul.html - long-range Coulombic potential
+"pair_style coul/wolf"_pair_coul.html - Coulombics via Wolf potential
 "pair_style dipole/cut"_pair_dipole.html - point dipoles with cutoff
 "pair_style dpd"_pair_dpd.html - dissipative particle dynamics (DPD)
 "pair_style dpd/tstat"_pair_dpd.html - DPD thermostatting
 "pair_style dsmc"_pair_dsmc.html - Direct Simulation Monte Carlo (DSMC)
 "pair_style eam"_pair_eam.html - embedded atom method (EAM)
 "pair_style eam/alloy"_pair_eam.html - alloy EAM
 "pair_style eam/fs"_pair_eam.html - Finnis-Sinclair EAM
 "pair_style eim"_pair_eim.html - embedded ion method (EIM)
 "pair_style gauss"_pair_gauss.html - Gaussian potential
 "pair_style gayberne"_pair_gayberne.html - Gay-Berne ellipsoidal potential
 "pair_style gran/hertz/history"_pair_gran.html - granular potential with Hertzian interactions
 "pair_style gran/hooke"_pair_gran.html - granular potential with history effects
 "pair_style gran/hooke/history"_pair_gran.html - granular potential without history effects
 "pair_style hbond/dreiding/lj"_pair_hbond_dreiding.html - DREIDING hydrogen bonding LJ potential
 "pair_style hbond/dreiding/morse"_pair_hbond_dreiding.html - DREIDING hydrogen bonding Morse potential
 "pair_style line/lj"_pair_line_lj.html - LJ potential between line segments
 "pair_style lj/charmm/coul/charmm"_pair_charmm.html - CHARMM potential with cutoff Coulomb
 "pair_style lj/charmm/coul/charmm/implicit"_pair_charmm.html - CHARMM for implicit solvent
 "pair_style lj/charmm/coul/long"_pair_charmm.html - CHARMM with long-range Coulomb
 "pair_style lj/class2"_pair_class2.html - COMPASS (class 2) force field with no Coulomb
 "pair_style lj/class2/coul/cut"_pair_class2.html - COMPASS with cutoff Coulomb
 "pair_style lj/class2/coul/long"_pair_class2.html - COMPASS with long-range Coulomb
 "pair_style lj/cut"_pair_lj.html - cutoff Lennard-Jones potential with no Coulomb
 "pair_style lj/cut/coul/cut"_pair_lj.html - LJ with cutoff Coulomb
 "pair_style lj/cut/coul/debye"_pair_lj.html - LJ with Debye screening added to Coulomb
 "pair_style lj/cut/coul/long"_pair_lj.html - LJ with long-range Coulomb
 "pair_style lj/cut/coul/long/tip4p"_pair_lj.html - LJ with long-range Coulomb for TIP4P water
 "pair_style lj/expand"_pair_lj_expand.html - Lennard-Jones for variable size particles
 "pair_style lj/gromacs"_pair_gromacs.html - GROMACS-style Lennard-Jones potential
 "pair_style lj/gromacs/coul/gromacs"_pair_gromacs.html - GROMACS-style LJ and Coulombic potential
 "pair_style lj/smooth"_pair_lj_smooth.html - smoothed Lennard-Jones potential
 "pair_style lj96/cut"_pair_lj96.html - Lennard-Jones 9/6 potential
 "pair_style lubricate"_pair_lubricate.html - hydrodynamic lubrication forces
 "pair_style lubricate/poly"_pair_lubricate.html - hydrodynamic lubrication forces with polydispersity
 "pair_style lubricateU"_pair_lubricateU.html - hydrodynamic lubrication forces for Fast Lubrication Dynamics
 "pair_style lubricateU/poly"_pair_lubricateU.html - hydrodynamic lubrication forces for Fast Lubrication Dynamics with polydispersity
 "pair_style meam"_pair_meam.html - modified embedded atom method (MEAM)
 "pair_style morse"_pair_morse.html - Morse potential
 "pair_style peri/lps"_pair_peri.html - peridynamic LPS potential
 "pair_style peri/pmb"_pair_peri.html - peridynamic PMB potential
 "pair_style reax"_pair_reax.html - ReaxFF potential
 "pair_style rebo"_pair_airebo.html - 2nd-generation REBO potential of Brenner
 "pair_style resquared"_pair_resquared.html - Everaers RE-Squared ellipsoidal potential
 "pair_style soft"_pair_soft.html - Soft (cosine) potential
 "pair_style sw"_pair_sw.html - Stillinger-Weber 3-body potential
 "pair_style table"_pair_table.html - tabulated pair potential
 "pair_style tersoff"_pair_tersoff.html - Tersoff 3-body potential
 "pair_style tersoff/zbl"_pair_tersoff_zbl.html - Tersoff/ZBL 3-body potential
 "pair_style tri/lj"_pair_tri_lj.html - LJ potential between triangles
 "pair_style yukawa"_pair_yukawa.html - Yukawa potential
 "pair_style yukawa/colloid"_pair_yukawa_colloid.html - screened Yukawa potential for finite-size particles :ul
 
 There are also additional pair styles submitted by users which are
 included in the LAMMPS distribution.  The list of these with links to
 the individual styles are given in the pair section of "this
 page"_Section_commands.html#cmd_5.
 
 There are also additional accelerated pair styles included in the
 LAMMPS distribution for faster performance on CPUs and GPUs.  The list
 of these with links to the individual styles are given in the pair
 section of "this page"_Section_commands.html#cmd_5.
 
 :line
 
 [Restrictions:]
 
 This command must come after the simulation box is defined by a
 "read_data"_read_data.html, "read_restart"_read_restart.html, or
 "create_box"_create_box.html command.
 
