diff --git a/doc/src/Section_commands.txt b/doc/src/Section_commands.txt index 7dc3d27b6..f1eb225fe 100644 --- a/doc/src/Section_commands.txt +++ b/doc/src/Section_commands.txt @@ -1,1234 +1,1234 @@ "Previous Section"_Section_start.html - "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc - "Next Section"_Section_packages.html :c :link(lws,http://lammps.sandia.gov) :link(ld,Manual.html) :link(lc,Section_commands.html#comm) :line 3. Commands :h3 This section describes how a LAMMPS input script is formatted and the input script commands used to define a LAMMPS simulation. 3.1 "LAMMPS input script"_#cmd_1 3.2 "Parsing rules"_#cmd_2 3.3 "Input script structure"_#cmd_3 3.4 "Commands listed by category"_#cmd_4 3.5 "Commands listed alphabetically"_#cmd_5 :all(b) :line :line 3.1 LAMMPS input script :link(cmd_1),h4 LAMMPS executes by reading commands from a input script (text file), one line at a time. When the input script ends, LAMMPS exits. Each command causes LAMMPS to take some action. It may set an internal variable, read in a file, or run a simulation. Most commands have default settings, which means you only need to use the command if you wish to change the default. In many cases, the ordering of commands in an input script is not important. However the following rules apply: (1) LAMMPS does not read your entire input script and then perform a simulation with all the settings. Rather, the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of commands: timestep 0.5 run 100 run 100 :pre does something different than this sequence: run 100 timestep 0.5 run 100 :pre In the first case, the specified timestep (0.5 fmsec) is used for two simulations of 100 timesteps each. In the 2nd case, the default timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5 fmsec timestep is used for the 2nd one. (2) Some commands are only valid when they follow other commands. For example you cannot set the temperature of a group of atoms until atoms have been defined and a group command is used to define which atoms belong to the group. (3) Sometimes command B will use values that can be set by command A. This means command A must precede command B in the input script if it is to have the desired effect. For example, the "read_data"_read_data.html command initializes the system by setting up the simulation box and assigning atoms to processors. If default values are not desired, the "processors"_processors.html and "boundary"_boundary.html commands need to be used before read_data to tell LAMMPS how to map processors to the simulation box. Many input script errors are detected by LAMMPS and an ERROR or WARNING message is printed. "This section"_Section_errors.html gives more information on what errors mean. The documentation for each command lists restrictions on how the command can be used. :line 3.2 Parsing rules :link(cmd_2),h4 Each non-blank line in the input script is treated as a command. LAMMPS commands are case sensitive. Command names are lower-case, as are specified command arguments. Upper case letters may be used in file names or user-chosen ID strings. Here is how each line in the input script is parsed by LAMMPS: (1) If the last printable character on the line is a "&" character, the command is assumed to continue on the next line. The next line is concatenated to the previous line by removing the "&" character and line break. This allows long commands to be continued across two or more lines. See the discussion of triple quotes in (6) for how to continue a command across multiple line without using "&" characters. (2) All characters from the first "#" character onward are treated as comment and discarded. See an exception in (6). Note that a comment after a trailing "&" character will prevent the command from continuing on the next line. Also note that for multi-line commands a single leading "#" will comment out the entire command. (3) The line is searched repeatedly for $ characters, which indicate variables that are replaced with a text string. See an exception in (6). If the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly brackets follow the $, then the variable name is the single character immediately following the $. Thus $\{myTemp\} and $x refer to variable names "myTemp" and "x". How the variable is converted to a text string depends on what style of variable it is; see the "variable"_variable.html doc page for details. It can be a variable that stores multiple text strings, and return one of them. The returned text string can be multiple "words" (space separated) which will then be interpreted as multiple arguments in the input command. The variable can also store a numeric formula which will be evaluated and its numeric result returned as a string. As a special case, if the $ is followed by parenthesis, then the text inside the parenthesis is treated as an "immediate" variable and evaluated as an "equal-style variable"_variable.html. This is a way to use numeric formulas in an input script without having to assign them to variable names. For example, these 3 input script lines: variable X equal (xlo+xhi)/2+sqrt(v_area) region 1 block $X 2 INF INF EDGE EDGE variable X delete :pre can be replaced by region 1 block $((xlo+xhi)/2+sqrt(v_area)) 2 INF INF EDGE EDGE :pre so that you do not have to define (or discard) a temporary variable X. Note that neither the curly-bracket or immediate form of variables can contain nested $ characters for other variables to substitute for. Thus you cannot do this: variable a equal 2 variable b2 equal 4 print "B2 = $\{b$a\}" :pre Nor can you specify this $($x-1.0) for an immediate variable, but you could use $(v_x-1.0), since the latter is valid syntax for an "equal-style variable"_variable.html. See the "variable"_variable.html command for more details of how strings are assigned to variables and evaluated, and how they can be used in input script commands. (4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain letters, digits, underscores, or punctuation characters. (5) The first word is the command name. All successive words in the line are arguments. (6) If you want text with spaces to be treated as a single argument, it can be enclosed in either single or double or triple quotes. A long single argument enclosed in single or double quotes can span multiple lines if the "&" character is used, as described above. When the lines are concatenated together (and the "&" characters and line breaks removed), the text will become a single line. If you want multiple lines of an argument to retain their line breaks, the text can be enclosed in triple quotes, in which case "&" characters are not needed. For example: print "Volume = $v" print 'Volume = $v' if "$\{steps\} > 1000" then quit variable a string "red green blue & purple orange cyan" print """ System volume = $v System temperature = $t """ :pre In each case, the single, double, or triple quotes are removed when the single argument they enclose is stored internally. See the "dump modify format"_dump_modify.html, "print"_print.html, "if"_if.html, and "python"_python.html commands for examples. A "#" or "$" character that is between quotes will not be treated as a comment indicator in (2) or substituted for as a variable in (3). NOTE: If the argument is itself a command that requires a quoted argument (e.g. using a "print"_print.html command as part of an "if"_if.html or "run every"_run.html command), then single, double, or triple quotes can be nested in the usual manner. See the doc pages for those commands for examples. Only one of level of nesting is allowed, but that should be sufficient for most use cases. :line 3.3 Input script structure :h4,link(cmd_3) This section describes the structure of a typical LAMMPS input script. The "examples" directory in the LAMMPS distribution contains many sample input scripts; the corresponding problems are discussed in "Section 7"_Section_example.html, and animated on the "LAMMPS WWW Site"_lws. A LAMMPS input script typically has 4 parts: Initialization Atom definition Settings Run a simulation :ol The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run some more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the commands need only be used if a non-default value is desired. (1) Initialization Set parameters that need to be defined before atoms are created or read-in from a file. The relevant commands are "units"_units.html, "dimension"_dimension.html, "newton"_newton.html, "processors"_processors.html, "boundary"_boundary.html, "atom_style"_atom_style.html, "atom_modify"_atom_modify.html. If force-field parameters appear in the files that will be read, these commands tell LAMMPS what kinds of force fields are being used: "pair_style"_pair_style.html, "bond_style"_bond_style.html, "angle_style"_angle_style.html, "dihedral_style"_dihedral_style.html, "improper_style"_improper_style.html. (2) Atom definition There are 3 ways to define atoms in LAMMPS. Read them in from a data or restart file via the "read_data"_read_data.html or "read_restart"_read_restart.html commands. These files can contain molecular topology information. Or create atoms on a lattice (with no molecular topology), using these commands: "lattice"_lattice.html, "region"_region.html, "create_box"_create_box.html, "create_atoms"_create_atoms.html. The entire set of atoms can be duplicated to make a larger simulation using the "replicate"_replicate.html command. (3) Settings Once atoms and molecular topology are defined, a variety of settings can be specified: force field coefficients, simulation parameters, output options, etc. Force field coefficients are set by these commands (they can also be set in the read-in files): "pair_coeff"_pair_coeff.html, "bond_coeff"_bond_coeff.html, "angle_coeff"_angle_coeff.html, "dihedral_coeff"_dihedral_coeff.html, "improper_coeff"_improper_coeff.html, "kspace_style"_kspace_style.html, "dielectric"_dielectric.html, "special_bonds"_special_bonds.html. Various simulation parameters are set by these commands: "neighbor"_neighbor.html, "neigh_modify"_neigh_modify.html, "group"_group.html, "timestep"_timestep.html, "reset_timestep"_reset_timestep.html, "run_style"_run_style.html, "min_style"_min_style.html, "min_modify"_min_modify.html. Fixes impose a variety of boundary conditions, time integration, and diagnostic options. The "fix"_fix.html command comes in many flavors. Various computations can be specified for execution during a simulation using the "compute"_compute.html, "compute_modify"_compute_modify.html, and "variable"_variable.html commands. Output options are set by the "thermo"_thermo.html, "dump"_dump.html, and "restart"_restart.html commands. (4) Run a simulation A molecular dynamics simulation is run using the "run"_run.html command. Energy minimization (molecular statics) is performed using the "minimize"_minimize.html command. A parallel tempering (replica-exchange) simulation can be run using the "temper"_temper.html command. :line 3.4 Commands listed by category :link(cmd_4),h4 This section lists core LAMMPS commands, grouped by category. The "next section"_#cmd_5 lists all commands alphabetically. The next section also includes (long) lists of style options for entries that appear in the following categories as a single command (fix, compute, pair, etc). Commands that are added by user packages are not included in the categories here, but they are in the next section. Initialization: "newton"_newton.html, "package"_package.html, "processors"_processors.html, "suffix"_suffix.html, "units"_units.html Setup simulation box: "boundary"_boundary.html, "box"_box.html, "change_box"_change_box.html, "create_box"_create_box.html, "dimension"_dimension.html, "lattice"_lattice.html, "region"_region.html Setup atoms: "atom_modify"_atom_modify.html, "atom_style"_atom_style.html, "balance"_balance.html, "create_atoms"_create_atoms.html, "create_bonds"_create_bonds.html, "delete_atoms"_delete_atoms.html, "delete_bonds"_delete_bonds.html, "displace_atoms"_displace_atoms.html, "group"_group.html, "mass"_mass.html, "molecule"_molecule.html, "read_data"_read_data.html, "read_dump"_read_dump.html, "read_restart"_read_restart.html, "replicate"_replicate.html, "set"_set.html, "velocity"_velocity.html Force fields: "angle_coeff"_angle_coeff.html, "angle_style"_angle_style.html, "bond_coeff"_bond_coeff.html, "bond_style"_bond_style.html, "bond_write"_bond_write.html, "dielectric"_dielectric.html, "dihedral_coeff"_dihedral_coeff.html, "dihedral_style"_dihedral_style.html, "improper_coeff"_improper_coeff.html, "improper_style"_improper_style.html, "kspace_modify"_kspace_modify.html, "kspace_style"_kspace_style.html, "pair_coeff"_pair_coeff.html, "pair_modify"_pair_modify.html, "pair_style"_pair_style.html, "pair_write"_pair_write.html, "special_bonds"_special_bonds.html Settings: "comm_modify"_comm_modify.html, "comm_style"_comm_style.html, "info"_info.html, "min_modify"_min_modify.html, "min_style"_min_style.html, "neigh_modify"_neigh_modify.html, "neighbor"_neighbor.html, "partition"_partition.html, "reset_timestep"_reset_timestep.html, "run_style"_run_style.html, "timer"_timer.html, "timestep"_timestep.html Operations within timestepping (fixes) and diagnostics (computes): "compute"_compute.html, "compute_modify"_compute_modify.html, "fix"_fix.html, "fix_modify"_fix_modify.html, "uncompute"_uncompute.html, "unfix"_unfix.html Output: "dump image"_dump_image.html, "dump movie"_dump_image.html, "dump"_dump.html, "dump_modify"_dump_modify.html, "restart"_restart.html, "thermo"_thermo.html, "thermo_modify"_thermo_modify.html, "thermo_style"_thermo_style.html, "undump"_undump.html, "write_coeff"_write_coeff.html, "write_data"_write_data.html, "write_dump"_write_dump.html, "write_restart"_write_restart.html Actions: "minimize"_minimize.html, "neb"_neb.html, "prd"_prd.html, "rerun"_rerun.html, "run"_run.html, "tad"_tad.html, "temper"_temper.html Input script control: "clear"_clear.html, "echo"_echo.html, "if"_if.html, "include"_include.html, "jump"_jump.html, "label"_label.html, "log"_log.html, "next"_next.html, "print"_print.html, "python"_python.html, "quit"_quit.html, "shell"_shell.html, "variable"_variable.html :line 3.5 Individual commands :h4,link(cmd_5),link(comm) This section lists all LAMMPS commands alphabetically, with a separate listing below of styles within certain commands. The "previous section"_#cmd_4 lists the same commands, grouped by category. Note that some style options for some commands are part of specific LAMMPS packages, which means they cannot be used unless the package was included when LAMMPS was built. Not all packages are included in a default LAMMPS build. These dependencies are listed as Restrictions in the command's documentation. "angle_coeff"_angle_coeff.html, "angle_style"_angle_style.html, "atom_modify"_atom_modify.html, "atom_style"_atom_style.html, "balance"_balance.html, "bond_coeff"_bond_coeff.html, "bond_style"_bond_style.html, "bond_write"_bond_write.html, "boundary"_boundary.html, "box"_box.html, "change_box"_change_box.html, "clear"_clear.html, "comm_modify"_comm_modify.html, "comm_style"_comm_style.html, "compute"_compute.html, "compute_modify"_compute_modify.html, "create_atoms"_create_atoms.html, "create_bonds"_create_bonds.html, "create_box"_create_box.html, "delete_atoms"_delete_atoms.html, "delete_bonds"_delete_bonds.html, "dielectric"_dielectric.html, "dihedral_coeff"_dihedral_coeff.html, "dihedral_style"_dihedral_style.html, "dimension"_dimension.html, "displace_atoms"_displace_atoms.html, "dump"_dump.html, "dump image"_dump_image.html, "dump_modify"_dump_modify.html, "dump