diff --git a/src/DIPOLE/pair_lj_long_dipole_long.cpp b/src/DIPOLE/pair_lj_long_dipole_long.cpp index cbac0f276..85eaf5e9a 100755 --- a/src/DIPOLE/pair_lj_long_dipole_long.cpp +++ b/src/DIPOLE/pair_lj_long_dipole_long.cpp @@ -1,687 +1,687 @@ -/* ---------------------------------------------------------------------- - LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator - http://lammps.sandia.gov, Sandia National Laboratories - Steve Plimpton, sjplimp@sandia.gov - - Copyright (2003) Sandia Corporation. Under the terms of Contract - DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains - certain rights in this software. This software is distributed under - the GNU General Public License. - - See the README file in the top-level LAMMPS directory. -------------------------------------------------------------------------- - -/* ---------------------------------------------------------------------- - Contributing author: Pieter J. in 't Veld and Stan Moore (Sandia) -------------------------------------------------------------------------- */ - -#include "math.h" -#include "stdio.h" -#include "stdlib.h" -#include "string.h" -#include "math_const.h" -#include "math_vector.h" -#include "pair_lj_long_dipole_long.h" -#include "atom.h" -#include "comm.h" -#include "neighbor.h" -#include "neigh_list.h" -#include "neigh_request.h" -#include "force.h" -#include "kspace.h" -#include "update.h" -#include "integrate.h" -#include "respa.h" -#include "memory.h" -#include "error.h" - -using namespace LAMMPS_NS; -using namespace MathConst; - -#define EWALD_F 1.12837917 -#define EWALD_P 0.3275911 -#define A1 0.254829592 -#define A2 -0.284496736 -#define A3 1.421413741 -#define A4 -1.453152027 -#define A5 1.061405429 - -// ---------------------------------------------------------------------- - -PairLJLongDipoleLong::PairLJLongDipoleLong(LAMMPS *lmp) : Pair(lmp) -{ - dispersionflag = ewaldflag = dipoleflag = 1; - respa_enable = 0; - single_enable = 0; -} - -// ---------------------------------------------------------------------- -// global settings -// ---------------------------------------------------------------------- - -#define PAIR_ILLEGAL "Illegal pair_style lj/long/dipole/long command" -#define PAIR_CUTOFF "Only one cut-off allowed when requesting all long" -#define PAIR_MISSING "Cut-offs missing in pair_style lj/long/dipole/long" -#define PAIR_COUL_CUT "Coulombic cut not supported in pair_style lj/long/dipole/long" -#define PAIR_LARGEST "Using largest cut-off for lj/long/dipole/long long long" -#define PAIR_MIX "Geometric mixing assumed for 1/r^6 coefficients" - -void PairLJLongDipoleLong::options(char **arg, int order) -{ - const char *option[] = {"long", "cut", "off", NULL}; - int i; - - if (!*arg) error->all(FLERR,PAIR_ILLEGAL); - for (i=0; option[i]&&strcmp(arg[0], option[i]); ++i); - switch (i) { - default: error->all(FLERR,PAIR_ILLEGAL); - case 0: ewald_order |= 1<<order; break; // set kspace r^-order - case 2: ewald_off |= 1<<order; // turn r^-order off - case 1: break; - } -} - -void PairLJLongDipoleLong::settings(int narg, char **arg) -{ - if (narg != 3 && narg != 4) error->all(FLERR,"Illegal pair_style command"); - - ewald_off = 0; - ewald_order = 0; - options(arg, 6); - options(++arg, 3); - options(arg, 1); - if (!comm->me && ewald_order&(1<<6)) - error->warning(FLERR,PAIR_MIX); - if (!comm->me && ewald_order==((1<<3)|(1<<6))) - error->warning(FLERR,PAIR_LARGEST); - if (!*(++arg)) - error->all(FLERR,PAIR_MISSING); - if (!((ewald_order^ewald_off)&(1<<3))) - error->all(FLERR,PAIR_COUL_CUT); - cut_lj_global = force->numeric(FLERR,*(arg++)); - if (narg == 4 && (ewald_order==74)) - error->all(FLERR,PAIR_CUTOFF); - if (narg == 4) cut_coul = force->numeric(FLERR,*(arg++)); - else cut_coul = cut_lj_global; - - if (allocated) { // reset explicit cuts - int i,j; - for (i = 1; i <= atom->ntypes; i++) - for (j = i+1; j <= atom->ntypes; j++) - if (setflag[i][j]) cut_lj[i][j] = cut_lj_global; - } -} - -// ---------------------------------------------------------------------- -// free all arrays -// ---------------------------------------------------------------------- - -PairLJLongDipoleLong::~PairLJLongDipoleLong() -{ - if (allocated) { - memory->destroy(setflag); - memory->destroy(cutsq); - - memory->destroy(cut_lj_read); - memory->destroy(cut_lj); - memory->destroy(cut_ljsq); - memory->destroy(epsilon_read); - memory->destroy(epsilon); - memory->destroy(sigma_read); - memory->destroy(sigma); - memory->destroy(lj1); - memory->destroy(lj2); - memory->destroy(lj3); - memory->destroy(lj4); - memory->destroy(offset); - } - //if (ftable) free_tables(); -} - -/* ---------------------------------------------------------------------- - allocate all arrays -------------------------------------------------------------------------- */ - -void PairLJLongDipoleLong::allocate() -{ - allocated = 1; - int n = atom->ntypes; - - memory->create(setflag,n+1,n+1,"pair:setflag"); - for (int i = 1; i <= n; i++) - for (int j = i; j <= n; j++) - setflag[i][j] = 0; - - memory->create(cutsq,n+1,n+1,"pair:cutsq"); - - memory->create(cut_lj_read,n+1,n+1,"pair:cut_lj_read"); - memory->create(cut_lj,n+1,n+1,"pair:cut_lj"); - memory->create(cut_ljsq,n+1,n+1,"pair:cut_ljsq"); - memory->create(epsilon_read,n+1,n+1,"pair:epsilon_read"); - memory->create(epsilon,n+1,n+1,"pair:epsilon"); - memory->create(sigma_read,n+1,n+1,"pair:sigma_read"); - memory->create(sigma,n+1,n+1,"pair:sigma"); - memory->create(lj1,n+1,n+1,"pair:lj1"); - memory->create(lj2,n+1,n+1,"pair:lj2"); - memory->create(lj3,n+1,n+1,"pair:lj3"); - memory->create(lj4,n+1,n+1,"pair:lj4"); - memory->create(offset,n+1,n+1,"pair:offset"); -} - -/* ---------------------------------------------------------------------- - extract protected data from object -------------------------------------------------------------------------- */ - -void *PairLJLongDipoleLong::extract(const char *id, int &dim) -{ - const char *ids[] = { - "B", "sigma", "epsilon", "ewald_order", "ewald_cut", "ewald_mix", - "cut_coul", "cut_vdwl", NULL}; - void *ptrs[] = { - lj4, sigma, epsilon, &ewald_order, &cut_coul, &mix_flag, &cut_coul, - &cut_lj_global, NULL}; - int i; - - for (i=0; ids[i]&&strcmp(ids[i], id); ++i); - if (i <= 2) dim = 2; - else dim = 0; - return ptrs[i]; -} - -/* ---------------------------------------------------------------------- - set coeffs for one or more type pairs -------------------------------------------------------------------------- */ - -void PairLJLongDipoleLong::coeff(int narg, char **arg) -{ - if (narg < 4 || narg > 5) error->all(FLERR,"Incorrect args for pair coefficients"); - if (!allocated) allocate(); - - int ilo,ihi,jlo,jhi; - force->bounds(arg[0],atom->ntypes,ilo,ihi); - force->bounds(arg[1],atom->ntypes,jlo,jhi); - - double epsilon_one = force->numeric(FLERR,arg[2]); - double sigma_one = force->numeric(FLERR,arg[3]); - - double cut_lj_one = cut_lj_global; - if (narg == 5) cut_lj_one = force->numeric(FLERR,arg[4]); - - int count = 0; - for (int i = ilo; i <= ihi; i++) { - for (int j = MAX(jlo,i); j <= jhi; j++) { - epsilon_read[i][j] = epsilon_one; - sigma_read[i][j] = sigma_one; - cut_lj_read[i][j] = cut_lj_one; - setflag[i][j] = 1; - count++; - } - } - - if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients"); -} - -/* ---------------------------------------------------------------------- - init specific to this pair style -------------------------------------------------------------------------- */ - -void PairLJLongDipoleLong::init_style() -{ - const char *style3[] = {"ewald/disp", NULL}; - const char *style6[] = {"ewald/disp", NULL}; - int i; - - if (strcmp(update->unit_style,"electron") == 0) - error->all(FLERR,"Cannot (yet) use 'electron' units with dipoles"); - - // require an atom style with charge defined - - if (!atom->q_flag && (ewald_order&(1<<1))) - error->all(FLERR, - "Invoking coulombic in pair style lj/long/dipole/long requires atom attribute q"); - if (!atom->mu && (ewald_order&(1<<3))) - error->all(FLERR,"Pair lj/long/dipole/long requires atom attributes mu, torque"); - if (!atom->torque && (ewald_order&(1<<3))) - error->all(FLERR,"Pair lj/long/dipole/long requires atom attributes mu, torque"); - - neighbor->request(this); - - cut_coulsq = cut_coul * cut_coul; - - // ensure use of KSpace long-range solver, set g_ewald - - if (ewald_order&(1<<3)) { // r^-1 kspace - if (force->kspace == NULL) - error->all(FLERR,"Pair style is incompatible with KSpace style"); - for (i=0; style3[i]&&strcmp(force->kspace_style, style3[i]); ++i); - if (!style3[i]) - error->all(FLERR,"Pair style is incompatible with KSpace style"); - } - if (ewald_order&(1<<6)) { // r^-6 kspace - if (force->kspace == NULL) - error->all(FLERR,"Pair style is incompatible with KSpace style"); - for (i=0; style6[i]&&strcmp(force->kspace_style, style6[i]); ++i); - if (!style6[i]) - error->all(FLERR,"Pair style is incompatible with KSpace style"); - } - if (force->kspace) g_ewald = force->kspace->g_ewald; -} - -/* ---------------------------------------------------------------------- - neighbor callback to inform pair style of neighbor list to use - regular or rRESPA -------------------------------------------------------------------------- */ - -void PairLJLongDipoleLong::init_list(int id, NeighList *ptr) -{ - if (id == 0) list = ptr; - else if (id == 1) listinner = ptr; - else if (id == 2) listmiddle = ptr; - else if (id == 3) listouter = ptr; - - if (id) - error->all(FLERR,"Pair style lj/long/dipole/long does not currently support respa"); -} - -/* ---------------------------------------------------------------------- - init for one type pair i,j and corresponding j,i -------------------------------------------------------------------------- */ - -double PairLJLongDipoleLong::init_one(int i, int j) -{ - if ((ewald_order&(1<<6))||(setflag[i][j] == 0)) { - epsilon[i][j] = mix_energy(epsilon_read[i][i],epsilon_read[j][j], - sigma_read[i][i],sigma_read[j][j]); - sigma[i][j] = mix_distance(sigma_read[i][i],sigma_read[j][j]); - if (ewald_order&(1<<6)) - cut_lj[i][j] = cut_lj_global; - else - cut_lj[i][j] = mix_distance(cut_lj_read[i][i],cut_lj_read[j][j]); - } - else { - sigma[i][j] = sigma_read[i][j]; - epsilon[i][j] = epsilon_read[i][j]; - cut_lj[i][j] = cut_lj_read[i][j]; - } - - double cut = MAX(cut_lj[i][j], cut_coul); - cutsq[i][j] = cut*cut; - cut_ljsq[i][j] = cut_lj[i][j] * cut_lj[i][j]; - - lj1[i][j] = 48.0 * epsilon[i][j] * pow(sigma[i][j],12.0); - lj2[i][j] = 24.0 * epsilon[i][j] * pow(sigma[i][j],6.0); - lj3[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j],12.0); - lj4[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j],6.0); - - // check interior rRESPA cutoff - - //if (cut_respa && MIN(cut_lj[i][j],cut_coul) < cut_respa[3]) - //error->all(FLERR,"Pair cutoff < Respa interior cutoff"); - - if (offset_flag) { - double ratio = sigma[i][j] / cut_lj[i][j]; - offset[i][j] = 4.0 * epsilon[i][j] * (pow(ratio,12.0) - pow(ratio,6.0)); - } else offset[i][j] = 0.0; - - cutsq[j][i] = cutsq[i][j]; - cut_ljsq[j][i] = cut_ljsq[i][j]; - lj1[j][i] = lj1[i][j]; - lj2[j][i] = lj2[i][j]; - lj3[j][i] = lj3[i][j]; - lj4[j][i] = lj4[i][j]; - offset[j][i] = offset[i][j]; - - return cut; -} - -/* ---------------------------------------------------------------------- - proc 0 writes to restart file -------------------------------------------------------------------------- */ - -void PairLJLongDipoleLong::write_restart(FILE *fp) -{ - write_restart_settings(fp); - - int i,j; - for (i = 1; i <= atom->ntypes; i++) - for (j = i; j <= atom->ntypes; j++) { - fwrite(&setflag[i][j],sizeof(int),1,fp); - if (setflag[i][j]) { - fwrite(&epsilon_read[i][j],sizeof(double),1,fp); - fwrite(&sigma_read[i][j],sizeof(double),1,fp); - fwrite(&cut_lj_read[i][j],sizeof(double),1,fp); - } - } -} - -/* ---------------------------------------------------------------------- - proc 0 reads from restart file, bcasts -------------------------------------------------------------------------- */ - -void PairLJLongDipoleLong::read_restart(FILE *fp) -{ - read_restart_settings(fp); - - allocate(); - - int i,j; - int me = comm->me; - for (i = 1; i <= atom->ntypes; i++) - for (j = i; j <= atom->ntypes; j++) { - if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp); - MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world); - if (setflag[i][j]) { - if (me == 0) { - fread(&epsilon_read[i][j],sizeof(double),1,fp); - fread(&sigma_read[i][j],sizeof(double),1,fp); - fread(&cut_lj_read[i][j],sizeof(double),1,fp); - } - MPI_Bcast(&epsilon_read[i][j],1,MPI_DOUBLE,0,world); - MPI_Bcast(&sigma_read[i][j],1,MPI_DOUBLE,0,world); - MPI_Bcast(&cut_lj_read[i][j],1,MPI_DOUBLE,0,world); - } - } -} - -/* ---------------------------------------------------------------------- - proc 0 writes to restart file -------------------------------------------------------------------------- */ - -void PairLJLongDipoleLong::write_restart_settings(FILE *fp) -{ - fwrite(&cut_lj_global,sizeof(double),1,fp); - fwrite(&cut_coul,sizeof(double),1,fp); - fwrite(&offset_flag,sizeof(int),1,fp); - fwrite(&mix_flag,sizeof(int),1,fp); - fwrite(&ewald_order,sizeof(int),1,fp); -} - -/* ---------------------------------------------------------------------- - proc 0 reads from restart file, bcasts -------------------------------------------------------------------------- */ - -void PairLJLongDipoleLong::read_restart_settings(FILE *fp) -{ - if (comm->me == 0) { - fread(&cut_lj_global,sizeof(double),1,fp); - fread(&cut_coul,sizeof(double),1,fp); - fread(&offset_flag,sizeof(int),1,fp); - fread(&mix_flag,sizeof(int),1,fp); - fread(&ewald_order,sizeof(int),1,fp); - } - MPI_Bcast(&cut_lj_global,1,MPI_DOUBLE,0,world); - MPI_Bcast(&cut_coul,1,MPI_DOUBLE,0,world); - MPI_Bcast(&offset_flag,1,MPI_INT,0,world); - MPI_Bcast(&mix_flag,1,MPI_INT,0,world); - MPI_Bcast(&ewald_order,1,MPI_INT,0,world); -} - -/* ---------------------------------------------------------------------- - compute pair interactions -------------------------------------------------------------------------- */ - -void PairLJLongDipoleLong::compute(int eflag, int vflag) -{ - double evdwl,ecoul,fpair; - evdwl = ecoul = 0.0; - - if (eflag || vflag) ev_setup(eflag,vflag); - else evflag = vflag_fdotr = 0; - - double **x = atom->x, *x0 = x[0]; - double **mu = atom->mu, *mu0 = mu[0], *imu, *jmu; - double **tq = atom->torque, *tq0 = tq[0], *tqi; - double **f = atom->f, *f0 = f[0], *fi = f0, fx, fy, fz; - double *q = atom->q, qi = 0, qj; - int *type = atom->type; - int nlocal = atom->nlocal; - double *special_coul = force->special_coul; - double *special_lj = force->special_lj; - int newton_pair = force->newton_pair; - double qqrd2e = force->qqrd2e; - - int i, j; - int order1 = ewald_order&(1<<1), order3 = ewald_order&(1<<3), - order6 = ewald_order&(1<<6); - int *ineigh, *ineighn, *jneigh, *jneighn, typei, typej, ni; - double *cutsqi, *cut_ljsqi, *lj1i, *lj2i, *lj3i, *lj4i, *offseti; - double rsq, r2inv, force_coul, force_lj; - double g2 = g_ewald*g_ewald, g6 = g2*g2*g2, g8 = g6*g2; - double B0, B1, B2, B3, G0, G1, G2, mudi, mudj, muij; - vector force_d = VECTOR_NULL, ti = VECTOR_NULL, tj = VECTOR_NULL; - vector mui, muj, xi, d; - - double C1 = 2.0 * g_ewald / MY_PIS; - double C2 = 2.0 * g2 * C1; - double C3 = 2.0 * g2 * C2; - - ineighn = (ineigh = list->ilist)+list->inum; - - for (; ineigh<ineighn; ++ineigh) { // loop over all neighs - i = *ineigh; fi = f0+3*i; tqi = tq0+3*i; - qi = q[i]; // initialize constants - offseti = offset[typei = type[i]]; - lj1i = lj1[typei]; lj2i = lj2[typei]; lj3i = lj3[typei]; lj4i = lj4[typei]; - cutsqi = cutsq[typei]; cut_ljsqi = cut_ljsq[typei]; - memcpy(xi, x0+(i+(i<<1)), sizeof(vector)); - memcpy(mui, imu = mu0+(i<<2), sizeof(vector)); - - jneighn = (jneigh = list->firstneigh[i])+list->numneigh[i]; - - for (; jneigh<jneighn; ++jneigh) { // loop over neighbors - j = *jneigh; - ni = sbmask(j); // special index - j &= NEIGHMASK; - - { register double *xj = x0+(j+(j<<1)); - d[0] = xi[0] - xj[0]; // pair vector - d[1] = xi[1] - xj[1]; - d[2] = xi[2] - xj[2]; } - - if ((rsq = vec_dot(d, d)) >= cutsqi[typej = type[j]]) continue; - r2inv = 1.0/rsq; - - if (order3 && (rsq < cut_coulsq)) { // dipole - memcpy(muj, jmu = mu0+(j<<2), sizeof(vector)); - { // series real space - register double r = sqrt(rsq); - register double x = g_ewald*r; - register double f = exp(-x*x)*qqrd2e; - - B0 = 1.0/(1.0+EWALD_P*x); // eqn 2.8 - B0 *= ((((A5*B0+A4)*B0+A3)*B0+A2)*B0+A1)*f/r; - B1 = (B0 + C1 * f) * r2inv; - B2 = (3.0*B1 + C2 * f) * r2inv; - B3 = (5.0*B2 + C3 * f) * r2inv; - - mudi = mui[0]*d[0]+mui[1]*d[1]+mui[2]*d[2]; - mudj = muj[0]*d[0]+muj[1]*d[1]+muj[2]*d[2]; - muij = mui[0]*muj[0]+mui[1]*muj[1]+mui[2]*muj[2]; - G0 = qi*(qj = q[j]); // eqn 2.10 - G1 = qi*mudj-qj*mudi+muij; - G2 = -mudi*mudj; - force_coul = G0*B1+G1*B2+G2*B3; - - mudi *= B2; mudj *= B2; // torque contribs - ti[0] = mudj*d[0]+(qj*d[0]-muj[0])*B1; - ti[1] = mudj*d[1]+(qj*d[1]-muj[1])*B1; - ti[2] = mudj*d[2]+(qj*d[2]-muj[2])*B1; - - if (newton_pair || j < nlocal) { - tj[0] = mudi*d[0]-(qi*d[0]+mui[0])*B1; - tj[1] = mudi*d[1]-(qi*d[1]+mui[1])*B1; - tj[2] = mudi*d[2]-(qi*d[2]+mui[2])*B1; - } - - if (eflag) ecoul = G0*B0+G1*B1+G2*B2; - if (ni > 0) { // adj part, eqn 2.13 - force_coul -= (f = qqrd2e*(1.0-special_coul[ni])/r)*( - (3.0*G1+15.0*G2*r2inv)*r2inv+G0)*r2inv; - if (eflag) - ecoul -= f*((G1+3.0*G2*r2inv)*r2inv+G0); - B1 -= f*r2inv; - } - B0 = mudj+qj*B1; B3 = -qi*B1+mudi; // position independent - if (ni > 0) B0 -= f*3.0*mudj*r2inv*r2inv/B2; - if (ni > 0) B3 -= f*3.0*mudi*r2inv*r2inv/B2; - force_d[0] = B0*mui[0]+B3*muj[0]; // force contribs - force_d[1] = B0*mui[1]+B3*muj[1]; - force_d[2] = B0*mui[2]+B3*muj[2]; - if (ni > 0) { - ti[0] -= f*(3.0*mudj*r2inv*r2inv*d[0]/B2+(qj*r2inv*d[0]-muj[0]*r2inv)); - ti[1] -= f*(3.0*mudj*r2inv*r2inv*d[1]/B2+(qj*r2inv*d[1]-muj[1]*r2inv)); - ti[2] -= f*(3.0*mudj*r2inv*r2inv*d[2]/B2+(qj*r2inv*d[2]-muj[2]*r2inv)); - if (newton_pair || j < nlocal) { - tj[0] -= f*(3.0*mudi*r2inv*r2inv*d[0]/B2-(qi*r2inv*d[0]+mui[0]*r2inv)); - tj[1] -= f*(3.0*mudi*r2inv*r2inv*d[1]/B2-(qi*r2inv*d[1]+mui[1]*r2inv)); - tj[2] -= f*(3.0*mudi*r2inv*r2inv*d[2]/B2-(qi*r2inv*d[2]+mui[2]*r2inv)); - } - } - } // table real space - } else { - force_coul = ecoul = 0.0; - memset(force_d, 0, 3*sizeof(double)); - } - - if (rsq < cut_ljsqi[typej]) { // lj - if (order6) { // long-range lj - register double rn = r2inv*r2inv*r2inv; - register double x2 = g2*rsq, a2 = 1.0/x2; - x2 = a2*exp(-x2)*lj4i[typej]; - if (ni < 0) { - force_lj = - (rn*=rn)*lj1i[typej]-g8*(((6.0*a2+6.0)*a2+3.0)*a2+1.0)*x2*rsq; - if (eflag) evdwl = rn*lj3i[typej]-g6*((a2+1.0)*a2+0.5)*x2; - } - else { // special case - register double f = special_lj[ni], t = rn*(1.0-f); - force_lj = f*(rn *= rn)*lj1i[typej]- - g8*(((6.0*a2+6.0)*a2+3.0)*a2+1.0)*x2*rsq+t*lj2i[typej]; - if (eflag) evdwl = - f*rn*lj3i[typej]-g6*((a2+1.0)*a2+0.5)*x2+t*lj4i[typej]; - } - } - else { // cut lj - register double rn = r2inv*r2inv*r2inv; - if (ni < 0) { - force_lj = rn*(rn*lj1i[typej]-lj2i[typej]); - if (eflag) evdwl = rn*(rn*lj3i[typej]-lj4i[typej])-offseti[typej]; - } - else { // special case - register double f = special_lj[ni]; - force_lj = f*rn*(rn*lj1i[typej]-lj2i[typej]); - if (eflag) evdwl = f*( - rn*(rn*lj3i[typej]-lj4i[typej])-offseti[typej]); - } - } - force_lj *= r2inv; - } - else force_lj = evdwl = 0.0; - - fpair = force_coul+force_lj; // force - if (newton_pair || j < nlocal) { - register double *fj = f0+(j+(j<<1)); - fi[0] += fx = d[0]*fpair+force_d[0]; fj[0] -= fx; - fi[1] += fy = d[1]*fpair+force_d[1]; fj[1] -= fy; - fi[2] += fz = d[2]*fpair+force_d[2]; fj[2] -= fz; - tqi[0] += mui[1]*ti[2]-mui[2]*ti[1]; // torque - tqi[1] += mui[2]*ti[0]-mui[0]*ti[2]; - tqi[2] += mui[0]*ti[1]-mui[1]*ti[0]; - register double *tqj = tq0+(j+(j<<1)); - tqj[0] += muj[1]*tj[2]-muj[2]*tj[1]; - tqj[1] += muj[2]*tj[0]-muj[0]*tj[2]; - tqj[2] += muj[0]*tj[1]-muj[1]*tj[0]; - } - else { - fi[0] += fx = d[0]*fpair+force_d[0]; // force - fi[1] += fy = d[1]*fpair+force_d[1]; - fi[2] += fz = d[2]*fpair+force_d[2]; - tqi[0] += mui[1]*ti[2]-mui[2]*ti[1]; // torque - tqi[1] += mui[2]*ti[0]-mui[0]*ti[2]; - tqi[2] += mui[0]*ti[1]-mui[1]*ti[0]; - } - - if (evflag) ev_tally_xyz(i,j,nlocal,newton_pair, - evdwl,ecoul,fx,fy,fz,d[0],d[1],d[2]); - } - } - - if (vflag_fdotr) virial_fdotr_compute(); -} - -/* ---------------------------------------------------------------------- */ - -/* -double PairLJLongDipoleLong::single(int i, int j, int itype, int jtype, - double rsq, double factor_coul, double factor_lj, - double &fforce) -{ - double r6inv, force_coul, force_lj; - double g2 = g_ewald*g_ewald, g6 = g2*g2*g2, g8 = g6*g2, *q = atom->q; - - double eng = 0.0; - double r2inv = 1.0/rsq; - - if ((ewald_order&(1<<3)) && (rsq < cut_coulsq)) { // coulombic - double *mui = atom->mu[i], *muj = atom->mu[j]; - double *xi = atom->x[i], *xj = atom->x[j]; - double qi = q[i], qj = q[j]; - double G0, G1, G2, B0, B1, B2, B3, mudi, mudj, muij; - vector d = {xi[0]-xj[0], xi[1]-xj[1], xi[2]-xj[2]}; - { // series real space - register double r = sqrt(rsq); - register double x = g_ewald*r; - register double f = exp(-x*x)*qqrd2e; - - B0 = 1.0/(1.0+EWALD_P*x); // eqn 2.8 - B0 *= ((((A5*B0+A4)*B0+A3)*B0+A2)*B0+A1)*f/r; - B1 = (B0 + C1 * f) * r2inv; - B2 = (3.0*B1 + C2 * f) * r2inv; - B3 = (5.0*B2 + C3 * f) * r2inv; - - mudi = mui[0]*d[0]+mui[1]*d[1]+mui[2]*d[2]; - mudj = muj[0]*d[0]+muj[1]*d[1]+muj[2]*d[2]; - muij = mui[0]*muj[0]+mui[1]*muj[1]+mui[2]*muj[2]; - G0 = qi*(qj = q[j]); // eqn 2.10 - G1 = qi*mudj-qj*mudi+muij; - G2 = -mudi*mudj; - force_coul = G0*B1+G1*B2+G2*B3; - - eng += G0*B0+G1*B1+G2*B2; - if (factor_coul < 1.0) { // adj part, eqn 2.13 - force_coul -= (f = force->qqrd2e*(1.0-factor_coul)/r)*( - (3.0*G1+6.0*muij+15.0*G2*r2inv)*r2inv+G0); - eng -= f*((G1+3.0*G2*r2inv)*r2inv+G0); - B1 -= f*r2inv; - } - B0 = mudj*B2-qj*B1; B3 = qi*B1+mudi*B2; // position independent - //force_d[0] = B0*mui[0]+B3*muj[0]; // force contributions - //force_d[1] = B0*mui[1]+B3*muj[1]; - //force_d[2] = B0*mui[2]+B3*muj[2]; - } // table real space - } - else force_coul = 0.0; - - if (rsq < cut_ljsq[itype][jtype]) { // lennard-jones - r6inv = r2inv*r2inv*r2inv; - if (ewald_order&0x40) { // long-range - register double x2 = g2*rsq, a2 = 1.0/x2, t = r6inv*(1.0-factor_lj); - x2 = a2*exp(-x2)*lj4[itype][jtype]; - force_lj = factor_lj*(r6inv *= r6inv)*lj1[itype][jtype]- - g8*(((6.0*a2+6.0)*a2+3.0)*a2+a2)*x2*rsq+t*lj2[itype][jtype]; - eng += factor_lj*r6inv*lj3[itype][jtype]- - g6*((a2+1.0)*a2+0.5)*x2+t*lj4[itype][jtype]; - } - else { // cut - force_lj = factor_lj*r6inv*(lj1[itype][jtype]*r6inv-lj2[itype][jtype]); - eng += factor_lj*(r6inv*(r6inv*lj3[itype][jtype]- - lj4[itype][jtype])-offset[itype][jtype]); - } - } - else force_lj = 0.0; - - fforce = (force_coul+force_lj)*r2inv; - return eng; -} -*/ - +/* ---------------------------------------------------------------------- + LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator + http://lammps.sandia.gov, Sandia National Laboratories + Steve Plimpton, sjplimp@sandia.gov + + Copyright (2003) Sandia Corporation. Under the terms of Contract + DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains + certain rights in this software. This software is distributed under + the GNU General Public License. + + See the README file in the top-level LAMMPS directory. +------------------------------------------------------------------------- + +/* ---------------------------------------------------------------------- + Contributing author: Pieter J. in 't Veld and Stan Moore (Sandia) +------------------------------------------------------------------------- */ + +#include "math.h" +#include "stdio.h" +#include "stdlib.h" +#include "string.h" +#include "math_const.h" +#include "math_vector.h" +#include "pair_lj_long_dipole_long.h" +#include "atom.h" +#include "comm.h" +#include "neighbor.h" +#include "neigh_list.h" +#include "neigh_request.h" +#include "force.h" +#include "kspace.h" +#include "update.h" +#include "integrate.h" +#include "respa.h" +#include "memory.h" +#include "error.h" + +using namespace LAMMPS_NS; +using namespace MathConst; + +#define EWALD_F 1.12837917 +#define EWALD_P 0.3275911 +#define A1 0.254829592 +#define A2 -0.284496736 +#define A3 1.421413741 +#define A4 -1.453152027 +#define A5 1.061405429 + +// ---------------------------------------------------------------------- + +PairLJLongDipoleLong::PairLJLongDipoleLong(LAMMPS *lmp) : Pair(lmp) +{ + dispersionflag = ewaldflag = dipoleflag = 1; + respa_enable = 0; + single_enable = 0; +} + +// ---------------------------------------------------------------------- +// global settings +// ---------------------------------------------------------------------- + +#define PAIR_ILLEGAL "Illegal pair_style lj/long/dipole/long command" +#define PAIR_CUTOFF "Only one cut-off allowed when requesting all long" +#define PAIR_MISSING "Cut-offs missing in pair_style lj/long/dipole/long" +#define PAIR_COUL_CUT "Coulombic cut not supported in pair_style lj/long/dipole/long" +#define PAIR_LARGEST "Using largest cut-off for lj/long/dipole/long long long" +#define PAIR_MIX "Geometric mixing assumed for 1/r^6 coefficients" + +void PairLJLongDipoleLong::options(char **arg, int order) +{ + const char *option[] = {"long", "cut", "off", NULL}; + int i; + + if (!*arg) error->all(FLERR,PAIR_ILLEGAL); + for (i=0; option[i]&&strcmp(arg[0], option[i]); ++i); + switch (i) { + default: error->all(FLERR,PAIR_ILLEGAL); + case 0: ewald_order |= 1<<order; break; // set kspace r^-order + case 2: ewald_off |= 1<<order; // turn r^-order off + case 1: break; + } +} + +void PairLJLongDipoleLong::settings(int narg, char **arg) +{ + if (narg != 3 && narg != 4) error->all(FLERR,"Illegal pair_style command"); + + ewald_off = 0; + ewald_order = 0; + options(arg, 6); + options(++arg, 3); + options(arg, 1); + if (!comm->me && ewald_order&(1<<6)) + error->warning(FLERR,PAIR_MIX); + if (!comm->me && ewald_order==((1<<3)|(1<<6))) + error->warning(FLERR,PAIR_LARGEST); + if (!*(++arg)) + error->all(FLERR,PAIR_MISSING); + if (!((ewald_order^ewald_off)&(1<<3))) + error->all(FLERR,PAIR_COUL_CUT); + cut_lj_global = force->numeric(FLERR,*(arg++)); + if (narg == 4 && (ewald_order==74)) + error->all(FLERR,PAIR_CUTOFF); + if (narg == 4) cut_coul = force->numeric(FLERR,*(arg++)); + else cut_coul = cut_lj_global; + + if (allocated) { // reset explicit cuts + int i,j; + for (i = 1; i <= atom->ntypes; i++) + for (j = i+1; j <= atom->ntypes; j++) + if (setflag[i][j]) cut_lj[i][j] = cut_lj_global; + } +} + +// ---------------------------------------------------------------------- +// free all arrays +// ---------------------------------------------------------------------- + +PairLJLongDipoleLong::~PairLJLongDipoleLong() +{ + if (allocated) { + memory->destroy(setflag); + memory->destroy(cutsq); + + memory->destroy(cut_lj_read); + memory->destroy(cut_lj); + memory->destroy(cut_ljsq); + memory->destroy(epsilon_read); + memory->destroy(epsilon); + memory->destroy(sigma_read); + memory->destroy(sigma); + memory->destroy(lj1); + memory->destroy(lj2); + memory->destroy(lj3); + memory->destroy(lj4); + memory->destroy(offset); + } + //if (ftable) free_tables(); +} + +/* ---------------------------------------------------------------------- + allocate all arrays +------------------------------------------------------------------------- */ + +void PairLJLongDipoleLong::allocate() +{ + allocated = 1; + int n = atom->ntypes; + + memory->create(setflag,n+1,n+1,"pair:setflag"); + for (int i = 1; i <= n; i++) + for (int j = i; j <= n; j++) + setflag[i][j] = 0; + + memory->create(cutsq,n+1,n+1,"pair:cutsq"); + + memory->create(cut_lj_read,n+1,n+1,"pair:cut_lj_read"); + memory->create(cut_lj,n+1,n+1,"pair:cut_lj"); + memory->create(cut_ljsq,n+1,n+1,"pair:cut_ljsq"); + memory->create(epsilon_read,n+1,n+1,"pair:epsilon_read"); + memory->create(epsilon,n+1,n+1,"pair:epsilon"); + memory->create(sigma_read,n+1,n+1,"pair:sigma_read"); + memory->create(sigma,n+1,n+1,"pair:sigma"); + memory->create(lj1,n+1,n+1,"pair:lj1"); + memory->create(lj2,n+1,n+1,"pair:lj2"); + memory->create(lj3,n+1,n+1,"pair:lj3"); + memory->create(lj4,n+1,n+1,"pair:lj4"); + memory->create(offset,n+1,n+1,"pair:offset"); +} + +/* ---------------------------------------------------------------------- + extract protected data from object +------------------------------------------------------------------------- */ + +void *PairLJLongDipoleLong::extract(const char *id, int &dim) +{ + const char *ids[] = { + "B", "sigma", "epsilon", "ewald_order", "ewald_cut", "ewald_mix", + "cut_coul", "cut_vdwl", NULL}; + void *ptrs[] = { + lj4, sigma, epsilon, &ewald_order, &cut_coul, &mix_flag, &cut_coul, + &cut_lj_global, NULL}; + int i; + + for (i=0; ids[i]&&strcmp(ids[i], id); ++i); + if (i <= 2) dim = 2; + else dim = 0; + return ptrs[i]; +} + +/* ---------------------------------------------------------------------- + set coeffs for one or more type pairs +------------------------------------------------------------------------- */ + +void PairLJLongDipoleLong::coeff(int narg, char **arg) +{ + if (narg < 4 || narg > 5) error->all(FLERR,"Incorrect args for pair coefficients"); + if (!allocated) allocate(); + + int ilo,ihi,jlo,jhi; + force->bounds(arg[0],atom->ntypes,ilo,ihi); + force->bounds(arg[1],atom->ntypes,jlo,jhi); + + double epsilon_one = force->numeric(FLERR,arg[2]); + double sigma_one = force->numeric(FLERR,arg[3]); + + double cut_lj_one = cut_lj_global; + if (narg == 5) cut_lj_one = force->numeric(FLERR,arg[4]); + + int count = 0; + for (int i = ilo; i <= ihi; i++) { + for (int j = MAX(jlo,i); j <= jhi; j++) { + epsilon_read[i][j] = epsilon_one; + sigma_read[i][j] = sigma_one; + cut_lj_read[i][j] = cut_lj_one; + setflag[i][j] = 1; + count++; + } + } + + if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients"); +} + +/* ---------------------------------------------------------------------- + init specific to this pair style +------------------------------------------------------------------------- */ + +void PairLJLongDipoleLong::init_style() +{ + const char *style3[] = {"ewald/disp", NULL}; + const char *style6[] = {"ewald/disp", NULL}; + int i; + + if (strcmp(update->unit_style,"electron") == 0) + error->all(FLERR,"Cannot (yet) use 'electron' units with dipoles"); + + // require an atom style with charge defined + + if (!atom->q_flag && (ewald_order&(1<<1))) + error->all(FLERR, + "Invoking coulombic in pair style lj/long/dipole/long requires atom attribute q"); + if (!atom->mu && (ewald_order&(1<<3))) + error->all(FLERR,"Pair lj/long/dipole/long requires atom attributes mu, torque"); + if (!atom->torque && (ewald_order&(1<<3))) + error->all(FLERR,"Pair lj/long/dipole/long requires atom attributes mu, torque"); + + neighbor->request(this); + + cut_coulsq = cut_coul * cut_coul; + + // ensure use of KSpace long-range solver, set g_ewald + + if (ewald_order&(1<<3)) { // r^-1 kspace + if (force->kspace == NULL) + error->all(FLERR,"Pair style is incompatible with KSpace style"); + for (i=0; style3[i]&&strcmp(force->kspace_style, style3[i]); ++i); + if (!style3[i]) + error->all(FLERR,"Pair style is incompatible with KSpace style"); + } + if (ewald_order&(1<<6)) { // r^-6 kspace + if (force->kspace == NULL) + error->all(FLERR,"Pair style is incompatible with KSpace style"); + for (i=0; style6[i]&&strcmp(force->kspace_style, style6[i]); ++i); + if (!style6[i]) + error->all(FLERR,"Pair style is incompatible with KSpace style"); + } + if (force->kspace) g_ewald = force->kspace->g_ewald; +} + +/* ---------------------------------------------------------------------- + neighbor callback to inform pair style of neighbor list to use + regular or rRESPA +------------------------------------------------------------------------- */ + +void PairLJLongDipoleLong::init_list(int id, NeighList *ptr) +{ + if (id == 0) list = ptr; + else if (id == 1) listinner = ptr; + else if (id == 2) listmiddle = ptr; + else if (id == 3) listouter = ptr; + + if (id) + error->all(FLERR,"Pair style lj/long/dipole/long does not currently support respa"); +} + +/* ---------------------------------------------------------------------- + init for one type pair i,j and corresponding j,i +------------------------------------------------------------------------- */ + +double PairLJLongDipoleLong::init_one(int i, int j) +{ + if ((ewald_order&(1<<6))||(setflag[i][j] == 0)) { + epsilon[i][j] = mix_energy(epsilon_read[i][i],epsilon_read[j][j], + sigma_read[i][i],sigma_read[j][j]); + sigma[i][j] = mix_distance(sigma_read[i][i],sigma_read[j][j]); + if (ewald_order&(1<<6)) + cut_lj[i][j] = cut_lj_global; + else + cut_lj[i][j] = mix_distance(cut_lj_read[i][i],cut_lj_read[j][j]); + } + else { + sigma[i][j] = sigma_read[i][j]; + epsilon[i][j] = epsilon_read[i][j]; + cut_lj[i][j] = cut_lj_read[i][j]; + } + + double cut = MAX(cut_lj[i][j], cut_coul); + cutsq[i][j] = cut*cut; + cut_ljsq[i][j] = cut_lj[i][j] * cut_lj[i][j]; + + lj1[i][j] = 48.0 * epsilon[i][j] * pow(sigma[i][j],12.0); + lj2[i][j] = 24.0 * epsilon[i][j] * pow(sigma[i][j],6.0); + lj3[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j],12.0); + lj4[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j],6.0); + + // check interior rRESPA cutoff + + //if (cut_respa && MIN(cut_lj[i][j],cut_coul) < cut_respa[3]) + //error->all(FLERR,"Pair cutoff < Respa interior cutoff"); + + if (offset_flag) { + double ratio = sigma[i][j] / cut_lj[i][j]; + offset[i][j] = 4.0 * epsilon[i][j] * (pow(ratio,12.0) - pow(ratio,6.0)); + } else offset[i][j] = 0.0; + + cutsq[j][i] = cutsq[i][j]; + cut_ljsq[j][i] = cut_ljsq[i][j]; + lj1[j][i] = lj1[i][j]; + lj2[j][i] = lj2[i][j]; + lj3[j][i] = lj3[i][j]; + lj4[j][i] = lj4[i][j]; + offset[j][i] = offset[i][j]; + + return cut; +} + +/* ---------------------------------------------------------------------- + proc 0 writes to restart file +------------------------------------------------------------------------- */ + +void PairLJLongDipoleLong::write_restart(FILE *fp) +{ + write_restart_settings(fp); + + int i,j; + for (i = 1; i <= atom->ntypes; i++) + for (j = i; j <= atom->ntypes; j++) { + fwrite(&setflag[i][j],sizeof(int),1,fp); + if (setflag[i][j]) { + fwrite(&epsilon_read[i][j],sizeof(double),1,fp); + fwrite(&sigma_read[i][j],sizeof(double),1,fp); + fwrite(&cut_lj_read[i][j],sizeof(double),1,fp); + } + } +} + +/* ---------------------------------------------------------------------- + proc 0 reads from restart file, bcasts +------------------------------------------------------------------------- */ + +void PairLJLongDipoleLong::read_restart(FILE *fp) +{ + read_restart_settings(fp); + + allocate(); + + int i,j; + int me = comm->me; + for (i = 1; i <= atom->ntypes; i++) + for (j = i; j <= atom->ntypes; j++) { + if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp); + MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world); + if (setflag[i][j]) { + if (me == 0) { + fread(&epsilon_read[i][j],sizeof(double),1,fp); + fread(&sigma_read[i][j],sizeof(double),1,fp); + fread(&cut_lj_read[i][j],sizeof(double),1,fp); + } + MPI_Bcast(&epsilon_read[i][j],1,MPI_DOUBLE,0,world); + MPI_Bcast(&sigma_read[i][j],1,MPI_DOUBLE,0,world); + MPI_Bcast(&cut_lj_read[i][j],1,MPI_DOUBLE,0,world); + } + } +} + +/* ---------------------------------------------------------------------- + proc 0 