 [Related commands:]
 
 "pair_style"_pair_style.html, "pair_modify"_pair_modify.html,
 "read_data"_read_data.html, "read_restart"_read_restart.html,
 "pair_write"_pair_write.html
 
 [Default:] none
diff --git a/doc/pair_coul.html b/doc/pair_coul.html
index 9e0951880..f8f3fc8bb 100644
--- a/doc/pair_coul.html
+++ b/doc/pair_coul.html
@@ -1,164 +1,196 @@
 <HTML>
 <CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A> 
 </CENTER>
 
 
 
 
 
 
 <HR>
 
 <H3>pair_style coul/cut command 
 </H3>
 <H3>pair_style coul/cut/omp command 
 </H3>
 <H3>pair_style coul/debye command 
 </H3>
 <H3>pair_style coul/debye/omp command 
 </H3>
 <H3>pair_style coul/long command 
 </H3>
 <H3>pair_style coul/long/omp command 
 </H3>
 <H3>pair_style coul/long/gpu command 
 </H3>
+<H3>pair_style coul/wolf command 
+</H3>
 <P><B>Syntax:</B>
 </P>
 <PRE>pair_style coul/cut cutoff
 pair_style coul/debye kappa cutoff
 pair_style coul/long cutoff
 pair_style coul/long/gpu cutoff 
+pair_sytle coul/wolf alpha cutoff 
 </PRE>
 <UL><LI>cutoff = global cutoff for Coulombic interactions
 <LI>kappa = Debye length (inverse distance units) 
+<LI>alpha = damping parameter (inverse distance units) 
 </UL>
 <P><B>Examples:</B>
 </P>
 <PRE>pair_style coul/cut 2.5
 pair_coeff * *
 pair_coeff 2 2 3.5 
 </PRE>
 <PRE>pair_style coul/debye 1.4 3.0
 pair_coeff * *
 pair_coeff 2 2 3.5 
 </PRE>
 <PRE>pair_style coul/long 10.0
 pair_coeff * * 
 </PRE>
+<P>pair_style coul/wolf 0.2 9.0
+pair_coeff * *
+</P>
 <P><B>Description:</B>
 </P>
 <P>The <I>coul/cut</I> style computes the standard Coulombic interaction
 potential given by
 </P>
 <CENTER><IMG SRC = "Eqs/pair_coulomb.jpg">
 </CENTER>
 <P>where C is an energy-conversion constant, Qi and Qj are the charges on
 the 2 atoms, and epsilon is the dielectric constant which can be set
 by the <A HREF = "dielectric.html">dielectric</A> command.  The cutoff Rc truncates
 the interaction distance.
 </P>
 <P>Style <I>coul/debye</I> adds an additional exp() damping factor to the
 Coulombic term, given by
 </P>
 <CENTER><IMG SRC = "Eqs/pair_debye.jpg">
 </CENTER>
 <P>where kappa is the Debye length.  This potential is another way to
 mimic the screening effect of a polar solvent.
 </P>
+<P>Style <I>coul/wolf</I> computes Coulombic interactions via the Wolf
+summation method, described in <A HREF = "#Wolf">Wolf</A>, given by:
+</P>
+<CENTER><IMG SRC = "Eqs/pair_coul_wolf.jpg">
+</CENTER>
+<P>where <I>alpha</I> is the damping parameter, and erc() and erfc() are
+error-fuction and complementary error-function terms.  This potential
+is essentially a short-range, spherically-truncated,
+charge-neutralized, shifted, pairwise <I>1/r</I> summation.  With a
+manipulation of adding and substracting a self term (for i = j) to the
+first and second term on the right-hand-side, respectively, and a
+small enough <I>alpha</I> damping parameter, the second term shrinks and
+the potential becomes a rapidly-converging real-space summation.  With
+a long enough cutoff and small enough alpha parameter, the energy and
+forces calcluated by the Wolf summation method approach those of the
+Ewald sum.  So it is a means of getting effective long-range
+interactions with a short-range potential.
+</P>
 <P>Style <I>coul/long</I> computes the same Coulombic interactions as style
 <I>coul/cut</I> except that an additional damping factor is applied so it
 can be used in conjunction with the <A HREF = "kspace_style.html">kspace_style</A>
 command and its <I>ewald</I> or <I>pppm</I> option.  The Coulombic cutoff
 specified for this style means that pairwise interactions within this
 distance are computed directly; interactions outside that distance are
 computed in reciprocal space.
 </P>
 <P>These potentials are designed to be combined with other pair
 potentials via the <A HREF = "pair_hybrid.html">pair_style hybrid/overlay</A>
 command.  This is because they have no repulsive core.  Hence if they
 are used by themselves, there will be no repulsion to keep two
 oppositely charged particles from overlapping each other.
 </P>
 <P>The following coefficients must be defined for each pair of atoms
 types via the <A HREF = "pair_coeff.html">pair_coeff</A> command as in the examples
 above, or in the data file or restart files read by the
 <A HREF = "read_data.html">read_data</A> or <A HREF = "read_restart.html">read_restart</A>
 commands, or by mixing as described below:
 </P>
 <UL><LI>cutoff (distance units) 
 </UL>
 <P>For <I>coul/cut</I> and <I>coul/debye</I>, the cutoff coefficient is optional.
 If it is not used (as in some of the examples above), the default
 global value specified in the pair_style command is used.
 </P>
 <P>For <I>coul/long</I> no cutoff can be specified for an individual I,J type
 pair via the pair_coeff command.  All type pairs use the same global
 Coulombic cutoff specified in the pair_style command.
 </P>
 <HR>
 