movie"_dump_image.html, "echo"_echo.html, "fix"_fix.html, "fix_modify"_fix_modify.html, "group"_group.html, "if"_if.html, "info"_info.html, "improper_coeff"_improper_coeff.html, "improper_style"_improper_style.html, "include"_include.html, "jump"_jump.html, "kspace_modify"_kspace_modify.html, "kspace_style"_kspace_style.html, "label"_label.html, "lattice"_lattice.html, "log"_log.html, "mass"_mass.html, "minimize"_minimize.html, "min_modify"_min_modify.html, "min_style"_min_style.html, "molecule"_molecule.html, "neb"_neb.html, "neigh_modify"_neigh_modify.html, "neighbor"_neighbor.html, "newton"_newton.html, "next"_next.html, "package"_package.html, "pair_coeff"_pair_coeff.html, "pair_modify"_pair_modify.html, "pair_style"_pair_style.html, "pair_write"_pair_write.html, "partition"_partition.html, "prd"_prd.html, "print"_print.html, "processors"_processors.html, "python"_python.html, "quit"_quit.html, "read_data"_read_data.html, "read_dump"_read_dump.html, "read_restart"_read_restart.html, "region"_region.html, "replicate"_replicate.html, "rerun"_rerun.html, "reset_timestep"_reset_timestep.html, "restart"_restart.html, "run"_run.html, "run_style"_run_style.html, "set"_set.html, "shell"_shell.html, "special_bonds"_special_bonds.html, "suffix"_suffix.html, "tad"_tad.html, "temper"_temper.html, "thermo"_thermo.html, "thermo_modify"_thermo_modify.html, "thermo_style"_thermo_style.html, "timer"_timer.html, "timestep"_timestep.html, "uncompute"_uncompute.html, "undump"_undump.html, "unfix"_unfix.html, "units"_units.html, "variable"_variable.html, "velocity"_velocity.html, "write_coeff"_write_coeff.html, "write_data"_write_data.html, "write_dump"_write_dump.html, "write_restart"_write_restart.html :tb(c=6,ea=c) These are additional commands in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "dump netcdf"_dump_netcdf.html, "dump netcdf/mpiio"_dump_netcdf.html, "dump vtk"_dump_vtk.html, "group2ndx"_group2ndx.html, "ndx2group"_group2ndx.html, "temper/grem"_temper_grem.html :tb(c=3,ea=c) :line Fix styles :h4 See the "fix"_fix.html command for one-line descriptions of each style or click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "adapt"_fix_adapt.html, "addforce"_fix_addforce.html, "append/atoms"_fix_append_atoms.html, "atom/swap"_fix_atom_swap.html, "aveforce"_fix_aveforce.html, "ave/atom"_fix_ave_atom.html, "ave/chunk"_fix_ave_chunk.html, "ave/correlate"_fix_ave_correlate.html, "ave/histo"_fix_ave_histo.html, "ave/histo/weight"_fix_ave_histo.html, "ave/time"_fix_ave_time.html, "balance"_fix_balance.html, "bond/break"_fix_bond_break.html, "bond/create"_fix_bond_create.html, "bond/swap"_fix_bond_swap.html, "box/relax"_fix_box_relax.html, "cmap"_fix_cmap.html, "controller"_fix_controller.html, "deform (k)"_fix_deform.html, "deposit"_fix_deposit.html, "drag"_fix_drag.html, "dt/reset"_fix_dt_reset.html, "efield"_fix_efield.html, "ehex"_fix_ehex.html, "enforce2d"_fix_enforce2d.html, "evaporate"_fix_evaporate.html, "external"_fix_external.html, "freeze"_fix_freeze.html, "gcmc"_fix_gcmc.html, "gld"_fix_gld.html, "gravity (o)"_fix_gravity.html, "halt"_fix_halt.html, "heat"_fix_heat.html, "indent"_fix_indent.html, "langevin (k)"_fix_langevin.html, "lineforce"_fix_lineforce.html, "momentum (k)"_fix_momentum.html, "move"_fix_move.html, "mscg"_fix_mscg.html, "msst"_fix_msst.html, "neb"_fix_neb.html, "nph (ko)"_fix_nh.html, "nphug (o)"_fix_nphug.html, "nph/asphere (o)"_fix_nph_asphere.html, "nph/body"_fix_nph_body.html, "nph/sphere (o)"_fix_nph_sphere.html, "npt (kio)"_fix_nh.html, "npt/asphere (o)"_fix_npt_asphere.html, "npt/body"_fix_npt_body.html, "npt/sphere (o)"_fix_npt_sphere.html, "nve (kio)"_fix_nve.html, "nve/asphere (i)"_fix_nve_asphere.html, "nve/asphere/noforce"_fix_nve_asphere_noforce.html, "nve/body"_fix_nve_body.html, "nve/limit"_fix_nve_limit.html, "nve/line"_fix_nve_line.html, "nve/noforce"_fix_nve_noforce.html, "nve/sphere (o)"_fix_nve_sphere.html, "nve/tri"_fix_nve_tri.html, "nvt (iko)"_fix_nh.html, "nvt/asphere (o)"_fix_nvt_asphere.html, "nvt/body"_fix_nvt_body.html, "nvt/sllod (io)"_fix_nvt_sllod.html, "nvt/sphere (o)"_fix_nvt_sphere.html, "oneway"_fix_oneway.html, "orient/bcc"_fix_orient.html, "orient/fcc"_fix_orient.html, "planeforce"_fix_planeforce.html, "poems"_fix_poems.html, "pour"_fix_pour.html, "press/berendsen"_fix_press_berendsen.html, "print"_fix_print.html, "property/atom"_fix_property_atom.html, "python"_fix_python.html, "qeq/comb (o)"_fix_qeq_comb.html, "qeq/dynamic"_fix_qeq.html, "qeq/fire"_fix_qeq.html, "qeq/point"_fix_qeq.html, "qeq/shielded"_fix_qeq.html, "qeq/slater"_fix_qeq.html, "rattle"_fix_shake.html, "reax/bonds"_fix_reax_bonds.html, "recenter"_fix_recenter.html, "restrain"_fix_restrain.html, "rigid (o)"_fix_rigid.html, "rigid/nph (o)"_fix_rigid.html, "rigid/npt (o)"_fix_rigid.html, "rigid/nve (o)"_fix_rigid.html, "rigid/nvt (o)"_fix_rigid.html, "rigid/small (o)"_fix_rigid.html, "rigid/small/nph (o)"_fix_rigid.html, "rigid/small/npt (o)"_fix_rigid.html, "rigid/small/nve (o)"_fix_rigid.html, "rigid/small/nvt (o)"_fix_rigid.html, "setforce (k)"_fix_setforce.html, "shake"_fix_shake.html, "spring"_fix_spring.html, "spring/chunk"_fix_spring_chunk.html, "spring/rg"_fix_spring_rg.html, "spring/self"_fix_spring_self.html, "srd"_fix_srd.html, "store/force"_fix_store_force.html, "store/state"_fix_store_state.html, "temp/berendsen"_fix_temp_berendsen.html, "temp/csld"_fix_temp_csvr.html, "temp/csvr"_fix_temp_csvr.html, "temp/rescale"_fix_temp_rescale.html, "tfmc"_fix_tfmc.html, "thermal/conductivity"_fix_thermal_conductivity.html, "tmd"_fix_tmd.html, "ttm"_fix_ttm.html, "tune/kspace"_fix_tune_kspace.html, "vector"_fix_vector.html, "viscosity"_fix_viscosity.html, "viscous"_fix_viscous.html, "wall/colloid"_fix_wall.html, "wall/gran"_fix_wall_gran.html, "wall/gran/region"_fix_wall_gran_region.html, "wall/harmonic"_fix_wall.html, "wall/lj1043"_fix_wall.html, "wall/lj126"_fix_wall.html, "wall/lj93"_fix_wall.html, "wall/piston"_fix_wall_piston.html, "wall/reflect (k)"_fix_wall_reflect.html, "wall/region"_fix_wall_region.html, "wall/srd"_fix_wall_srd.html :tb(c=8,ea=c) These are additional fix styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "adapt/fep"_fix_adapt_fep.html, "addtorque"_fix_addtorque.html, "atc"_fix_atc.html, "ave/correlate/long"_fix_ave_correlate_long.html, "colvars"_fix_colvars.html, "dpd/energy"_fix_dpd_energy.html, "drude"_fix_drude.html, "drude/transform/direct"_fix_drude_transform.html, "drude/transform/reverse"_fix_drude_transform.html, "eos/cv"_fix_eos_cv.html, "eos/table"_fix_eos_table.html, "eos/table/rx"_fix_eos_table_rx.html, "filter/corotate"_fix_filter_corotate.html, "flow/gauss"_fix_flow_gauss.html, "gle"_fix_gle.html, "grem"_fix_grem.html, "imd"_fix_imd.html, "ipi"_fix_ipi.html, "langevin/drude"_fix_langevin_drude.html, "langevin/eff"_fix_langevin_eff.html, "lb/fluid"_fix_lb_fluid.html, "lb/momentum"_fix_lb_momentum.html, "lb/pc"_fix_lb_pc.html, "lb/rigid/pc/sphere"_fix_lb_rigid_pc_sphere.html, "lb/viscous"_fix_lb_viscous.html, "meso"_fix_meso.html, "manifoldforce"_fix_manifoldforce.html, "meso/stationary"_fix_meso_stationary.html, "nve/dot"_fix_nve_dot.html, "nve/dotc/langevin"_fix_nve_dotc_langevin.html, "nve/manifold/rattle"_fix_nve_manifold_rattle.html, "nvk"_fix_nvk.html, "nvt/manifold/rattle"_fix_nvt_manifold_rattle.html, "nph/eff"_fix_nh_eff.html, "npt/eff"_fix_nh_eff.html, "nve/eff"_fix_nve_eff.html, "nvt/eff"_fix_nh_eff.html, "nvt/sllod/eff"_fix_nvt_sllod_eff.html, "phonon"_fix_phonon.html, "pimd"_fix_pimd.html, "qbmsst"_fix_qbmsst.html, "qeq/reax (ko)"_fix_qeq_reax.html, "qmmm"_fix_qmmm.html, "qtb"_fix_qtb.html, "reax/c/bonds"_fix_reax_bonds.html, "reax/c/species"_fix_reaxc_species.html, "rx"_fix_rx.html, "saed/vtk"_fix_saed_vtk.html, "shardlow"_fix_shardlow.html, "smd"_fix_smd.html, "smd/adjust/dt"_fix_smd_adjust_dt.html, "smd/integrate/tlsph"_fix_smd_integrate_tlsph.html, "smd/integrate/ulsph"_fix_smd_integrate_ulsph.html, "smd/move/triangulated/surface"_fix_smd_move_triangulated_surface.html, "smd/setvel"_fix_smd_setvel.html, "smd/wall/surface"_fix_smd_wall_surface.html, "temp/rescale/eff"_fix_temp_rescale_eff.html, "ti/spring"_fix_ti_spring.html, -"ttm/mod"_fix_ttm.html -"wall/ees"_fix_wall_ees.html +"ttm/mod"_fix_ttm.html, +"wall/ees"_fix_wall_ees.html, "wall/region/ees"_fix_wall_ees.html :tb(c=6,ea=c) :line Compute styles :h4 See the "compute"_compute.html command for one-line descriptions of each style or click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "angle"_compute_angle.html, "angle/local"_compute_angle_local.html, "angmom/chunk"_compute_angmom_chunk.html, "body/local"_compute_body_local.html, "bond"_compute_bond.html, "bond/local"_compute_bond_local.html, "centro/atom"_compute_centro_atom.html, "chunk/atom"_compute_chunk_atom.html, "cluster/atom"_compute_cluster_atom.html, "cna/atom"_compute_cna_atom.html, "com"_compute_com.html, "com/chunk"_compute_com_chunk.html, "contact/atom"_compute_contact_atom.html, "coord/atom"_compute_coord_atom.html, "damage/atom"_compute_damage_atom.html, "dihedral"_compute_dihedral.html, "dihedral/local"_compute_dihedral_local.html, "dilatation/atom"_compute_dilatation_atom.html, "dipole/chunk"_compute_dipole_chunk.html, "displace/atom"_compute_displace_atom.html, "erotate/asphere"_compute_erotate_asphere.html, "erotate/rigid"_compute_erotate_rigid.html, "erotate/sphere"_compute_erotate_sphere.html, "erotate/sphere/atom"_compute_erotate_sphere_atom.html, "event/displace"_compute_event_displace.html, "global/atom"_compute_global_atom.html, "group/group"_compute_group_group.html, "gyration"_compute_gyration.html, "gyration/chunk"_compute_gyration_chunk.html, "heat/flux"_compute_heat_flux.html, "hexorder/atom"_compute_hexorder_atom.html, "improper"_compute_improper.html, "improper/local"_compute_improper_local.html, "inertia/chunk"_compute_inertia_chunk.html, "ke"_compute_ke.html, "ke/atom"_compute_ke_atom.html, "ke/rigid"_compute_ke_rigid.html, "msd"_compute_msd.html, "msd/chunk"_compute_msd_chunk.html, "msd/nongauss"_compute_msd_nongauss.html, "omega/chunk"_compute_omega_chunk.html, "orientorder/atom"_compute_orientorder_atom.html, "pair"_compute_pair.html, "pair/local"_compute_pair_local.html, "pe"_compute_pe.html, "pe/atom"_compute_pe_atom.html, "plasticity/atom"_compute_plasticity_atom.html, "pressure"_compute_pressure.html, "property/atom"_compute_property_atom.html, "property/local"_compute_property_local.html, "property/chunk"_compute_property_chunk.html, "rdf"_compute_rdf.html, "reduce"_compute_reduce.html, "reduce/region"_compute_reduce.html, "rigid/local"_compute_rigid_local.html, "slice"_compute_slice.html, "sna/atom"_compute_sna_atom.html, "snad/atom"_compute_sna_atom.html, "snav/atom"_compute_sna_atom.html, "stress/atom"_compute_stress_atom.html, "temp (k)"_compute_temp.html, "temp/asphere"_compute_temp_asphere.html, "temp/body"_compute_temp_body.html, "temp/chunk"_compute_temp_chunk.html, "temp/com"_compute_temp_com.html, "temp/deform"_compute_temp_deform.html, "temp/partial"_compute_temp_partial.html, "temp/profile"_compute_temp_profile.html, "temp/ramp"_compute_temp_ramp.html, "temp/region"_compute_temp_region.html, "temp/sphere"_compute_temp_sphere.html, "ti"_compute_ti.html, "torque/chunk"_compute_torque_chunk.html, "vacf"_compute_vacf.html, "vcm/chunk"_compute_vcm_chunk.html, "voronoi/atom"_compute_voronoi_atom.html :tb(c=6,ea=c) These are additional compute styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "ackland/atom"_compute_ackland_atom.html, "basal/atom"_compute_basal_atom.html, "cnp/atom"_compute_cnp_atom.html, "dpd"_compute_dpd.html, "dpd/atom"_compute_dpd_atom.html, "fep"_compute_fep.html, "force/tally"_compute_tally.html, "heat/flux/tally"_compute_tally.html, "ke/eff"_compute_ke_eff.html, "ke/atom/eff"_compute_ke_atom_eff.html, "meso/e/atom"_compute_meso_e_atom.html, "meso/rho/atom"_compute_meso_rho_atom.html, "meso/t/atom"_compute_meso_t_atom.html, "pe/tally"_compute_tally.html, "pe/mol/tally"_compute_tally.html, "saed"_compute_saed.html, "smd/contact/radius"_compute_smd_contact_radius.html, "smd/damage"_compute_smd_damage.html, "smd/hourglass/error"_compute_smd_hourglass_error.html, "smd/internal/energy"_compute_smd_internal_energy.html, "smd/plastic/strain"_compute_smd_plastic_strain.html, "smd/plastic/strain/rate"_compute_smd_plastic_strain_rate.html, "smd/rho"_compute_smd_rho.html, "smd/tlsph/defgrad"_compute_smd_tlsph_defgrad.html, "smd/tlsph/dt"_compute_smd_tlsph_dt.html, "smd/tlsph/num/neighs"_compute_smd_tlsph_num_neighs.html, "smd/tlsph/shape"_compute_smd_tlsph_shape.html, "smd/tlsph/strain"_compute_smd_tlsph_strain.html, "smd/tlsph/strain/rate"_compute_smd_tlsph_strain_rate.html, "smd/tlsph/stress"_compute_smd_tlsph_stress.html, "smd/triangle/mesh/vertices"_compute_smd_triangle_mesh_vertices.html, "smd/ulsph/num/neighs"_compute_smd_ulsph_num_neighs.html, "smd/ulsph/strain"_compute_smd_ulsph_strain.html, "smd/ulsph/strain/rate"_compute_smd_ulsph_strain_rate.html, "smd/ulsph/stress"_compute_smd_ulsph_stress.html, "smd/vol"_compute_smd_vol.html, "stress/tally"_compute_tally.html, "temp/drude"_compute_temp_drude.html, "temp/eff"_compute_temp_eff.html, "temp/deform/eff"_compute_temp_deform_eff.html, "temp/region/eff"_compute_temp_region_eff.html, "temp/rotate"_compute_temp_rotate.html, "xrd"_compute_xrd.html :tb(c=6,ea=c) :line Pair_style potentials :h4 See the "pair_style"_pair_style.html command for an overview of pair potentials. Click on the style itself for a full description. Many of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "none"_pair_none.html, "zero"_pair_zero.html, "hybrid"_pair_hybrid.html, "hybrid/overlay"_pair_hybrid.html, "adp (o)"_pair_adp.html, "airebo (o)"_pair_airebo.html, "airebo/morse (o)"_pair_airebo.html, "beck (go)"_pair_beck.html, "body"_pair_body.html, "bop"_pair_bop.html, "born (go)"_pair_born.html, "born/coul/dsf"_pair_born.html, "born/coul/dsf/cs"_pair_born.html, "born/coul/long (go)"_pair_born.html, "born/coul/long/cs"_pair_born.html, "born/coul/msm (o)"_pair_born.html, "born/coul/wolf (go)"_pair_born.html, "brownian (o)"_pair_brownian.html, "brownian/poly (o)"_pair_brownian.html, "buck (gkio)"_pair_buck.html, "buck/coul/cut (gkio)"_pair_buck.html, "buck/coul/long (gkio)"_pair_buck.html, "buck/coul/long/cs"_pair_buck.html, "buck/coul/msm (o)"_pair_buck.html, "buck/long/coul/long (o)"_pair_buck_long.html, "colloid (go)"_pair_colloid.html, "comb (o)"_pair_comb.html, "comb3"_pair_comb.html, "coul/cut (gko)"_pair_coul.html, "coul/debye (gko)"_pair_coul.html, "coul/dsf (gko)"_pair_coul.html, "coul/long (gko)"_pair_coul.html, "coul/long/cs"_pair_coul.html, "coul/msm"_pair_coul.html, "coul/streitz"_pair_coul.html, "coul/wolf (ko)"_pair_coul.html, "dpd (go)"_pair_dpd.html, "dpd/tstat (go)"_pair_dpd.html, "dsmc"_pair_dsmc.html, "eam (gkiot)"_pair_eam.html, "eam/alloy (gkot)"_pair_eam.html, "eam/fs (gkot)"_pair_eam.html, "eim (o)"_pair_eim.html, "gauss (go)"_pair_gauss.html, "gayberne (gio)"_pair_gayberne.html, "gran/hertz/history (o)"_pair_gran.html, "gran/hooke (o)"_pair_gran.html, "gran/hooke/history (o)"_pair_gran.html, "gw"_pair_gw.html, "gw/zbl"_pair_gw.html, "hbond/dreiding/lj (o)"_pair_hbond_dreiding.html, "hbond/dreiding/morse (o)"_pair_hbond_dreiding.html, "kim"_pair_kim.html, "lcbop"_pair_lcbop.html, "line/lj"_pair_line_lj.html, "lj/charmm/coul/charmm (ko)"_pair_charmm.html, "lj/charmm/coul/charmm/implicit (ko)"_pair_charmm.html, "lj/charmm/coul/long (giko)"_pair_charmm.html, "lj/charmm/coul/msm"_pair_charmm.html, "lj/charmmfsw/coul/charmmfsh"_pair_charmm.html, "lj/charmmfsw/coul/long"_pair_charmm.html, "lj/class2 (gko)"_pair_class2.html, "lj/class2/coul/cut (ko)"_pair_class2.html, "lj/class2/coul/long (gko)"_pair_class2.html, "lj/cubic (go)"_pair_lj_cubic.html, "lj/cut (gikot)"_pair_lj.html, "lj/cut/coul/cut (gko)"_pair_lj.html, "lj/cut/coul/debye (gko)"_pair_lj.html, "lj/cut/coul/dsf (gko)"_pair_lj.html, "lj/cut/coul/long (gikot)"_pair_lj.html, "lj/cut/coul/long/cs"_pair_lj.html, "lj/cut/coul/msm (go)"_pair_lj.html, "lj/cut/dipole/cut (go)"_pair_dipole.html, "lj/cut/dipole/long"_pair_dipole.html, "lj/cut/tip4p/cut (o)"_pair_lj.html, "lj/cut/tip4p/long (ot)"_pair_lj.html, "lj/expand (gko)"_pair_lj_expand.html, "lj/gromacs (gko)"_pair_gromacs.html, "lj/gromacs/coul/gromacs (ko)"_pair_gromacs.html, "lj/long/coul/long (io)"_pair_lj_long.html, "lj/long/dipole/long"_pair_dipole.html, "lj/long/tip4p/long"_pair_lj_long.html, "lj/smooth (o)"_pair_lj_smooth.html, "lj/smooth/linear (o)"_pair_lj_smooth_linear.html, "lj96/cut (go)"_pair_lj96.html, "lubricate (o)"_pair_lubricate.html, "lubricate/poly (o)"_pair_lubricate.html, "lubricateU"_pair_lubricateU.html, "lubricateU/poly"_pair_lubricateU.html, "meam"_pair_meam.html, "mie/cut (o)"_pair_mie.html, "morse (gkot)"_pair_morse.html, "nb3b/harmonic (o)"_pair_nb3b_harmonic.html, "nm/cut (o)"_pair_nm.html, "nm/cut/coul/cut (o)"_pair_nm.html, "nm/cut/coul/long (o)"_pair_nm.html, "peri/eps"_pair_peri.html, "peri/lps (o)"_pair_peri.html, "peri/pmb (o)"_pair_peri.html, "peri/ves"_pair_peri.html, "polymorphic"_pair_polymorphic.html, "python"_pair_python.html, "reax"_pair_reax.html, "rebo (o)"_pair_airebo.html, "resquared (go)"_pair_resquared.html, "snap"_pair_snap.html, "soft (go)"_pair_soft.html, "sw (gkio)"_pair_sw.html, "table (gko)"_pair_table.html, "tersoff (gkio)"_pair_tersoff.html, "tersoff/mod (gko)"_pair_tersoff_mod.html, "tersoff/mod/c (o)"_pair_tersoff_mod.html, "tersoff/zbl (gko)"_pair_tersoff_zbl.html, "tip4p/cut (o)"_pair_coul.html, "tip4p/long (o)"_pair_coul.html, "tri/lj"_pair_tri_lj.html, "vashishta (ko)"_pair_vashishta.html, "vashishta/table (o)"_pair_vashishta.html, "yukawa (go)"_pair_yukawa.html, "yukawa/colloid (go)"_pair_yukawa_colloid.html, "zbl (go)"_pair_zbl.html :tb(c=4,ea=c) These are additional pair styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "agni (o)"_pair_agni.html, "awpmd/cut"_pair_awpmd.html, "buck/mdf"_pair_mdf.html, "coul/cut/soft (o)"_pair_lj_soft.html, "coul/diel (o)"_pair_coul_diel.html, "coul/long/soft (o)"_pair_lj_soft.html, "dpd/fdt"_pair_dpd_fdt.html, "dpd/fdt/energy"_pair_dpd_fdt.html, "eam/cd (o)"_pair_eam.html, "edip (o)"_pair_edip.html, "edip/multi"_pair_edip.html, "eff/cut"_pair_eff.html, "exp6/rx"_pair_exp6_rx.html, "gauss/cut"_pair_gauss.html, "kolmogorov/crespi/z"_pair_kolmogorov_crespi_z.html, "lennard/mdf"_pair_mdf.html, "list"_pair_list.html, "lj/charmm/coul/long/soft (o)"_pair_charmm.html, "lj/cut/coul/cut/soft (o)"_pair_lj_soft.html, "lj/cut/coul/long/soft (o)"_pair_lj_soft.html, "lj/cut/dipole/sf (go)"_pair_dipole.html, "lj/cut/soft (o)"_pair_lj_soft.html, "lj/cut/thole/long (o)"_pair_thole.html, "lj/cut/tip4p/long/soft (o)"_pair_lj_soft.html, "lj/mdf"_pair_mdf.html, "lj/sdk (gko)"_pair_sdk.html, "lj/sdk/coul/long (go)"_pair_sdk.html, "lj/sdk/coul/msm (o)"_pair_sdk.html, "meam/c"_pair_meam.html, "meam/spline (o)"_pair_meam_spline.html, "meam/sw/spline"_pair_meam_sw_spline.html, "mgpt"_pair_mgpt.html, "momb"_pair_momb.html, "morse/smooth/linear"_pair_morse.html, "morse/soft"_pair_morse.html, "multi/lucy"_pair_multi_lucy.html, "multi/lucy/rx"_pair_multi_lucy_rx.html, "oxdna/coaxstk"_pair_oxdna.html, "oxdna/excv"_pair_oxdna.html, "oxdna/hbond"_pair_oxdna.html, "oxdna/stk"_pair_oxdna.html, "oxdna/xstk"_pair_oxdna.html, "oxdna2/coaxstk"_pair_oxdna2.html, "oxdna2/dh"_pair_oxdna2.html, "oxdna2/excv"_pair_oxdna2.html, "oxdna2/stk"_pair_oxdna2.html, "quip"_pair_quip.html, "reax/c (ko)"_pair_reaxc.html, "smd/hertz"_pair_smd_hertz.html, "smd/tlsph"_pair_smd_tlsph.html, "smd/triangulated/surface"_pair_smd_triangulated_surface.html, "smd/ulsph"_pair_smd_ulsph.html, "smtbq"_pair_smtbq.html, "sph/heatconduction"_pair_sph_heatconduction.html, "sph/idealgas"_pair_sph_idealgas.html, "sph/lj"_pair_sph_lj.html, "sph/rhosum"_pair_sph_rhosum.html, "sph/taitwater"_pair_sph_taitwater.html, "sph/taitwater/morris"_pair_sph_taitwater_morris.html, "srp"_pair_srp.html, "table/rx"_pair_table_rx.html, "tersoff/table (o)"_pair_tersoff.html, "thole"_pair_thole.html, "tip4p/long/soft (o)"_pair_lj_soft.html :tb(c=4,ea=c) :line Bond_style potentials :h4 See the "bond_style"_bond_style.html command for an overview of bond potentials. Click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "none"_bond_none.html, "zero"_bond_zero.html, "hybrid"_bond_hybrid.html, "class2 (ko)"_bond_class2.html, "fene (iko)"_bond_fene.html, "fene/expand (o)"_bond_fene_expand.html, "harmonic (ko)"_bond_harmonic.html, "morse (o)"_bond_morse.html, "nonlinear (o)"_bond_nonlinear.html, "quartic (o)"_bond_quartic.html, "table (o)"_bond_table.html :tb(c=4,ea=c) These are additional bond styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "harmonic/shift (o)"_bond_harmonic_shift.html, "harmonic/shift/cut (o)"_bond_harmonic_shift_cut.html, "oxdna/fene"_bond_oxdna.html, "oxdna2/fene"_bond_oxdna.html :tb(c=4,ea=c) :line Angle_style potentials :h4 See the "angle_style"_angle_style.html command for an overview of angle potentials. Click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "none"_angle_none.html, "zero"_angle_zero.html, "hybrid"_angle_hybrid.html, "charmm (ko)"_angle_charmm.html, "class2 (ko)"_angle_class2.html, "cosine (o)"_angle_cosine.html, "cosine/delta (o)"_angle_cosine_delta.html, "cosine/periodic (o)"_angle_cosine_periodic.html, "cosine/squared (o)"_angle_cosine_squared.html, "harmonic (iko)"_angle_harmonic.html, "table (o)"_angle_table.html :tb(c=4,ea=c) These are additional angle styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "cosine/shift (o)"_angle_cosine_shift.html, "cosine/shift/exp (o)"_angle_cosine_shift_exp.html, "dipole (o)"_angle_dipole.html, "fourier (o)"_angle_fourier.html, "fourier/simple (o)"_angle_fourier_simple.html, "quartic (o)"_angle_quartic.html, "sdk"_angle_sdk.html :tb(c=4,ea=c) :line Dihedral_style potentials :h4 See the "dihedral_style"_dihedral_style.html command for an overview of dihedral potentials. Click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "none"_dihedral_none.html, "zero"_dihedral_zero.html, "hybrid"_dihedral_hybrid.html, "charmm (ko)"_dihedral_charmm.html, "charmmfsw"_dihedral_charmm.html, "class2 (ko)"_dihedral_class2.html, "harmonic (io)"_dihedral_harmonic.html, "helix (o)"_dihedral_helix.html, "multi/harmonic (o)"_dihedral_multi_harmonic.html, "opls (iko)"_dihedral_opls.html :tb(c=4,ea=c) These are additional dihedral styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "cosine/shift/exp (o)"_dihedral_cosine_shift_exp.html, "fourier (o)"_dihedral_fourier.html, "nharmonic (o)"_dihedral_nharmonic.html, "quadratic (o)"_dihedral_quadratic.html, "spherical (o)"_dihedral_spherical.html, "table (o)"_dihedral_table.html :tb(c=4,ea=c) :line Improper_style potentials :h4 See the "improper_style"_improper_style.html command for an overview of improper potentials. Click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "none"_improper_none.html, "zero"_improper_zero.html, "hybrid"_improper_hybrid.html, "class2 (ko)"_improper_class2.html, "cvff (io)"_improper_cvff.html, "harmonic (ko)"_improper_harmonic.html, "umbrella (o)"_improper_umbrella.html :tb(c=4,ea=c) These are additional improper styles in USER packages, which can be used if "LAMMPS is built with the appropriate package"_Section_start.html#start_3. "cossq (o)"_improper_cossq.html, "distance"_improper_distance.html, "fourier (o)"_improper_fourier.html, "ring (o)"_improper_ring.html :tb(c=4,ea=c) :line Kspace solvers :h4 See the "kspace_style"_kspace_style.html command for an overview of Kspace solvers. Click on the style itself for a full description. Some of the styles have accelerated versions, which can be used if LAMMPS is built with the "appropriate accelerated package"_Section_accelerate.html. This is indicated by additional letters in parenthesis: g = GPU, i = USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT. "ewald (o)"_kspace_style.html, "ewald/disp"_kspace_style.html, "msm (o)"_kspace_style.html, "msm/cg (o)"_kspace_style.html, "pppm (go)"_kspace_style.html, "pppm/cg (o)"_kspace_style.html, "pppm/disp (i)"_kspace_style.html, "pppm/disp/tip4p"_kspace_style.html, "pppm/stagger"_kspace_style.html, "pppm/tip4p (o)"_kspace_style.html :tb(c=4,ea=c) diff --git a/doc/src/Section_packages.txt b/doc/src/Section_packages.txt index 54a2685b8..6afcb2758 100644 --- a/doc/src/Section_packages.txt +++ b/doc/src/Section_packages.txt @@ -1,2634 +1,2658 @@ "Previous Section"_Section_commands.html - "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc - "Next Section"_Section_accelerate.html :c :link(lws,http://lammps.sandia.gov) :link(ld,Manual.html) :link(lc,Section_commands.html#comm) :line 4. Packages :h3 This section gives an overview of the optional packages that extend LAMMPS functionality with instructions on how to build LAMMPS with each of them. Packages are groups of files that enable a specific set of features. For example, force fields for molecular systems or granular systems are in packages. You can see the list of all packages and "make" commands to manage them by typing "make package" from within the src directory of the LAMMPS distribution. "Section 2.3"_Section_start.html#start_3 gives general info on how to install and un-install packages as part of the LAMMPS build process. There are two kinds of packages in LAMMPS, standard and user packages: "Table of standard packages"_#table_standard "Table of user packages"_#table_user :ul Standard packages are supported by the LAMMPS developers and are written in a syntax and style consistent with the rest of LAMMPS. This means the developers will answer questions about them, debug and fix them if necessary, and keep them compatible with future changes to LAMMPS. User packages have been contributed by users, and begin with the "user" prefix. If they are a single command (single file), they are typically in the user-misc package. User packages don't necessarily meet the requirements of the standard packages. If you have problems using a feature provided in a user package, you may need to contact the contributor directly to get help. Information on how to submit additions you make to LAMMPS as single files or as a standard or user package are given in "this section"_Section_modify.html#mod_15 of the manual. Following the next two tables is a sub-section for each package. It lists authors (if applicable) and summarizes the package contents. It has specific instructions on how to install the package, including (if necessary) downloading or building any extra library it requires. It also gives links to documentation, example scripts, and pictures/movies (if available) that illustrate use of the package. NOTE: To see the complete list of commands a package adds to LAMMPS, just look at the files in its src directory, e.g. "ls src/GRANULAR". Files with names that start with fix, compute, atom, pair, bond, angle, etc correspond to commands with the same style names. In these two tables, the "Example" column is a sub-directory in the examples directory of the distribution which has an input script that uses the package. E.g. "peptide" refers to the examples/peptide directory; USER/atc refers to the examples/USER/atc directory. The "Library" column indicates whether an extra library is needed to build and use the package: dash = no library sys = system library: you likely have it on your machine int = internal library: provided with LAMMPS, but you may need to build it ext = external library: you will need to download and install it on your machine :ul :line :line [Standard packages] :link(table_standard),p Package, Description, Doc page, Example, Library "ASPHERE"_#ASPHERE, aspherical particle models, "Section 6.6.14"_Section_howto.html#howto_14, ellipse, - "BODY"_#BODY, body-style particles, "body"_body.html, body, - "CLASS2"_#CLASS2, class 2 force fields, "pair_style lj/class2"_pair_class2.html, -, - "COLLOID"_#COLLOID, colloidal particles, "atom_style colloid"_atom_style.html, colloid, - "COMPRESS"_#COMPRESS, I/O compression, "dump */gz"_dump.html, -, sys "CORESHELL"_#CORESHELL, adiabatic core/shell model, "Section 6.6.25"_Section_howto.html#howto_25, coreshell, - "DIPOLE"_#DIPOLE, point dipole particles, "pair_style dipole/cut"_pair_dipole.html, dipole, - "GPU"_#GPU, GPU-enabled styles, "Section 5.3.1"_accelerate_gpu.html, WWW bench, int "GRANULAR"_#GRANULAR, granular systems, "Section 6.6.6"_Section_howto.html#howto_6, pour, - "KIM"_#KIM, openKIM wrapper, "pair_style kim"_pair_kim.html, kim, ext "KOKKOS"_#KOKKOS, Kokkos-enabled styles, "Section 5.3.3"_accelerate_kokkos.html, WWW bench, - "KSPACE"_#KSPACE, long-range Coulombic solvers, "kspace_style"_kspace_style.html, peptide, - "MANYBODY"_#MANYBODY, many-body potentials, "pair_style tersoff"_pair_tersoff.html, shear, - "MC"_#MC, Monte Carlo options, "fix gcmc"_fix_gcmc.html, -, - "MEAM"_#MEAM, modified EAM potential, "pair_style meam"_pair_meam.html, meam, int "MISC"_#MISC, miscellanous single-file commands, -, -, - "MOLECULE"_#MOLECULE, molecular system force fields, "Section 6.6.3"_Section_howto.html#howto_3, peptide, - "MPIIO"_#MPIIO, MPI parallel I/O dump and restart, "dump"_dump.html, -, - "MSCG"_#MSCG, multi-scale coarse-graining wrapper, "fix mscg"_fix_mscg.html, mscg, ext "OPT"_#OPT, optimized pair styles, "Section 5.3.5"_accelerate_opt.html, WWW bench, - "PERI"_#PERI, Peridynamics models, "pair_style peri"_pair_peri.html, peri, - "POEMS"_#POEMS, coupled rigid body motion, "fix poems"_fix_poems.html, rigid, int "PYTHON"_#PYTHON, embed Python code in an input script, "python"_python.html, python, sys "QEQ"_#QEQ, QEq charge equilibration, "fix qeq"_fix_qeq.html, qeq, - "REAX"_#REAX, ReaxFF potential (Fortran), "pair_style reax"_pair_reax.html, reax, int "REPLICA"_#REPLICA, multi-replica methods, "Section 6.6.5"_Section_howto.html#howto_5, tad, - "RIGID"_#RIGID, rigid bodies and constraints, "fix rigid"_fix_rigid.html, rigid, - "SHOCK"_#SHOCK, shock loading methods, "fix msst"_fix_msst.html, -, - "SNAP"_#SNAP, quantum-fitted potential, "pair snap"_pair_snap.html, snap, - "SRD"_#SRD, stochastic rotation dynamics, "fix srd"_fix_srd.html, srd, - "VORONOI"_#VORONOI, Voronoi tesselation, "compute voronoi/atom"_compute_voronoi_atom.html, -, ext :tb(ea=c,ca1=l) [USER packages] :link(table_user),p Package, Description, Doc page, Example, Library "USER-ATC"_#USER-ATC, atom-to-continuum coupling, "fix atc"_fix_atc.html, USER/atc, int "USER-AWPMD"_#USER-AWPMD, wave-packet MD, "pair_style awpmd/cut"_pair_awpmd.html, USER/awpmd, int "USER-CGDNA"_#USER-CGDNA, coarse-grained DNA force fields, src/USER-CGDNA/README, USER/cgdna, - "USER-CGSDK"_#USER-CGSDK, SDK coarse-graining model, "pair_style lj/sdk"_pair_sdk.html, USER/cgsdk, - "USER-COLVARS"_#USER-COLVARS, collective variables library, "fix colvars"_fix_colvars.html, USER/colvars, int "USER-DIFFRACTION"_#USER-DIFFRACTION, virtual x-ray and electron diffraction,"compute xrd"_compute_xrd.html, USER/diffraction, - "USER-DPD"_#USER-DPD, reactive dissipative particle dynamics, src/USER-DPD/README, USER/dpd, - "USER-DRUDE"_#USER-DRUDE, Drude oscillators, "tutorial"_tutorial_drude.html, USER/drude, - "USER-EFF"_#USER-EFF, electron force field,"pair_style eff/cut"_pair_eff.html, USER/eff, - "USER-FEP"_#USER-FEP, free energy perturbation,"compute fep"_compute_fep.html, USER/fep, - "USER-H5MD"_#USER-H5MD, dump output via HDF5,"dump h5md"_dump_h5md.html, -, ext "USER-INTEL"_#USER-INTEL, optimized Intel CPU and KNL styles,"Section 5.3.2"_accelerate_intel.html, WWW bench, - "USER-LB"_#USER-LB, Lattice Boltzmann fluid,"fix lb/fluid"_fix_lb_fluid.html, USER/lb, - "USER-MANIFOLD"_#USER-MANIFOLD, motion on 2d surfaces,"fix manifoldforce"_fix_manifoldforce.html, USER/manifold, - "USER-MEAMC"_#USER-MEAMC, modified EAM potential (C++), "pair_style meam/c"_pair_meam.html, meam, - "USER-MGPT"_#USER-MGPT, fast MGPT multi-ion potentials, "pair_style mgpt"_pair_mgpt.html, USER/mgpt, - "USER-MISC"_#USER-MISC, single-file contributions, USER-MISC/README, USER/misc, - "USER-MOLFILE"_#USER-MOLFILE, "VMD"_vmd_home molfile plug-ins,"dump molfile"_dump_molfile.html, -, ext "USER-NETCDF"_#USER-NETCDF, dump output via NetCDF,"dump netcdf"_dump_netcdf.html, -, ext "USER-OMP"_#USER-OMP, OpenMP-enabled styles,"Section 5.3.4"_accelerate_omp.html, WWW bench, - "USER-PHONON"_#USER-PHONON, phonon dynamical matrix,"fix phonon"_fix_phonon.html, USER/phonon, - "USER-QMMM"_#USER-QMMM, QM/MM coupling,"fix qmmm"_fix_qmmm.html, USER/qmmm, ext "USER-QTB"_#USER-QTB, quantum nuclear effects,"fix qtb"_fix_qtb.html "fix qbmsst"_fix_qbmsst.html, qtb, - "USER-QUIP"_#USER-QUIP, QUIP/libatoms interface,"pair_style quip"_pair_quip.html, USER/quip, ext "USER-REAXC"_#USER-REAXC, ReaxFF potential (C/C++) ,"pair_style reaxc"_pair_reaxc.html, reax, - "USER-SMD"_#USER-SMD, smoothed Mach dynamics,"SMD User Guide"_PDF/SMD_LAMMPS_userguide.pdf, USER/smd, ext "USER-SMTBQ"_#USER-SMTBQ, second moment tight binding QEq potential,"pair_style smtbq"_pair_smtbq.html, USER/smtbq, - "USER-SPH"_#USER-SPH, smoothed particle hydrodynamics,"SPH User Guide"_PDF/SPH_LAMMPS_userguide.pdf, USER/sph, - "USER-TALLY"_#USER-TALLY, pairwise tally computes,"compute XXX/tally"_compute_tally.html, USER/tally, - "USER-VTK"_#USER-VTK, dump output via VTK, "compute vtk"_dump_vtk.html, -, ext :tb(ea=c,ca1=l) :line :line ASPHERE package :link(ASPHERE),h4 [Contents:] Computes, time-integration fixes, and pair styles for aspherical particle models including ellipsoids, 2d lines, and 3d triangles. [Install or un-install:] make yes-asphere make machine :pre make no-asphere make machine :pre [Supporting info:] src/ASPHERE: filenames -> commands "Section 6.14"_Section_howto.html#howto_14 "pair_style gayberne"_pair_gayberne.html "pair_style resquared"_pair_resquared.html "doc/PDF/pair_gayberne_extra.pdf"_PDF/pair_gayberne_extra.pdf "doc/PDF/pair_resquared_extra.pdf"_PDF/pair_resquared_extra.pdf examples/ASPHERE examples/ellipse http://lammps.sandia.gov/movies.html#line http://lammps.sandia.gov/movies.html#tri :ul :line BODY package :link(BODY),h4 [Contents:] Body-style particles with internal structure. Computes, time-integration fixes, pair styles, as well as the body styles themselves. See the "body"_body.html doc page for an overview. [Install or un-install:] make yes-body make machine :pre make no-body make machine :pre [Supporting info:] src/BODY filenames -> commands "body"_body.html "atom_style body"_atom_style.html "fix nve/body"_fix_nve_body.html "pair_style body"_pair_body.html examples/body :ul :line CLASS2 package :link(CLASS2),h4 [Contents:] Bond, angle, dihedral, improper, and pair styles for the COMPASS CLASS2 molecular force field. [Install or un-install:] make yes-class2 make machine :pre make no-class2 make machine :pre [Supporting info:] src/CLASS2: filenames -> commands "bond_style class2"_bond_class2.html "angle_style class2"_angle_class2.html "dihedral_style class2"_dihedral_class2.html "improper_style class2"_improper_class2.html "pair_style lj/class2"_pair_class2.html :ul :line COLLOID package :link(COLLOID),h4 [Contents:] Coarse-grained finite-size colloidal particles. Pair stayle and fix wall styles for colloidal interactions. Includes the Fast Lubrication Dynamics (FLD) method for hydrodynamic interactions, which is a simplified approximation to Stokesian dynamics. [Authors:] This package includes Fast Lubrication Dynamics pair styles which were created by Amit Kumar and Michael Bybee from Jonathan Higdon's group at UIUC. [Install or un-install:] make yes-colloid make machine :pre make no-colloid make machine :pre [Supporting info:] src/COLLOID: filenames -> commands "fix wall/colloid"_fix_wall.html "pair_style colloid"_pair_colloid.html "pair_style yukawa/colloid"_pair_yukawa_colloid.html "pair_style brownian"_pair_brownian.html "pair_style lubricate"_pair_lubricate.html "pair_style lubricateU"_pair_lubricateU.html examples/colloid examples/srd :ul :line COMPRESS package :link(COMPRESS),h4 [Contents:] Compressed output of dump files via the zlib compression library, using dump styles with a "gz" in their style name. To use this package you must have the zlib compression library available on your system. [Author:] Axel Kohlmeyer (Temple U). [Install or un-install:] Note that building with this package assumes you have the zlib compression library available on your system. The LAMMPS build uses the settings in the lib/compress/Makefile.lammps file in the compile/link process. You should only need to edit this file if the LAMMPS build fails on your system. make yes-compress make machine :pre make no-compress make machine :pre [Supporting info:] src/COMPRESS: filenames -> commands src/COMPRESS/README lib/compress/README "dump atom/gz"_dump.html "dump cfg/gz"_dump.html "dump custom/gz"_dump.html "dump xyz/gz"_dump.html :ul :line CORESHELL package :link(CORESHELL),h4 [Contents:] Compute and pair styles that implement the adiabatic core/shell model for polarizability. The pair styles augment Born, Buckingham, and Lennard-Jones styles with core/shell capabilities. The "compute temp/cs"_compute_temp_cs.html command calculates the temperature of a system with core/shell particles. See "Section 6.26"_Section_howto.html#howto_26 for an overview of how to use this package. [Author:] Hendrik Heenen (Technical U of Munich). [Install or un-install:] make yes-coreshell make machine :pre make no-coreshell make machine :pre [Supporting info:] src/CORESHELL: filenames -> commands "Section 6.26"_Section_howto.html#howto_26 "Section 6.25"_Section_howto.html#howto_25 "compute temp/cs"_compute_temp_cs.html "pair_style born/coul/long/cs"_pair_cs.html "pair_style buck/coul/long/cs"_pair_cs.html "pair_style lj/cut/coul/long/cs"_pair_lj.html examples/coreshell :ul :line DIPOLE package :link(DIPOLE),h4 [Contents:] An atom style and several pair styles for point dipole models with short-range or long-range interactions. [Install or un-install:] make yes-dipole make machine :pre make no-dipole make machine :pre [Supporting info:] src/DIPOLE: filenames -> commands "atom_style dipole"_atom_style.html "pair_style lj/cut/dipole/cut"_pair_dipole.html "pair_style lj/cut/dipole/long"_pair_dipole.html "pair_style lj/long/dipole/long"_pair_dipole.html examples/dipole :ul :line GPU package :link(GPU),h4 [Contents:] Dozens of pair styles and a version of the PPPM long-range Coulombic solver optimized for NVIDIA GPUs. All such styles have a "gpu" as a suffix in their style name. "Section 5.3.1"_accelerate_gpu.html gives details of what hardware and Cuda software is required on your system, and details on how to build and use this package. Its styles can be invoked at run time via the "-sf gpu" or "-suffix gpu" "command-line switches"_Section_start.html#start_6. See also the "KOKKOS"_#KOKKOS package, which has GPU-enabled styles. [Authors:] Mike Brown (Intel) while at Sandia and ORNL and Trung Nguyen (Northwestern U) while at ORNL. [Install or un-install:] Before building LAMMPS with this package, you must first build the GPU library in lib/gpu from a set of provided C and Cuda files. You can do this manually if you prefer; follow the instructions in lib/gpu/README. You can also do it in one step from the lammps/src dir, using a command like these, which simply invoke the lib/gpu/Install.py script with the specified args: make lib-gpu # print help message make lib-gpu args="-m" # build GPU library with default Makefile.linux make lib-gpu args="-i xk7 -p single -o xk7.single" # create new Makefile.xk7.single, altered for single-precision make lib-gpu args="-i xk7 -p single -o xk7.single -m" # ditto, also build GPU library Note that this procedure starts with one of the existing Makefile.machine files in lib/gpu. It allows you to alter 4 important settings in that Makefile, via the -h, -a, -p, -e switches, and save the new Makefile, if desired: CUDA_HOME = where NVIDIA Cuda software is installed on your system CUDA_ARCH = what GPU hardware you have (see help message for details) CUDA_PRECISION = precision (double, mixed, single) EXTRAMAKE = which Makefile.lammps.* file to copy to Makefile.lammps :ul If the library build is successful, 2 files should be created: lib/gpu/libgpu.a and lib/gpu/Makefile.lammps. The latter has settings that enable LAMMPS to link with Cuda libraries. If the settings in Makefile.lammps for your machine are not correct, the LAMMPS build will fail. You can then install/un-install the package and build LAMMPS in the usual manner: make yes-gpu make machine :pre make no-gpu make machine :pre NOTE: If you re-build the GPU library in lib/gpu, you should always un-install the GPU package, then re-install it and re-build LAMMPS. This is because the compilation of files in the GPU package use the library settings from the lib/gpu/Makefile.machine used to build the GPU library. [Supporting info:] src/GPU: filenames -> commands src/GPU/README lib/gpu/README "Section 5.3"_Section_accelerate.html#acc_3 "Section 5.3.1"_accelerate_gpu.html "Section 2.6 -sf gpu"_Section_start.html#start_6 "Section 2.6 -pk gpu"_Section_start.html#start_6 "package gpu"_package.html Pair Styles section of "Section 3.5"_Section_commands.html#cmd_5 for pair styles followed by (g) "Benchmarks page"_http://lammps.sandia.gov/bench.html of web site :ul :line GRANULAR package :link(GRANULAR),h4 [Contents:] Pair styles and fixes for finite-size granular particles, which interact with each other and boundaries via frictional and dissipative potentials. [Install or un-install:] make yes-granular make machine :pre make no-granular make machine :pre [Supporting info:] src/GRANULAR: filenames -> commands "Section 6.6"_Section_howto.html#howto_6, "fix pour"_fix_pour.html "fix wall/gran"_fix_wall_gran.html "pair_style gran/hooke"_pair_gran.html "pair_style gran/hertz/history"_pair_gran.html examples/granregion examples/pour bench/in.chute http://lammps.sandia.gov/pictures.html#jamming http://lammps.sandia.gov/movies.html#hopper http://lammps.sandia.gov/movies.html#dem http://lammps.sandia.gov/movies.html#brazil http://lammps.sandia.gov/movies.html#granregion :ul :line KIM package :link(KIM),h4 [Contents:] A "pair_style kim"_pair_kim.html command which is a wrapper on the Knowledge Base for Interatomic Models (KIM) repository of interatomic potentials, enabling any of them to be used in LAMMPS simulations. To use this package you must have the KIM library available on your system. Information about the KIM project can be found at its website: https://openkim.org. The KIM project is led by Ellad Tadmor and Ryan Elliott (U Minnesota) and James Sethna (Cornell U). [Authors:] Ryan Elliott (U Minnesota) is the main developer for the KIM API which the "pair_style kim"_pair_kim.html command uses. He developed the pair style in collaboration with Valeriu Smirichinski (U Minnesota). [Install or un-install:] -Using this package requires the KIM library and its models -(interatomic potentials) to be downloaded and installed on your -system. The library can be downloaded and built in lib/kim or -elsewhere on your system. Details of the download, build, and install -process for KIM are given in the lib/kim/README file. - -Once that process is complete, you can then install/un-install the -package and build LAMMPS in the usual manner: +Before building LAMMPS with this package, you must first download and +build the KIM library and include the KIM models that you want to +use. You can do this manually if you prefer; follow the instructions +in lib/kim/README. You can also do it in one step from the lammps/src +dir, using a command like these, which simply invoke the +lib/kim/Install.py script with the specified args. + +make lib-kim # print help message +make lib-kim args="-b . none" # install KIM API lib with only example models +make lib-kim args="-b . Glue_Ercolessi_Adams_Al__MO_324507536345_001" # ditto plus one model +make lib-kim args="-b . OpenKIM" # install KIM API lib with all models +make lib-kim args="-a EAM_Dynamo_Ackland_W__MO_141627196590_002" # add one model or model driver :pre + +Note that in LAMMPS lingo, a KIM model driver is a pair style +(e.g. EAM or Tersoff). A KIM model is a pair style for a particular +element or alloy and set of parameters, e.g. EAM for Cu with a +specific EAM potential file. Also note that installing the KIM API +library with all its models, may take around 30 min to build. Of +course you only need to do that once. + +See the list of KIM model drivers here: +https://openkim.org/kim-items/model-drivers/alphabetical + +See the list of all KIM models here: +https://openkim.org/kim-items/models/by-model-drivers + +See the list of example KIM models included by default here: +https://openkim.org/kim-api in the "What is in the KIM API source +package?" section + +You can then install/un-install the package and build LAMMPS in the +usual manner: make yes-kim make machine :pre make no-kim make machine :pre [Supporting info:] src/KIM: filenames -> commands src/KIM/README lib/kim/README "pair_style kim"_pair_kim.html examples/kim :ul :line KOKKOS package :link(KOKKOS),h4 [Contents:] Dozens of atom, pair, bond, angle, dihedral, improper, fix, compute styles adapted to compile using the Kokkos library which can convert them to OpenMP or Cuda code so that they run efficiently on multicore CPUs, KNLs, or GPUs. All the styles have a "kk" as a suffix in their style name. "Section 5.3.3"_accelerate_kokkos.html gives details of what hardware and software is required on your system, and how to build and use this package. Its styles can be invoked at run time via the "-sf kk" or "-suffix kk" "command-line switches"_Section_start.html#start_6. Also see the "GPU"_#GPU, "OPT"_#OPT, "USER-INTEL"_#USER-INTEL, and "USER-OMP"_#USER-OMP packages, which have styles optimized for CPUs, KNLs, and GPUs. You must have a C++11 compatible compiler to use this package. [Authors:] The KOKKOS package was created primarily by Christian Trott and Stan Moore (Sandia), with contributions from other folks as well. It uses the open-source "Kokkos library"_https://github.com/kokkos which was developed by Carter Edwards, Christian Trott, and others at Sandia, and which is included in the LAMMPS distribution in lib/kokkos. [Install or un-install:] For the KOKKOS package, you have 3 choices when building. You can build with either CPU or KNL or GPU support. Each choice requires additional settings in your Makefile.machine for the KOKKOS_DEVICES and KOKKOS_ARCH settings. See the src/MAKE/OPTIONS/Makefile.kokkos* files for examples. For multicore CPUs using OpenMP: KOKKOS_DEVICES = OpenMP KOKKOS_ARCH = HSW # HSW = Haswell, SNB = SandyBridge, BDW = Broadwell, etc For Intel KNLs using OpenMP: KOKKOS_DEVICES = OpenMP KOKKOS_ARCH = KNL For NVIDIA GPUs using Cuda: KOKKOS_DEVICES = Cuda KOKKOS_ARCH = Pascal60,Power8 # P100 hosted by an IBM Power8, etc KOKKOS_ARCH = Kepler37,Power8 # K80 hosted by an IBM Power8, etc For GPUs, you also need these 2 lines in your Makefile.machine before the CC line is defined, in this case for use with OpenMPI mpicxx. The 2 lines define a nvcc wrapper compiler, which will use nvcc for compiling Cuda files or use a C++ compiler for non-Kokkos, non-Cuda files. KOKKOS_ABSOLUTE_PATH = $(shell cd $(KOKKOS_PATH); pwd) export OMPI_CXX = $(KOKKOS_ABSOLUTE_PATH)/config/nvcc_wrapper CC = mpicxx Once you have an appropriate Makefile.machine, you can install/un-install the package and build LAMMPS in the usual manner. Note that you cannot build one executable to run on multiple hardware targets (CPU or KNL or GPU). You need to build LAMMPS once for each hardware target, to produce a separate executable. Also note that we do not recommend building with other acceleration packages installed (GPU, OPT, USER-INTEL, USER-OMP) when also building with KOKKOS. make yes-kokkos make machine :pre make no-kokkos make machine :pre [Supporting info:] src/KOKKOS: filenames -> commands src/KOKKOS/README lib/kokkos/README "Section 5.3"_Section_accelerate.html#acc_3 "Section 5.3.3"_accelerate_kokkos.html "Section 2.6 -k on ..."_Section_start.html#start_6 "Section 2.6 -sf kk"_Section_start.html#start_6 "Section 2.6 -pk kokkos"_Section_start.html#start_6 "package kokkos"_package.html Styles sections of "Section 3.5"_Section_commands.html#cmd_5 for styles followed by (k) "Benchmarks page"_http://lammps.sandia.gov/bench.html of web site :ul :line KSPACE package :link(KSPACE),h4 [Contents:] A variety of long-range Coulombic solvers, as well as pair styles which compute the corresponding short-range pairwise Coulombic interactions. These include Ewald, particle-particle particle-mesh (PPPM), and multilevel summation method (MSM) solvers. [Install or un-install:] Building with this package requires a 1d FFT library be present on your system for use by the PPPM solvers. This can be the KISS FFT library provided with LAMMPS, 3rd party libraries like FFTW, or a vendor-supplied FFT library. See step 6 of "Section 2.2.2"_Section_start.html#start_2_2 of the manual for details on how to select different FFT options in your machine Makefile. make yes-kspace make machine :pre make no-kspace make machine :pre [Supporting info:] src/KSPACE: filenames -> commands "kspace_style"_kspace_style.html "doc/PDF/kspace.pdf"_PDF/kspace.pdf "Section 6.7"_Section_howto.html#howto_7 "Section 6.8"_Section_howto.html#howto_8 "Section 6.9"_Section_howto.html#howto_9 "pair_style coul"_pair_coul.html Pair Styles section of "Section 3.5"_Section_commands.html#cmd_5 with "long" or "msm" in pair style name examples/peptide bench/in.rhodo :ul :line MANYBODY package :link(MANYBODY),h4 [Contents:] A variety of manybody and bond-order potentials. These include (AI)REBO, BOP, EAM, EIM, Stillinger-Weber, and Tersoff potentials. [Install or un-install:] make yes-manybody make machine :pre make no-manybody make machine :pre [Supporting info:] src/MANYBODY: filenames -> commands Pair Styles section of "Section 3.5"_Section_commands.html#cmd_5 examples/comb examples/eim examples/nb3d examples/shear examples/streitz examples/vashishta bench/in.eam :ul :line MC package :link(MC),h4 [Contents:] Several fixes and a pair style that have Monte Carlo (MC) or MC-like attributes. These include fixes for creating, breaking, and swapping bonds, for performing atomic swaps, and performing grand-canonical MC (GCMC) in conjuction with dynamics. [Install or un-install:] make yes-mc make machine :pre make no-mc make machine :pre [Supporting info:] src/MC: filenames -> commands "fix atom/swap"_fix_atom_swap.html "fix bond/break"_fix_bond_break.html "fix bond/create"_fix_bond_create.html "fix bond/swap"_fix_bond_swap.html "fix gcmc"_fix_gcmc.html "pair_style dsmc"_pair_dsmc.html http://lammps.sandia.gov/movies.html#gcmc :ul :line MEAM package :link(MEAM),h4 [Contents:] A pair style for the modified embedded atom (MEAM) potential. [Author:] Greg Wagner (Northwestern U) while at Sandia. [Install or un-install:] Before building LAMMPS with this package, you must first build the MEAM library in lib/meam. You can do this manually if you prefer; follow the instructions in lib/meam/README. You can also do it in one step from the lammps/src dir, using a command like these, which simply invoke the lib/meam/Install.py script with the specified args: make lib-meam # print help message make lib-meam args="-m gfortran" # build with GNU Fortran compiler make lib-meam args="-m ifort" # build with Intel ifort compiler :pre The build should produce two files: lib/meam/libmeam.a and lib/meam/Makefile.lammps. The latter is copied from an existing Makefile.lammps.