writes to restart file +------------------------------------------------------------------------- */ + +void PairLJLongDipoleLong::write_restart_settings(FILE *fp) +{ + fwrite(&cut_lj_global,sizeof(double),1,fp); + fwrite(&cut_coul,sizeof(double),1,fp); + fwrite(&offset_flag,sizeof(int),1,fp); + fwrite(&mix_flag,sizeof(int),1,fp); + fwrite(&ewald_order,sizeof(int),1,fp); +} + +/* ---------------------------------------------------------------------- + proc 0 reads from restart file, bcasts +------------------------------------------------------------------------- */ + +void PairLJLongDipoleLong::read_restart_settings(FILE *fp) +{ + if (comm->me == 0) { + fread(&cut_lj_global,sizeof(double),1,fp); + fread(&cut_coul,sizeof(double),1,fp); + fread(&offset_flag,sizeof(int),1,fp); + fread(&mix_flag,sizeof(int),1,fp); + fread(&ewald_order,sizeof(int),1,fp); + } + MPI_Bcast(&cut_lj_global,1,MPI_DOUBLE,0,world); + MPI_Bcast(&cut_coul,1,MPI_DOUBLE,0,world); + MPI_Bcast(&offset_flag,1,MPI_INT,0,world); + MPI_Bcast(&mix_flag,1,MPI_INT,0,world); + MPI_Bcast(&ewald_order,1,MPI_INT,0,world); +} + +/* ---------------------------------------------------------------------- + compute pair interactions +------------------------------------------------------------------------- */ + +void PairLJLongDipoleLong::compute(int eflag, int vflag) +{ + double evdwl,ecoul,fpair; + evdwl = ecoul = 0.0; + + if (eflag || vflag) ev_setup(eflag,vflag); + else evflag = vflag_fdotr = 0; + + double **x = atom->x, *x0 = x[0]; + double **mu = atom->mu, *mu0 = mu[0], *imu, *jmu; + double **tq = atom->torque, *tq0 = tq[0], *tqi; + double **f = atom->f, *f0 = f[0], *fi = f0, fx, fy, fz; + double *q = atom->q, qi = 0, qj; + int *type = atom->type; + int nlocal = atom->nlocal; + double *special_coul = force->special_coul; + double *special_lj = force->special_lj; + int newton_pair = force->newton_pair; + double qqrd2e = force->qqrd2e; + + int i, j; + int order1 = ewald_order&(1<<1), order3 = ewald_order&(1<<3), + order6 = ewald_order&(1<<6); + int *ineigh, *ineighn, *jneigh, *jneighn, typei, typej, ni; + double *cutsqi, *cut_ljsqi, *lj1i, *lj2i, *lj3i, *lj4i, *offseti; + double rsq, r2inv, force_coul, force_lj; + double g2 = g_ewald*g_ewald, g6 = g2*g2*g2, g8 = g6*g2; + double B0, B1, B2, B3, G0, G1, G2, mudi, mudj, muij; + vector force_d = VECTOR_NULL, ti = VECTOR_NULL, tj = VECTOR_NULL; + vector mui, muj, xi, d; + + double C1 = 2.0 * g_ewald / MY_PIS; + double C2 = 2.0 * g2 * C1; + double C3 = 2.0 * g2 * C2; + + ineighn = (ineigh = list->ilist)+list->inum; + + for (; ineigh<ineighn; ++ineigh) { // loop over all neighs + i = *ineigh; fi = f0+3*i; tqi = tq0+3*i; + qi = q[i]; // initialize constants + offseti = offset[typei = type[i]]; + lj1i = lj1[typei]; lj2i = lj2[typei]; lj3i = lj3[typei]; lj4i = lj4[typei]; + cutsqi = cutsq[typei]; cut_ljsqi = cut_ljsq[typei]; + memcpy(xi, x0+(i+(i<<1)), sizeof(vector)); + memcpy(mui, imu = mu0+(i<<2), sizeof(vector)); + + jneighn = (jneigh = list->firstneigh[i])+list->numneigh[i]; + + for (; jneigh<jneighn; ++jneigh) { // loop over neighbors + j = *jneigh; + ni = sbmask(j); // special index + j &= NEIGHMASK; + + { register double *xj = x0+(j+(j<<1)); + d[0] = xi[0] - xj[0]; // pair vector + d[1] = xi[1] - xj[1]; + d[2] = xi[2] - xj[2]; } + + if ((rsq = vec_dot(d, d)) >= cutsqi[typej = type[j]]) continue; + r2inv = 1.0/rsq; + + if (order3 && (rsq < cut_coulsq)) { // dipole + memcpy(muj, jmu = mu0+(j<<2), sizeof(vector)); + { // series real space + register double r = sqrt(rsq); + register double x = g_ewald*r; + register double f = exp(-x*x)*qqrd2e; + + B0 = 1.0/(1.0+EWALD_P*x); // eqn 2.8 + B0 *= ((((A5*B0+A4)*B0+A3)*B0+A2)*B0+A1)*f/r; + B1 = (B0 + C1 * f) * r2inv; + B2 = (3.0*B1 + C2 * f) * r2inv; + B3 = (5.0*B2 + C3 * f) * r2inv; + + mudi = mui[0]*d[0]+mui[1]*d[1]+mui[2]*d[2]; + mudj = muj[0]*d[0]+muj[1]*d[1]+muj[2]*d[2]; + muij = mui[0]*muj[0]+mui[1]*muj[1]+mui[2]*muj[2]; + G0 = qi*(qj = q[j]); // eqn 2.10 + G1 = qi*mudj-qj*mudi+muij; + G2 = -mudi*mudj; + force_coul = G0*B1+G1*B2+G2*B3; + + mudi *= B2; mudj *= B2; // torque contribs + ti[0] = mudj*d[0]+(qj*d[0]-muj[0])*B1; + ti[1] = mudj*d[1]+(qj*d[1]-muj[1])*B1; + ti[2] = mudj*d[2]+(qj*d[2]-muj[2])*B1; + + if (newton_pair || j < nlocal) { + tj[0] = mudi*d[0]-(qi*d[0]+mui[0])*B1; + tj[1] = mudi*d[1]-(qi*d[1]+mui[1])*B1; + tj[2] = mudi*d[2]-(qi*d[2]+mui[2])*B1; + } + + if (eflag) ecoul = G0*B0+G1*B1+G2*B2; + if (ni > 0) { // adj part, eqn 2.13 + force_coul -= (f = qqrd2e*(1.0-special_coul[ni])/r)*( + (3.0*G1+15.0*G2*r2inv)*r2inv+G0)*r2inv; + if (eflag) + ecoul -= f*((G1+3.0*G2*r2inv)*r2inv+G0); + B1 -= f*r2inv; + } + B0 = mudj+qj*B1; B3 = -qi*B1+mudi; // position independent + if (ni > 0) B0 -= f*3.0*mudj*r2inv*r2inv/B2; + if (ni > 0) B3 -= f*3.0*mudi*r2inv*r2inv/B2; + force_d[0] = B0*mui[0]+B3*muj[0]; // force contribs + force_d[1] = B0*mui[1]+B3*muj[1]; + force_d[2] = B0*mui[2]+B3*muj[2]; + if (ni > 0) { + ti[0] -= f*(3.0*mudj*r2inv*r2inv*d[0]/B2+(qj*r2inv*d[0]-muj[0]*r2inv)); + ti[1] -= f*(3.0*mudj*r2inv*r2inv*d[1]/B2+(qj*r2inv*d[1]-muj[1]*r2inv)); + ti[2] -= f*(3.0*mudj*r2inv*r2inv*d[2]/B2+(qj*r2inv*d[2]-muj[2]*r2inv)); + if (newton_pair || j < nlocal) { + tj[0] -= f*(3.0*mudi*r2inv*r2inv*d[0]/B2-(qi*r2inv*d[0]+mui[0]*r2inv)); + tj[1] -= f*(3.0*mudi*r2inv*r2inv*d[1]/B2-(qi*r2inv*d[1]+mui[1]*r2inv)); + tj[2] -= f*(3.0*mudi*r2inv*r2inv*d[2]/B2-(qi*r2inv*d[2]+mui[2]*r2inv)); + } + } + } // table real space + } else { + force_coul = ecoul = 0.0; + memset(force_d, 0, 3*sizeof(double)); + } + + if (rsq < cut_ljsqi[typej]) { // lj + if (order6) { // long-range lj + register double rn = r2inv*r2inv*r2inv; + register double x2 = g2*rsq, a2 = 1.0/x2; + x2 = a2*exp(-x2)*lj4i[typej]; + if (ni < 0) { + force_lj = + (rn*=rn)*lj1i[typej]-g8*(((6.0*a2+6.0)*a2+3.0)*a2+1.0)*x2*rsq; + if (eflag) evdwl = rn*lj3i[typej]-g6*((a2+1.0)*a2+0.5)*x2; + } + else { // special case + register double f = special_lj[ni], t = rn*(1.0-f); + force_lj = f*(rn *= rn)*lj1i[typej]- + g8*(((6.0*a2+6.0)*a2+3.0)*a2+1.0)*x2*rsq+t*lj2i[typej]; + if (eflag) evdwl = + f*rn*lj3i[typej]-g6*((a2+1.0)*a2+0.5)*x2+t*lj4i[typej]; + } + } + else { // cut lj + register double rn = r2inv*r2inv*r2inv; + if (ni < 0) { + force_lj = rn*(rn*lj1i[typej]-lj2i[typej]); + if (eflag) evdwl = rn*(rn*lj3i[typej]-lj4i[typej])-offseti[typej]; + } + else { // special case + register double f = special_lj[ni]; + force_lj = f*rn*(rn*lj1i[typej]-lj2i[typej]); + if (eflag) evdwl = f*( + rn*(rn*lj3i[typej]-lj4i[typej])-offseti[typej]); + } + } + force_lj *= r2inv; + } + else force_lj = evdwl = 0.0; + + fpair = force_coul+force_lj; // force + if (newton_pair || j < nlocal) { + register double *fj = f0+(j+(j<<1)); + fi[0] += fx = d[0]*fpair+force_d[0]; fj[0] -= fx; + fi[1] += fy = d[1]*fpair+force_d[1]; fj[1] -= fy; + fi[2] += fz = d[2]*fpair+force_d[2]; fj[2] -= fz; + tqi[0] += mui[1]*ti[2]-mui[2]*ti[1]; // torque + tqi[1] += mui[2]*ti[0]-mui[0]*ti[2]; + tqi[2] += mui[0]*ti[1]-mui[1]*ti[0]; + register double *tqj = tq0+(j+(j<<1)); + tqj[0] += muj[1]*tj[2]-muj[2]*tj[1]; + tqj[1] += muj[2]*tj[0]-muj[0]*tj[2]; + tqj[2] += muj[0]*tj[1]-muj[1]*tj[0]; + } + else { + fi[0] += fx = d[0]*fpair+force_d[0]; // force + fi[1] += fy = d[1]*fpair+force_d[1]; + fi[2] += fz = d[2]*fpair+force_d[2]; + tqi[0] += mui[1]*ti[2]-mui[2]*ti[1]; // torque + tqi[1] += mui[2]*ti[0]-mui[0]*ti[2]; + tqi[2] += mui[0]*ti[1]-mui[1]*ti[0]; + } + + if (evflag) ev_tally_xyz(i,j,nlocal,newton_pair, + evdwl,ecoul,fx,fy,fz,d[0],d[1],d[2]); + } + } + + if (vflag_fdotr) virial_fdotr_compute(); +} + +/* ---------------------------------------------------------------------- */ + +/* +double PairLJLongDipoleLong::single(int i, int j, int itype, int jtype, + double rsq, double factor_coul, double factor_lj, + double &fforce) +{ + double r6inv, force_coul, force_lj; + double g2 = g_ewald*g_ewald, g6 = g2*g2*g2, g8 = g6*g2, *q = atom->q; + + double eng = 0.0; + double r2inv = 1.0/rsq; + + if ((ewald_order&(1<<3)) && (rsq < cut_coulsq)) { // coulombic + double *mui = atom->mu[i], *muj = atom->mu[j]; + double *xi = atom->x[i], *xj = atom->x[j]; + double qi = q[i], qj = q[j]; + double G0, G1, G2, B0, B1, B2, B3, mudi, mudj, muij; + vector d = {xi[0]-xj[0], xi[1]-xj[1], xi[2]-xj[2]}; + { // series real space + register double r = sqrt(rsq); + register double x = g_ewald*r; + register double f = exp(-x*x)*qqrd2e; + + B0 = 1.0/(1.0+EWALD_P*x); // eqn 2.8 + B0 *= ((((A5*B0+A4)*B0+A3)*B0+A2)*B0+A1)*f/r; + B1 = (B0 + C1 * f) * r2inv; + B2 = (3.0*B1 + C2 * f) * r2inv; + B3 = (5.0*B2 + C3 * f) * r2inv; + + mudi = mui[0]*d[0]+mui[1]*d[1]+mui[2]*d[2]; + mudj = muj[0]*d[0]+muj[1]*d[1]+muj[2]*d[2]; + muij = mui[0]*muj[0]+mui[1]*muj[1]+mui[2]*muj[2]; + G0 = qi*(qj = q[j]); // eqn 2.10 + G1 = qi*mudj-qj*mudi+muij; + G2 = -mudi*mudj; + force_coul = G0*B1+G1*B2+G2*B3; + + eng += G0*B0+G1*B1+G2*B2; + if (factor_coul < 1.0) { // adj part, eqn 2.13 + force_coul -= (f = force->qqrd2e*(1.0-factor_coul)/r)*( + (3.0*G1+6.0*muij+15.0*G2*r2inv)*r2inv+G0); + eng -= f*((G1+3.0*G2*r2inv)*r2inv+G0); + B1 -= f*r2inv; + } + B0 = mudj*B2-qj*B1; B3 = qi*B1+mudi*B2; // position independent + //force_d[0] = B0*mui[0]+B3*muj[0]; // force contributions + //force_d[1] = B0*mui[1]+B3*muj[1]; + //force_d[2] = B0*mui[2]+B3*muj[2]; + } // table real space + } + else force_coul = 0.0; + + if (rsq < cut_ljsq[itype][jtype]) { // lennard-jones + r6inv = r2inv*r2inv*r2inv; + if (ewald_order&0x40) { // long-range + register double x2 = g2*rsq, a2 = 1.0/x2, t = r6inv*(1.0-factor_lj); + x2 = a2*exp(-x2)*lj4[itype][jtype]; + force_lj = factor_lj*(r6inv *= r6inv)*lj1[itype][jtype]- + g8*(((6.0*a2+6.0)*a2+3.0)*a2+a2)*x2*rsq+t*lj2[itype][jtype]; + eng += factor_lj*r6inv*lj3[itype][jtype]- + g6*((a2+1.0)*a2+0.5)*x2+t*lj4[itype][jtype]; + } + else { // cut + force_lj = factor_lj*r6inv*(lj1[itype][jtype]*r6inv-lj2[itype][jtype]); + eng += factor_lj*(r6inv*(r6inv*lj3[itype][jtype]- + lj4[itype][jtype])-offset[itype][jtype]); + } + } + else force_lj = 0.0; + + fforce = (force_coul+force_lj)*r2inv; + return eng; +} +*/ + diff --git a/src/KSPACE/pppm.cpp b/src/KSPACE/pppm.cpp index b33371fd8..5bacae48b 100644 --- a/src/KSPACE/pppm.cpp +++ b/src/KSPACE/pppm.cpp @@ -1,3396 +1,3388 @@ /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Roy Pollock (LLNL), Paul Crozier (SNL) per-atom energy/virial & group/group energy/force added by Stan Moore (BYU) analytic diff (2 FFT) option added by Rolf Isele-Holder (Aachen University) triclinic added by Stan Moore (SNL) ------------------------------------------------------------------------- */ #include "lmptype.h" #include "mpi.h" #include "string.h" #include "stdio.h" #include "stdlib.h" #include "math.h" #include "pppm.h" #include "atom.h" #include "comm.h" #include "commgrid.h" #include "neighbor.h" #include "force.h" #include "pair.h" #include "bond.h" #include "angle.h" #include "domain.h" #include "fft3d_wrap.h" #include "remap_wrap.h" #include "memory.h" #include "error.h" #include "math_const.h" #include "math_special.h" using namespace LAMMPS_NS; using namespace MathConst; using namespace MathSpecial; #define MAXORDER 7 #define OFFSET 16384 #define SMALL 0.00001 #define LARGE 10000.0 #define EPS_HOC 1.0e-7 enum{REVERSE_RHO}; enum{FORWARD_IK,FORWARD_AD,FORWARD_IK_PERATOM,FORWARD_AD_PERATOM}; #ifdef FFT_SINGLE #define ZEROF 0.0f #define ONEF 1.0f #else #define ZEROF 0.0 #define ONEF 1.0 #endif /* ---------------------------------------------------------------------- */ PPPM::PPPM(LAMMPS *lmp, int narg, char **arg) : KSpace(lmp, narg, arg) { if (narg < 1) error->all(FLERR,"Illegal kspace_style pppm command"); pppmflag = 1; group_group_enable = 1; accuracy_relative = atof(arg[0]); nfactors = 3; factors = new int[nfactors]; factors[0] = 2; factors[1] = 3; factors[2] = 5; MPI_Comm_rank(world,&me); MPI_Comm_size(world,&nprocs); density_brick = vdx_brick = vdy_brick = vdz_brick = NULL; density_fft = NULL; u_brick = NULL; v0_brick = v1_brick = v2_brick = v3_brick = v4_brick = v5_brick = NULL; greensfn = NULL; work1 = work2 = NULL; vg = NULL; fkx = fky = fkz = NULL; sf_precoeff1 = sf_precoeff2 = sf_precoeff3 = sf_precoeff4 = sf_precoeff5 = sf_precoeff6 = NULL; density_A_brick = density_B_brick = NULL; density_A_fft = density_B_fft = NULL; gf_b = NULL; rho1d = rho_coeff = drho1d = drho_coeff = NULL; fft1 = fft2 = NULL; remap = NULL; cg = NULL; cg_peratom = NULL; nmax = 0; part2grid = NULL; peratom_allocate_flag = 0; group_allocate_flag = 0; // define acons coefficients for estimation of kspace errors // see JCP 109, pg 7698 for derivation of coefficients // higher order coefficients may be computed if needed memory->create(acons,8,7,"pppm:acons"); acons[1][0] = 2.0 / 3.0; acons[2][0] = 1.0 / 50.0; acons[2][1] = 5.0 / 294.0; acons[3][0] = 1.0 / 588.0; acons[3][1] = 7.0 / 1440.0; acons[3][2] = 21.0 / 3872.0; acons[4][0] = 1.0 / 4320.0; acons[4][1] = 3.0 / 1936.0; acons[4][2] = 7601.0 / 2271360.0; acons[4][3] = 143.0 / 28800.0; acons[5][0] = 1.0 / 23232.0; acons[5][1] = 7601.0 / 13628160.0; acons[5][2] = 143.0 / 69120.0; acons[5][3] = 517231.0 / 106536960.0; acons[5][4] = 106640677.0 / 11737571328.0; acons[6][0] = 691.0 / 68140800.0; acons[6][1] = 13.0 / 57600.0; acons[6][2] = 47021.0 / 35512320.0; acons[6][3] = 9694607.0 / 2095994880.0; acons[6][4] = 733191589.0 / 59609088000.0; acons[6][5] = 326190917.0 / 11700633600.0; acons[7][0] = 1.0 / 345600.0; acons[7][1] = 3617.0 / 35512320.0; acons[7][2] = 745739.0 / 838397952.0; acons[7][3] = 56399353.0 / 12773376000.0; acons[7][4] = 25091609.0 / 1560084480.0; acons[7][5] = 1755948832039.0 / 36229939200000.0; acons[7][6] = 4887769399.0 / 37838389248.0; } /* ---------------------------------------------------------------------- free all memory ------------------------------------------------------------------------- */ PPPM::~PPPM() { delete [] factors; deallocate(); if (peratom_allocate_flag) deallocate_peratom(); if (group_allocate_flag) deallocate_groups(); memory->destroy(part2grid); memory->destroy(acons); } /* ---------------------------------------------------------------------- called once before run ------------------------------------------------------------------------- */ void PPPM::init() { if (me == 0) { if (screen) fprintf(screen,"PPPM initialization ...\n"); if (logfile) fprintf(logfile,"PPPM initialization ...\n"); } // error check triclinic_check(); if (domain->triclinic && differentiation_flag == 1) error->all(FLERR,"Cannot (yet) use PPPM with triclinic box " "and kspace_modify diff a'"); if (domain->triclinic && slabflag) error->all(FLERR,"Cannot (yet) use PPPM with triclinic box and " "slab correction"); if (domain->dimension == 2) error->all(FLERR, "Cannot use PPPM with 2d simulation"); if (!atom->q_flag) error->all(FLERR,"Kspace style requires atom attribute q"); if (slabflag == 0 && domain->nonperiodic > 0) error->all(FLERR,"Cannot use nonperiodic boundaries with PPPM"); if (slabflag) { if (domain->xperiodic != 1 || domain->yperiodic != 1 || domain->boundary[2][0] != 1 || domain->boundary[2][1] != 1) error->all(FLERR,"Incorrect boundaries with slab PPPM"); } if (order < 2 || order > MAXORDER) { char str[128]; sprintf(str,"PPPM order cannot be < 2 or > than %d",MAXORDER); error->all(FLERR,str); } // extract short-range Coulombic cutoff from pair style triclinic = domain->triclinic; scale = 1.0; pair_check(); int itmp = 0; double *p_cutoff = (double *) force->pair->extract("cut_coul",itmp); if (p_cutoff == NULL) error->all(FLERR,"KSpace style is incompatible with Pair style"); cutoff = *p_cutoff; // if kspace is TIP4P, extract TIP4P params from pair style // bond/angle are not yet init(), so insure equilibrium request is valid qdist = 0.0; if (tip4pflag) { double *p_qdist = (double *) force->pair->extract("qdist",itmp); int *p_typeO = (int *) force->pair->extract("typeO",itmp); int *p_typeH = (int *) force->pair->extract("typeH",itmp); int *p_typeA = (int *) force->pair->extract("typeA",itmp); int *p_typeB = (int *) force->pair->extract("typeB",itmp); if (!p_qdist || !p_typeO || !p_typeH || !p_typeA || !p_typeB) error->all(FLERR,"KSpace style is incompatible with Pair style"); qdist = *p_qdist; typeO = *p_typeO; typeH = *p_typeH; int typeA = *p_typeA; int typeB = *p_typeB; if (force->angle == NULL || force->bond == NULL) error->all(FLERR,"Bond and angle potentials must be defined for TIP4P"); if (typeA < 1 || typeA > atom->nangletypes || force->angle->setflag[typeA] == 0) error->all(FLERR,"Bad TIP4P angle type for PPPM/TIP4P"); if (typeB < 1 || typeB > atom->nbondtypes || force->bond->setflag[typeB] == 0) error->all(FLERR,"Bad TIP4P bond type for PPPM/TIP4P"); double theta = force->angle->equilibrium_angle(typeA); double blen = force->bond->equilibrium_distance(typeB); alpha = qdist / (cos(0.5*theta) * blen); if (domain->triclinic) error->all(FLERR,"Cannot (yet) use PPPM with triclinic box and TIP4P"); } // compute qsum & qsqsum and warn if not charge-neutral qsum = qsqsum = 0.0; for (int i = 0; i < atom->nlocal; i++) { qsum += atom->q[i]; qsqsum += atom->q[i]*atom->q[i]; } double tmp; MPI_Allreduce(&qsum,&tmp,1,MPI_DOUBLE,MPI_SUM,world); qsum = tmp; MPI_Allreduce(&qsqsum,&tmp,1,MPI_DOUBLE,MPI_SUM,world); qsqsum = tmp; q2 = qsqsum * force->qqrd2e / force->dielectric; if (qsqsum == 0.0) error->all(FLERR,"Cannot use kspace solver on system with no charge"); if (fabs(qsum) > SMALL && me == 0) { char str[128]; sprintf(str,"System is not charge neutral, net charge = %g",qsum); error->warning(FLERR,str); } // set accuracy (force units) from accuracy_relative or accuracy_absolute if (accuracy_absolute >= 0.0) accuracy = accuracy_absolute; else accuracy = accuracy_relative * two_charge_force; // free all arrays