 <P>Styles with a <I>cuda</I>, <I>gpu</I>, <I>omp</I>, or <I>opt</I> suffix are functionally 
 the same as the corresponding style without the suffix.  They have 
 been optimized to run faster, depending on your available hardware, 
 as discussed in <A HREF = "Section_accelerate.html">this section</A> of the manual.
 The accelerated styles take the same arguments and should produce the
 same results, except for round-off and precision issues.
 </P>
 <P>These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT
 packages, respectively.  They are only enabled if LAMMPS was built with
 those packages.  See the <A HREF = "Section_start.html#start_3">Making LAMMPS</A>
 section for more info.
 </P>
 <P>You can specify the accelerated styles explicitly in your input script
 by including their suffix, or you can use the <A HREF = "Section_start.html#start_6">-suffix command-line
 switch</A> when you invoke LAMMPS, or you can
 use the <A HREF = "suffix.html">suffix</A> command in your input script.
 </P>
 <P>See <A HREF = "Section_accelerate.html">this section</A> of the manual for more
 instructions on how to use the accelerated styles effectively.
 </P>
 <HR>
 
 <P><B>Mixing, shift, table, tail correction, restart, rRESPA info</B>:
 </P>
 <P>For atom type pairs I,J and I != J, the cutoff distance for the
 <I>coul/cut</I> style can be mixed.  The default mix value is <I>geometric</I>.
 See the "pair_modify" command for details.
 </P>
 <P>The <A HREF = "pair_modify.html">pair_modify</A> shift option is not relevant
 for these pair styles.
 </P>
 <P>The <I>coul/long</I> style supports the <A HREF = "pair_modify.html">pair_modify</A>
 table option for tabulation of the short-range portion of the
 long-range Coulombic interaction.
 </P>
 <P>These pair styles do not support the <A HREF = "pair_modify.html">pair_modify</A>
 tail option for adding long-range tail corrections to energy and
 pressure.
 </P>
 <P>These pair styles write their information to <A HREF = "restart.html">binary restart
 files</A>, so pair_style and pair_coeff commands do not need
 to be specified in an input script that reads a restart file.
 </P>
 <P>This pair style can only be used via the <I>pair</I> keyword of the
 <A HREF = "run_style.html">run_style respa</A> command.  It does not support the
 <I>inner</I>, <I>middle</I>, <I>outer</I> keywords.
 </P>
 <HR>
 
 <P><B>Restrictions:</B>
 </P>
 <P>The <I>coul/long</I> style is part of the KSPACE package.  It is only
 enabled if LAMMPS was built with that package (which it is by
 default).  See the <A HREF = "Section_start.html#start_3">Making LAMMPS</A> section
 for more info.
 </P>
 <P><B>Related commands:</B>
 </P>
 <P><A HREF = "pair_coeff.html">pair_coeff</A>, <A HREF = "pair_hybrid.html">pair_style
 hybrid/overlay</A>
 </P>
 <P><B>Default:</B> none
 </P>
+<HR>
+
+<A NAME = "Wolf"></A>
+
+<P><B>(Wolf)</B> D. Wolf, P. Keblinski, S. R. Phillpot, J. Eggebrecht, J Chem
+Phys, 110, 8254 (1999).
+</P>
 </HTML>
diff --git a/doc/pair_coul.txt b/doc/pair_coul.txt
index 44168cd1c..0551bb490 100644
--- a/doc/pair_coul.txt
+++ b/doc/pair_coul.txt
@@ -1,153 +1,183 @@
 "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
 
 :link(lws,http://lammps.sandia.gov)
 :link(ld,Manual.html)
 :link(lc,Section_commands.html#comm)
 
 :line
 
 pair_style coul/cut command :h3
 pair_style coul/cut/omp command :h3
 pair_style coul/debye command :h3
 pair_style coul/debye/omp command :h3
 pair_style coul/long command :h3
 pair_style coul/long/omp command :h3
 pair_style coul/long/gpu command :h3
+pair_style coul/wolf command :h3
 
 [Syntax:]
 
 pair_style coul/cut cutoff
 pair_style coul/debye kappa cutoff
 pair_style coul/long cutoff
-pair_style coul/long/gpu cutoff :pre
+pair_style coul/long/gpu cutoff 
+pair_sytle coul/wolf alpha cutoff :pre
 
 cutoff = global cutoff for Coulombic interactions
-kappa = Debye length (inverse distance units) :ul
+kappa = Debye length (inverse distance units) 
+alpha = damping parameter (inverse distance units) :ul
 
 [Examples:]
 
 pair_style coul/cut 2.5
 pair_coeff * *
 pair_coeff 2 2 3.5 :pre
 
 pair_style coul/debye 1.4 3.0
 pair_coeff * *
 pair_coeff 2 2 3.5 :pre
 
 pair_style coul/long 10.0
 pair_coeff * * :pre
 
+pair_style coul/wolf 0.2 9.0
+pair_coeff * *
+
 [Description:]
 
 The {coul/cut} style computes the standard Coulombic interaction
 potential given by
 
 :c,image(Eqs/pair_coulomb.jpg)
 
 where C is an energy-conversion constant, Qi and Qj are the charges on
 the 2 atoms, and epsilon is the dielectric constant which can be set
 by the "dielectric"_dielectric.html command.  The cutoff Rc truncates
 the interaction distance.
 
 Style {coul/debye} adds an additional exp() damping factor to the
 Coulombic term, given by
 
 :c,image(Eqs/pair_debye.jpg)
 
 where kappa is the Debye length.  This potential is another way to
 mimic the screening effect of a polar solvent.
 