* and has settings needed to link C++ (LAMMPS) with Fortran (MEAM library). Typically the two compilers used for LAMMPS and the MEAM library need to be consistent (e.g. both Intel or both GNU compilers). If necessary, you can edit/create a new lib/meam/Makefile.machine file for your system, which should define an EXTRAMAKE variable to specify a corresponding Makefile.lammps.machine file. You can then install/un-install the package and build LAMMPS in the usual manner: make yes-meam make machine :pre make no-meam make machine :pre NOTE: You should test building the MEAM library with both the Intel and GNU compilers to see if a simulation runs faster with one versus the other on your system. [Supporting info:] src/MEAM: filenames -> commands src/meam/README lib/meam/README "pair_style meam"_pair_meam.html examples/meam :ul :line MISC package :link(MISC),h4 [Contents:] A variety of compute, fix, pair, dump styles with specialized capabilities that don't align with other packages. Do a directory listing, "ls src/MISC", to see the list of commands. [Install or un-install:] make yes-misc make machine :pre make no-misc make machine :pre [Supporting info:] src/MISC: filenames -> commands "compute ti"_compute_ti.html "fix evaporate"_fix_evaporate.html "fix orient/fcc"_fix_orient.html "fix ttm"_fix_ttm.html "fix thermal/conductivity"_fix_thermal_conductivity.html "fix viscosity"_fix_viscosity.html examples/KAPPA examples/VISCOSITY http://lammps.sandia.gov/pictures.html#ttm http://lammps.sandia.gov/movies.html#evaporation :ul :line MOLECULE package :link(MOLECULE),h4 [Contents:] A large number of atom, pair, bond, angle, dihedral, improper styles that are used to model molecular systems with fixed covalent bonds. The pair styles include the Dreiding (hydrogen-bonding) and CHARMM force fields, and a TIP4P water model. [Install or un-install:] make yes-molecule make machine :pre make no-molecule make machine :pre [Supporting info:] src/MOLECULE: filenames -> commands "atom_style"_atom_style.html "bond_style"_bond_style.html "angle_style"_angle_style.html "dihedral_style"_dihedral_style.html "improper_style"_improper_style.html "pair_style hbond/dreiding/lj"_pair_hbond_dreiding.html "pair_style lj/charmm/coul/charmm"_pair_charmm.html "Section 6.3"_Section_howto.html#howto_3 examples/cmap examples/dreiding examples/micelle, examples/peptide bench/in.chain bench/in.rhodo :ul :line MPIIO package :link(MPIIO),h4 [Contents:] Support for parallel output/input of dump and restart files via the MPIIO library. It adds "dump styles"_dump.html with a "mpiio" in their style name. Restart files with an ".mpiio" suffix are also written and read in parallel. [Install or un-install:] Note that MPIIO is part of the standard message-passing interface (MPI) library, so you should not need any additional compiler or link settings, beyond what LAMMPS normally uses for MPI on your system. make yes-mpiio make machine :pre make no-mpiio make machine :pre [Supporting info:] src/MPIIO: filenames -> commands "dump"_dump.html "restart"_restart.html "write_restart"_write_restart.html "read_restart"_read_restart.html :ul :line MSCG package :link(mscg),h4 [Contents:] A "fix mscg"_fix_mscg.html command which can parameterize a Mulit-Scale Coarse-Graining (MSCG) model using the open-source "MS-CG library"_mscg_home. :link(mscg_home,https://github.com/uchicago-voth/MSCG-release) To use this package you must have the MS-CG library available on your system. [Authors:] The fix was written by Lauren Abbott (Sandia). The MS-CG library was developed by Jacob Wagner in Greg Voth's group at the University of Chicago. [Install or un-install:] Before building LAMMPS with this package, you must first download and build the MS-CG library. Building the MS-CG library and using it from LAMMPS requires a C++11 compatible compiler, and that LAPACK and GSL (GNU Scientific Library) libraries be installed on your machine. See the lib/mscg/README and MSCG/Install files for more details. Assuming these libraries are in place, you can do the download and build of MS-CG manually if you prefer; follow the instructions in lib/mscg/README. You can also do it in one step from the lammps/src dir, using a command like these, which simply invoke the lib/mscg/Install.py script with the specified args: make lib-mscg # print help message make lib-mscg args="-g -b -l" # download and build in default lib/mscg/MSCG-release-master make lib-mscg args="-h . MSCG -g -b -l" # download and build in lib/mscg/MSCG make lib-mscg args="-h ~ MSCG -g -b -l" # download and build in ~/mscg :pre Note that the final -l switch is to create 2 symbolic (soft) links, "includelink" and "liblink", in lib/mscg to point to the MS-CG src dir. When LAMMPS builds it will use these links. You should not need to edit the lib/mscg/Makefile.lammps file. You can then install/un-install the package and build LAMMPS in the usual manner: make yes-mscg make machine :pre make no-mscg make machine :pre [Supporting info:] src/MSCG: filenames -> commands src/MSCG/README lib/mscg/README examples/mscg :ul :line OPT package :link(OPT),h4 [Contents:] A handful of pair styles which are optimized for improved CPU performance on single or multiple cores. These include EAM, LJ, CHARMM, and Morse potentials. The styles have an "opt" suffix in their style name. "Section 5.3.5"_accelerate_opt.html gives details of how to build and use this package. Its styles can be invoked at run time via the "-sf opt" or "-suffix opt" "command-line switches"_Section_start.html#start_6. See also the "KOKKOS"_#KOKKOS, "USER-INTEL"_#USER-INTEL, and "USER-OMP"_#USER-OMP packages, which have styles optimized for CPU performance. [Authors:] James Fischer (High Performance Technologies), David Richie, and Vincent Natoli (Stone Ridge Technolgy). [Install or un-install:] make yes-opt make machine :pre make no-opt make machine :pre NOTE: The compile flag "-restrict" must be used to build LAMMPS with the OPT package. It should be added to the CCFLAGS line of your Makefile.machine. See Makefile.opt in src/MAKE/OPTIONS for an example. CCFLAGS: add -restrict :ul [Supporting info:] src/OPT: filenames -> commands "Section 5.3"_Section_accelerate.html#acc_3 "Section 5.3.5"_accelerate_opt.html "Section 2.6 -sf opt"_Section_start.html#start_6 Pair Styles section of "Section 3.5"_Section_commands.html#cmd_5 for pair styles followed by (t) "Benchmarks page"_http://lammps.sandia.gov/bench.html of web site :ul :line PERI package :link(PERI),h4 [Contents:] An atom style, several pair styles which implement different Peridynamics materials models, and several computes which calculate diagnostics. Peridynamics is a a particle-based meshless continuum model. [Authors:] The original package was created by Mike Parks (Sandia). Additional Peridynamics models were added by Rezwanur Rahman and John Foster (UTSA). [Install or un-install:] make yes-peri make machine :pre make no-peri make machine :pre [Supporting info:] src/PERI: filenames -> commands "doc/PDF/PDLammps_overview.pdf"_PDF/PDLammps_overview.pdf "doc/PDF/PDLammps_EPS.pdf"_PDF/PDLammps_EPS.pdf "doc/PDF/PDLammps_VES.pdf"_PDF/PDLammps_VES.pdf "atom_style peri"_atom_style.html "pair_style peri/*"_pair_peri.html "compute damage/atom"_compute_damage_atom.html "compute plasticity/atom"_compute_plasticity_atom.html examples/peri http://lammps.sandia.gov/movies.html#peri :ul :line POEMS package :link(POEMS),h4 [Contents:] A fix that wraps the Parallelizable Open source Efficient Multibody Software (POEMS) library, which is able to simulate the dynamics of articulated body systems. These are systems with multiple rigid bodies (collections of particles) whose motion is coupled by connections at hinge points. [Author:] Rudra Mukherjee (JPL) while at RPI. [Install or un-install:] Before building LAMMPS with this package, you must first build the POEMS library in lib/poems. You can do this manually if you prefer; follow the instructions in lib/poems/README. You can also do it in one step from the lammps/src dir, using a command like these, which simply invoke the lib/poems/Install.py script with the specified args: make lib-poems # print help message make lib-poems args="-m g++" # build with GNU g++ compiler make lib-poems args="-m icc" # build with Intel icc compiler :pre The build should produce two files: lib/poems/libpoems.a and lib/poems/Makefile.lammps. The latter is copied from an existing Makefile.lammps.* and has settings needed to build LAMMPS with the POEMS library (though typically the settings are just blank). If necessary, you can edit/create a new lib/poems/Makefile.machine file for your system, which should define an EXTRAMAKE variable to specify a corresponding Makefile.lammps.machine file. You can then install/un-install the package and build LAMMPS in the usual manner: make yes-poems make machine :pre make no-meam make machine :pre [Supporting info:] src/POEMS: filenames -> commands src/POEMS/README lib/poems/README "fix poems"_fix_poems.html examples/rigid :ul :line PYTHON package :link(PYTHON),h4 [Contents:] A "python"_python.html command which allow you to execute Python code from a LAMMPS input script. The code can be in a separate file or embedded in the input script itself. See "Section 11.2"_Section_python.html#py_2 for an overview of using Python from LAMMPS in this manner and the entire section for other ways to use LAMMPS and Python together. [Install or un-install:] make yes-python make machine :pre make no-python make machine :pre NOTE: Building with the PYTHON package assumes you have a Python shared library available on your system, which needs to be a Python 2 version, 2.6 or later. Python 3 is not yet supported. See the lib/python/README for more details. Note that the build uses the lib/python/Makefile.lammps file in the compile/link process. You should only need to create a new Makefile.lammps.* file (and copy it to Makefile.lammps) if the LAMMPS build fails. [Supporting info:] src/PYTHON: filenames -> commands "Section 11"_Section_python.html lib/python/README examples/python :ul :line QEQ package :link(QEQ),h4 [Contents:] Several fixes for performing charge equilibration (QEq) via different algorithms. These can be used with pair styles that perform QEq as part of their formulation. [Install or un-install:] make yes-qeq make machine :pre make no-qeq make machine :pre [Supporting info:] src/QEQ: filenames -> commands "fix qeq/*"_fix_qeq.html examples/qeq examples/streitz :ul :line REAX package :link(REAX),h4 [Contents:] A pair style which wraps a Fortran library which implements the ReaxFF potential, which is a universal reactive force field. See the "USER-REAXC package"_#USER-REAXC for an alternate implementation in C/C++. Also a "fix reax/bonds"_fix_reax_bonds.html command for monitoring molecules as bonds are created and destroyed. [Author:] Aidan Thompson (Sandia). [Install or un-install:] Before building LAMMPS with this package, you must first build the REAX library in lib/reax. You can do this manually if you prefer; follow the instructions in lib/reax/README. You can also do it in one step from the lammps/src dir, using a command like these, which simply invoke the lib/reax/Install.py script with the specified args: make lib-reax # print help message make lib-reax args="-m gfortran" # build with GNU Fortran compiler make lib-reax args="-m ifort" # build with Intel ifort compiler :pre The build should produce two files: lib/reax/libreax.a and lib/reax/Makefile.lammps. The latter is copied from an existing Makefile.lammps.* and has settings needed to link C++ (LAMMPS) with Fortran (REAX library). Typically the two compilers used for LAMMPS and the REAX library need to be consistent (e.g. both Intel or both GNU compilers). If necessary, you can edit/create a new lib/reax/Makefile.machine file for your system, which should define an EXTRAMAKE variable to specify a corresponding Makefile.lammps.machine file. You can then install/un-install the package and build LAMMPS in the usual manner: make yes-reax make machine :pre make no-reax make machine :pre [Supporting info:] src/REAX: filenames -> commands lib/reax/README "pair_style reax"_pair_reax.html "fix reax/bonds"_fix_reax_bonds.html examples/reax :ul :line REPLICA package :link(REPLICA),h4 [Contents:] A collection of multi-replica methods which can be used when running multiple LAMMPS simulations (replicas). See "Section 6.5"_Section_howto.html#howto_5 for an overview of how to run multi-replica simulations in LAMMPS. Methods in the package include nudged elastic band (NEB), parallel replica dynamics (PRD), temperature accelerated dynamics (TAD), parallel tempering, and a verlet/split algorithm for performing long-range Coulombics on one set of processors, and the remainder of the force field calcalation on another set. [Install or un-install:] make yes-replica make machine :pre make no-replica make machine :pre [Supporting info:] src/REPLICA: filenames -> commands "Section 6.5"_Section_howto.html#howto_5 "neb"_neb.html "prd"_prd.html "tad"_tad.html "temper"_temper.html, "run_style verlet/split"_run_style.html examples/neb examples/prd examples/tad :ul :line RIGID package :link(RIGID),h4 [Contents:] Fixes which enforce rigid constraints on collections of atoms or particles. This includes SHAKE and RATTLE, as well as varous rigid-body integrators for a few large bodies or many small bodies. Also several computes which calculate properties of rigid bodies. To install/build: make yes-rigid make machine :pre To un-install/re-build: make no-rigid make machine :pre [Supporting info:] src/RIGID: filenames -> commands "compute erotate/rigid"_compute_erotate_rigid.html fix shake"_fix_shake.html "fix rattle"_fix_shake.html "fix rigid/*"_fix_rigid.html examples/ASPHERE examples/rigid bench/in.rhodo http://lammps.sandia.gov/movies.html#box http://lammps.sandia.gov/movies.html#star :ul :line SHOCK package :link(SHOCK),h4 [Contents:] Fixes for running impact simulations where a shock-wave passes through a material. [Install or un-install:] make yes-shock make machine :pre make no-shock make machine :pre [Supporting info:] src/SHOCK: filenames -> commands "fix append/atoms"_fix_append_atoms.html "fix msst"_fix_msst.html "fix nphug"_fix_nphug.html "fix wall/piston"_fix_wall_piston.html examples/hugoniostat examples/msst :ul :line SNAP package :link(SNAP),h4 [Contents:] A pair style for the spectral neighbor analysis potential (SNAP). SNAP is methodology for deriving a highly accurate classical potential fit to a large archive of quantum mechanical (DFT) data. Also several computes which analyze attributes of the potential. [Author:] Aidan Thompson (Sandia). [Install or un-install:] make yes-snap make machine :pre make no-snap make machine :pre [Supporting info:] src/SNAP: filenames -> commands "pair snap"_pair_snap.html "compute sna/atom"_compute_sna_atom.html "compute snad/atom"_compute_sna_atom.html "compute snav/atom"_compute_sna_atom.html examples/snap :ul :line SRD package :link(SRD),h4 [Contents:] A pair of fixes which implement the Stochastic Rotation Dynamics (SRD) method for coarse-graining of a solvent, typically around large colloidal particles. To install/build: make yes-srd make machine :pre To un-install/re-build: make no-srd make machine :pre [Supporting info:] src/SRD: filenames -> commands "fix srd"_fix_srd.html "fix wall/srd"_fix_wall_srd.html examples/srd examples/ASPHERE http://lammps.sandia.gov/movies.html#tri http://lammps.sandia.gov/movies.html#line http://lammps.sandia.gov/movies.html#poly :ul :line VORONOI package :link(VORONOI),h4 [Contents:] A compute command which calculates the Voronoi tesselation of a collection of atoms by wrapping the "Voro++ library"_voro_home. This can be used to calculate the local volume or each atoms or its near neighbors. :link(voro_home,http://math.lbl.gov/voro++) To use this package you must have the Voro++ library available on your system. [Author:] Daniel Schwen (INL) while at LANL. The open-source Voro++ library was written by Chris Rycroft (Harvard U) while at UC Berkeley and LBNL. [Install or un-install:] Before building LAMMPS with this package, you must first download and build the Voro++ library. You can do this manually if you prefer; follow the instructions in lib/voronoi/README. You can also do it in one step from the lammps/src dir, using a command like these, which simply invoke the lib/voronoi/Install.py script with the specified args: make lib-voronoi # print help message make lib-voronoi args="-g -b -l" # download and build in default lib/voronoi/voro++-0.4.6 make lib-voronoi args="-h . voro++ -g -b -l" # download and build in lib/voronoi/voro++ make lib-voronoi args="-h ~ voro++ -g -b -l" # download and build in ~/voro++ :pre Note that the final -l switch is to create 2 symbolic (soft) links, "includelink" and "liblink", in lib/voronoi to point to the Voro++ src dir. When LAMMPS builds it will use these links. You should not need to edit the lib/voronoi/Makefile.lammps file. You can then install/un-install the package and build LAMMPS in the usual manner: make yes-voronoi make machine :pre make no-voronoi make machine :pre [Supporting info:] src/VORONOI: filenames -> commands src/VORONOI/README lib/voronoi/README "compute voronoi/atom"_compute_voronoi_atom.html examples/voronoi :ul :line :line USER-ATC package :link(USER-ATC),h4 [Contents:] ATC stands for atoms-to-continuum. This package implements a "fix atc"_fix_atc.html command to either couple molecular dynamics with continuum finite element equations or perform on-the-fly conversion of atomic information to continuum fields. [Authors:] Reese Jones, Jeremy Templeton, Jon Zimmerman (Sandia). [Install or un-install:] Before building LAMMPS with this package, you must first build the ATC library in lib/atc. You can do this manually if you prefer; follow the instructions in lib/atc/README. You can also do it in one step from the lammps/src dir, using a command like these, which simply invoke the lib/atc/Install.py script with the specified args: make lib-atc # print help message make lib-atc args="-m g++" # build with GNU g++ compiler make lib-atc args="-m icc" # build with Intel icc compiler :pre The build should produce two files: lib/atc/libatc.a and lib/atc/Makefile.lammps. The latter is copied from an existing Makefile.lammps.* and has settings needed to build LAMMPS with the ATC library. If necessary, you can edit/create a new lib/atc/Makefile.machine file for your system, which should define an EXTRAMAKE variable to specify a corresponding Makefile.lammps.machine file. Note that the Makefile.lammps file has settings for the BLAS and LAPACK linear algebra libraries. As explained in lib/atc/README these can either exist on your system, or you can use the files provided in lib/linalg. In the latter case you also need to build the library in lib/linalg with a command like these: make lib-linalg # print help message make lib-atc args="-m gfortran" # build with GNU Fortran compiler You can then install/un-install the package and build LAMMPS in the usual manner: make yes-user-atc make machine :pre make no-user-atc make machine :pre [Supporting info:] src/USER-ATC: filenames -> commands src/USER-ATC/README "fix atc"_fix_atc.html examples/USER/atc http://lammps.sandia.gov/pictures.html#atc :ul :line USER-AWPMD package :link(USER-AWPMD),h4 [Contents:] AWPMD stands for Antisymmetrized Wave Packet Molecular Dynamics. This package implements an atom, pair, and fix style which allows electrons to be treated as explicit particles in a classical molecular dynamics model. [Author:] Ilya Valuev (JIHT, Russia). [Install or un-install:] Before building LAMMPS with this package, you must first build the AWPMD library in lib/awpmd. You can do this manually if you prefer; follow the instructions in lib/awpmd/README. You can also do it in one step from the lammps/src dir, using a command like these, which simply invoke the lib/awpmd/Install.py script with the specified args: make lib-awpmd # print help message make lib-awpmd args="-m g++" # build with GNU g++ compiler make lib-awpmd args="-m icc" # build with Intel icc compiler :pre The build should produce two files: lib/awpmd/libawpmd.a and lib/awpmd/Makefile.lammps. The latter is copied from an existing Makefile.lammps.* and has settings needed to build LAMMPS with the AWPMD library. If necessary, you can edit/create a new lib/awpmd/Makefile.machine file for your system, which should define an EXTRAMAKE variable to specify a corresponding Makefile.lammps.machine file. Note that the Makefile.lammps file has settings for the BLAS and LAPACK linear algebra libraries. As explained in lib/awpmd/README these can either exist on your system, or you can use the files provided in lib/linalg. In the latter case you also need to build the library in lib/linalg with a command like these: make lib-linalg # print help message make lib-atc args="-m gfortran" # build with GNU Fortran compiler You can then install/un-install the package and build LAMMPS in the usual manner: make yes-user-awpmd make machine :pre make no-user-awpmd make machine :pre [Supporting info:] src/USER-AWPMD: filenames -> commands src/USER-AWPMD/README "pair awpmd/cut"_pair_awpmd.html examples/USER/awpmd :ul :line USER-CGDNA package :link(USER-CGDNA),h4 [Contents:] Several pair styles, a bond style, and integration fixes for coarse-grained models of single- and double-stranded DNA based on the oxDNA model of Doye, Louis and Ouldridge at the University of Oxford. This includes Langevin-type rigid-body integrators with improved stability. [Author:] Oliver Henrich (University of Strathclyde, Glasgow). [Install or un-install:] make yes-user-cgdna make machine :pre make no-user-cgdna make machine :pre [Supporting info:] src/USER-CGDNA: filenames -> commands /src/USER-CGDNA/README "pair_style oxdna/*"_pair_oxdna.html "pair_style oxdna2/*"_pair_oxdna2.html "bond_style oxdna/*"_bond_oxdna.html "bond_style oxdna2/*"_bond_oxdna.html "fix nve/dotc/langevin"_fix_nve_dotc_langevin.html :ul :line USER-CGSDK package :link(USER-CGSDK),h4 [Contents:] Several pair styles and an angle style which implement the coarse-grained SDK model of Shinoda, DeVane, and Klein which enables simulation of ionic liquids, electrolytes, lipids and charged amino acids. [Author:] Axel Kohlmeyer (Temple U). [Install or un-install:] make yes-user-cgsdk make machine :pre make no-user-cgsdk make machine :pre [Supporting info:] src/USER-CGSDK: filenames -> commands src/USER-CGSDK/README "pair_style lj/sdk/*"_pair_sdk.html "angle_style sdk"_angle_sdk.html examples/USER/cgsdk http://lammps.sandia.gov/pictures.html#cg :ul :line USER-COLVARS package :link(USER-COLVARS),h4 [Contents:] COLVARS stands for collective variables, which can be used to implement various enhanced sampling methods, including Adaptive Biasing Force, Metadynamics, Steered MD, Umbrella Sampling and Restraints. A "fix colvars"_fix_colvars.html command is implemented which wraps a COLVARS library, which implements these methods. simulations. [Authors:] Axel Kohlmeyer (Temple U). The COLVARS library was written by Giacomo Fiorin (ICMS, Temple University, Philadelphia, PA, USA) and Jerome Henin (LISM, CNRS, Marseille, France). [Install or un-install:] Before building LAMMPS with this package, you must first build the COLVARS library in lib/colvars. You can do this manually if you prefer; follow the instructions in lib/colvars/README. You can also do it in one step from the lammps/src dir, using a command like these, which simply invoke the lib/colvars/Install.py script with the specified args: make lib-colvars # print help message make lib-colvars args="-m g++" # build with GNU g++ compiler :pre The build should produce two files: lib/colvars/libcolvars.a and lib/colvars/Makefile.lammps. The latter is copied from an existing Makefile.lammps.* and has settings needed to build LAMMPS with the COLVARS library (though typically the settings are just blank). If necessary, you can edit/create a new lib/colvars/Makefile.machine file for your system, which should define an EXTRAMAKE variable to specify a corresponding Makefile.lammps.machine file. You can then install/un-install the package and build LAMMPS in the usual manner: make yes-user-colvars make machine :pre make no-user-colvars make machine :pre [Supporting info:] src/USER-COLVARS: filenames -> commands "doc/PDF/colvars-refman-lammps.pdf"_PDF/colvars-refman-lammps.pdf src/USER-COLVARS/README lib/colvars/README "fix colvars"_fix_colvars.html examples/USER/colvars :ul :line USER-DIFFRACTION package :link(USER-DIFFRACTION),h4 [Contents:] Two computes and a fix for calculating x-ray and electron diffraction intensities based on kinematic diffraction theory. [Author:] Shawn Coleman while at the U Arkansas. [Install or un-install:] make yes-user-diffraction make machine :pre make no-user-diffraction make machine :pre [Supporting info:] src/USER-DIFFRACTION: filenames -> commands "compute saed"_compute_saed.html "compute xrd"_compute_xrd.html "fix saed/vtk"_fix_saed_vtk.html examples/USER/diffraction :ul :line USER-DPD package :link(USER-DPD),h4 [Contents:] DPD stands for dissipative particle dynamics. This package implements coarse-grained DPD-based models for energetic, reactive molecular crystalline materials. It includes many pair styles specific to these systems, including for reactive DPD, where each particle has internal state for multiple species and a coupled set of chemical reaction ODEs are integrated each timestep. Highly accurate time intergrators for isothermal, isoenergetic, isobaric and isenthalpic conditions are included. These enable long timesteps via the Shardlow splitting algorithm. [Authors:] Jim Larentzos (ARL), Tim Mattox (Engility Corp), and and John Brennan (ARL). [Install or un-install:] make yes-user-dpd make machine :pre make no-user-dpd make machine :pre [Supporting info:] src/USER-DPD: filenames -> commands /src/USER-DPD/README "compute dpd"_compute_dpd.html "compute dpd/atom"_compute_dpd_atom.html "fix eos/cv"_fix_eos_table.html "fix eos/table"_fix_eos_table.html "fix eos/table/rx"_fix_eos_table_rx.html "fix shardlow"_fix_shardlow.html "fix rx"_fix_rx.html "pair table/rx"_pair_table_rx.html "pair dpd/fdt"_pair_dpd_fdt.html "pair dpd/fdt/energy"_pair_dpd_fdt.html "pair exp6/rx"_pair_exp6_rx.html "pair multi/lucy"_pair_multi_lucy.html "pair multi/lucy/rx"_pair_multi_lucy_rx.html examples/USER/dpd :ul :line USER-DRUDE package :link(USER-DRUDE),h4 [Contents:] Fixes, pair styles, and a compute to simulate thermalized Drude oscillators as a model of polarization. See "Section 6.27"_Section_howto.html#howto_27 for an overview of how to use the package. There are auxiliary tools for using this package in tools/drude. [Authors:] Alain Dequidt (U Blaise Pascal Clermont-Ferrand), Julien Devemy (CNRS), and Agilio Padua (U Blaise Pascal). [Install or un-install:] make yes-user-drude make machine :pre make no-user-drude make machine :pre [Supporting info:] src/USER-DRUDE: filenames -> commands "Section 6.27"_Section_howto.html#howto_27 "Section 6.25"_Section_howto.html#howto_25 src/USER-DRUDE/README "fix drude"_fix_drude.html "fix drude/transform/*"_fix_drude_transform.html "compute temp/drude"_compute_temp_drude.html "pair thole"_pair_thole.html "pair lj/cut/thole/long"_pair_thole.html examples/USER/drude tools/drude :ul :line USER-EFF package :link(USER-EFF),h4 [Contents:] EFF stands for electron force field which allows a classical MD code to model electrons as particles of variable radius. This package contains atom, pair, fix and compute styles which implement the eFF as described in A. Jaramillo-Botero, J. Su, Q. An, and W.A. Goddard III, JCC, 2010. The eFF potential was first introduced by Su and Goddard, in 2007. There are auxiliary tools for using this package in tools/eff; see its README file. [Author:] Andres Jaramillo-Botero (CalTech). [Install or un-install:] make yes-user-eff make machine :pre make no-user-eff make machine :pre [Supporting info:] src/USER-EFF: filenames -> commands src/USER-EFF/README "atom_style electron"_atom_style.html "fix nve/eff"_fix_nve_eff.html "fix nvt/eff"_fix_nh_eff.html "fix npt/eff"_fix_nh_eff.html "fix langevin/eff"_fix_langevin_eff.html "compute temp/eff"_compute_temp_eff.html "pair eff/cut"_pair_eff.html "pair eff/inline"_pair_eff.html examples/USER/eff tools/eff/README tools/eff http://lammps.sandia.gov/movies.html#eff :ul :line USER-FEP package :link(USER-FEP),h4 [Contents:] FEP stands for free energy perturbation. This package provides methods for performing FEP simulations by using a "fix adapt/fep"_fix_adapt_fep.html command with soft-core pair potentials, which have a "soft" in their style name. There are auxiliary tools for using this package in tools/fep; see its README file. [Author:] Agilio Padua (Universite Blaise Pascal Clermont-Ferrand) [Install or un-install:] make yes-user-fep make machine :pre make no-user-fep make machine :pre [Supporting info:] src/USER-FEP: filenames -> commands src/USER-FEP/README "fix adapt/fep"_fix_adapt_fep.html "compute fep"_compute_fep.html "pair_style */soft"_pair_lj_soft.html examples/USER/fep tools/fep/README tools/fep :ul :line USER-H5MD package :link(USER-H5MD),h4 [Contents:] H5MD stands for HDF5 for MD. "HDF5"_HDF5 is a portable, binary, self-describing file format, used by many scientific simulations. H5MD is a format for molecular simulations, built on top of HDF5. This package implements a "dump h5md"_dump_h5md.html command to output LAMMPS snapshots in this format. :link(HDF5,http://www.hdfgroup.org/HDF5) To use this package you must have the HDF5 library available on your system. [Author:] Pierre de Buyl (KU Leuven) created both the package and the H5MD format. [Install or un-install:] Note that to follow these steps to compile and link to the CH5MD library, you need the standard HDF5 software package installed on your system, which should include the h5cc compiler and the HDF5 library. Before building LAMMPS with this package, you must first build the CH5MD library in lib/h5md. You can do this manually if you prefer; follow the instructions in lib/h5md/README. You can also do it in one step from the lammps/src dir, using a command like these, which simply invoke the lib/h5md/Install.py script with the specified args: make lib-h5md # print help message make lib-hm5d args="-m h5cc" # build with h5cc compiler :pre The build should produce two files: lib/h5md/libch5md.a and lib/h5md/Makefile.lammps. The latter is copied from an existing Makefile.lammps.