previously allocated deallocate(); if (peratom_allocate_flag) deallocate_peratom(); if (group_allocate_flag) deallocate_groups(); // setup FFT grid resolution and g_ewald // normally one iteration thru while loop is all that is required // if grid stencil does not extend beyond neighbor proc // or overlap is allowed, then done // else reduce order and try again int (*procneigh)[2] = comm->procneigh; CommGrid *cgtmp = NULL; int iteration = 0; while (order >= minorder) { if (iteration && me == 0) error->warning(FLERR,"Reducing PPPM order b/c stencil extends " "beyond nearest neighbor processor"); - if (stagger_flag && !differentiation_flag) compute_gf_denom(); set_grid_global(); set_grid_local(); if (overlap_allowed) break; cgtmp = new CommGrid(lmp,world,1,1, nxlo_in,nxhi_in,nylo_in,nyhi_in,nzlo_in,nzhi_in, nxlo_out,nxhi_out,nylo_out,nyhi_out,nzlo_out,nzhi_out, procneigh[0][0],procneigh[0][1],procneigh[1][0], procneigh[1][1],procneigh[2][0],procneigh[2][1]); cgtmp->ghost_notify(); if (!cgtmp->ghost_overlap()) break; delete cgtmp; order--; iteration++; } if (order < minorder) error->all(FLERR,"PPPM order < minimum allowed order"); if (!overlap_allowed && cgtmp->ghost_overlap()) error->all(FLERR,"PPPM grid stencil extends " "beyond nearest neighbor processor"); if (cgtmp) delete cgtmp; // adjust g_ewald if (!gewaldflag) adjust_gewald(); // calculate the final accuracy double estimated_accuracy = final_accuracy(); // print stats int ngrid_max,nfft_both_max; MPI_Allreduce(&ngrid,&ngrid_max,1,MPI_INT,MPI_MAX,world); MPI_Allreduce(&nfft_both,&nfft_both_max,1,MPI_INT,MPI_MAX,world); if (me == 0) { #ifdef FFT_SINGLE const char fft_prec[] = "single"; #else const char fft_prec[] = "double"; #endif if (screen) { fprintf(screen," G vector (1/distance)= %g\n",g_ewald); fprintf(screen," grid = %d %d %d\n",nx_pppm,ny_pppm,nz_pppm); fprintf(screen," stencil order = %d\n",order); fprintf(screen," estimated absolute RMS force accuracy = %g\n", estimated_accuracy); fprintf(screen," estimated relative force accuracy = %g\n", estimated_accuracy/two_charge_force); fprintf(screen," using %s precision FFTs\n",fft_prec); fprintf(screen," 3d grid and FFT values/proc = %d %d\n", ngrid_max,nfft_both_max); } if (logfile) { fprintf(logfile," G vector (1/distance) = %g\n",g_ewald); fprintf(logfile," grid = %d %d %d\n",nx_pppm,ny_pppm,nz_pppm); fprintf(logfile," stencil order = %d\n",order); fprintf(logfile," estimated absolute RMS force accuracy = %g\n", estimated_accuracy); fprintf(logfile," estimated relative force accuracy = %g\n", estimated_accuracy/two_charge_force); fprintf(logfile," using %s precision FFTs\n",fft_prec); fprintf(logfile," 3d grid and FFT values/proc = %d %d\n", ngrid_max,nfft_both_max); } } // allocate K-space dependent memory // don't invoke allocate peratom() or group(), will be allocated when needed allocate(); cg->ghost_notify(); cg->setup(); // pre-compute Green's function denomiator expansion // pre-compute 1d charge distribution coefficients compute_gf_denom(); if (differentiation_flag == 1) compute_sf_precoeff(); compute_rho_coeff(); } /* ---------------------------------------------------------------------- adjust PPPM coeffs, called initially and whenever volume has changed ------------------------------------------------------------------------- */ void PPPM::setup() { if (triclinic) { setup_triclinic(); return; } int i,j,k,n; double *prd; // volume-dependent factors // adjust z dimension for 2d slab PPPM // z dimension for 3d PPPM is zprd since slab_volfactor = 1.0 if (triclinic == 0) prd = domain->prd; else prd = domain->prd_lamda; double xprd = prd[0]; double yprd = prd[1]; double zprd = prd[2]; double zprd_slab = zprd*slab_volfactor; volume = xprd * yprd * zprd_slab; delxinv = nx_pppm/xprd; delyinv = ny_pppm/yprd; delzinv = nz_pppm/zprd_slab; delvolinv = delxinv*delyinv*delzinv; double unitkx = (MY_2PI/xprd); double unitky = (MY_2PI/yprd); double unitkz = (MY_2PI/zprd_slab); // fkx,fky,fkz for my FFT grid pts double per; for (i = nxlo_fft; i <= nxhi_fft; i++) { per = i - nx_pppm*(2*i/nx_pppm); fkx[i] = unitkx*per; } for (i = nylo_fft; i <= nyhi_fft; i++) { per = i - ny_pppm*(2*i/ny_pppm); fky[i] = unitky*per; } for (i = nzlo_fft; i <= nzhi_fft; i++) { per = i - nz_pppm*(2*i/nz_pppm); fkz[i] = unitkz*per; } // virial coefficients double sqk,vterm; n = 0; for (k = nzlo_fft; k <= nzhi_fft; k++) { for (j = nylo_fft; j <= nyhi_fft; j++) { for (i = nxlo_fft; i <= nxhi_fft; i++) { sqk = fkx[i]*fkx[i] + fky[j]*fky[j] + fkz[k]*fkz[k]; if (sqk == 0.0) { vg[n][0] = 0.0; vg[n][1] = 0.0; vg[n][2] = 0.0; vg[n][3] = 0.0; vg[n][4] = 0.0; vg[n][5] = 0.0; } else { vterm = -2.0 * (1.0/sqk + 0.25/(g_ewald*g_ewald)); vg[n][0] = 1.0 + vterm*fkx[i]*fkx[i]; vg[n][1] = 1.0 + vterm*fky[j]*fky[j]; vg[n][2] = 1.0 + vterm*fkz[k]*fkz[k]; vg[n][3] = vterm*fkx[i]*fky[j]; vg[n][4] = vterm*fkx[i]*fkz[k]; vg[n][5] = vterm*fky[j]*fkz[k]; } n++; } } } if (differentiation_flag == 1) compute_gf_ad(); else compute_gf_ik(); } /* ---------------------------------------------------------------------- adjust PPPM coeffs, called initially and whenever volume has changed for a triclinic system ------------------------------------------------------------------------- */ void PPPM::setup_triclinic() { int i,j,k,n; double *prd; // volume-dependent factors // adjust z dimension for 2d slab PPPM // z dimension for 3d PPPM is zprd since slab_volfactor = 1.0 prd = domain->prd; double xprd = prd[0]; double yprd = prd[1]; double zprd = prd[2]; double zprd_slab = zprd*slab_volfactor; volume = xprd * yprd * zprd_slab; // use lamda (0-1) coordinates delxinv = nx_pppm; delyinv = ny_pppm; delzinv = nz_pppm; delvolinv = delxinv*delyinv*delzinv/volume; // fkx,fky,fkz for my FFT grid pts double per_i,per_j,per_k; n = 0; for (k = nzlo_fft; k <= nzhi_fft; k++) { per_k = k - nz_pppm*(2*k/nz_pppm); for (j = nylo_fft; j <= nyhi_fft; j++) { per_j = j - ny_pppm*(2*j/ny_pppm); for (i = nxlo_fft; i <= nxhi_fft; i++) { per_i = i - nx_pppm*(2*i/nx_pppm); double unitk_lamda[3]; unitk_lamda[0] = 2.0*MY_PI*per_i; unitk_lamda[1] = 2.0*MY_PI*per_j; unitk_lamda[2] = 2.0*MY_PI*per_k; x2lamdaT(&unitk_lamda[0],&unitk_lamda[0]); fkx[n] = unitk_lamda[0]; fky[n] = unitk_lamda[1]; fkz[n] = unitk_lamda[2]; n++; } } } // virial coefficients double sqk,vterm; for (n = 0; n < nfft; n++) { sqk = fkx[n]*fkx[n] + fky[n]*fky[n] + fkz[n]*fkz[n]; if (sqk == 0.0) { vg[n][0] = 0.0; vg[n][1] = 0.0; vg[n][2] = 0.0; vg[n][3] = 0.0; vg[n][4] = 0.0; vg[n][5] = 0.0; } else { vterm = -2.0 * (1.0/sqk + 0.25/(g_ewald*g_ewald)); vg[n][0] = 1.0 + vterm*fkx[n]*fkx[n]; vg[n][1] = 1.0 + vterm*fky[n]*fky[n]; vg[n][2] = 1.0 + vterm*fkz[n]*fkz[n]; vg[n][3] = vterm*fkx[n]*fky[n]; vg[n][4] = vterm*fkx[n]*fkz[n]; vg[n][5] = vterm*fky[n]*fkz[n]; } } compute_gf_ik_triclinic(); } /* ---------------------------------------------------------------------- reset local grid arrays and communication stencils called by fix balance b/c it changed sizes of processor sub-domains ------------------------------------------------------------------------- */ void PPPM::setup_grid() { // free all arrays previously allocated deallocate(); if (peratom_allocate_flag) deallocate_peratom(); if (group_allocate_flag) deallocate_groups(); // reset portion of global grid that each proc owns set_grid_local(); // reallocate K-space dependent memory // check if grid communication is now overlapping if not allowed // don't invoke allocate peratom() or group(), will be allocated when needed allocate(); cg->ghost_notify(); if (overlap_allowed == 0 && cg->ghost_overlap()) error->all(FLERR,"PPPM grid stencil extends " "beyond nearest neighbor processor"); cg->setup(); // pre-compute Green's function denomiator expansion // pre-compute 1d charge distribution coefficients compute_gf_denom(); if (differentiation_flag == 1) compute_sf_precoeff(); compute_rho_coeff(); // pre-compute volume-dependent coeffs setup(); } /* ---------------------------------------------------------------------- compute the PPPM long-range force, energy, virial ------------------------------------------------------------------------- */ void PPPM::compute(int eflag, int vflag) { int i,j; // set energy/virial flags // invoke allocate_peratom() if needed for first time if (eflag || vflag) ev_setup(eflag,vflag); else evflag = evflag_atom = eflag_global = vflag_global = eflag_atom = vflag_atom = 0; if (evflag_atom && !peratom_allocate_flag) { allocate_peratom(); cg_peratom->ghost_notify(); cg_peratom->setup(); } // convert atoms from box to lamda coords if (triclinic == 0) boxlo = domain->boxlo; else { boxlo = domain->boxlo_lamda; domain->x2lamda(atom->nlocal); } // extend size of per-atom arrays if necessary if (atom->nlocal > nmax) { memory->destroy(part2grid); nmax = atom->nmax; memory->create(part2grid,nmax,3,"pppm:part2grid"); } // find grid points for all my particles // map my particle charge onto my local 3d density grid particle_map(); make_rho(); // all procs communicate density values from their ghost cells // to fully sum contribution in their 3d bricks // remap from 3d decomposition to FFT decomposition cg->reverse_comm(this,REVERSE_RHO); brick2fft(); // compute potential gradient on my FFT grid and // portion of e_long on this proc's FFT grid // return gradients (electric fields) in 3d brick decomposition // also performs per-atom calculations via poisson_peratom() poisson(); // all procs communicate E-field values // to fill ghost cells surrounding their 3d bricks if (differentiation_flag == 1) cg->forward_comm(this,FORWARD_AD); else cg->forward_comm(this,FORWARD_IK); // extra per-atom energy/virial communication if (evflag_atom) { if (differentiation_flag == 1 && vflag_atom) cg_peratom->forward_comm(this,FORWARD_AD_PERATOM); else if (differentiation_flag == 0) cg_peratom->forward_comm(this,FORWARD_IK_PERATOM); } // calculate the force on my particles fieldforce(); // extra per-atom energy/virial communication if (evflag_atom) fieldforce_peratom(); // sum global energy across procs and add in volume-dependent term const double qscale = force->qqrd2e * scale; if (eflag_global) { double energy_all; MPI_Allreduce(&energy,&energy_all,1,MPI_DOUBLE,MPI_SUM,world); energy = energy_all; energy *= 0.5*volume; energy -= g_ewald*qsqsum/MY_PIS + MY_PI2*qsum*qsum / (g_ewald*g_ewald*volume); energy *= qscale; } // sum global virial across procs if (vflag_global) { double virial_all[6]; MPI_Allreduce(virial,virial_all,6,MPI_DOUBLE,MPI_SUM,world); for (i = 0; i < 6; i++) virial[i] = 0.5*qscale*volume*virial_all[i]; } // per-atom energy/virial // energy includes self-energy correction // notal accounts for TIP4P tallying eatom/vatom for ghost atoms if (evflag_atom) { double *q = atom->q; int nlocal = atom->nlocal; int ntotal = nlocal; if (tip4pflag) ntotal += atom->nghost; if (eflag_atom) { for (i = 0; i < nlocal; i++) { eatom[i] *= 0.5; eatom[i] -= g_ewald*q[i]*q[i]/MY_PIS + MY_PI2*q[i]*qsum / (g_ewald*g_ewald*volume); eatom[i] *= qscale; } for (i = nlocal; i < ntotal; i++) eatom[i] *= 0.5*qscale; } if (vflag_atom) { for (i = 0; i < ntotal; i++) for (j = 0; j < 6; j++) vatom[i][j] *= 0.5*qscale; } } // 2d slab correction if (slabflag == 1) slabcorr(); // convert atoms back from lamda to box coords if (triclinic) domain->lamda2x(atom->nlocal); } /* ---------------------------------------------------------------------- allocate memory that depends on # of K-vectors and order ------------------------------------------------------------------------- */ void PPPM::allocate() { memory->create3d_offset(density_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:density_brick"); memory->create(density_fft,nfft_both,"pppm:density_fft"); memory->create(greensfn,nfft_both,"pppm:greensfn"); memory->create(work1,2*nfft_both,"pppm:work1"); memory->create(work2,2*nfft_both,"pppm:work2"); memory->create(vg,nfft_both,6,"pppm:vg"); if (triclinic == 0) { memory->create1d_offset(fkx,nxlo_fft,nxhi_fft,"pppm:fkx"); memory->create1d_offset(fky,nylo_fft,nyhi_fft,"pppm:fky"); memory->create1d_offset(fkz,nzlo_fft,nzhi_fft,"pppm:fkz"); } else { memory->create(fkx,nfft_both,"pppm:fkx"); memory->create(fky,nfft_both,"pppm:fky"); memory->create(fkz,nfft_both,"pppm:fkz"); } if (differentiation_flag == 1) { memory->create3d_offset(u_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:u_brick"); memory->create(sf_precoeff1,nfft_both,"pppm:sf_precoeff1"); memory->create(sf_precoeff2,nfft_both,"pppm:sf_precoeff2"); memory->create(sf_precoeff3,nfft_both,"pppm:sf_precoeff3"); memory->create(sf_precoeff4,nfft_both,"pppm:sf_precoeff4"); memory->create(sf_precoeff5,nfft_both,"pppm:sf_precoeff5"); memory->create(sf_precoeff6,nfft_both,"pppm:sf_precoeff6"); } else { memory->create3d_offset(vdx_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:vdx_brick"); memory->create3d_offset(vdy_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:vdy_brick"); memory->create3d_offset(vdz_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:vdz_brick"); } // summation coeffs - if (!stagger_flag) memory->create(gf_b,order,"pppm:gf_b"); + memory->create(gf_b,order,"pppm:gf_b"); memory->create2d_offset(rho1d,3,-order/2,order/2,"pppm:rho1d"); memory->create2d_offset(drho1d,3,-order/2,order/2,"pppm:drho1d"); memory->create2d_offset(rho_coeff,order,(1-order)/2,order/2,"pppm:rho_coeff"); memory->create2d_offset(drho_coeff,order,(1-order)/2,order/2, "pppm:drho_coeff"); // create 2 FFTs and a Remap // 1st FFT keeps data in FFT decompostion // 2nd FFT returns data in 3d brick decomposition // remap takes data from 3d brick to FFT decomposition int tmp; fft1 = new FFT3d(lmp,world,nx_pppm,ny_pppm,nz_pppm, nxlo_fft,nxhi_fft,nylo_fft,nyhi_fft,nzlo_fft,nzhi_fft, nxlo_fft,nxhi_fft,nylo_fft,nyhi_fft,nzlo_fft,nzhi_fft, 0,0,&tmp); fft2 = new FFT3d(lmp,world,nx_pppm,ny_pppm,nz_pppm, nxlo_fft,nxhi_fft,nylo_fft,nyhi_fft,nzlo_fft,nzhi_fft, nxlo_in,nxhi_in,nylo_in,nyhi_in,nzlo_in,nzhi_in, 0,0,&tmp); remap = new Remap(lmp,world, nxlo_in,nxhi_in,nylo_in,nyhi_in,nzlo_in,nzhi_in, nxlo_fft,nxhi_fft,nylo_fft,nyhi_fft,nzlo_fft,nzhi_fft, 1,0,0,FFT_PRECISION); // create ghost grid object for rho and electric field communication int (*procneigh)[2] = comm->procneigh; if (differentiation_flag == 1) cg = new CommGrid(lmp,world,1,1, nxlo_in,nxhi_in,nylo_in,nyhi_in,nzlo_in,nzhi_in, nxlo_out,nxhi_out,nylo_out,nyhi_out,nzlo_out,nzhi_out, procneigh[0][0],procneigh[0][1],procneigh[1][0], procneigh[1][1],procneigh[2][0],procneigh[2][1]); else cg = new CommGrid(lmp,world,3,1, nxlo_in,nxhi_in,nylo_in,nyhi_in,nzlo_in,nzhi_in, nxlo_out,nxhi_out,nylo_out,nyhi_out,nzlo_out,nzhi_out, procneigh[0][0],procneigh[0][1],procneigh[1][0], procneigh[1][1],procneigh[2][0],procneigh[2][1]); } /* ---------------------------------------------------------------------- deallocate memory that depends on # of K-vectors and order ------------------------------------------------------------------------- */ void PPPM::deallocate() { memory->destroy3d_offset(density_brick,nzlo_out,nylo_out,nxlo_out); if (differentiation_flag == 1) { memory->destroy3d_offset(u_brick,nzlo_out,nylo_out,nxlo_out); memory->destroy(sf_precoeff1); memory->destroy(sf_precoeff2); memory->destroy(sf_precoeff3); memory->destroy(sf_precoeff4); memory->destroy(sf_precoeff5); memory->destroy(sf_precoeff6); } else { memory->destroy3d_offset(vdx_brick,nzlo_out,nylo_out,nxlo_out); memory->destroy3d_offset(vdy_brick,nzlo_out,nylo_out,nxlo_out); memory->destroy3d_offset(vdz_brick,nzlo_out,nylo_out,nxlo_out); } memory->destroy(density_fft); memory->destroy(greensfn); memory->destroy(work1); memory->destroy(work2); memory->destroy(vg); if (triclinic == 0) { memory->destroy1d_offset(fkx,nxlo_fft); memory->destroy1d_offset(fky,nylo_fft); memory->destroy1d_offset(fkz,nzlo_fft); } else { memory->destroy(fkx); memory->destroy(fky); memory->destroy(fkz); } memory->destroy(gf_b); - if (stagger_flag) gf_b = NULL; memory->destroy2d_offset(rho1d,-order/2); memory->destroy2d_offset(drho1d,-order/2); memory->destroy2d_offset(rho_coeff,(1-order)/2); memory->destroy2d_offset(drho_coeff,(1-order)/2); delete fft1; delete fft2; delete remap; delete cg; } /* ---------------------------------------------------------------------- allocate per-atom memory that depends on # of K-vectors and order ------------------------------------------------------------------------- */ void PPPM::allocate_peratom() { peratom_allocate_flag = 1; if (differentiation_flag != 1) memory->create3d_offset(u_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:u_brick"); memory->create3d_offset(v0_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:v0_brick"); memory->create3d_offset(v1_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:v1_brick"); memory->create3d_offset(v2_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:v2_brick"); memory->create3d_offset(v3_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:v3_brick"); memory->create3d_offset(v4_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:v4_brick"); memory->create3d_offset(v5_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:v5_brick"); // create ghost grid object for rho and electric field communication int (*procneigh)[2] = comm->procneigh; if (differentiation_flag == 1) cg_peratom = new CommGrid(lmp,world,6,1, nxlo_in,nxhi_in,nylo_in,nyhi_in,nzlo_in,nzhi_in, nxlo_out,nxhi_out,nylo_out,nyhi_out,nzlo_out,nzhi_out, procneigh[0][0],procneigh[0][1],procneigh[1][0], procneigh[1][1],procneigh[2][0],procneigh[2][1]); else cg_peratom = new CommGrid(lmp,world,7,1, nxlo_in,nxhi_in,nylo_in,nyhi_in,nzlo_in,nzhi_in, nxlo_out,nxhi_out,nylo_out,nyhi_out,nzlo_out,nzhi_out, procneigh[0][0],procneigh[0][1],procneigh[1][0], procneigh[1][1],procneigh[2][0],procneigh[2][1]); } /* ---------------------------------------------------------------------- deallocate