+Style {coul/wolf} computes Coulombic interactions via the Wolf
+summation method, described in "Wolf"_#Wolf, given by:
+
+:c,image(Eqs/pair_coul_wolf.jpg)
+
+where {alpha} is the damping parameter, and erc() and erfc() are
+error-fuction and complementary error-function terms.  This potential
+is essentially a short-range, spherically-truncated,
+charge-neutralized, shifted, pairwise {1/r} summation.  With a
+manipulation of adding and substracting a self term (for i = j) to the
+first and second term on the right-hand-side, respectively, and a
+small enough {alpha} damping parameter, the second term shrinks and
+the potential becomes a rapidly-converging real-space summation.  With
+a long enough cutoff and small enough alpha parameter, the energy and
+forces calcluated by the Wolf summation method approach those of the
+Ewald sum.  So it is a means of getting effective long-range
+interactions with a short-range potential.
+
 Style {coul/long} computes the same Coulombic interactions as style
 {coul/cut} except that an additional damping factor is applied so it
 can be used in conjunction with the "kspace_style"_kspace_style.html
 command and its {ewald} or {pppm} option.  The Coulombic cutoff
 specified for this style means that pairwise interactions within this
 distance are computed directly; interactions outside that distance are
 computed in reciprocal space.
 
 These potentials are designed to be combined with other pair
 potentials via the "pair_style hybrid/overlay"_pair_hybrid.html
 command.  This is because they have no repulsive core.  Hence if they
 are used by themselves, there will be no repulsion to keep two
 oppositely charged particles from overlapping each other.
 
 The following coefficients must be defined for each pair of atoms
 types via the "pair_coeff"_pair_coeff.html command as in the examples
 above, or in the data file or restart files read by the
 "read_data"_read_data.html or "read_restart"_read_restart.html
 commands, or by mixing as described below:
 
 cutoff (distance units) :ul
 
 For {coul/cut} and {coul/debye}, the cutoff coefficient is optional.
 If it is not used (as in some of the examples above), the default
 global value specified in the pair_style command is used.
 
 For {coul/long} no cutoff can be specified for an individual I,J type
 pair via the pair_coeff command.  All type pairs use the same global
 Coulombic cutoff specified in the pair_style command.
 
 :line
 
 Styles with a {cuda}, {gpu}, {omp}, or {opt} suffix are functionally 
 the same as the corresponding style without the suffix.  They have 
 been optimized to run faster, depending on your available hardware, 
 as discussed in "this section"_Section_accelerate.html of the manual.
 The accelerated styles take the same arguments and should produce the
 same results, except for round-off and precision issues.
 
 These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT
 packages, respectively.  They are only enabled if LAMMPS was built with
 those packages.  See the "Making LAMMPS"_Section_start.html#start_3
 section for more info.
 
 You can specify the accelerated styles explicitly in your input script
 by including their suffix, or you can use the "-suffix command-line
 switch"_Section_start.html#start_6 when you invoke LAMMPS, or you can
 use the "suffix"_suffix.html command in your input script.
 
 See "this section"_Section_accelerate.html of the manual for more
 instructions on how to use the accelerated styles effectively.
 
 :line
 
 [Mixing, shift, table, tail correction, restart, rRESPA info]:
 
 For atom type pairs I,J and I != J, the cutoff distance for the
 {coul/cut} style can be mixed.  The default mix value is {geometric}.
 See the "pair_modify" command for details.
 
 The "pair_modify"_pair_modify.html shift option is not relevant
 for these pair styles.
 
 The {coul/long} style supports the "pair_modify"_pair_modify.html
 table option for tabulation of the short-range portion of the
 long-range Coulombic interaction.
 
 These pair styles do not support the "pair_modify"_pair_modify.html
 tail option for adding long-range tail corrections to energy and
 pressure.
 
 These pair styles write their information to "binary restart
 files"_restart.html, so pair_style and pair_coeff commands do not need
 to be specified in an input script that reads a restart file.
 
 This pair style can only be used via the {pair} keyword of the
 "run_style respa"_run_style.html command.  It does not support the
 {inner}, {middle}, {outer} keywords.
 
 :line
 
 [Restrictions:]
 
 The {coul/long} style is part of the KSPACE package.  It is only
 enabled if LAMMPS was built with that package (which it is by
 default).  See the "Making LAMMPS"_Section_start.html#start_3 section
 for more info.
 
 [Related commands:]
 
 "pair_coeff"_pair_coeff.html, "pair_style
 hybrid/overlay"_pair_hybrid.html
 
 [Default:] none
+
+:line
+
+:link(Wolf)
+[(Wolf)] D. Wolf, P. Keblinski, S. R. Phillpot, J. Eggebrecht, J Chem
+Phys, 110, 8254 (1999).
diff --git a/doc/pair_style.html b/doc/pair_style.html
index c192fce8a..c146e10b2 100644
--- a/doc/pair_style.html
+++ b/doc/pair_style.html
@@ -1,192 +1,194 @@
 <HTML>
 <CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A> 
 </CENTER>
 
 
 
 
 