* and has settings needed to build LAMMPS with the system HDF5 library. If necessary, you can edit/create a new lib/h5md/Makefile.machine file for your system, which should define an EXTRAMAKE variable to specify a corresponding Makefile.lammps.machine file. You can then install/un-install the package and build LAMMPS in the usual manner: make yes-user-h5md make machine :pre make no-user-h5md make machine :pre [Supporting info:] src/USER-H5MD: filenames -> commands src/USER-H5MD/README lib/h5md/README "dump h5md"_dump_h5md.html :ul :line USER-INTEL package :link(USER-INTEL),h4 [Contents:] Dozens of pair, fix, bond, angle, dihedral, improper, and kspace styles which are optimized for Intel CPUs and KNLs (Knights Landing). All of them have an "intel" in their style name. "Section 5.3.2"_accelerate_intel.html gives details of what hardware and compilers are required on your system, and how to build and use this package. Its styles can be invoked at run time via the "-sf intel" or "-suffix intel" "command-line switches"_Section_start.html#start_6. Also see the "KOKKOS"_#KOKKOS, "OPT"_#OPT, and "USER-OMP"_#USER-OMP packages, which have styles optimized for CPUs and KNLs. You need to have an Intel compiler, version 14 or higher to take full advantage of this package. [Author:] Mike Brown (Intel). [Install or un-install:] For the USER-INTEL package, you have 2 choices when building. You can build with either CPU or KNL support. Each choice requires additional settings in your Makefile.machine for CCFLAGS and LINKFLAGS and optimized malloc libraries. See the src/MAKE/OPTIONS/Makefile.intel_cpu and src/MAKE/OPTIONS/Makefile.knl files for examples. For CPUs: OPTFLAGS = -xHost -O2 -fp-model fast=2 -no-prec-div -qoverride-limits CCFLAGS = -g -qopenmp -DLAMMPS_MEMALIGN=64 -no-offload \ -fno-alias -ansi-alias -restrict $(OPTFLAGS) LINKFLAGS = -g -qopenmp $(OPTFLAGS) LIB = -ltbbmalloc -ltbbmalloc_proxy For KNLs: OPTFLAGS = -xMIC-AVX512 -O2 -fp-model fast=2 -no-prec-div -qoverride-limits CCFLAGS = -g -qopenmp -DLAMMPS_MEMALIGN=64 -no-offload \ -fno-alias -ansi-alias -restrict $(OPTFLAGS) LINKFLAGS = -g -qopenmp $(OPTFLAGS) LIB = -ltbbmalloc Once you have an appropriate Makefile.machine, you can install/un-install the package and build LAMMPS in the usual manner. Note that you cannot build one executable to run on multiple hardware targets (Intel CPUs or KNL). You need to build LAMMPS once for each hardware target, to produce a separate executable. You should also typically install the USER-OMP package, as it can be used in tandem with the USER-INTEL package to good effect, as explained in "Section 5.3.2"_accelerate_intel.html. make yes-user-intel yes-user-omp make machine :pre make no-user-intel no-user-omp make machine :pre [Supporting info:] src/USER-INTEL: filenames -> commands src/USER-INTEL/README "Section 5.3"_Section_accelerate.html#acc_3 "Section 5.3.2"_accelerate_gpu.html "Section 2.6 -sf intel"_Section_start.html#start_6 "Section 2.6 -pk intel"_Section_start.html#start_6 "package intel"_package.html Styles sections of "Section 3.5"_Section_commands.html#cmd_5 for styles followed by (i) src/USER-INTEL/TEST "Benchmarks page"_http://lammps.sandia.gov/bench.html of web site :ul :line USER-LB package :link(USER-LB),h4 [Contents:] Fixes which implement a background Lattice-Boltzmann (LB) fluid, which can be used to model MD particles influenced by hydrodynamic forces. [Authors:] Frances Mackay and Colin Denniston (University of Western Ontario). [Install or un-install:] make yes-user-lb make machine :pre make no-user-lb make machine :pre [Supporting info:] src/USER-LB: filenames -> commands src/USER-LB/README "fix lb/fluid"_fix_lb_fluid.html "fix lb/momentum"_fix_lb_momentum.html "fix lb/viscous"_fix_lb_viscous.html examples/USER/lb :ul :line USER-MGPT package :link(USER-MGPT),h4 [Contents:] A pair style which provides a fast implementation of the quantum-based MGPT multi-ion potentials. The MGPT or model GPT method derives from first-principles DFT-based generalized pseudopotential theory (GPT) through a series of systematic approximations valid for mid-period transition metals with nearly half-filled d bands. The MGPT method was originally developed by John Moriarty at LLNL. The pair style in this package calculates forces and energies using an optimized matrix-MGPT algorithm due to Tomas Oppelstrup at LLNL. [Authors:] Tomas Oppelstrup and John Moriarty (LLNL). [Install or un-install:] make yes-user-mgpt make machine :pre make no-user-mgpt make machine :pre [Supporting info:] src/USER-MGPT: filenames -> commands src/USER-MGPT/README "pair_style mgpt"_pair_mgpt.html examples/USER/mgpt :ul :line USER-MISC package :link(USER-MISC),h4 [Contents:] A potpourri of (mostly) unrelated features contributed to LAMMPS by users. Each feature is a single fix, compute, pair, bond, angle, dihedral, improper, or command style. [Authors:] The author for each style in the package is listed in the src/USER-MISC/README file. [Install or un-install:] make yes-user-misc make machine :pre make no-user-misc make machine :pre [Supporting info:] src/USER-MISC: filenames -> commands src/USER-MISC/README one doc page per individual command listed in src/USER-MISC/README examples/USER/misc :ul :line USER-MANIFOLD package :link(USER-MANIFOLD),h4 [Contents:] Several fixes and a "manifold" class which enable simulations of particles constrained to a manifold (a 2D surface within the 3D simulation box). This is done by applying the RATTLE constraint algorithm to formulate single-particle constraint functions g(xi,yi,zi) = 0 and their derivative (i.e. the normal of the manifold) n = grad(g). [Author:] Stefan Paquay (until 2017: Eindhoven University of Technology (TU/e), The Netherlands; since 2017: Brandeis University, Waltham, MA, USA) [Install or un-install:] make yes-user-manifold make machine :pre make no-user-manifold make machine :pre [Supporting info:] src/USER-MANIFOLD: filenames -> commands src/USER-MANIFOLD/README "doc/manifolds"_manifolds.html "fix manifoldforce"_fix_manifoldforce.html "fix nve/manifold/rattle"_fix_nve_manifold_rattle.html "fix nvt/manifold/rattle"_fix_nvt_manifold_rattle.html examples/USER/manifold http://lammps.sandia.gov/movies.html#manifold :ul :line USER-MEAMC package :link(USER-MEAMC),h4 [Contents:] A pair style for the modified embedded atom (MEAM) potential translated from the Fortran version in the "MEAM"_MEAM package to plain C++. In contrast to the MEAM package, no library needs to be compiled and the pair style can be instantiated multiple times. [Author:] Sebastian Huetter, (Otto-von-Guericke University Magdeburg) based on the Fortran version of Greg Wagner (Northwestern U) while at Sandia. [Install or un-install:] make yes-user-meamc make machine :pre make no-user-meamc make machine :pre [Supporting info:] src/USER-MEAMC: filenames -> commands src/USER-MEAMC/README "pair meam/c"_pair_meam.html examples/meam :ul :line USER-MOLFILE package :link(USER-MOLFILE),h4 [Contents:] A "dump molfile"_dump_molfile.html command which uses molfile plugins that are bundled with the "VMD"_vmd_home molecular visualization and analysis program, to enable LAMMPS to dump snapshots in formats compatible with various molecular simulation tools. :link(vmd_home,http://www.ks.uiuc.edu/Research/vmd) To use this package you must have the desired VMD plugins available on your system. Note that this package only provides the interface code, not the plugins themselves, which will be accessed when requesting a specific plugin via the "dump molfile"_dump_molfile.html command. Plugins can be obtained from a VMD installation which has to match the platform that you are using to compile LAMMPS for. By adding plugins to VMD, support for new file formats can be added to LAMMPS (or VMD or other programs that use them) without having to recompile the application itself. More information about the VMD molfile plugins can be found at "http://www.ks.uiuc.edu/Research/vmd/plugins/molfile"_http://www.ks.uiuc.edu/Research/vmd/plugins/molfile. [Author:] Axel Kohlmeyer (Temple U). [Install or un-install:] Note that the lib/molfile/Makefile.lammps file has a setting for a dynamic loading library libdl.a that should is typically present on all systems, which is required for LAMMPS to link with this package. If the setting is not valid for your system, you will need to edit the Makefile.lammps file. See lib/molfile/README and lib/molfile/Makefile.lammps for details. make yes-user-molfile make machine :pre make no-user-molfile make machine :pre [Supporting info:] src/USER-MOLFILE: filenames -> commands src/USER-MOLFILE/README lib/molfile/README "dump molfile"_dump_molfile.html :ul :line USER-NETCDF package :link(USER-NETCDF),h4 [Contents:] Dump styles for writing NetCDF formatted dump files. NetCDF is a portable, binary, self-describing file format developed on top of HDF5. The file contents follow the AMBER NetCDF trajectory conventions (http://ambermd.org/netcdf/nctraj.xhtml), but include extensions. To use this package you must have the NetCDF library available on your system. Note that NetCDF files can be directly visualized with the following tools: "Ovito"_ovito (Ovito supports the AMBER convention and the extensions mentioned above) "VMD"_vmd_home "AtomEye"_atomeye (the libAtoms version of AtomEye contains a NetCDF reader not present in the standard distribution) :ul :link(ovito,http://www.ovito.org) :link(atomeye,http://www.libatoms.org) [Author:] Lars Pastewka (Karlsruhe Institute of Technology). [Install or un-install:] Note that to follow these steps, you need the standard NetCDF software package installed on your system. The lib/netcdf/Makefile.lammps file has settings for NetCDF include and library files that LAMMPS needs to compile and linkk with this package. If the settings are not valid for your system, you will need to edit the Makefile.lammps file. See lib/netcdf/README for details. make yes-user-netcdf make machine :pre make no-user-netcdf make machine :pre [Supporting info:] src/USER-NETCDF: filenames -> commands src/USER-NETCDF/README lib/netcdf/README "dump netcdf"_dump_netcdf.html :ul :line USER-OMP package :link(USER-OMP),h4 [Contents:] Hundreds of pair, fix, compute, bond, angle, dihedral, improper, and kspace styles which are altered to enable threading on many-core CPUs via OpenMP directives. All of them have an "omp" in their style name. "Section 5.3.4"_accelerate_omp.html gives details of what hardware and compilers are required on your system, and how to build and use this package. Its styles can be invoked at run time via the "-sf omp" or "-suffix omp" "command-line switches"_Section_start.html#start_6. Also see the "KOKKOS"_#KOKKOS, "OPT"_#OPT, and "USER-INTEL"_#USER-INTEL packages, which have styles optimized for CPUs. [Author:] Axel Kohlmeyer (Temple U). NOTE: The compile flags "-restrict" and "-fopenmp" must be used to build LAMMPS with the USER-OMP package, as well as the link flag "-fopenmp". They should be added to the CCFLAGS and LINKFLAGS lines of your Makefile.machine. See src/MAKE/OPTIONS/Makefile.omp for an example. Once you have an appropriate Makefile.machine, you can install/un-install the package and build LAMMPS in the usual manner: [Install or un-install:] make yes-user-omp make machine :pre make no-user-omp make machine :pre CCFLAGS: add -fopenmp and -restrict LINKFLAGS: add -fopenmp :ul [Supporting info:] src/USER-OMP: filenames -> commands src/USER-OMP/README "Section 5.3"_Section_accelerate.html#acc_3 "Section 5.3.4"_accelerate_omp.html "Section 2.6 -sf omp"_Section_start.html#start_6 "Section 2.6 -pk omp"_Section_start.html#start_6 "package omp"_package.html Styles sections of "Section 3.5"_Section_commands.html#cmd_5 for styles followed by (o) "Benchmarks page"_http://lammps.sandia.gov/bench.html of web site :ul :line USER-PHONON package :link(USER-PHONON),h4 [Contents:] A "fix phonon"_fix_phonon.html command that calculates dynamical matrices, which can then be used to compute phonon dispersion relations, directly from molecular dynamics simulations. [Author:] Ling-Ti Kong (Shanghai Jiao Tong University). [Install or un-install:] make yes-user-phonon make machine :pre make no-user-phonon make machine :pre [Supporting info:] src/USER-PHONON: filenames -> commands src/USER-PHONON/README "fix phonon"_fix_phonon.html examples/USER/phonon :ul :line USER-QMMM package :link(USER-QMMM),h4 [Contents:] A "fix qmmm"_fix_qmmm.html command which allows LAMMPS to be used in a QM/MM simulation, currently only in combination with the "Quantum ESPRESSO"_espresso package. :link(espresso,http://www.quantum-espresso.org) To use this package you must have Quantum ESPRESSO available on your system. The current implementation only supports an ONIOM style mechanical coupling to the Quantum ESPRESSO plane wave DFT package. Electrostatic coupling is in preparation and the interface has been written in a manner that coupling to other QM codes should be possible without changes to LAMMPS itself. [Author:] Axel Kohlmeyer (Temple U). [Install or un-install:] Before building LAMMPS with this package, you must first build the QMMM library in lib/qmmm. You can do this manually if you prefer; follow the first two steps explained in lib/colvars/README. You can also do it in one step from the lammps/src dir, using a command like these, which simply invoke the lib/colvars/Install.py script with the specified args: make lib-qmmm # print help message make lib-qmmm args="-m gfortran" # build with GNU Fortran compiler :pre The build should produce two files: lib/qmmm/libqmmm.a and lib/qmmm/Makefile.lammps. The latter is copied from an existing Makefile.lammps.* and has settings needed to build LAMMPS with the QMMM library (though typically the settings are just blank). If necessary, you can edit/create a new lib/qmmm/Makefile.machine file for your system, which should define an EXTRAMAKE variable to specify a corresponding Makefile.lammps.machine file. You can then install/un-install the package and build LAMMPS in the usual manner: make yes-user-qmmm make machine :pre make no-user-qmmm make machine :pre NOTE: The LAMMPS executable these steps produce is not yet functional for a QM/MM simulation. You must also build Quantum ESPRESSO and create a new executable which links LAMMPS and Quanutm ESPRESSO together. These are steps 3 and 4 described in the lib/qmmm/README file. [Supporting info:] src/USER-QMMM: filenames -> commands src/USER-QMMM/README lib/qmmm/README "fix phonon"_fix_phonon.html lib/qmmm/example-ec/README lib/qmmm/example-mc/README :ul :line USER-QTB package :link(USER-QTB),h4 [Contents:] Two fixes which provide a self-consistent quantum treatment of vibrational modes in a classical molecular dynamics simulation. By coupling the MD simulation to a colored thermostat, it introduces zero point energy into the system, altering the energy power spectrum and the heat capacity to account for their quantum nature. This is useful when modeling systems at temperatures lower than their classical limits or when temperatures ramp across the classical limits in a simulation. [Author:] Yuan Shen (Stanford U). [Install or un-install:] make yes-user-qtb make machine :pre make no-user-qtb make machine :pre [Supporting info:] src/USER-QTB: filenames -> commands src/USER-QTB/README "fix qtb"_fix_qtb.html "fix qbmsst"_fix_qbmsst.html examples/USER/qtb :ul :line USER-QUIP package :link(USER-QUIP),h4 [Contents:] A "pair_style quip"_pair_quip.html command which wraps the "QUIP libAtoms library"_quip, which includes a variety of interatomic potentials, including Gaussian Approximation Potential (GAP) models developed by the Cambridge University group. :link(quip,https://github.com/libAtoms/QUIP) To use this package you must have the QUIP libAatoms library available on your system. [Author:] Albert Bartok (Cambridge University) [Install or un-install:] Note that to follow these steps to compile and link to the QUIP library, you must first download and build QUIP on your systems. It can be obtained from GitHub. See step 1 and step 1.1 in the lib/quip/README file for details on how to do this. Note that it requires setting two environment variables, QUIP_ROOT and QUIP_ARCH, which will be accessed by the lib/quip/Makefile.lammps file which is used when you compile and link LAMMPS with this package. You should only need to edit this file if the LAMMPS build can not use its settings to successfully build on your system. You can then install/un-install the package and build LAMMPS in the usual manner: make yes-user-quip make machine :pre make no-user-quip make machine :pre [Supporting info:] src/USER-QUIP: filenames -> commands src/USER-QUIP/README "pair_style quip"_pair_quip.html examples/USER/quip :ul :line USER-REAXC package :link(USER-REAXC),h4 [Contents:] A pair style which implements the ReaxFF potential in C/C++ (in contrast to the "REAX package"_#REAX and its Fortran library). ReaxFF is universal reactive force field. See the src/USER-REAXC/README file for more info on differences between the two packages. Also two fixes for monitoring molecules as bonds are created and destroyed. [Author:] Hasan Metin Aktulga (MSU) while at Purdue University. [Install or un-install:] make yes-user-reaxc make machine :pre make no-user-reaxc make machine :pre [Supporting info:] src/USER-REAXC: filenames -> commands src/USER-REAXC/README "pair_style reax/c"_pair_reaxc.html "fix reax/c/bonds"_fix_reax_bonds.html "fix reax/c/species"_fix_reaxc_species.html examples/reax :ul :line USER-SMD package :link(USER-SMD),h4 [Contents:] An atom style, fixes, computes, and several pair styles which