per-atom memory that depends on # of K-vectors and order ------------------------------------------------------------------------- */ void PPPM::deallocate_peratom() { peratom_allocate_flag = 0; memory->destroy3d_offset(v0_brick,nzlo_out,nylo_out,nxlo_out); memory->destroy3d_offset(v1_brick,nzlo_out,nylo_out,nxlo_out); memory->destroy3d_offset(v2_brick,nzlo_out,nylo_out,nxlo_out); memory->destroy3d_offset(v3_brick,nzlo_out,nylo_out,nxlo_out); memory->destroy3d_offset(v4_brick,nzlo_out,nylo_out,nxlo_out); memory->destroy3d_offset(v5_brick,nzlo_out,nylo_out,nxlo_out); if (differentiation_flag != 1) memory->destroy3d_offset(u_brick,nzlo_out,nylo_out,nxlo_out); delete cg_peratom; } /* ---------------------------------------------------------------------- set global size of PPPM grid = nx,ny,nz_pppm used for charge accumulation, FFTs, and electric field interpolation ------------------------------------------------------------------------- */ void PPPM::set_grid_global() { // use xprd,yprd,zprd (even if triclinic, and then scale later) // adjust z dimension for 2d slab PPPM // 3d PPPM just uses zprd since slab_volfactor = 1.0 double xprd = domain->xprd; double yprd = domain->yprd; double zprd = domain->zprd; double zprd_slab = zprd*slab_volfactor; // make initial g_ewald estimate // based on desired accuracy and real space cutoff // fluid-occupied volume used to estimate real-space error // zprd used rather than zprd_slab double h; bigint natoms = atom->natoms; if (!gewaldflag) { if (accuracy <= 0.0) error->all(FLERR,"KSpace accuracy must be > 0"); g_ewald = accuracy*sqrt(natoms*cutoff*xprd*yprd*zprd) / (2.0*q2); if (g_ewald >= 1.0) g_ewald = (1.35 - 0.15*log(accuracy))/cutoff; else g_ewald = sqrt(-log(g_ewald)) / cutoff; } // set optimal nx_pppm,ny_pppm,nz_pppm based on order and accuracy // nz_pppm uses extended zprd_slab instead of zprd // reduce it until accuracy target is met if (!gridflag) { - if (differentiation_flag == 1 || stagger_flag) { + if (differentiation_flag == 1) { h = h_x = h_y = h_z = 4.0/g_ewald; int count = 0; while (1) { // set grid dimension nx_pppm = static_cast<int> (xprd/h_x); ny_pppm = static_cast<int> (yprd/h_y); nz_pppm = static_cast<int> (zprd_slab/h_z); if (nx_pppm <= 1) nx_pppm = 2; if (ny_pppm <= 1) ny_pppm = 2; if (nz_pppm <= 1) nz_pppm = 2; //set local grid dimension int npey_fft,npez_fft; if (nz_pppm >= nprocs) { npey_fft = 1; npez_fft = nprocs; } else procs2grid2d(nprocs,ny_pppm,nz_pppm,&npey_fft,&npez_fft); int me_y = me % npey_fft; int me_z = me / npey_fft; nxlo_fft = 0; nxhi_fft = nx_pppm - 1; nylo_fft = me_y*ny_pppm/npey_fft; nyhi_fft = (me_y+1)*ny_pppm/npey_fft - 1; nzlo_fft = me_z*nz_pppm/npez_fft; nzhi_fft = (me_z+1)*nz_pppm/npez_fft - 1; double df_kspace = compute_df_kspace(); count++; // break loop if the accuracy has been reached or // too many loops have been performed if (df_kspace <= accuracy) break; if (count > 500) error->all(FLERR, "Could not compute grid size"); h *= 0.95; h_x = h_y = h_z = h; } } else { double err; h_x = h_y = h_z = 1.0/g_ewald; nx_pppm = static_cast<int> (xprd/h_x) + 1; ny_pppm = static_cast<int> (yprd/h_y) + 1; nz_pppm = static_cast<int> (zprd_slab/h_z) + 1; err = estimate_ik_error(h_x,xprd,natoms); while (err > accuracy) { err = estimate_ik_error(h_x,xprd,natoms); nx_pppm++; h_x = xprd/nx_pppm; } err = estimate_ik_error(h_y,yprd,natoms); while (err > accuracy) { err = estimate_ik_error(h_y,yprd,natoms); ny_pppm++; h_y = yprd/ny_pppm; } err = estimate_ik_error(h_z,zprd_slab,natoms); while (err > accuracy) { err = estimate_ik_error(h_z,zprd_slab,natoms); nz_pppm++; h_z = zprd_slab/nz_pppm; } } // scale grid for triclinic skew if (triclinic) { double tmp[3]; tmp[0] = nx_pppm/xprd; tmp[1] = ny_pppm/yprd; tmp[2] = nz_pppm/zprd; lamda2xT(&tmp[0],&tmp[0]); nx_pppm = static_cast<int>(tmp[0]) + 1; ny_pppm = static_cast<int>(tmp[1]) + 1; nz_pppm = static_cast<int>(tmp[2]) + 1; } } // boost grid size until it is factorable while (!factorable(nx_pppm)) nx_pppm++; while (!factorable(ny_pppm)) ny_pppm++; while (!factorable(nz_pppm)) nz_pppm++; if (triclinic == 0) { h_x = xprd/nx_pppm; h_y = yprd/ny_pppm; h_z = zprd_slab/nz_pppm; } else { double tmp[3]; tmp[0] = nx_pppm; tmp[1] = ny_pppm; tmp[2] = nz_pppm; x2lamdaT(&tmp[0],&tmp[0]); h_x = 1.0/tmp[0]; h_y = 1.0/tmp[1]; h_z = 1.0/tmp[2]; } if (nx_pppm >= OFFSET || ny_pppm >= OFFSET || nz_pppm >= OFFSET) error->all(FLERR,"PPPM grid is too large"); } /* ---------------------------------------------------------------------- check if all factors of n are in list of factors return 1 if yes, 0 if no ------------------------------------------------------------------------- */ int PPPM::factorable(int n) { int i; while (n > 1) { for (i = 0; i < nfactors; i++) { if (n % factors[i] == 0) { n /= factors[i]; break; } } if (i == nfactors) return 0; } return 1; } /* ---------------------------------------------------------------------- compute estimated kspace force error ------------------------------------------------------------------------- */ double PPPM::compute_df_kspace() { double xprd = domain->xprd; double yprd = domain->yprd; double zprd = domain->zprd; double zprd_slab = zprd*slab_volfactor; bigint natoms = atom->natoms; double df_kspace = 0.0; - if (differentiation_flag == 1 || stagger_flag) { + if (differentiation_flag == 1) { double qopt = compute_qopt(); df_kspace = sqrt(qopt/natoms)*q2/(xprd*yprd*zprd_slab); } else { double lprx = estimate_ik_error(h_x,xprd,natoms); double lpry = estimate_ik_error(h_y,yprd,natoms); double lprz = estimate_ik_error(h_z,zprd_slab,natoms); df_kspace = sqrt(lprx*lprx + lpry*lpry + lprz*lprz) / sqrt(3.0); } return df_kspace; } /* ---------------------------------------------------------------------- compute qopt ------------------------------------------------------------------------- */ double PPPM::compute_qopt() { double qopt = 0.0; double *prd = domain->prd; const double xprd = prd[0]; const double yprd = prd[1]; const double zprd = prd[2]; const double zprd_slab = zprd*slab_volfactor; volume = xprd * yprd * zprd_slab; const double unitkx = (MY_2PI/xprd); const double unitky = (MY_2PI/yprd); const double unitkz = (MY_2PI/zprd_slab); double argx,argy,argz,wx,wy,wz,sx,sy,sz,qx,qy,qz; double u1, u2, sqk; double sum1,sum2,sum3,sum4,dot2; int k,l,m,nx,ny,nz; const int twoorder = 2*order; for (m = nzlo_fft; m <= nzhi_fft; m++) { const int mper = m - nz_pppm*(2*m/nz_pppm); for (l = nylo_fft; l <= nyhi_fft; l++) { const int lper = l - ny_pppm*(2*l/ny_pppm); for (k = nxlo_fft; k <= nxhi_fft; k++) { const int kper = k - nx_pppm*(2*k/nx_pppm); sqk = square(unitkx*kper) + square(unitky*lper) + square(unitkz*mper); if (sqk != 0.0) { sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; for (nx = -2; nx <= 2; nx++) { qx = unitkx*(kper+nx_pppm*nx); sx = exp(-0.25*square(qx/g_ewald)); argx = 0.5*qx*xprd/nx_pppm; wx = powsinxx(argx,twoorder); qx *= qx; for (ny = -2; ny <= 2; ny++) { qy = unitky*(lper+ny_pppm*ny); sy = exp(-0.25*square(qy/g_ewald)); argy = 0.5*qy*yprd/ny_pppm; wy = powsinxx(argy,twoorder); qy *= qy; for (nz = -2; nz <= 2; nz++) { qz = unitkz*(mper+nz_pppm*nz); sz = exp(-0.25*square(qz/g_ewald)); argz = 0.5*qz*zprd_slab/nz_pppm; wz = powsinxx(argz,twoorder); qz *= qz; dot2 = qx+qy+qz; u1 = sx*sy*sz; u2 = wx*wy*wz; sum1 += u1*u1/dot2*MY_4PI*MY_4PI; sum2 += u1 * u2 * MY_4PI; sum3 += u2; sum4 += dot2*u2; } } } sum2 *= sum2; qopt += sum1 - sum2/(sum3*sum4); } } } } double qopt_all; MPI_Allreduce(&qopt,&qopt_all,1,MPI_DOUBLE,MPI_SUM,world); return qopt_all; } /* ---------------------------------------------------------------------- estimate kspace force error for ik method ------------------------------------------------------------------------- */ double PPPM::estimate_ik_error(double h, double prd, bigint natoms) { double sum = 0.0; for (int m = 0; m < order; m++) sum += acons[order][m] * pow(h*g_ewald,2.0*m); double value = q2 * pow(h*g_ewald,(double)order) * sqrt(g_ewald*prd*sqrt(MY_2PI)*sum/natoms) / (prd*prd); return value; } /* ---------------------------------------------------------------------- adjust the g_ewald parameter to near its optimal value using a Newton-Raphson solver ------------------------------------------------------------------------- */ void PPPM::adjust_gewald() { double dx; for (int i = 0; i < LARGE; i++) { dx = newton_raphson_f() / derivf(); g_ewald -= dx; if (fabs(newton_raphson_f()) < SMALL) return; } char str[128]; sprintf(str, "Could not compute g_ewald"); error->all(FLERR, str); } /* ---------------------------------------------------------------------- Calculate f(x) using Newton-Raphson solver ------------------------------------------------------------------------- */ double PPPM::newton_raphson_f() { double xprd = domain->xprd; double yprd = domain->yprd; double zprd = domain->zprd; bigint natoms = atom->natoms; double df_rspace = 2.0*q2*exp(-g_ewald*g_ewald*cutoff*cutoff) / sqrt(natoms*cutoff*xprd*yprd*zprd); double df_kspace = compute_df_kspace(); return df_rspace - df_kspace; } /* ---------------------------------------------------------------------- Calculate numerical derivative f'(x) using forward difference [f(x + h) - f(x)] / h ------------------------------------------------------------------------- */ double PPPM::derivf() { double h = 0.000001; //Derivative step-size double df,f1,f2,g_ewald_old; f1 = newton_raphson_f(); g_ewald_old = g_ewald; g_ewald += h; f2 = newton_raphson_f(); g_ewald = g_ewald_old; df = (f2 - f1)/h; return df; } /* ---------------------------------------------------------------------- Calculate the final estimate of the accuracy ------------------------------------------------------------------------- */ double PPPM::final_accuracy() { double xprd = domain->xprd; double yprd = domain->yprd; double zprd = domain->zprd; double zprd_slab = zprd*slab_volfactor; bigint natoms = atom->natoms; double df_kspace = compute_df_kspace(); double q2_over_sqrt = q2 / sqrt(natoms*cutoff*xprd*yprd*zprd); double df_rspace = 2.0 * q2_over_sqrt * exp(-g_ewald*g_ewald*cutoff*cutoff); double df_table = estimate_table_accuracy(q2_over_sqrt,df_rspace); double estimated_accuracy = sqrt(df_kspace*df_kspace + df_rspace*df_rspace + df_table*df_table); return estimated_accuracy; } /* ---------------------------------------------------------------------- set local subset of PPPM/FFT grid that I own n xyz lo/hi in = 3d brick that I own (inclusive) n xyz lo/hi out = 3d brick + ghost cells in 6 directions (inclusive) n xyz lo/hi fft = FFT columns that I own (all of x dim, 2d decomp in yz) ------------------------------------------------------------------------- */ void PPPM::set_grid_local() { // global indices of PPPM grid range from 0 to N-1 // nlo_in,nhi_in = lower/upper limits of the 3d sub-brick of // global PPPM grid that I own without ghost cells // for slab PPPM, assign z grid as if it were not extended nxlo_in = static_cast<int> (comm->xsplit[comm->myloc[0]] * nx_pppm); nxhi_in = static_cast<int> (comm->xsplit[comm->myloc[0]+1] * nx_pppm) - 1; nylo_in = static_cast<int> (comm->ysplit[comm->myloc[1]] * ny_pppm); nyhi_in = static_cast<int> (comm->ysplit[comm->myloc[1]+1] * ny_pppm) - 1; nzlo_in = static_cast<int> (comm->zsplit[comm->myloc[2]] * nz_pppm/slab_volfactor); nzhi_in = static_cast<int> (comm->zsplit[comm->myloc[2]+1] * nz_pppm/slab_volfactor) - 1; // nlower,nupper = stencil size for mapping particles to PPPM grid nlower = -(order-1)/2; nupper = order/2; // shift values for particle <-> grid mapping // add/subtract OFFSET to avoid int(-0.75) = 0 when want it to be -1 if (order % 2) shift = OFFSET + 0.5; else shift = OFFSET; if (order % 2) shiftone = 0.0; else shiftone = 0.5; // nlo_out,nhi_out = lower/upper limits of the 3d sub-brick of // global PPPM grid that my particles can contribute charge to // effectively nlo_in,nhi_in + ghost cells // nlo,nhi = global coords of grid pt to "lower left" of smallest/largest // position a particle in my box can be at // dist[3] = particle position bound = subbox + skin/2.0 + qdist // qdist = offset due to TIP4P fictitious charge // convert to triclinic if necessary // nlo_out,nhi_out = nlo,nhi + stencil size for particle mapping // for slab PPPM, assign z grid as if it were not extended double *prd,*sublo,*subhi; if (triclinic == 0) { prd = domain->prd; boxlo = domain->boxlo; sublo = domain->sublo; subhi = domain->subhi; } else { prd = domain->prd_lamda; boxlo = domain->boxlo_lamda; sublo = domain->sublo_lamda; subhi = domain->subhi_lamda; } double xprd = prd[0]; double yprd = prd[1]; double zprd = prd[2]; double zprd_slab = zprd*slab_volfactor; double dist[3]; double cuthalf = 0.5*neighbor->skin + qdist; if (triclinic == 0) dist[0] = dist[1] = dist[2] = cuthalf; else kspacebbox(cuthalf,&dist[0]); int nlo,nhi; nlo = static_cast<int> ((sublo[0]-dist[0]-boxlo[0]) * nx_pppm/xprd + shift) - OFFSET; nhi = static_cast<int> ((subhi[0]+dist[0]-boxlo[0]) * nx_pppm/xprd + shift) - OFFSET; nxlo_out = nlo + nlower; nxhi_out = nhi + nupper; nlo = static_cast<int> ((sublo[1]-dist[1]-boxlo[1]) * ny_pppm/yprd + shift) - OFFSET; nhi = static_cast<int> ((subhi[1]+dist[1]-boxlo[1]) * ny_pppm/yprd + shift) - OFFSET; nylo_out = nlo + nlower; nyhi_out = nhi + nupper; nlo = static_cast<int> ((sublo[2]-dist[2]-boxlo[2]) * nz_pppm/zprd_slab + shift) - OFFSET; nhi = static_cast<int> ((subhi[2]+dist[2]-boxlo[2]) * nz_pppm/zprd_slab + shift) - OFFSET; nzlo_out = nlo + nlower; nzhi_out = nhi + nupper; - if (stagger_flag) { - nxhi_out++; - nyhi_out++; - nzhi_out++; - } - // for slab PPPM, change the grid boundary for processors at +z end // to include the empty volume between periodically repeating slabs // for slab PPPM, want charge data communicated from -z proc to +z proc, // but not vice versa, also want field data communicated from +z proc to // -z proc, but not vice versa // this is accomplished by nzhi_in = nzhi_out on +z end (no ghost cells) // also insure no other procs use ghost cells beyond +z limit if (slabflag) { if (comm->myloc[2] == comm->procgrid[2]-1) nzhi_in = nzhi_out = nz_pppm - 1; nzhi_out = MIN(nzhi_out,nz_pppm-1); } // decomposition of FFT mesh // global indices range from 0 to N-1 // proc owns entire x-dimension, clumps of columns in y,z dimensions // npey_fft,npez_fft = # of procs in y,z dims // if nprocs is small enough, proc can own 1 or more entire xy planes, // else proc owns 2d sub-blocks of yz plane // me_y,me_z = which proc (0-npe_fft-1) I am in y,z dimensions // nlo_fft,nhi_fft = lower/upper limit of the section // of the global FFT mesh that I own int npey_fft,npez_fft; if (nz_pppm >= nprocs) { npey_fft = 1; npez_fft = nprocs; } else procs2grid2d(nprocs,ny_pppm,nz_pppm,&npey_fft,&npez_fft); int me_y = me % npey_fft; int me_z = me / npey_fft; nxlo_fft = 0; nxhi_fft = nx_pppm - 1; nylo_fft = me_y*ny_pppm/npey_fft; nyhi_fft = (me_y+1)*ny_pppm/npey_fft - 1; nzlo_fft = me_z*nz_pppm/npez_fft; nzhi_fft = (me_z+1)*nz_pppm/npez_fft - 1; // PPPM grid pts owned by this proc, including ghosts ngrid = (nxhi_out-nxlo_out+1) * (nyhi_out-nylo_out+1) * (nzhi_out-nzlo_out+1); // FFT grids owned by this proc, without ghosts // nfft = FFT points in FFT decomposition on this proc // nfft_brick = FFT points in 3d brick-decomposition on this proc // nfft_both = greater of 2 values nfft = (nxhi_fft-nxlo_fft+1) * (nyhi_fft-nylo_fft+1) * (nzhi_fft-nzlo_fft+1); int nfft_brick = (nxhi_in-nxlo_in+1) * (nyhi_in-nylo_in+1) * (nzhi_in-nzlo_in+1); nfft_both = MAX(nfft,nfft_brick); } /* ---------------------------------------------------------------------- pre-compute Green's function denominator expansion coeffs, Gamma(2n) ------------------------------------------------------------------------- */ void PPPM::compute_gf_denom() { int k,l,m; for (l = 1; l < order; l++) gf_b[l] = 0.0; gf_b[0] = 1.0; for (m = 1; m < order; m++) { for (l = m; l > 0; l--) gf_b[l] = 4.0 * (gf_b[l]*(l-m)*(l-m-0.5)-gf_b[l-1]*(l-m-1)*(l-m-1)); gf_b[0] = 4.0 * (gf_b[0]*(l-m)*(l-m-0.5)); } bigint ifact = 1; for (k = 1; k < 2*order; k++) ifact *= k; double gaminv = 1.0/ifact; for (l = 0; l < order; l++) gf_b[l] *= gaminv; } /* ---------------------------------------------------------------------- pre-compute modified (Hockney-Eastwood) Coulomb Green's function ------------------------------------------------------------------------- */ void PPPM::compute_gf_ik() { const double * const prd = domain->prd; const double xprd = prd[0]; const double yprd = prd[1]; const double zprd = prd[2]; const double zprd_slab = zprd*slab_volfactor; const double unitkx = (MY_2PI/xprd); const double unitky = (MY_2PI/yprd); const double unitkz = (MY_2PI/zprd_slab); double snx,sny,snz; double argx,argy,argz,wx,wy,wz,sx,sy,sz,qx,qy,qz; double sum1,dot1,dot2; double numerator,denominator; double sqk; int k,l,m,n,nx,ny,nz,kper,lper,mper; const int nbx = static_cast<int> ((g_ewald*xprd/(MY_PI*nx_pppm)) * pow(-log(EPS_HOC),0.25)); const int nby = static_cast<int> ((g_ewald*yprd/(MY_PI*ny_pppm)) * pow(-log(EPS_HOC),0.25)); const int nbz = static_cast<int> ((g_ewald*zprd_slab/(MY_PI*nz_pppm)) * pow(-log(EPS_HOC),0.25)); const int twoorder = 2*order; n = 0; for (m = nzlo_fft; m <= nzhi_fft; m++) { mper = m - nz_pppm*(2*m/nz_pppm); snz = square(sin(0.5*unitkz*mper*zprd_slab/nz_pppm)); for (l = nylo_fft; l <= nyhi_fft; l++) { lper = l - ny_pppm*(2*l/ny_pppm); sny = square(sin(0.5*unitky*lper*yprd/ny_pppm)); for (k = nxlo_fft; k <= nxhi_fft; k++) { kper = k - nx_pppm*(2*k/nx_pppm); snx = square(sin(0.5*unitkx*kper*xprd/nx_pppm)); sqk = square(unitkx*kper) + square(unitky*lper) + square(unitkz*mper); if (sqk != 0.0) { numerator = 12.5663706/sqk; denominator = gf_denom(snx,sny,snz); sum1 = 0.0; for (nx = -nbx; nx <= nbx; nx++) { qx = unitkx*(kper+nx_pppm*nx); sx = exp(-0.25*square(qx/g_ewald)); argx = 0.5*qx*xprd/nx_pppm; wx = powsinxx(argx,twoorder); for (ny = -nby; ny <= nby; ny++) { qy = unitky*(lper+ny_pppm*ny); sy = exp(-0.25*square(qy/g_ewald)); argy = 0.5*qy*yprd/ny_pppm; wy = powsinxx(argy,twoorder); for (nz = -nbz; nz <= nbz; nz++) { qz = unitkz*(mper+nz_pppm*nz); sz = exp(-0.25*square(qz/g_ewald)); argz = 0.5*qz*zprd_slab/nz_pppm; wz = powsinxx(argz,twoorder); dot1 = unitkx*kper*qx + unitky*lper*qy + unitkz*mper*qz; dot2 = qx*qx+qy*qy+qz*qz; sum1 += (dot1/dot2) * sx*sy*sz * wx*wy*wz; } } } greensfn[n++] = numerator*sum1/denominator; } else greensfn[n++] = 0.0; } } } } /* ---------------------------------------------------------------------- pre-compute modified (Hockney-Eastwood) Coulomb Green's function for a triclinic system ------------------------------------------------------------------------- */ void PPPM::compute_gf_ik_triclinic() { double snx,sny,snz; double argx,argy,argz,wx,wy,wz,sx,sy,sz,qx,qy,qz; double sum1,dot1,dot2; double numerator,denominator; double sqk; int k,l,m,n,nx,ny,nz,kper,lper,mper; double tmp[3]; tmp[0] = (g_ewald/(MY_PI*nx_pppm)) * pow(-log(EPS_HOC),0.25); tmp[1] = (g_ewald/(MY_PI*ny_pppm)) * pow(-log(EPS_HOC),0.25); tmp[2] = (g_ewald/(MY_PI*nz_pppm)) * pow(-log(EPS_HOC),0.25); lamda2xT(&tmp[0],&tmp[0]); const int nbx = static_cast<int> (tmp[0]); const int nby = static_cast<int> (tmp[1]); const int nbz = static_cast<int> (tmp[2]); const int twoorder = 2*order; n = 0; for (m = nzlo_fft; m <= nzhi_fft; m++) { mper = m - nz_pppm*(2*m/nz_pppm); snz = square(sin(MY_PI*mper/nz_pppm)); for (l = nylo_fft; l <= nyhi_fft; l++) { lper = l - ny_pppm*(2*l/ny_pppm); sny = square(sin(MY_PI*lper/ny_pppm)); for (k = nxlo_fft; k <= nxhi_fft; k++) { kper = k - nx_pppm*(2*k/nx_pppm); snx = square(sin(MY_PI*kper/nx_pppm)); double unitk_lamda[3]; unitk_lamda[0] = 2.0*MY_PI*kper; unitk_lamda[1] = 2.0*MY_PI*lper; unitk_lamda[2] = 2.0*MY_PI*mper; x2lamdaT(&unitk_lamda[0],&unitk_lamda[0]); sqk = square(unitk_lamda[0]) + square(unitk_lamda[1]) + square(unitk_lamda[2]); if (sqk != 0.0) { numerator = 12.5663706/sqk; denominator = gf_denom(snx,sny,snz); sum1 = 0.0; for (nx = -nbx; nx <= nbx; nx++) { argx = MY_PI*kper/nx_pppm + MY_PI*nx; wx = powsinxx(argx,twoorder); for (ny = -nby; ny <= nby; ny++) { argy = MY_PI*lper/ny_pppm + MY_PI*ny; wy = powsinxx(argy,twoorder); for (nz = -nbz; nz <= nbz; nz++) { argz = MY_PI*mper/nz_pppm + MY_PI*nz; wz = powsinxx(argz,twoorder); double b[3]; b[0] = 2.0*MY_PI*nx_pppm*nx; b[1] = 2.0*MY_PI*ny_pppm*ny; b[2] = 2.0*MY_PI*nz_pppm*nz; x2lamdaT(&b[0],&b[0]); qx = unitk_lamda[0]+b[0]; sx = exp(-0.25*square(qx/g_ewald)); qy = unitk_lamda[1]+b[1]; sy = exp(-0.25*square(qy/g_ewald)); qz = unitk_lamda[2]+b[2]; sz = exp(-0.25*square(qz/g_ewald)); dot1 = unitk_lamda[0]*qx + unitk_lamda[1]*qy + unitk_lamda[2]*qz; dot2 = qx*qx+qy*qy+qz*qz; sum1 += (dot1/dot2) * sx*sy*sz * wx*wy*wz; } } } greensfn[n++] = numerator*sum1/denominator; } else greensfn[n++] = 0.0; } } } } /* ---------------------------------------------------------------------- compute optimized Green's function for energy calculation ------------------------------------------------------------------------- */ void PPPM::compute_gf_ad() { const double * const prd = domain->prd; const double xprd = prd[0]; const double yprd = prd[1]; const double zprd = prd[2]; const double zprd_slab = zprd*slab_volfactor; const double unitkx = (MY_2PI/xprd); const double unitky = (MY_2PI/yprd); const double unitkz = (MY_2PI/zprd_slab); double snx,sny,snz,sqk; double argx,argy,argz,wx,wy,wz,sx,sy,sz,qx,qy,qz; double numerator,denominator; int k,l,m,n,kper,lper,mper; const int twoorder = 2*order; for (int i = 0; i < 6; i++) sf_coeff[i] = 0.0; n = 0; for (m = nzlo_fft; m <= nzhi_fft; m++) { mper = m - nz_pppm*(2*m/nz_pppm); qz = unitkz*mper; snz = square(sin(0.5*qz*zprd_slab/nz_pppm)); sz = exp(-0.25*square(qz/g_ewald)); argz = 0.5*qz*zprd_slab/nz_pppm; wz = powsinxx(argz,twoorder); for (l = nylo_fft; l <= nyhi_fft; l++) { lper = l - ny_pppm*(2*l/ny_pppm); qy = unitky*lper; sny = square(sin(0.5*qy*yprd/ny_pppm)); sy = exp(-0.25*square(qy/g_ewald)); argy = 0.5*qy*yprd/ny_pppm; wy = powsinxx(argy,twoorder); for (k = nxlo_fft; k <= nxhi_fft; k++) { kper = k - nx_pppm*(2*k/nx_pppm); qx = unitkx*kper; snx = square(sin(0.5*qx*xprd/nx_pppm)); sx = exp(-0.25*square(qx/g_ewald)); argx = 0.5*qx*xprd/nx_pppm; wx = powsinxx(argx,twoorder); sqk = qx*qx + qy*qy + qz*qz; if (sqk != 0.0) { numerator = MY_4PI/sqk; denominator = gf_denom(snx,sny,snz); greensfn[n] = numerator*sx*sy*sz*wx*wy*wz/denominator; sf_coeff[0] += sf_precoeff1[n]*greensfn[n]; sf_coeff[1] += sf_precoeff2[n]*greensfn[n]; sf_coeff[2] += sf_precoeff3[n]*greensfn[n]; sf_coeff[3] += sf_precoeff4[n]*greensfn[n]; sf_coeff[4] += sf_precoeff5[n]*greensfn[n]; sf_coeff[5] += sf_precoeff6[n]*greensfn[n]; n++; } else { greensfn[n] = 0.0; sf_coeff[0] += sf_precoeff1[n]*greensfn[n]; sf_coeff[1] += sf_precoeff2[n]*greensfn[n]; sf_coeff[2] += sf_precoeff3[n]*greensfn[n]; sf_coeff[3] += sf_precoeff4[n]*greensfn[n]; sf_coeff[4] += sf_precoeff5[n]*greensfn[n]; sf_coeff[5] += sf_precoeff6[n]*greensfn[n]; n++; } } } } // compute the coefficients for the self-force correction double prex, prey, prez; prex = prey = prez = MY_PI/volume; prex *= nx_pppm/xprd; prey *= ny_pppm/yprd; prez *= nz_pppm/zprd_slab; sf_coeff[0] *= prex; sf_coeff[1] *= prex*2; sf_coeff[2] *= prey; sf_coeff[3] *= prey*2; sf_coeff[4] *= prez; sf_coeff[5] *= prez*2; // communicate values with other procs double tmp[6]; MPI_Allreduce(sf_coeff,tmp,6,MPI_DOUBLE,MPI_SUM,world); for (n = 0; n < 6; n++) sf_coeff[n] = tmp[n]; } /* ---------------------------------------------------------------------- compute self force coefficients for ad-differentiation scheme ------------------------------------------------------------------------- */ void PPPM::compute_sf_precoeff() { int i,k,l,m,n; int nx,ny,nz,kper,lper,mper; double wx0[5],wy0[5],wz0[5],wx1[5],wy1[5],wz1[5],wx2[5],wy2[5],wz2[5]; double qx0,qy0,qz0,qx1,qy1,qz1,qx2,qy2,qz2; double u0,u1,u2,u3,u4,u5,u6; double sum1,sum2,sum3,sum4,sum5,sum6; n = 0; for (m = nzlo_fft; m <= nzhi_fft; m++) { mper = m - nz_pppm*(2*m/nz_pppm); for (l = nylo_fft; l <= nyhi_fft; l++) { lper = l - ny_pppm*(2*l/ny_pppm); for (k = nxlo_fft; k <= nxhi_fft; k++) { kper = k - nx_pppm*(2*k/nx_pppm); sum1 = sum2 = sum3 = sum4 = sum5 = sum6 = 0.0; for (i = 0; i < 5; i++) { qx0 = MY_2PI*(kper+nx_pppm*(i-2)); qx1 = MY_2PI*(kper+nx_pppm*(i-1)); qx2 = MY_2PI*(kper+nx_pppm*(i )); wx0[i] = powsinxx(0.5*qx0/nx_pppm,order); wx1[i] = powsinxx(0.5*qx1/nx_pppm,order); wx2[i] = powsinxx(0.5*qx2/nx_pppm,order); qy0 = MY_2PI*(lper+ny_pppm*(i-2)); qy1 = MY_2PI*(lper+ny_pppm*(i-1)); qy2 = MY_2PI*(lper+ny_pppm*(i )); wy0[i] = powsinxx(0.5*qy0/ny_pppm,order); wy1[i] = powsinxx(0.5*qy1/ny_pppm,order); wy2[i] = powsinxx(0.5*qy2/ny_pppm,order); qz0 = MY_2PI*(mper+nz_pppm*(i-2)); qz1 = MY_2PI*(mper+nz_pppm*(i-1)); qz2 = MY_2PI*(mper+nz_pppm*(i )); wz0[i] = powsinxx(0.5*qz0/nz_pppm,order); wz1[i] = powsinxx(0.5*qz1/nz_pppm,order); wz2[i] = powsinxx(0.5*qz2/nz_pppm,order); } for (nx = 0; nx < 5; nx++) { for (ny = 0; ny < 5; ny++) { for (nz = 0; nz < 5; nz++) { u0 = wx0[nx]*wy0[ny]*wz0[nz]; u1 = wx1[nx]*wy0[ny]*wz0[nz]; u2 = wx2[nx]*wy0[ny]*wz0[nz]; u3 = wx0[nx]*wy1[ny]*wz0[nz]; u4 = wx0[nx]*wy2[ny]*wz0[nz]; u5 = wx0[nx]*wy0[ny]*wz1[nz]; u6 = wx0[nx]*wy0[ny]*wz2[nz]; sum1 += u0*u1; sum2 += u0*u2; sum3 += u0*u3; sum4 += u0*u4; sum5 += u0*u5; sum6 += u0*u6; } } } // store values sf_precoeff1[n] = sum1; sf_precoeff2[n] = sum2; sf_precoeff3[n] = sum3; sf_precoeff4[n] = sum4; sf_precoeff5[n] = sum5; sf_precoeff6[n++] = sum6; } } } } /* ---------------------------------------------------------------------- find center grid pt for each of my particles check that full stencil for the particle will fit in my 3d brick store central grid pt indices in part2grid array ------------------------------------------------------------------------- */ void PPPM::particle_map() { int nx,ny,nz; double **x = atom->x; int nlocal = atom->nlocal; int flag = 0; for (int i = 0; i < nlocal; i++) { // (nx,ny,nz) = global coords of grid pt to "lower left" of charge // current particle coord can be outside global and local box // add/subtract OFFSET to avoid int(-0.75) = 0 when want it to be -1 nx = static_cast<int> ((x[i][0]-boxlo[0])*delxinv+shift) - OFFSET; ny = static_cast<int> ((x[i][1]-boxlo[1])*delyinv+shift) - OFFSET; nz = static_cast<int> ((x[i][2]-boxlo[2])*delzinv+shift) - OFFSET; part2grid[i][0] = nx; part2grid[i][1] = ny; part2grid[i][2] = nz; // check that entire stencil around nx,ny,nz will fit in my 3d brick if (nx+nlower < nxlo_out || nx+nupper > nxhi_out || ny+nlower < nylo_out || ny+nupper > nyhi_out || nz+nlower < nzlo_out || nz+nupper > nzhi_out) flag = 1; } if (flag) error->one(FLERR,"Out of range atoms - cannot compute PPPM"); } /* ---------------------------------------------------------------------- create discretized "density" on section of global grid due to my particles density(x,y,z) = charge "density" at grid points of my 3d brick (nxlo:nxhi,nylo:nyhi,nzlo:nzhi) is extent of my brick (including ghosts) in global grid ------------------------------------------------------------------------- */ void PPPM::make_rho() { int l,m,n,nx,ny,nz,mx,my,mz; FFT_SCALAR dx,dy,dz,x0,y0,z0; // clear 3d density array memset(&(density_brick[nzlo_out][nylo_out][nxlo_out]),0, ngrid*sizeof(FFT_SCALAR)); // loop over my charges, add their contribution to nearby grid points // (nx,ny,nz) = global coords of grid pt to "lower left" of charge // (dx,dy,dz) = distance to "lower left" grid pt // (mx,my,mz) = global coords of moving stencil pt double *q = atom->q; double **x = atom->x; int nlocal = atom->nlocal; for (int i = 0; i < nlocal; i++) { nx = part2grid[i][0]; ny = part2grid[i][1]; nz = part2grid[i][2]; dx = nx+shiftone - (x[i][0]-boxlo[0])*delxinv; dy = ny+shiftone - (x[i][1]-boxlo[1])*delyinv; dz = nz+shiftone - (x[i][2]-boxlo[2])*delzinv; compute_rho1d(dx,dy,dz); z0 = delvolinv * q[i]; for (n = nlower; n <= nupper; n++) { mz = n+nz; y0 = z0*rho1d[2][n]; for (m = nlower; m <= nupper; m++) { my = m+ny; x0 = y0*rho1d[1][m]; for (l = nlower; l <= nupper; l++) { mx = l+nx; density_brick[mz][my][mx] += x0*rho1d[0][l]; } } } } } /* ---------------------------------------------------------------------- remap density from 3d brick decomposition to FFT decomposition ------------------------------------------------------------------------- */ void PPPM::brick2fft() { int n,ix,iy,iz; // copy grabs inner portion of density from 3d brick // remap could be done as pre-stage of FFT, // but this works optimally on only double values, not complex values n = 0; for (iz = nzlo_in; iz <= nzhi_in; iz++) for (iy = nylo_in; iy <= nyhi_in; iy++) for (ix = nxlo_in; ix <= nxhi_in; ix++) density_fft[n++] = density_brick[iz][iy][ix]; remap->perform(density_fft,density_fft,work1); } /* ---------------------------------------------------------------------- FFT-based Poisson solver ------------------------------------------------------------------------- */ void PPPM::poisson() { if (differentiation_flag == 1) poisson_ad(); else poisson_ik(); } /* ---------------------------------------------------------------------- FFT-based Poisson solver for ik ------------------------------------------------------------------------- */ void PPPM::poisson_ik() { int i,j,k,n; double eng; // transform charge density (r -> k) n = 0; for (i = 0; i < nfft; i++) { work1[n++] = density_fft[i]; work1[n++] = ZEROF; } fft1->compute(work1,work1,1); // global energy and virial contribution double scaleinv = 1.0/(nx_pppm*ny_pppm*nz_pppm); double s2 = scaleinv*scaleinv; if (eflag_global || vflag_global) { if (vflag_global) { n = 0; for (i = 0; i < nfft; i++) { eng = s2 * greensfn[i] * (work1[n]*work1[n] + work1[n+1]*work1[n+1]); for (j = 0; j < 6; j++) virial[j] += eng*vg[i][j]; if (eflag_global) energy += eng; n += 2; } } else { n = 0; for (i = 0; i < nfft; i++) { energy += s2 * greensfn[i] * (work1[n]*work1[n] + work1[n+1]*work1[n+1]); n += 2; } } } // scale by 1/total-grid-pts to get rho(k) // multiply by Green's function to get V(k) n = 0; for (i = 0; i < nfft; i++) { work1[n++] *= scaleinv * greensfn[i]; work1[n++] *= scaleinv * greensfn[i]; } // extra FFTs for per-atom energy/virial if (evflag_atom) poisson_peratom(); // triclinic system if (triclinic) { poisson_ik_triclinic(); return; } // compute gradients of V(r) in each of 3 dims by transformimg -ik*V(k) // FFT leaves data in 3d brick decomposition // copy it into inner portion of vdx,vdy,vdz arrays // x direction gradient n = 0; for (k = nzlo_fft; k <= nzhi_fft; k++) for (j = nylo_fft; j <= nyhi_fft; j++) for (i = nxlo_fft; i <= nxhi_fft; i++) { work2[n] = fkx[i]*work1[n+1]; work2[n+1] = -fkx[i]*work1[n]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { vdx_brick[k][j][i] = work2[n]; n += 2; } // y direction gradient n = 0; for (k = nzlo_fft; k <= nzhi_fft; k++) for (j = nylo_fft; j <= nyhi_fft; j++) for (i = nxlo_fft; i <= nxhi_fft; i++) { work2[n] = fky[j]*work1[n+1]; work2[n+1] = -fky[j]*work1[n]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { vdy_brick[k][j][i] = work2[n]; n += 2; } // z direction gradient n = 0; for (k = nzlo_fft; k <= nzhi_fft; k++) for (j = nylo_fft; j <= nyhi_fft; j++) for (i = nxlo_fft; i <= nxhi_fft; i++) { work2[n] = fkz[k]*work1[n+1]; work2[n+1] = -fkz[k]*work1[n]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { vdz_brick[k][j][i] = work2[n]; n += 2; } } /* ---------------------------------------------------------------------- FFT-based Poisson solver for ik for a triclinic system ------------------------------------------------------------------------- */ void PPPM::poisson_ik_triclinic() { int i,j,k,n; // compute gradients of V(r) in each of 3 dims by transformimg -ik*V(k) // FFT leaves data in 3d brick decomposition // copy it into inner portion of vdx,vdy,vdz arrays // x direction gradient n = 0; for (i = 0; i < nfft; i++) { work2[n] = fkx[i]*work1[n+1]; work2[n+1] = -fkx[i]*work1[n]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { vdx_brick[k][j][i] = work2[n]; n += 2; } // y direction gradient n = 0; for (i = 0; i < nfft; i++) { work2[n] = fky[i]*work1[n+1]; work2[n+1] = -fky[i]*work1[n]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { vdy_brick[k][j][i] = work2[n]; n += 2; } // z direction gradient n = 0; for (i = 0; i < nfft; i++) { work2[n] = fkz[i]*work1[n+1]; work2[n+1] = -fkz[i]*work1[n]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { vdz_brick[k][j][i] = work2[n]; n += 2; } } /* ---------------------------------------------------------------------- FFT-based Poisson solver for ad ------------------------------------------------------------------------- */ void PPPM::poisson_ad() { int i,j,k,n; double eng; // transform charge density (r -> k) n = 0; for (i = 0; i < nfft; i++) { work1[n++] = density_fft[i]; work1[n++] = ZEROF; } fft1->compute(work1,work1,1); // global energy and virial contribution double scaleinv = 1.0/(nx_pppm*ny_pppm*nz_pppm); double s2 = scaleinv*scaleinv; if (eflag_global || vflag_global) { if (vflag_global) { n = 0; for (i = 0; i < nfft; i++) { eng = s2 * greensfn[i] * (work1[n]*work1[n] + work1[n+1]*work1[n+1]); for (j = 0; j < 6; j++) virial[j] += eng*vg[i][j]; if (eflag_global) energy += eng; n += 2; } } else { n = 0; for (i = 0; i < nfft; i++) { energy += s2 * greensfn[i] * (work1[n]*work1[n] + work1[n+1]*work1[n+1]); n += 2; } } } // scale by 1/total-grid-pts to get rho(k) // multiply by Green's function to get V(k) n = 0; for (i = 0; i < nfft; i++) { work1[n++] *= scaleinv * greensfn[i]; work1[n++] *= scaleinv * greensfn[i]; } // extra FFTs for per-atom energy/virial if (vflag_atom) poisson_peratom(); n = 0; for (i = 0; i < nfft; i++) { work2[n] = work1[n]; work2[n+1] = work1[n+1]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { u_brick[k][j][i] = work2[n]; n += 2; } } /* ---------------------------------------------------------------------- FFT-based Poisson solver for per-atom energy/virial ------------------------------------------------------------------------- */ void PPPM::poisson_peratom() { int i,j,k,n; // energy if (eflag_atom && differentiation_flag != 1) { n = 0; for (i = 0; i < nfft; i++) { work2[n] = work1[n]; work2[n+1] = work1[n+1]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { u_brick[k][j][i] = work2[n]; n += 2; } } // 6 components of virial in v0 thru v5 if (!vflag_atom) return; n = 0; for (i = 0; i < nfft; i++) { work2[n] = work1[n]*vg[i][0]; work2[n+1] = work1[n+1]*vg[i][0]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { v0_brick[k][j][i] = work2[n]; n += 2; } n = 0; for (i = 0; i < nfft; i++) { work2[n] = work1[n]*vg[i][1]; work2[n+1] = work1[n+1]*vg[i][1]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { v1_brick[k][j][i] = work2[n]; n += 2; } n = 0; for (i = 0; i < nfft; i++) { work2[n] = work1[n]*vg[i][2]; work2[n+1] = work1[n+1]*vg[i][2]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { v2_brick[k][j][i] = work2[n]; n += 2; } n = 0; for (i = 0; i < nfft; i++) { work2[n] = work1[n]*vg[i][3]; work2[n+1] = work1[n+1]*vg[i][3]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { v3_brick[k][j][i] = work2[n]; n += 2; } n = 0; for (i = 0; i < nfft; i++) { work2[n] = work1[n]*vg[i][4]; work2[n+1] = work1[n+1]*vg[i][4]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { v4_brick[k][j][i] = work2[n]; n += 2; } n = 0; for (i = 0; i < nfft; i++) { work2[n] = work1[n]*vg[i][5]; work2[n+1] = work1[n+1]*vg[i][5]; n += 