 
 <HR>
 
 <H3>pair_style command 
 </H3>
 <P><B>Syntax:</B>
 </P>
 <PRE>pair_style style args 
 </PRE>
 <UL><LI>style = one of the styles from the list below
 <LI>args = arguments used by a particular style 
 </UL>
 <P><B>Examples:</B>
 </P>
 <PRE>pair_style lj/cut 2.5
 pair_style eam/alloy
 pair_style hybrid lj/charmm/coul/long 10.0 eam
 pair_style table linear 1000
 pair_style none 
 </PRE>
 <P><B>Description:</B>
 </P>
 <P>Set the formula(s) LAMMPS uses to compute pairwise interactions.  In
 LAMMPS, pair potentials are defined between pairs of atoms that are
 within a cutoff distance and the set of active interactions typically
 changes over time.  See the <A HREF = "bond_style.html">bond_style</A> command to
 define potentials between pairs of bonded atoms, which typically
 remain in place for the duration of a simulation.
 </P>
 <P>In LAMMPS, pairwise force fields encompass a variety of interactions,
 some of which include many-body effects, e.g. EAM, Stillinger-Weber,
 Tersoff, REBO potentials.  They are still classified as "pairwise"
 potentials because the set of interacting atoms changes with time
 (unlike molecular bonds) and thus a neighbor list is used to find
 nearby interacting atoms.
 </P>
 <P>Hybrid models where specified pairs of atom types interact via
 different pair potentials can be setup using the <I>hybrid</I> pair style.
 </P>
 <P>The coefficients associated with a pair style are typically set for
 each pair of atom types, and are specified by the
 <A HREF = "pair_coeff.html">pair_coeff</A> command or read from a file by the
 <A HREF = "read_data.html">read_data</A> or <A HREF = "read_restart.html">read_restart</A>
 commands.
 </P>
 <P>The <A HREF = "pair_modify.html">pair_modify</A> command sets options for mixing of
 type I-J interaction coefficients and adding energy offsets or tail
 corrections to Lennard-Jones potentials.  Details on these options as
 they pertain to individual potentials are described on the doc page
 for the potential.  Likewise, info on whether the potential
 information is stored in a <A HREF = "write_restart.html">restart file</A> is listed
 on the potential doc page.
 </P>
 <P>In the formulas listed for each pair style, <I>E</I> is the energy of a
 pairwise interaction between two atoms separated by a distance <I>r</I>.
 The force between the atoms is the negative derivative of this
 expression.
 </P>
 <P>If the pair_style command has a cutoff argument, it sets global
 cutoffs for all pairs of atom types.  The distance(s) can be smaller
 or larger than the dimensions of the simulation box.
 </P>
 <P>Typically, the global cutoff value can be overridden for a specific
 pair of atom types by the <A HREF = "pair_coeff.html">pair_coeff</A> command.  The
 pair style settings (including global cutoffs) can be changed by a
 subsequent pair_style command using the same style.  This will reset
 the cutoffs for all atom type pairs, including those previously set
 explicitly by a <A HREF = "pair_coeff.html">pair_coeff</A> command.  The exceptions
 to this are that pair_style <I>table</I> and <I>hybrid</I> settings cannot be
 reset.  A new pair_style command for these styles will wipe out all
 previously specified pair_coeff values.
 </P>
 <HR>
 
 <P>Here is an alphabetic list of pair styles defined in LAMMPS.  Click on
 the style to display the formula it computes, arguments specified in
 the pair_style command, and coefficients specified by the associated
 <A HREF = "pair_coeff.html">pair_coeff</A> command:
 </P>
 <UL><LI><A HREF = "pair_none.html">pair_style none</A> - turn off pairwise interactions
 <LI><A HREF = "pair_hybrid.html">pair_style hybrid</A> - multiple styles of pairwise interactions
 <LI><A HREF = "pair_hybrid.html">pair_style hybrid/overlay</A> - multiple styles of superposed pairwise interactions 
 </UL>
 <UL><LI><A HREF = "pair_adp.html">pair_style adp</A> - angular dependent potential (ADP) of Mishin
 <LI><A HREF = "pair_airebo.html">pair_style airebo</A> - AIREBO potential of Stuart
 <LI><A HREF = "pair_born.html">pair_style born</A> - Born-Mayer-Huggins potential
-<LI><A HREF = "pair_born.html">pair_style born/coul/long</A> - Born-Mayer-Huggins with long-range Coulomb
+<LI><A HREF = "pair_born.html">pair_style born/coul/long</A> - Born-Mayer-Huggins with long-range Coulombics
+<LI><A HREF = "pair_born.html">pair_style born/coul/wolf</A> - Born-Mayer-Huggins with Coulombics via Wolf potential
 <LI><A HREF = "pair_brownian.html">pair_style brownian</A> - Brownian potential for Fast Lubrication Dynamics
 <LI><A HREF = "pair_brownian.html">pair_style brownian/poly</A> - Brownian potential for Fast Lubrication Dynamics with polydispersity
 <LI><A HREF = "pair_buck.html">pair_style buck</A> - Buckingham potential
 <LI><A HREF = "pair_buck.html">pair_style buck/coul/cut</A> - Buckingham with cutoff Coulomb
 <LI><A HREF = "pair_buck.html">pair_style buck/coul/long</A> - Buckingham with long-range Coulomb
 <LI><A HREF = "pair_colloid.html">pair_style colloid</A> - integrated colloidal potential
 <LI><A HREF = "pair_comb.html">pair_style comb</A> - charge-optimized many-body (COMB) potential
 <LI><A HREF = "pair_coul.html">pair_style coul/cut</A> - cutoff Coulombic potential
 <LI><A HREF = "pair_coul.html">pair_style coul/debye</A> - cutoff Coulombic potential with Debye screening
 <LI><A HREF = "pair_coul.html">pair_style coul/long</A> - long-range Coulombic potential
+<LI><A HREF = "pair_coul.html">pair_style coul/wolf</A> - Coulombics via Wolf potential
 <LI><A HREF = "pair_dipole.html">pair_style dipole/cut</A> - point dipoles with cutoff
 <LI><A HREF = "pair_dpd.html">pair_style dpd</A> - dissipative particle dynamics (DPD)
 <LI><A HREF = "pair_dpd.html">pair_style dpd/tstat</A> - DPD thermostatting
 <LI><A HREF = "pair_dsmc.html">pair_style dsmc</A> - Direct Simulation Monte Carlo (DSMC)
 <LI><A HREF = "pair_eam.html">pair_style eam</A> - embedded atom method (EAM)
 <LI><A HREF = "pair_eam.html">pair_style eam/alloy</A> - alloy EAM
 <LI><A HREF = "pair_eam.html">pair_style eam/fs</A> - Finnis-Sinclair EAM
 <LI><A HREF = "pair_eim.html">pair_style eim</A> - embedded ion method (EIM)
 <LI><A HREF = "pair_gauss.html">pair_style gauss</A> - Gaussian potential
 <LI><A HREF = "pair_gayberne.html">pair_style gayberne</A> - Gay-Berne ellipsoidal potential
 <LI><A HREF = "pair_gran.html">pair_style gran/hertz/history</A> - granular potential with Hertzian interactions
 <LI><A HREF = "pair_gran.html">pair_style gran/hooke</A> - granular potential with history effects
 <LI><A HREF = "pair_gran.html">pair_style gran/hooke/history</A> - granular potential without history effects
 <LI><A HREF = "pair_hbond_dreiding.html">pair_style hbond/dreiding/lj</A> - DREIDING hydrogen bonding LJ potential
 <LI><A HREF = "pair_hbond_dreiding.html">pair_style hbond/dreiding/morse</A> - DREIDING hydrogen bonding Morse potential
 <LI><A HREF = "pair_line_lj.html">pair_style line/lj</A> - LJ potential between line segments
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/charmm</A> - CHARMM potential with cutoff Coulomb
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/charmm/implicit</A> - CHARMM for implicit solvent
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/long</A> - CHARMM with long-range Coulomb
 <LI><A HREF = "pair_class2.html">pair_style lj/class2</A> - COMPASS (class 2) force field with no Coulomb
 <LI><A HREF = "pair_class2.html">pair_style lj/class2/coul/cut</A> - COMPASS with cutoff Coulomb
 <LI><A HREF = "pair_class2.html">pair_style lj/class2/coul/long</A> - COMPASS with long-range Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut</A> - cutoff Lennard-Jones potential with no Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/cut</A> - LJ with cutoff Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/debye</A> - LJ with Debye screening added to Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/long</A> - LJ with long-range Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/long/tip4p</A> - LJ with long-range Coulomb for TIP4P water
 <LI><A HREF = "pair_lj_expand.html">pair_style lj/expand</A> - Lennard-Jones for variable size particles
 <LI><A HREF = "pair_gromacs.html">pair_style lj/gromacs</A> - GROMACS-style Lennard-Jones potential
 <LI><A HREF = "pair_gromacs.html">pair_style lj/gromacs/coul/gromacs</A> - GROMACS-style LJ and Coulombic potential
 <LI><A HREF = "pair_lj_smooth.html">pair_style lj/smooth</A> - smoothed Lennard-Jones potential
 <LI><A HREF = "pair_lj96.html">pair_style lj96/cut</A> - Lennard-Jones 9/6 potential
 <LI><A HREF = "pair_lubricate.html">pair_style lubricate</A> - hydrodynamic lubrication forces
 <LI><A HREF = "pair_lubricate.html">pair_style lubricate/poly</A> - hydrodynamic lubrication forces with polydispersity
 <LI><A HREF = "pair_lubricateU.html">pair_style lubricateU</A> - hydrodynamic lubrication forces for Fast Lubrication Dynamics
 <LI><A HREF = "pair_lubricateU.html">pair_style lubricateU/poly</A> - hydrodynamic lubrication forces for Fast Lubrication with polydispersity
 <LI><A HREF = "pair_meam.html">pair_style meam</A> - modified embedded atom method (MEAM)
 <LI><A HREF = "pair_morse.html">pair_style morse</A> - Morse potential
 <LI><A HREF = "pair_peri.html">pair_style peri/lps</A> - peridynamic LPS potential
 <LI><A HREF = "pair_peri.html">pair_style peri/pmb</A> - peridynamic PMB potential
 <LI><A HREF = "pair_reax.html">pair_style reax</A> - ReaxFF potential
 <LI><A HREF = "pair_airebo.html">pair_style rebo</A> - 2nd generation REBO potential of Brenner
 <LI><A HREF = "pair_resquared.html">pair_style resquared</A> - Everaers RE-Squared ellipsoidal potential
 <LI><A HREF = "pair_soft.html">pair_style soft</A> - Soft (cosine) potential
 <LI><A HREF = "pair_sw.html">pair_style sw</A> - Stillinger-Weber 3-body potential
 <LI><A HREF = "pair_table.html">pair_style table</A> - tabulated pair potential
 <LI><A HREF = "pair_tersoff.html">pair_style tersoff</A> - Tersoff 3-body potential
 <LI><A HREF = "pair_tersoff_zbl.html">pair_style tersoff/zbl</A> - Tersoff/ZBL 3-body potential
 <LI><A HREF = "pair_tri_lj.html">pair_style tri/lj</A> - LJ potential between triangles
 <LI><A HREF = "pair_yukawa.html">pair_style yukawa</A> - Yukawa potential
 <LI><A HREF = "pair_yukawa_colloid.html">pair_style yukawa/colloid</A> - screened Yukawa potential for finite-size particles 
 </UL>
 <P>There are also additional pair styles submitted by users which are
 included in the LAMMPS distribution.  The list of these with links to
 the individual styles are given in the pair section of <A HREF = "Section_commands.html#cmd_5">this
 page</A>.
 </P>
 <P>There are also additional accelerated pair styles included in the
 LAMMPS distribution for faster performance on CPUs and GPUs.  The list
 of these with links to the individual styles are given in the pair
 section of <A HREF = "Section_commands.html#cmd_5">this page</A>.
 </P>
 <HR>
 
 <P><B>Restrictions:</B>
 </P>
 <P>This command must be used before any coefficients are set by the
 <A HREF = "pair_coeff.html">pair_coeff</A>, <A HREF = "read_data.html">read_data</A>, or
 <A HREF = "read_restart.html">read_restart</A> commands.
 </P>
 <P>Some pair styles are part of specific packages.  They are only enabled
 if LAMMPS was built with that package.  See the <A HREF = "Section_start.html#start_3">Making
 LAMMPS</A> section for more info on packages.
 The doc pages for individual pair potentials tell if it is part of a
 package.
 </P>
 <P><B>Related commands:</B>
 </P>
 <P><A HREF = "pair_coeff.html">pair_coeff</A>, <A HREF = "read_data.html">read_data</A>,
 <A HREF = "pair_modify.html">pair_modify</A>, <A HREF = "kspace_style.html">kspace_style</A>,
 <A HREF = "dielectric.html">dielectric</A>, <A HREF = "pair_write.html">pair_write</A>
 </P>
 <P><B>Default:</B>
 </P>
 <PRE>pair_style none 
 </PRE>
 </HTML>
diff --git a/doc/pair_style.txt b/doc/pair_style.txt
index c7489246b..6535e69e2 100644
--- a/doc/pair_style.txt
+++ b/doc/pair_style.txt
@@ -1,187 +1,189 @@
 "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
 