2; } fft2->compute(work2,work2,-1); n = 0; for (k = nzlo_in; k <= nzhi_in; k++) for (j = nylo_in; j <= nyhi_in; j++) for (i = nxlo_in; i <= nxhi_in; i++) { v5_brick[k][j][i] = work2[n]; n += 2; } } /* ---------------------------------------------------------------------- interpolate from grid to get electric field & force on my particles ------------------------------------------------------------------------- */ void PPPM::fieldforce() { if (differentiation_flag == 1) fieldforce_ad(); else fieldforce_ik(); } /* ---------------------------------------------------------------------- interpolate from grid to get electric field & force on my particles for ik ------------------------------------------------------------------------- */ void PPPM::fieldforce_ik() { int i,l,m,n,nx,ny,nz,mx,my,mz; FFT_SCALAR dx,dy,dz,x0,y0,z0; FFT_SCALAR ekx,eky,ekz; // loop over my charges, interpolate electric field from nearby grid points // (nx,ny,nz) = global coords of grid pt to "lower left" of charge // (dx,dy,dz) = distance to "lower left" grid pt // (mx,my,mz) = global coords of moving stencil pt // ek = 3 components of E-field on particle double *q = atom->q; double **x = atom->x; double **f = atom->f; int nlocal = atom->nlocal; for (i = 0; i < nlocal; i++) { nx = part2grid[i][0]; ny = part2grid[i][1]; nz = part2grid[i][2]; dx = nx+shiftone - (x[i][0]-boxlo[0])*delxinv; dy = ny+shiftone - (x[i][1]-boxlo[1])*delyinv; dz = nz+shiftone - (x[i][2]-boxlo[2])*delzinv; compute_rho1d(dx,dy,dz); ekx = eky = ekz = ZEROF; for (n = nlower; n <= nupper; n++) { mz = n+nz; z0 = rho1d[2][n]; for (m = nlower; m <= nupper; m++) { my = m+ny; y0 = z0*rho1d[1][m]; for (l = nlower; l <= nupper; l++) { mx = l+nx; x0 = y0*rho1d[0][l]; ekx -= x0*vdx_brick[mz][my][mx]; eky -= x0*vdy_brick[mz][my][mx]; ekz -= x0*vdz_brick[mz][my][mx]; } } } // convert E-field to force const double qfactor = force->qqrd2e * scale * q[i]; f[i][0] += qfactor*ekx; f[i][1] += qfactor*eky; if (slabflag != 2) f[i][2] += qfactor*ekz; } } /* ---------------------------------------------------------------------- interpolate from grid to get electric field & force on my particles for ad ------------------------------------------------------------------------- */ void PPPM::fieldforce_ad() { int i,l,m,n,nx,ny,nz,mx,my,mz; FFT_SCALAR dx,dy,dz; FFT_SCALAR ekx,eky,ekz; double s1,s2,s3; double sf = 0.0; double *prd; prd = domain->prd; double xprd = prd[0]; double yprd = prd[1]; double zprd = prd[2]; double hx_inv = nx_pppm/xprd; double hy_inv = ny_pppm/yprd; double hz_inv = nz_pppm/zprd; // loop over my charges, interpolate electric field from nearby grid points // (nx,ny,nz) = global coords of grid pt to "lower left" of charge // (dx,dy,dz) = distance to "lower left" grid pt // (mx,my,mz) = global coords of moving stencil pt // ek = 3 components of E-field on particle double *q = atom->q; double **x = atom->x; double **f = atom->f; int nlocal = atom->nlocal; for (i = 0; i < nlocal; i++) { nx = part2grid[i][0]; ny = part2grid[i][1]; nz = part2grid[i][2]; dx = nx+shiftone - (x[i][0]-boxlo[0])*delxinv; dy = ny+shiftone - (x[i][1]-boxlo[1])*delyinv; dz = nz+shiftone - (x[i][2]-boxlo[2])*delzinv; compute_rho1d(dx,dy,dz); compute_drho1d(dx,dy,dz); ekx = eky = ekz = ZEROF; for (n = nlower; n <= nupper; n++) { mz = n+nz; for (m = nlower; m <= nupper; m++) { my = m+ny; for (l = nlower; l <= nupper; l++) { mx = l+nx; ekx += drho1d[0][l]*rho1d[1][m]*rho1d[2][n]*u_brick[mz][my][mx]; eky += rho1d[0][l]*drho1d[1][m]*rho1d[2][n]*u_brick[mz][my][mx]; ekz += rho1d[0][l]*rho1d[1][m]*drho1d[2][n]*u_brick[mz][my][mx]; } } } ekx *= hx_inv; eky *= hy_inv; ekz *= hz_inv; // convert E-field to force and substract self forces const double qfactor = force->qqrd2e * scale; s1 = x[i][0]*hx_inv; s2 = x[i][1]*hy_inv; s3 = x[i][2]*hz_inv; sf = sf_coeff[0]*sin(2*MY_PI*s1); sf += sf_coeff[1]*sin(4*MY_PI*s1); sf *= 2*q[i]*q[i]; f[i][0] += qfactor*(ekx*q[i] - sf); sf = sf_coeff[2]*sin(2*MY_PI*s2); sf += sf_coeff[3]*sin(4*MY_PI*s2); sf *= 2*q[i]*q[i]; f[i][1] += qfactor*(eky*q[i] - sf); sf = sf_coeff[4]*sin(2*MY_PI*s3); sf += sf_coeff[5]*sin(4*MY_PI*s3); sf *= 2*q[i]*q[i]; if (slabflag != 2) f[i][2] += qfactor*(ekz*q[i] - sf); } } /* ---------------------------------------------------------------------- interpolate from grid to get per-atom energy/virial ------------------------------------------------------------------------- */ void PPPM::fieldforce_peratom() { int i,l,m,n,nx,ny,nz,mx,my,mz; FFT_SCALAR dx,dy,dz,x0,y0,z0; FFT_SCALAR u,v0,v1,v2,v3,v4,v5; // loop over my charges, interpolate from nearby grid points // (nx,ny,nz) = global coords of grid pt to "lower left" of charge // (dx,dy,dz) = distance to "lower left" grid pt // (mx,my,mz) = global coords of moving stencil pt double *q = atom->q; double **x = atom->x; int nlocal = atom->nlocal; for (i = 0; i < nlocal; i++) { nx = part2grid[i][0]; ny = part2grid[i][1]; nz = part2grid[i][2]; dx = nx+shiftone - (x[i][0]-boxlo[0])*delxinv; dy = ny+shiftone - (x[i][1]-boxlo[1])*delyinv; dz = nz+shiftone - (x[i][2]-boxlo[2])*delzinv; compute_rho1d(dx,dy,dz); u = v0 = v1 = v2 = v3 = v4 = v5 = ZEROF; for (n = nlower; n <= nupper; n++) { mz = n+nz; z0 = rho1d[2][n]; for (m = nlower; m <= nupper; m++) { my = m+ny; y0 = z0*rho1d[1][m]; for (l = nlower; l <= nupper; l++) { mx = l+nx; x0 = y0*rho1d[0][l]; if (eflag_atom) u += x0*u_brick[mz][my][mx]; if (vflag_atom) { v0 += x0*v0_brick[mz][my][mx]; v1 += x0*v1_brick[mz][my][mx]; v2 += x0*v2_brick[mz][my][mx]; v3 += x0*v3_brick[mz][my][mx]; v4 += x0*v4_brick[mz][my][mx]; v5 += x0*v5_brick[mz][my][mx]; } } } } if (eflag_atom) eatom[i] += q[i]*u; if (vflag_atom) { vatom[i][0] += q[i]*v0; vatom[i][1] += q[i]*v1; vatom[i][2] += q[i]*v2; vatom[i][3] += q[i]*v3; vatom[i][4] += q[i]*v4; vatom[i][5] += q[i]*v5; } } } /* ---------------------------------------------------------------------- pack own values to buf to send to another proc ------------------------------------------------------------------------- */ void PPPM::pack_forward(int flag, FFT_SCALAR *buf, int nlist, int *list) { int n = 0; if (flag == FORWARD_IK) { FFT_SCALAR *xsrc = &vdx_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *ysrc = &vdy_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *zsrc = &vdz_brick[nzlo_out][nylo_out][nxlo_out]; for (int i = 0; i < nlist; i++) { buf[n++] = xsrc[list[i]]; buf[n++] = ysrc[list[i]]; buf[n++] = zsrc[list[i]]; } } else if (flag == FORWARD_AD) { FFT_SCALAR *src = &u_brick[nzlo_out][nylo_out][nxlo_out]; for (int i = 0; i < nlist; i++) buf[i] = src[list[i]]; } else if (flag == FORWARD_IK_PERATOM) { FFT_SCALAR *esrc = &u_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v0src = &v0_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v1src = &v1_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v2src = &v2_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v3src = &v3_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v4src = &v4_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v5src = &v5_brick[nzlo_out][nylo_out][nxlo_out]; for (int i = 0; i < nlist; i++) { if (eflag_atom) buf[n++] = esrc[list[i]]; if (vflag_atom) { buf[n++] = v0src[list[i]]; buf[n++] = v1src[list[i]]; buf[n++] = v2src[list[i]]; buf[n++] = v3src[list[i]]; buf[n++] = v4src[list[i]]; buf[n++] = v5src[list[i]]; } } } else if (flag == FORWARD_AD_PERATOM) { FFT_SCALAR *v0src = &v0_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v1src = &v1_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v2src = &v2_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v3src = &v3_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v4src = &v4_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v5src = &v5_brick[nzlo_out][nylo_out][nxlo_out]; for (int i = 0; i < nlist; i++) { buf[n++] = v0src[list[i]]; buf[n++] = v1src[list[i]]; buf[n++] = v2src[list[i]]; buf[n++] = v3src[list[i]]; buf[n++] = v4src[list[i]]; buf[n++] = v5src[list[i]]; } } } /* ---------------------------------------------------------------------- unpack another proc's own values from buf and set own ghost values ------------------------------------------------------------------------- */ void PPPM::unpack_forward(int flag, FFT_SCALAR *buf, int nlist, int *list) { int n = 0; if (flag == FORWARD_IK) { FFT_SCALAR *xdest = &vdx_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *ydest = &vdy_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *zdest = &vdz_brick[nzlo_out][nylo_out][nxlo_out]; for (int i = 0; i < nlist; i++) { xdest[list[i]] = buf[n++]; ydest[list[i]] = buf[n++]; zdest[list[i]] = buf[n++]; } } else if (flag == FORWARD_AD) { FFT_SCALAR *dest = &u_brick[nzlo_out][nylo_out][nxlo_out]; for (int i = 0; i < nlist; i++) dest[list[i]] = buf[i]; } else if (flag == FORWARD_IK_PERATOM) { FFT_SCALAR *esrc = &u_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v0src = &v0_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v1src = &v1_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v2src = &v2_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v3src = &v3_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v4src = &v4_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v5src = &v5_brick[nzlo_out][nylo_out][nxlo_out]; for (int i = 0; i < nlist; i++) { if (eflag_atom) esrc[list[i]] = buf[n++]; if (vflag_atom) { v0src[list[i]] = buf[n++]; v1src[list[i]] = buf[n++]; v2src[list[i]] = buf[n++]; v3src[list[i]] = buf[n++]; v4src[list[i]] = buf[n++]; v5src[list[i]] = buf[n++]; } } } else if (flag == FORWARD_AD_PERATOM) { FFT_SCALAR *v0src = &v0_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v1src = &v1_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v2src = &v2_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v3src = &v3_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v4src = &v4_brick[nzlo_out][nylo_out][nxlo_out]; FFT_SCALAR *v5src = &v5_brick[nzlo_out][nylo_out][nxlo_out]; for (int i = 0; i < nlist; i++) { v0src[list[i]] = buf[n++]; v1src[list[i]] = buf[n++]; v2src[list[i]] = buf[n++]; v3src[list[i]] = buf[n++]; v4src[list[i]] = buf[n++]; v5src[list[i]] = buf[n++]; } } } /* ---------------------------------------------------------------------- pack ghost values into buf to send to another proc ------------------------------------------------------------------------- */ void PPPM::pack_reverse(int flag, FFT_SCALAR *buf, int nlist, int *list) { if (flag == REVERSE_RHO) { FFT_SCALAR *src = &density_brick[nzlo_out][nylo_out][nxlo_out]; for (int i = 0; i < nlist; i++) buf[i] = src[list[i]]; } } /* ---------------------------------------------------------------------- unpack another proc's ghost values from buf and add to own values ------------------------------------------------------------------------- */ void PPPM::unpack_reverse(int flag, FFT_SCALAR *buf, int nlist, int *list) { if (flag == REVERSE_RHO) { FFT_SCALAR *dest = &density_brick[nzlo_out][nylo_out][nxlo_out]; for (int i = 0; i < nlist; i++) dest[list[i]] += buf[i]; } } /* ---------------------------------------------------------------------- map nprocs to NX by NY grid as PX by PY procs - return optimal px,py ------------------------------------------------------------------------- */ void PPPM::procs2grid2d(int nprocs, int nx, int ny, int *px, int *py) { // loop thru all possible factorizations of nprocs // surf = surface area of largest proc sub-domain // innermost if test minimizes surface area and surface/volume ratio int bestsurf = 2 * (nx + ny); int bestboxx = 0; int bestboxy = 0; int boxx,boxy,surf,ipx,ipy; ipx = 1; while (ipx <= nprocs) { if (nprocs % ipx == 0) { ipy = nprocs/ipx; boxx = nx/ipx; if (nx % ipx) boxx++; boxy = ny/ipy; if (ny % ipy) boxy++; surf = boxx + boxy; if (surf < bestsurf || (surf == bestsurf && boxx*boxy > bestboxx*bestboxy)) { bestsurf = surf; bestboxx = boxx; bestboxy = boxy; *px = ipx; *py = ipy; } } ipx++; } } /* ---------------------------------------------------------------------- charge assignment into rho1d dx,dy,dz = distance of particle from "lower left" grid point ------------------------------------------------------------------------- */ void PPPM::compute_rho1d(const FFT_SCALAR &dx, const FFT_SCALAR &dy, const FFT_SCALAR &dz) { int k,l; FFT_SCALAR r1,r2,r3; for (k = (1-order)/2; k <= order/2; k++) { r1 = r2 = r3 = ZEROF; for (l = order-1; l >= 0; l--) { r1 = rho_coeff[l][k] + r1*dx; r2 = rho_coeff[l][k] + r2*dy; r3 = rho_coeff[l][k] + r3*dz; } rho1d[0][k] = r1; rho1d[1][k] = r2; rho1d[2][k] = r3; } } /* ---------------------------------------------------------------------- charge assignment into drho1d dx,dy,dz = distance of particle from "lower left" grid point ------------------------------------------------------------------------- */ void PPPM::compute_drho1d(const FFT_SCALAR &dx, const FFT_SCALAR &dy, const FFT_SCALAR &dz) { int k,l; FFT_SCALAR r1,r2,r3; for (k = (1-order)/2; k <= order/2; k++) { r1 = r2 = r3 = ZEROF; for (l = order-2; l >= 0; l--) { r1 = drho_coeff[l][k] + r1*dx; r2 = drho_coeff[l][k] + r2*dy; r3 = drho_coeff[l][k] + r3*dz; } drho1d[0][k] = r1; drho1d[1][k] = r2; drho1d[2][k] = r3; } } /* ---------------------------------------------------------------------- generate coeffients for the weight function of order n (n-1) Wn(x) = Sum wn(k,x) , Sum is over every other integer k=-(n-1) For k=-(n-1),-(n-1)+2, ....., (n-1)-2,n-1 k is odd integers if n is even and even integers if n is odd --- | n-1 | Sum a(l,j)*(x-k/2)**l if abs(x-k/2) < 1/2 wn(k,x) = < l=0 | | 0 otherwise --- a coeffients are packed into the array rho_coeff to eliminate zeros rho_coeff(l,((k+mod(n+1,2))/2) = a(l,k) ------------------------------------------------------------------------- */ void PPPM::compute_rho_coeff() { int j,k,l,m; FFT_SCALAR s; FFT_SCALAR **a; memory->create2d_offset(a,order,-order,order,"pppm:a"); for (k = -order; k <= order; k++) for (l = 0; l < order; l++) a[l][k] = 0.0; a[0][0] = 1.0; for (j = 1; j < order; j++) { for (k = -j; k <= j; k += 2) { s = 0.0; for (l = 0; l < j; l++) { a[l+1][k] = (a[l][k+1]-a[l][k-1]) / (l+1); #ifdef FFT_SINGLE s += powf(0.5,(float) l+1) * (a[l][k-1] + powf(-1.0,(float) l) * a[l][k+1]) / (l+1); #else s += pow(0.5,(double) l+1) * (a[l][k-1] + pow(-1.0,(double) l) * a[l][k+1]) / (l+1); #endif } a[0][k] = s; } } m = (1-order)/2; for (k = -(order-1); k < order; k += 2) { for (l = 0; l < order; l++) rho_coeff[l][m] = a[l][k]; for (l = 1; l < order; l++) drho_coeff[l-1][m] = l*a[l][k]; m++; } memory->destroy2d_offset(a,-order); } /* ---------------------------------------------------------------------- Slab-geometry correction term to dampen inter-slab interactions between periodically repeating slabs. Yields good approximation to 2D Ewald if adequate empty space is left between repeating slabs (J. Chem. Phys. 111, 3155). Slabs defined here to be parallel to the xy plane. ------------------------------------------------------------------------- */ void PPPM::slabcorr() { // compute local contribution to global dipole moment double *q = atom->q; double **x = atom->x; int nlocal = atom->nlocal; double dipole = 0.0; for (int i = 0; i < nlocal; i++) dipole += q[i]*x[i][2]; // sum local contributions to get global dipole moment double dipole_all; MPI_Allreduce(&dipole,&dipole_all,1,MPI_DOUBLE,MPI_SUM,world); // compute corrections const double e_slabcorr = MY_2PI*dipole_all*dipole_all/volume; const double qscale = force->qqrd2e * scale; if (eflag_global) energy += qscale * e_slabcorr; // per-atom energy if (eflag_atom) { double efact = MY_2PI*dipole_all/volume; for (int i = 0; i < nlocal; i++) eatom[i] += qscale * q[i]*x[i][2]*efact; } // add on force corrections double ffact = -4.0*MY_PI*dipole_all/volume; double **f = atom->f; for (int i = 0; i < nlocal; i++) f[i][2] += qscale * q[i]*ffact; } /* ---------------------------------------------------------------------- perform and time the 1d FFTs required for N timesteps ------------------------------------------------------------------------- */ int PPPM::timing_1d(int n, double &time1d) { double time1,time2; for (int i = 0; i < 2*nfft_both; i++) work1[i] = ZEROF; MPI_Barrier(world); time1 = MPI_Wtime(); for (int i = 0; i < n; i++) { fft1->timing1d(work1,nfft_both,1); fft2->timing1d(work1,nfft_both,-1); if (differentiation_flag != 1) { fft2->timing1d(work1,nfft_both,-1); fft2->timing1d(work1,nfft_both,-1); } } MPI_Barrier(world); time2 = MPI_Wtime(); time1d = time2 - time1; if (differentiation_flag) return 2; return 4; } /* ---------------------------------------------------------------------- perform and time the 3d FFTs required for N timesteps ------------------------------------------------------------------------- */ int PPPM::timing_3d(int n, double &time3d) { double time1,time2; for (int i = 0; i < 2*nfft_both; i++) work1[i] = ZEROF; MPI_Barrier(world); time1 = MPI_Wtime(); for (int i = 0; i < n; i++) { fft1->compute(work1,work1,1); fft2->compute(work1,work1,-1); if (differentiation_flag != 1) { fft2->compute(work1,work1,-1); fft2->compute(work1,work1,-1); } } MPI_Barrier(world); time2 = MPI_Wtime(); time3d = time2 - time1; if (differentiation_flag) return 2; return 4; } /* ---------------------------------------------------------------------- memory usage of local arrays ------------------------------------------------------------------------- */ double PPPM::memory_usage() { double bytes = nmax*3 * sizeof(double); int nbrick = (nxhi_out-nxlo_out+1) * (nyhi_out-nylo_out+1) * (nzhi_out-nzlo_out+1); if (differentiation_flag == 1) { bytes += 2 * nbrick * sizeof(FFT_SCALAR); } else { bytes += 4 * nbrick * sizeof(FFT_SCALAR); } if (triclinic) bytes += 3 * nfft_both * sizeof(double); bytes += 6 * nfft_both * sizeof(double); bytes += nfft_both * sizeof(double); bytes += nfft_both*5 * sizeof(FFT_SCALAR); if (peratom_allocate_flag) bytes += 6 * nbrick * sizeof(FFT_SCALAR); if (group_allocate_flag) { bytes += 2 * nbrick * sizeof(FFT_SCALAR); bytes += 2 * nfft_both * sizeof(FFT_SCALAR);; } bytes += cg->memory_usage(); return bytes; } /* ---------------------------------------------------------------------- group-group interactions ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- compute the PPPM total long-range force and energy for groups A and B ------------------------------------------------------------------------- */ void PPPM::compute_group_group(int groupbit_A, int groupbit_B, int BA_flag) { if (slabflag) error->all(FLERR,"Cannot (yet) use K-space slab " "correction with compute group/group"); if (differentiation_flag) error->all(FLERR,"Cannot (yet) use 'kspace_modify " "diff ad' with compute group/group"); if (!group_allocate_flag) allocate_groups(); // convert atoms from box to lamda coords if (triclinic == 0) boxlo = domain->boxlo; else { boxlo = domain->boxlo_lamda; domain->x2lamda(atom->nlocal); } e2group = 0; //energy f2group[0] = 0; //force in x-direction f2group[1] = 0; //force in y-direction f2group[2] = 0; //force in z-direction // map my particle charge onto my local 3d density grid make_rho_groups(groupbit_A,groupbit_B,BA_flag); // all procs communicate density values from their ghost cells // to fully sum contribution in their 3d bricks // remap from 3d decomposition to FFT decomposition // temporarily store and switch pointers so we can // use brick2fft() for groups A and B (without // writing an additional function) FFT_SCALAR ***density_brick_real = density_brick; FFT_SCALAR *density_fft_real = density_fft; // group A density_brick = density_A_brick; density_fft = density_A_fft; cg->reverse_comm(this,REVERSE_RHO); brick2fft(); // group B density_brick = density_B_brick; density_fft = density_B_fft; cg->reverse_comm(this,REVERSE_RHO); brick2fft(); // switch back pointers density_brick = density_brick_real; density_fft = density_fft_real; // compute potential gradient on my FFT grid and // portion of group-group energy/force on this proc's FFT grid poisson_groups(BA_flag); const double qscale = force->qqrd2e * scale; // total group A <--> group B energy // self and boundary correction terms are in compute_group_group.cpp double e2group_all; MPI_Allreduce(&e2group,&e2group_all,1,MPI_DOUBLE,MPI_SUM,world); e2group = e2group_all; e2group *= qscale*0.5*volume; // total group A <--> group B force double f2group_all[3]; MPI_Allreduce(f2group,f2group_all,3,MPI_DOUBLE,MPI_SUM,world); for (int i = 0; i < 3; i++) f2group[i] = qscale*volume*f2group_all[i]; // convert atoms back from lamda to box coords if (triclinic) domain->lamda2x(atom->nlocal); } /* ---------------------------------------------------------------------- allocate group-group memory that depends on # of K-vectors and order ------------------------------------------------------------------------- */ void PPPM::allocate_groups() { group_allocate_flag = 1; memory->create3d_offset(density_A_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:density_A_brick"); memory->create3d_offset(density_B_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out, nxlo_out,nxhi_out,"pppm:density_B_brick"); memory->create(density_A_fft,nfft_both,"pppm:density_A_fft"); memory->create(density_B_fft,nfft_both,"pppm:density_B_fft"); } /* ---------------------------------------------------------------------- deallocate group-group memory that depends on # of K-vectors and order ------------------------------------------------------------------------- */ void PPPM::deallocate_groups() { group_allocate_flag = 0; memory->destroy3d_offset(density_A_brick,nzlo_out,nylo_out,nxlo_out); memory->destroy3d_offset(density_B_brick,nzlo_out,nylo_out,nxlo_out); memory->destroy(density_A_fft); memory->destroy(density_B_fft); } /* ---------------------------------------------------------------------- create discretized "density" on section of global grid due to my particles density(x,y,z) = charge "density" at grid points of my 3d brick (nxlo:nxhi,nylo:nyhi,nzlo:nzhi) is extent of my brick (including ghosts) in global grid for group-group interactions ------------------------------------------------------------------------- */ void PPPM::make_rho_groups(int groupbit_A, int groupbit_B, int BA_flag) { int l,m,n,nx,ny,nz,mx,my,mz; FFT_SCALAR dx,dy,dz,x0,y0,z0; // clear 3d density arrays memset(&(density_A_brick[nzlo_out][nylo_out][nxlo_out]),0, ngrid*sizeof(FFT_SCALAR)); memset(&(density_B_brick[nzlo_out][nylo_out][nxlo_out]),0, ngrid*sizeof(FFT_SCALAR)); // loop over my charges, add their contribution to nearby grid points // (nx,ny,nz) = global coords of grid pt to "lower left" of charge // (dx,dy,dz) = distance to "lower left" grid pt // (mx,my,mz) = global coords of moving stencil pt double *q = atom->q; double **x = atom->x; int nlocal = atom->nlocal; int *mask = atom->mask; for (int i = 0; i < nlocal; i++) { if ((mask[i] & groupbit_A) && (mask[i] & groupbit_B)) if (BA_flag) continue; if ((mask[i] & groupbit_A) || (mask[i] & groupbit_B)) { nx = part2grid[i][0]; ny = part2grid[i][1]; nz = part2grid[i][2]; dx = nx+shiftone - (x[i][0]-boxlo[0])*delxinv; dy = ny+shiftone - (x[i][1]-boxlo[1])*delyinv; dz = nz+shiftone - (x[i][2]-boxlo[2])*delzinv; compute_rho1d(dx,dy,dz); z0 = delvolinv * q[i]; for (n = nlower; n <= nupper; n++) { mz = n+nz; y0 = z0*rho1d[2][n]; for (m = nlower; m <= nupper; m++) { my = m+ny; x0 = y0*rho1d[1][m]; for (l = nlower; l <= nupper; l++) { mx = l+nx; // group A if (mask[i] & groupbit_A) density_A_brick[mz][my][mx] += x0*rho1d[0][l]; // group B if (mask[i] & groupbit_B) density_B_brick[mz][my][mx] += x0*rho1d[0][l]; } } } } } } /* ---------------------------------------------------------------------- FFT-based Poisson solver for group-group interactions ------------------------------------------------------------------------- */ void PPPM::poisson_groups(int BA_flag) { int i,j,k,n; // reuse memory (already declared) FFT_SCALAR *work_A = work1; FFT_SCALAR *work_B = work2; // transform charge density (r -> k) // group A n = 0; for (i = 0; i < nfft; i++) { work_A[n++] = density_A_fft[i]; work_A[n++] = ZEROF; } fft1->compute(work_A,work_A,1); // group B n = 0; for (i = 0; i < nfft; i++) { work_B[n++] = density_B_fft[i]; work_B[n++] = ZEROF; } fft1->compute(work_B,work_B,1); // group-group energy and force contribution, // keep everything in reciprocal space so // no inverse FFTs needed double scaleinv = 1.0/(nx_pppm*ny_pppm*nz_pppm); double s2 = scaleinv*scaleinv; // energy n = 0; for (i = 0; i < nfft; i++) { e2group += s2 * greensfn[i] * (work_A[n]*work_B[n] + work_A[n+1]*work_B[n+1]); n += 2; } if (BA_flag) return; // multiply by Green's function and s2 // (only for work_A so it is not squared below) n = 0; for (i = 0; i < nfft; i++) { work_A[n++] *= s2 * greensfn[i]; work_A[n++] *= s2 * greensfn[i]; } // triclinic system if (triclinic) { poisson_groups_triclinic(); return; } double partial_group; // force, x direction n = 0; for (k = nzlo_fft; k <= nzhi_fft; k++) for (j = nylo_fft; j <= nyhi_fft; j++) for (i = nxlo_fft; i <= nxhi_fft; i++) { partial_group = work_A[n+1]*work_B[n] - work_A[n]*work_B[n+1]; f2group[0] += fkx[i] * partial_group; n += 2; } // force, y direction n = 0; for (k = nzlo_fft; k <= nzhi_fft; k++) for (j = nylo_fft; j <= nyhi_fft; j++) for (i = nxlo_fft; i <= nxhi_fft; i++) { partial_group = work_A[n+1]*work_B[n] - work_A[n]*work_B[n+1]; f2group[1] += fky[j] * partial_group; n += 2; } // force, z direction n = 0; for (k = nzlo_fft; k <= nzhi_fft; k++) for (j = nylo_fft; j <= nyhi_fft; j++) for (i = nxlo_fft; i <= nxhi_fft; i++) { partial_group = work_A[n+1]*work_B[n] - work_A[n]*work_B[n+1]; f2group[2] += fkz[k] * partial_group; n += 2; } } /* ---------------------------------------------------------------------- FFT-based Poisson solver for group-group interactions for a triclinic system ------------------------------------------------------------------------- */ void PPPM::poisson_groups_triclinic() { int i,j,k,n; // reuse memory (already declared) FFT_SCALAR *work_A = work1; FFT_SCALAR *work_B = work2; double partial_group; // force, x direction n = 0; for (i = 0; i < nfft; i++) { partial_group = work_A[n+1]*work_B[n] - work_A[n]*work_B[n+1]; f2group[0] += fkx[i] * partial_group; n += 2; } // force, y direction n = 0; for (i = 0; i < nfft; i++) { partial_group = work_A[n+1]*work_B[n] - work_A[n]*work_B[n+1]; f2group[1] += fky[i] * partial_group; n += 2; } // force, z direction n = 0; for (i = 0; i < nfft; i++) { partial_group = work_A[n+1]*work_B[n] - work_A[n]*work_B[n+1]; f2group[2] += fkz[i] * partial_group; n += 2; } } diff --git a/src/KSPACE/pppm.h b/src/KSPACE/pppm.h index a9686487a..7da6d8056 100644 --- a/src/KSPACE/pppm.h +++ b/src/KSPACE/pppm.h @@ -1,335 +1,335 @@ /* -*- c++ -*- ---------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #ifdef KSPACE_CLASS KSpaceStyle(pppm,PPPM) #else #ifndef LMP_PPPM_H #define LMP_PPPM_H #include "lmptype.h" #include "mpi.h" #ifdef FFT_SINGLE typedef float FFT_SCALAR; #define MPI_FFT_SCALAR MPI_FLOAT #else typedef double FFT_SCALAR; #define MPI_FFT_SCALAR MPI_DOUBLE #endif #include "kspace.h" namespace LAMMPS_NS { class PPPM : public KSpace { public: PPPM(class LAMMPS *, int, char **); virtual ~PPPM(); virtual void init(); virtual void setup(); void setup_grid(); virtual void compute(int, int); virtual int timing_1d(int, double &); virtual int timing_3d(int, double &); virtual double memory_usage(); virtual void compute_group_group(int, int, int); protected: int me,nprocs; int nfactors; int *factors; double qsum,qsqsum,q2; double cutoff; double volume; double delxinv,delyinv,delzinv,delvolinv; double h_x,h_y,h_z; double shift,shiftone; int peratom_allocate_flag; int nxlo_in,nylo_in,nzlo_in,nxhi_in,nyhi_in,nzhi_in; int nxlo_out,nylo_out,nzlo_out,nxhi_out,nyhi_out,nzhi_out; int nxlo_ghost,nxhi_ghost,nylo_ghost,nyhi_ghost,nzlo_ghost,nzhi_ghost; int nxlo_fft,nylo_fft,nzlo_fft,nxhi_fft,nyhi_fft,nzhi_fft; int nlower,nupper; int ngrid,nfft,nfft_both; FFT_SCALAR ***density_brick; FFT_SCALAR ***vdx_brick,***vdy_brick,***vdz_brick; FFT_SCALAR ***u_brick; FFT_SCALAR ***v0_brick,***v1_brick,***v2_brick; FFT_SCALAR ***v3_brick,***v4_brick,***v5_brick; double *greensfn; double **vg; double *fkx,*fky,*fkz; FFT_SCALAR *density_fft; FFT_SCALAR *work1,*work2; double *gf_b; FFT_SCALAR **rho1d,**rho_coeff,**drho1d,**drho_coeff; double *sf_precoeff1, *sf_precoeff2, *sf_precoeff3; double *sf_precoeff4, *sf_precoeff5, *sf_precoeff6; double sf_coeff[6]; // coefficients for calculating ad self-forces double **acons; // group-group interactions int group_allocate_flag; FFT_SCALAR ***density_A_brick,***density_B_brick; FFT_SCALAR *density_A_fft,*density_B_fft; class FFT3d *fft1,*fft2; class Remap *remap; class CommGrid *cg; class CommGrid *cg_peratom; int **part2grid; // storage for particle -> grid mapping int nmax; double *boxlo; // TIP4P settings int typeH,typeO; // atom types of TIP4P water H and O atoms double qdist; // distance from O site to negative charge double alpha; // geometric factor void set_grid_global(); void set_grid_local(); void adjust_gewald(); double newton_raphson_f(); double derivf(); double final_accuracy(); virtual void allocate(); virtual void allocate_peratom(); virtual void deallocate(); virtual void deallocate_peratom(); int factorable(int); double compute_df_kspace(); double estimate_ik_error(double, double, bigint); - virtual double compute_qopt(); - virtual void compute_gf_denom(); + double compute_qopt(); + void compute_gf_denom(); virtual void compute_gf_ik(); virtual void compute_gf_ad(); void compute_sf_precoeff(); virtual void particle_map(); virtual void make_rho(); virtual void brick2fft(); virtual void poisson(); virtual void poisson_ik(); virtual void poisson_ad(); virtual void fieldforce(); virtual void fieldforce_ik(); virtual void fieldforce_ad(); virtual void poisson_peratom(); virtual void fieldforce_peratom(); void procs2grid2d(int,int,int,int *, int*); void compute_rho1d(const FFT_SCALAR &, const FFT_SCALAR &, const FFT_SCALAR &); void compute_drho1d(const FFT_SCALAR &, const FFT_SCALAR &, const FFT_SCALAR &); void compute_rho_coeff(); void slabcorr(); // grid communication virtual void pack_forward(int, FFT_SCALAR *, int, int *); virtual void unpack_forward(int, FFT_SCALAR *, int, int *); virtual void pack_reverse(int, FFT_SCALAR *, int, int *); virtual void unpack_reverse(int, FFT_SCALAR *, int, int *); // triclinic int triclinic; // domain settings, orthog or triclinic void setup_triclinic(); void compute_gf_ik_triclinic(); void poisson_ik_triclinic(); void poisson_groups_triclinic(); // group-group interactions virtual void allocate_groups(); virtual void deallocate_groups(); virtual void make_rho_groups(int, int, int); virtual void poisson_groups(int); /* ---------------------------------------------------------------------- denominator for Hockney-Eastwood Green's function of x,y,z = sin(kx*deltax/2), etc inf n-1 S(n,k) = Sum W(k+pi*j)**2 = Sum b(l)*(z*z)**l j=-inf l=0 = -(z*z)**n /(2n-1)! * (d/dx)**(2n-1) cot(x) at z = sin(x) gf_b = denominator expansion coeffs ------------------------------------------------------------------------- */ inline double gf_denom(const double &x, const double &y, const double &z) const { double sx,sy,sz; sz = sy = sx = 0.0; for (int l = order-1; l >= 0; l--) { sx = gf_b[l] + sx*x; sy = gf_b[l] + sy*y; sz = gf_b[l] + sz*z; } double s = sx*sy*sz; return s*s; }; }; } #endif #endif /* ERROR/WARNING messages: E: Illegal ... command Self-explanatory. Check the input script syntax and compare to the documentation for the command. You can use -echo screen as a command-line option when running LAMMPS to see the offending line. E: Cannot (yet) use PPPM with triclinic box and 'kspace_modify diff ad' This feature is not yet supported. E: Cannot (yet) use PPPM with triclinic box and slab correction This feature is not yet supported. E: Cannot use PPPM with 2d simulation The kspace style pppm cannot be used in 2d simulations. You can use 2d PPPM in a 3d simulation; see the kspace_modify command. E: Kspace style requires atom attribute q The atom style defined does not have these attributes. E: Cannot use nonperiodic boundaries with PPPM For kspace style pppm, all 3 dimensions must have periodic boundaries unless you use the kspace_modify command to define a 2d slab with a non-periodic z dimension. E: Incorrect boundaries with slab PPPM Must have periodic x,y dimensions and non-periodic z dimension to use 2d slab option with PPPM. E: PPPM order cannot be < 2 or > than %d This is a limitation of the PPPM implementation in LAMMPS. E: KSpace style is incompatible with Pair style Setting a kspace style requires that a pair style with a long-range Coulombic or dispersion component be used. E: Bond and angle potentials must be defined for TIP4P Cannot use TIP4P pair potential unless bond and angle potentials are defined. E: Bad TIP4P angle type for PPPM/TIP4P Specified angle type is not valid. E: Bad TIP4P bond type for PPPM/TIP4P Specified bond type is not valid. E: Cannot (yet) use PPPM with triclinic box and TIP4P This feature is not yet supported. E: Cannot use kspace solver on system with no charge No atoms in system have a non-zero charge. W: System is not charge neutral, net charge = %g The total charge on all atoms on the system is not 0.0, which is not valid for the long-range Coulombic solvers. W: Reducing PPPM order b/c stencil extends beyond nearest neighbor processor This may lead to a larger grid than desired. See the kspace_modify overlap command to prevent changing of the PPPM order. E: PPPM order < minimum allowed order The default minimum order is 2. This can be reset by the kspace_modify minorder command. E: PPPM grid stencil extends beyond nearest neighbor processor This is not allowed if the kspace_modify overlap setting is no. E: KSpace accuracy must be > 0 The kspace accuracy designated in the input must be greater than zero. E: Could not compute grid size The code is unable to compute a grid size consistent with the desired accuracy. This error should not occur for typical problems. Please send an email to the developers. E: PPPM grid is too large The global PPPM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to 4096. You likely need to decrease the requested accuracy. E: Could not compute g_ewald The Newton-Raphson solver failed to converge to a good value for g_ewald. This error should not occur for typical problems. Please send an email to the developers. E: Out of range atoms - cannot compute PPPM One or more atoms are attempting to map their charge to a PPPM grid point that is not owned by a processor. This is likely for one of two reasons, both of them bad. First, it may mean that an atom near the boundary of a processor's sub-domain has moved more than 1/2 the "neighbor skin distance"_neighbor.html without neighbor lists being rebuilt and atoms being migrated to new processors. This also means you may be missing pairwise interactions that need to be computed. The solution is to change the re-neighboring criteria via the "neigh_modify"_neigh_modify command. The safest settings are "delay 0 every 1 check yes". Second, it may mean that an atom has moved far outside a processor's sub-domain or even the entire simulation box. This indicates bad physics, e.g. due to highly overlapping atoms, too large a timestep, etc. E: Cannot (yet) use K-space slab correction with compute group/group This option is not yet supported. E: Cannot (yet) use 'kspace_modify diff ad' with compute group/group This option is not yet supported. */