 :link(lws,http://lammps.sandia.gov)
 :link(ld,Manual.html)
 :link(lc,Section_commands.html#comm)
 
 :line
 
 pair_style command :h3
 
 [Syntax:]
 
 pair_style style args :pre
 
 style = one of the styles from the list below
 args = arguments used by a particular style :ul
 
 [Examples:]
 
 pair_style lj/cut 2.5
 pair_style eam/alloy
 pair_style hybrid lj/charmm/coul/long 10.0 eam
 pair_style table linear 1000
 pair_style none :pre
 
 [Description:]
 
 Set the formula(s) LAMMPS uses to compute pairwise interactions.  In
 LAMMPS, pair potentials are defined between pairs of atoms that are
 within a cutoff distance and the set of active interactions typically
 changes over time.  See the "bond_style"_bond_style.html command to
 define potentials between pairs of bonded atoms, which typically
 remain in place for the duration of a simulation.
 
 In LAMMPS, pairwise force fields encompass a variety of interactions,
 some of which include many-body effects, e.g. EAM, Stillinger-Weber,
 Tersoff, REBO potentials.  They are still classified as "pairwise"
 potentials because the set of interacting atoms changes with time
 (unlike molecular bonds) and thus a neighbor list is used to find
 nearby interacting atoms.
 
 Hybrid models where specified pairs of atom types interact via
 different pair potentials can be setup using the {hybrid} pair style.
 
 The coefficients associated with a pair style are typically set for
 each pair of atom types, and are specified by the
 "pair_coeff"_pair_coeff.html command or read from a file by the
 "read_data"_read_data.html or "read_restart"_read_restart.html
 commands.
 
 The "pair_modify"_pair_modify.html command sets options for mixing of
 type I-J interaction coefficients and adding energy offsets or tail
 corrections to Lennard-Jones potentials.  Details on these options as
 they pertain to individual potentials are described on the doc page
 for the potential.  Likewise, info on whether the potential
 information is stored in a "restart file"_write_restart.html is listed
 on the potential doc page.
 
 In the formulas listed for each pair style, {E} is the energy of a
 pairwise interaction between two atoms separated by a distance {r}.
 The force between the atoms is the negative derivative of this
 expression.
 
 If the pair_style command has a cutoff argument, it sets global
 cutoffs for all pairs of atom types.  The distance(s) can be smaller
 or larger than the dimensions of the simulation box.
 
 Typically, the global cutoff value can be overridden for a specific
 pair of atom types by the "pair_coeff"_pair_coeff.html command.  The
 pair style settings (including global cutoffs) can be changed by a
 subsequent pair_style command using the same style.  This will reset
 the cutoffs for all atom type pairs, including those previously set
 explicitly by a "pair_coeff"_pair_coeff.html command.  The exceptions
 to this are that pair_style {table} and {hybrid} settings cannot be
 reset.  A new pair_style command for these styles will wipe out all
 previously specified pair_coeff values.
 
 :line
 
 Here is an alphabetic list of pair styles defined in LAMMPS.  Click on
 the style to display the formula it computes, arguments specified in
 the pair_style command, and coefficients specified by the associated
 "pair_coeff"_pair_coeff.html command:
 
 "pair_style none"_pair_none.html - turn off pairwise interactions
 "pair_style hybrid"_pair_hybrid.html - multiple styles of pairwise interactions
 "pair_style hybrid/overlay"_pair_hybrid.html - multiple styles of superposed pairwise interactions :ul
 
 "pair_style adp"_pair_adp.html - angular dependent potential (ADP) of Mishin
 "pair_style airebo"_pair_airebo.html - AIREBO potential of Stuart
 "pair_style born"_pair_born.html - Born-Mayer-Huggins potential
-"pair_style born/coul/long"_pair_born.html - Born-Mayer-Huggins with long-range Coulomb
+"pair_style born/coul/long"_pair_born.html - Born-Mayer-Huggins with long-range Coulombics
+"pair_style born/coul/wolf"_pair_born.html - Born-Mayer-Huggins with Coulombics via Wolf potential
 "pair_style brownian"_pair_brownian.html - Brownian potential for Fast Lubrication Dynamics
 "pair_style brownian/poly"_pair_brownian.html - Brownian potential for Fast Lubrication Dynamics with polydispersity
 "pair_style buck"_pair_buck.html - Buckingham potential
 "pair_style buck/coul/cut"_pair_buck.html - Buckingham with cutoff Coulomb
 "pair_style buck/coul/long"_pair_buck.html - Buckingham with long-range Coulomb
 "pair_style colloid"_pair_colloid.html - integrated colloidal potential
 "pair_style comb"_pair_comb.html - charge-optimized many-body (COMB) potential
 "pair_style coul/cut"_pair_coul.html - cutoff Coulombic potential
 "pair_style coul/debye"_pair_coul.html - cutoff Coulombic potential with Debye screening
 "pair_style coul/long"_pair_coul.html - long-range Coulombic potential
+"pair_style coul/wolf"_pair_coul.html - Coulombics via Wolf potential
 "pair_style dipole/cut"_pair_dipole.html - point dipoles with cutoff
 "pair_style dpd"_pair_dpd.html - dissipative particle dynamics (DPD)
 "pair_style dpd/tstat"_pair_dpd.html - DPD thermostatting
 "pair_style dsmc"_pair_dsmc.html - Direct Simulation Monte Carlo (DSMC)
 "pair_style eam"_pair_eam.html - embedded atom method (EAM)
 "pair_style eam/alloy"_pair_eam.html - alloy EAM
 "pair_style eam/fs"_pair_eam.html - Finnis-Sinclair EAM
 "pair_style eim"_pair_eim.html - embedded ion method (EIM)
 "pair_style gauss"_pair_gauss.html - Gaussian potential
 "pair_style gayberne"_pair_gayberne.html - Gay-Berne ellipsoidal potential
 "pair_style gran/hertz/history"_pair_gran.html - granular potential with Hertzian interactions
 "pair_style gran/hooke"_pair_gran.html - granular potential with history effects
 "pair_style gran/hooke/history"_pair_gran.html - granular potential without history effects
 "pair_style hbond/dreiding/lj"_pair_hbond_dreiding.html - DREIDING hydrogen bonding LJ potential
 "pair_style hbond/dreiding/morse"_pair_hbond_dreiding.html - DREIDING hydrogen bonding Morse potential
 "pair_style line/lj"_pair_line_lj.html - LJ potential between line segments
 "pair_style lj/charmm/coul/charmm"_pair_charmm.html - CHARMM potential with cutoff Coulomb
 "pair_style lj/charmm/coul/charmm/implicit"_pair_charmm.html - CHARMM for implicit solvent
 "pair_style lj/charmm/coul/long"_pair_charmm.html - CHARMM with long-range Coulomb
 "pair_style lj/class2"_pair_class2.html - COMPASS (class 2) force field with no Coulomb
 "pair_style lj/class2/coul/cut"_pair_class2.html - COMPASS with cutoff Coulomb
 "pair_style lj/class2/coul/long"_pair_class2.html - COMPASS with long-range Coulomb
 "pair_style lj/cut"_pair_lj.html - cutoff Lennard-Jones potential with no Coulomb
 "pair_style lj/cut/coul/cut"_pair_lj.html - LJ with cutoff Coulomb
 "pair_style lj/cut/coul/debye"_pair_lj.html - LJ with Debye screening added to Coulomb
 "pair_style lj/cut/coul/long"_pair_lj.html - LJ with long-range Coulomb
 "pair_style lj/cut/coul/long/tip4p"_pair_lj.html - LJ with long-range Coulomb for TIP4P water
 "pair_style lj/expand"_pair_lj_expand.html - Lennard-Jones for variable size particles
 "pair_style lj/gromacs"_pair_gromacs.html - GROMACS-style Lennard-Jones potential
 "pair_style lj/gromacs/coul/gromacs"_pair_gromacs.html - GROMACS-style LJ and Coulombic potential
 "pair_style lj/smooth"_pair_lj_smooth.html - smoothed Lennard-Jones potential
 "pair_style lj96/cut"_pair_lj96.html - Lennard-Jones 9/6 potential
 "pair_style lubricate"_pair_lubricate.html - hydrodynamic lubrication forces
 "pair_style lubricate/poly"_pair_lubricate.html - hydrodynamic lubrication forces with polydispersity
 "pair_style lubricateU"_pair_lubricateU.html - hydrodynamic lubrication forces for Fast Lubrication Dynamics
 "pair_style lubricateU/poly"_pair_lubricateU.html - hydrodynamic lubrication forces for Fast Lubrication with polydispersity
 "pair_style meam"_pair_meam.html - modified embedded atom method (MEAM)
 "pair_style morse"_pair_morse.html - Morse potential
 "pair_style peri/lps"_pair_peri.html - peridynamic LPS potential
 "pair_style peri/pmb"_pair_peri.html - peridynamic PMB potential
 "pair_style reax"_pair_reax.html - ReaxFF potential
 "pair_style rebo"_pair_airebo.html - 2nd generation REBO potential of Brenner
 "pair_style resquared"_pair_resquared.html - Everaers RE-Squared ellipsoidal potential
 "pair_style soft"_pair_soft.html - Soft (cosine) potential
 "pair_style sw"_pair_sw.html - Stillinger-Weber 3-body potential
 "pair_style table"_pair_table.html - tabulated pair potential
 "pair_style tersoff"_pair_tersoff.html - Tersoff 3-body potential
 "pair_style tersoff/zbl"_pair_tersoff_zbl.html - Tersoff/ZBL 3-body potential
 "pair_style tri/lj"_pair_tri_lj.html - LJ potential between triangles
 "pair_style yukawa"_pair_yukawa.html - Yukawa potential
 "pair_style yukawa/colloid"_pair_yukawa_colloid.html - screened Yukawa potential for finite-size particles :ul
 
 There are also additional pair styles submitted by users which are
 included in the LAMMPS distribution.  The list of these with links to
 the individual styles are given in the pair section of "this
 page"_Section_commands.html#cmd_5.
 
 There are also additional accelerated pair styles included in the
 LAMMPS distribution for faster performance on CPUs and GPUs.  The list
 of these with links to the individual styles are given in the pair
 section of "this page"_Section_commands.html#cmd_5.
 
 :line
 
 [Restrictions:]
 
 This command must be used before any coefficients are set by the
 "pair_coeff"_pair_coeff.html, "read_data"_read_data.html, or
 "read_restart"_read_restart.html commands.
 
 Some pair styles are part of specific packages.  They are only enabled
 if LAMMPS was built with that package.  See the "Making
 LAMMPS"_Section_start.html#start_3 section for more info on packages.
 The doc pages for individual pair potentials tell if it is part of a
 package.
 
 [Related commands:]
 
 "pair_coeff"_pair_coeff.html, "read_data"_read_data.html,
 "pair_modify"_pair_modify.html, "kspace_style"_kspace_style.html,
 "dielectric"_dielectric.html, "pair_write"_pair_write.html
 
 [Default:]
 
 pair_style none :pre