implements smoothed Mach dynamics (SMD) for solids, which is a model related to smoothed particle hydrodynamics (SPH) for liquids (see the "USER-SPH package"_#USER-SPH). This package solves solids mechanics problems via a state of the art stabilized meshless method with hourglass control. It can specify hydrostatic interactions independently from material strength models, i.e. pressure and deviatoric stresses are separated. It provides many material models (Johnson-Cook, plasticity with hardening, Mie-Grueneisen, Polynomial EOS) and allows new material models to be added. It implements rigid boundary conditions (walls) which can be specified as surface geometries from *.STL files. [Author:] Georg Ganzenmuller (Fraunhofer-Institute for High-Speed Dynamics, Ernst Mach Institute, Germany). [Install or un-install:] Before building LAMMPS with this package, you must first download the Eigen library. Eigen is a template library, so you do not need to build it, just download it. You can do this manually if you prefer; follow the instructions in lib/smd/README. You can also do it in one step from the lammps/src dir, using a command like these, which simply invoke the lib/smd/Install.py script with the specified args: make lib-smd # print help message make lib-smd args="-g -l" # download in default lib/smd/eigen-eigen-* make lib-smd args="-h . eigen -g -l" # download in lib/smd/eigen make lib-smd args="-h ~ eigen -g -l" # download and build in ~/eigen :pre Note that the final -l switch is to create a symbolic (soft) link named "includelink" in lib/smd to point to the Eigen dir. When LAMMPS builds it will use this link. You should not need to edit the lib/smd/Makefile.lammps file. You can then install/un-install the package and build LAMMPS in the usual manner: make yes-user-smd make machine :pre make no-user-smd make machine :pre [Supporting info:] src/USER-SMD: filenames -> commands src/USER-SMD/README doc/PDF/SMD_LAMMPS_userguide.pdf examples/USER/smd http://lammps.sandia.gov/movies.html#smd :ul :line USER-SMTBQ package :link(USER-SMTBQ),h4 [Contents:] A pair style which implements a Second Moment Tight Binding model with QEq charge equilibration (SMTBQ) potential for the description of ionocovalent bonds in oxides. [Authors:] Nicolas Salles, Emile Maras, Olivier Politano, and Robert Tetot (LAAS-CNRS, France). [Install or un-install:] make yes-user-smtbq make machine :pre make no-user-smtbq make machine :pre [Supporting info:] src/USER-SMTBQ: filenames -> commands src/USER-SMTBQ/README "pair_style smtbq"_pair_smtbq.html examples/USER/smtbq :ul :line USER-SPH package :link(USER-SPH),h4 [Contents:] An atom style, fixes, computes, and several pair styles which implements smoothed particle hydrodynamics (SPH) for liquids. See the related "USER-SMD package"_#USER-SMD package for smooth Mach dynamics (SMD) for solids. This package contains ideal gas, Lennard-Jones equation of states, Tait, and full support for complete (i.e. internal-energy dependent) equations of state. It allows for plain or Monaghans XSPH integration of the equations of motion. It has options for density continuity or density summation to propagate the density field. It has "set"_set.html command options to set the internal energy and density of particles from the input script and allows the same quantities to be output with thermodynamic output or to dump files via the "compute property/atom"_compute_property_atom.html command. [Author:] Georg Ganzenmuller (Fraunhofer-Institute for High-Speed Dynamics, Ernst Mach Institute, Germany). [Install or un-install:] make yes-user-sph make machine :pre make no-user-sph make machine :pre [Supporting info:] src/USER-SPH: filenames -> commands src/USER-SPH/README doc/PDF/SPH_LAMMPS_userguide.pdf examples/USER/sph http://lammps.sandia.gov/movies.html#sph :ul :line USER-TALLY package :link(USER-TALLY),h4 [Contents:] Several compute styles that can be called when pairwise interactions are calculated to tally information (forces, heat flux, energy, stress, etc) about individual interactions. [Author:] Axel Kohlmeyer (Temple U). [Install or un-install:] make yes-user-tally make machine :pre make no-user-tally make machine :pre [Supporting info:] src/USER-TALLY: filenames -> commands src/USER-TALLY/README "compute */tally"_compute_tally.html examples/USER/tally :ul :line USER-VTK package :link(USER-VTK),h4 [Contents:] A "dump vtk"_dump_vtk.html command which outputs snapshot info in the "VTK format"_vtk, enabling visualization by "Paraview"_paraview or other visuzlization packages. :link(vtk,http://www.vtk.org) :link(paraview,http://www.paraview.org) To use this package you must have VTK library available on your system. [Authors:] Richard Berger (JKU) and Daniel Queteschiner (DCS Computing). [Install or un-install:] The lib/vtk/Makefile.lammps file has settings for accessing VTK files and its library, which are required for LAMMPS to build and link with this package. If the settings are not valid for your system, check if one of the other lib/vtk/Makefile.lammps.* files is compatible and copy it to Makefile.lammps. If none of the provided files work, you will need to edit the Makefile.lammps file. You can then install/un-install the package and build LAMMPS in the usual manner: make yes-user-vtk make machine :pre make no-user-vtk make machine :pre [Supporting info:] src/USER-VTK: filenames -> commands src/USER-VTK/README lib/vtk/README "dump vtk"_dump_vtk.html :ul diff --git a/src/SHOCK/fix_msst.cpp b/src/SHOCK/fix_msst.cpp index 66a648cd1..d7e572398 100644 --- a/src/SHOCK/fix_msst.cpp +++ b/src/SHOCK/fix_msst.cpp @@ -1,1111 +1,1109 @@ /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Laurence Fried (LLNL), Evan Reed (LLNL, Stanford) implementation of the Multi-Scale Shock Method see Reed, Fried, Joannopoulos, Phys Rev Lett, 90, 235503 (2003) ------------------------------------------------------------------------- */ #include #include #include #include "fix_msst.h" #include "atom.h" #include "force.h" #include "comm.h" #include "output.h" #include "modify.h" #include "fix_external.h" #include "compute.h" #include "kspace.h" #include "update.h" #include "respa.h" #include "domain.h" #include "thermo.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; using namespace FixConst; /* ---------------------------------------------------------------------- */ FixMSST::FixMSST(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg), old_velocity(NULL), rfix(NULL), id_temp(NULL), id_press(NULL), id_pe(NULL), temperature(NULL), pressure(NULL), pe(NULL) { if (narg < 4) error->all(FLERR,"Illegal fix msst command"); restart_global = 1; box_change_size = 1; time_integrate = 1; scalar_flag = 1; vector_flag = 1; size_vector = 4; global_freq = 1; extscalar = 1; extvector = 0; // set defaults velocity = 0.0; dilation[0] = dilation[1] = dilation[2] = 1.0; p0 = 0.0; v0 = 1.0; e0 = 0.0; TS_int = 0; T0S0 = 0.0; S_elec = 0.0; S_elec_1 = 0.0; S_elec_2 = 0.0; qmass = 1.0e1; mu = 0.0; direction = 2; p0_set = 0; v0_set = 0; e0_set = 0; tscale = 0.01; dftb = 0; beta = 0.0; if (strcmp(arg[3],"x") == 0) direction = 0; else if (strcmp(arg[3],"y") == 0) direction = 1; else if (strcmp(arg[3],"z") == 0) direction = 2; else error->all(FLERR,"Illegal fix msst command"); velocity = force->numeric(FLERR,arg[4]); if (velocity < 0) error->all(FLERR,"Illegal fix msst command"); // optional args int iarg = 5; while (iarg < narg) { if (strcmp(arg[iarg],"q") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix msst command"); qmass = force->numeric(FLERR,arg[iarg+1]); iarg += 2; } else if (strcmp(arg[iarg],"mu") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix msst command"); mu = force->numeric(FLERR,arg[iarg+1]); iarg += 2; } else if (strcmp(arg[iarg],"p0") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix msst command"); p0 = force->numeric(FLERR,arg[iarg+1]); p0_set = 1; iarg += 2; } else if (strcmp(arg[iarg],"v0") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix msst command"); v0 = force->numeric(FLERR,arg[iarg+1]); v0_set = 1; iarg += 2; } else if (strcmp(arg[iarg],"e0") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix msst command"); e0 = force->numeric(FLERR,arg[iarg+1]); e0_set = 1; iarg += 2; } else if (strcmp(arg[iarg],"tscale") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix msst command"); tscale = force->numeric(FLERR,arg[iarg+1]); if (tscale < 0.0 || tscale > 1.0) error->all(FLERR,"Fix msst tscale must satisfy 0 <= tscale < 1"); iarg += 2; } else if (strcmp(arg[iarg],"dftb") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix msst command"); if (strcmp(arg[iarg+1],"yes") == 0) dftb = 1; else if (strcmp(arg[iarg+1],"yes") == 0) dftb = 0; else error->all(FLERR,"Illegal fix msst command"); iarg += 2; } else if (strcmp(arg[iarg],"beta") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal fix msst command"); beta = force->numeric(FLERR,arg[iarg+1]); if (beta < 0.0 || beta > 1.0) error->all(FLERR,"Illegal fix msst command"); iarg += 2; } else error->all(FLERR,"Illegal fix msst command"); } // output MSST info if (comm->me == 0) { if (screen) { fprintf(screen,"MSST parameters:\n"); if (direction == 0) fprintf(screen," Shock in x direction\n"); else if (direction == 1) fprintf(screen," Shock in y direction\n"); else if (direction == 2) fprintf(screen," Shock in z direction\n"); fprintf(screen," Cell mass-like parameter qmass " "(units of mass^2/length^4) = %12.5e\n", qmass); fprintf(screen," Shock velocity = %12.5e\n", velocity); fprintf(screen," Artificial viscosity " "(units of mass/length/time) = %12.5e\n", mu); if (p0_set) fprintf(screen," Initial pressure specified to be %12.5e\n", p0); else fprintf(screen," Initial pressure calculated on first step\n"); if (v0_set) fprintf(screen," Initial volume specified to be %12.5e\n", v0); else fprintf(screen," Initial volume calculated on first step\n"); if (e0_set) fprintf(screen," Initial energy specified to be %12.5e\n", e0); else fprintf(screen," Initial energy calculated on first step\n"); } if (logfile) { fprintf(logfile,"MSST parameters:\n"); if (direction == 0) fprintf(logfile," Shock in x direction\n"); else if (direction == 1) fprintf(logfile," Shock in y direction\n"); else if (direction == 2) fprintf(logfile," Shock in z direction\n"); fprintf(logfile," Cell mass-like parameter qmass " "(units of mass^2/length^4) = %12.5e\n", qmass); fprintf(logfile," Shock velocity = %12.5e\n", velocity); fprintf(logfile," Artificial viscosity " "(units of mass/length/time) = %12.5e\n", mu); if (p0_set) fprintf(logfile," Initial pressure specified to be %12.5e\n", p0); else fprintf(logfile," Initial pressure calculated on first step\n"); if (v0_set) fprintf(logfile," Initial volume specified to be %12.5e\n", v0); else fprintf(logfile," Initial volume calculated on first step\n"); if (e0_set) fprintf(logfile," Initial energy specified to be %12.5e\n", e0); else fprintf(logfile," Initial energy calculated on first step\n"); } } // check for periodicity in controlled dimensions if (domain->nonperiodic) error->all(FLERR,"Fix msst requires a periodic box"); // create a new temperature compute // id = fix-ID + "MSST_temp" // compute group = all since pressure is always global (group all) // and thus its KE/temperature contribution should use group all int n = strlen(id) + 10; id_temp = new char[n]; strcpy(id_temp,id); strcat(id_temp,"MSST_temp"); char **newarg = new char*[3]; newarg[0] = id_temp; newarg[1] = (char *) "all"; newarg[2] = (char *) "temp"; modify->add_compute(3,newarg); delete [] newarg; tflag = 1; // create a new pressure compute // id = fix-ID + "MSST_press", compute group = all // pass id_temp as 4th arg to pressure constructor n = strlen(id) + 11; id_press = new char[n]; strcpy(id_press,id); strcat(id_press,"MSST_press"); newarg = new char*[4]; newarg[0] = id_press; newarg[1] = (char *) "all"; newarg[2] = (char *) "pressure"; newarg[3] = id_temp; modify->add_compute(4,newarg); delete [] newarg; pflag = 1; // create a new potential energy compute // id = fix-ID + "MSST_pe", compute group = all n = strlen(id) + 8; id_pe = new char[n]; strcpy(id_pe,id); strcat(id_pe,"MSST_pe"); newarg = new char*[3]; newarg[0] = id_pe; newarg[1] = (char*) "all"; newarg[2] = (char*) "pe"; modify->add_compute(3,newarg); delete [] newarg; peflag = 1; // initialize the time derivative of the volume omega[0] = omega[1] = omega[2] = 0.0; nrigid = 0; rfix = NULL; maxold = -1; old_velocity = NULL; } /* ---------------------------------------------------------------------- */ FixMSST::~FixMSST() { delete [] rfix; // delete temperature and pressure if fix created them if (tflag) modify->delete_compute(id_temp); if (pflag) modify->delete_compute(id_press); if (peflag) modify->delete_compute(id_pe); delete [] id_temp; delete [] id_press; delete [] id_pe; memory->destroy(old_velocity); } /* ---------------------------------------------------------------------- */ int FixMSST::setmask() { int mask = 0; mask |= INITIAL_INTEGRATE; mask |= FINAL_INTEGRATE; mask |= THERMO_ENERGY; return mask; } /* ---------------------------------------------------------------------- */ void FixMSST::init() { if (atom->mass == NULL) error->all(FLERR,"Cannot use fix msst without per-type mass defined"); // set compute ptrs int itemp = modify->find_compute(id_temp); int ipress = modify->find_compute(id_press); int ipe = modify->find_compute(id_pe); if (itemp < 0 || ipress < 0|| ipe < 0) error->all(FLERR,"Could not find fix msst compute ID"); if (modify->compute[itemp]->tempflag == 0) error->all(FLERR,"Fix msst compute ID does not compute temperature"); if (modify->compute[ipress]->pressflag == 0) error->all(FLERR,"Fix msst compute ID does not compute pressure"); if (modify->compute[ipe]->peflag == 0) error->all(FLERR,"Fix msst compute ID does not compute potential energy"); temperature = modify->compute[itemp]; pressure = modify->compute[ipress]; pe = modify->compute[ipe]; dtv = update->dt; dtf = 0.5 * update->dt * force->ftm2v; dthalf = 0.5 * update->dt; boltz = force->boltz; nktv2p = force->nktv2p; mvv2e = force->mvv2e; double mass = 0.0; for (int i = 0; i < atom->nlocal; i++) mass += atom->mass[atom->type[i]]; MPI_Allreduce(&mass,&total_mass,1,MPI_DOUBLE,MPI_SUM,world); if (force->kspace) kspace_flag = 1; else kspace_flag = 0; // detect if any fix rigid exist so rigid bodies move when box is dilated // rfix[] = indices to each fix rigid delete [] rfix; nrigid = 0; rfix = NULL; for (int i = 0; i < modify->nfix; i++) if (strcmp(modify->fix[i]->style,"rigid") == 0 || strcmp(modify->fix[i]->style,"poems") == 0) nrigid++; if (nrigid) { rfix = new int[nrigid]; nrigid = 0; for (int i = 0; i < modify->nfix; i++) if (strcmp(modify->fix[i]->style,"rigid") == 0 || strcmp(modify->fix[i]->style,"poems") == 0) rfix[nrigid++] = i; } // find fix external being used to drive LAMMPS from DFTB+ if (dftb) { for (int i = 0; i < modify->nfix; i++) if (strcmp(modify->fix[i]->style,"external") == 0) fix_external = (FixExternal *) modify->fix[i]; if (fix_external == NULL) error->all(FLERR,"Fix msst dftb cannot be used w/out fix external"); } } /* ---------------------------------------------------------------------- compute T,P before integrator starts ------------------------------------------------------------------------- */ void FixMSST::setup(int vflag) { lagrangian_position = 0.0; temperature->compute_vector(); pressure->compute_vector(); couple(); velocity_sum = compute_vsum(); if ( v0_set == 0 ) { v0 = compute_vol(); v0_set = 1; if (comm->me == 0) { if ( screen ) fprintf(screen,"Fix MSST v0 = %12.5e\n", v0); if ( logfile ) fprintf(logfile,"Fix MSST v0 = %12.5e\n", v0); } } if ( p0_set == 0 ) { p0 = p_current[direction]; p0_set = 1; if ( comm->me == 0 ) { if ( screen ) fprintf(screen,"Fix MSST p0 = %12.5e\n", p0); if ( logfile ) fprintf(logfile,"Fix MSST p0 = %12.5e\n", p0); } } if ( e0_set == 0 ) { e0 = compute_etotal(); e0_set = 1; if ( comm->me == 0 ) { if ( screen ) fprintf(screen,"Fix MSST e0 = to be %12.5e\n",e0); if ( logfile ) fprintf(logfile,"Fix MSST e0 = to be %12.5e\n",e0); } } temperature->compute_vector(); double *ke_tensor = temperature->vector; double ke_temp = ke_tensor[0]+ke_tensor[1]+ke_tensor[2]; if (ke_temp > 0.0 && tscale > 0.0 ) { // transfer energy from atom velocities to cell volume motion // to bias initial compression double **v = atom->v; int *mask = atom->mask; double sqrt_initial_temperature_scaling = sqrt(1.0-tscale); double fac1 = tscale*total_mass/qmass*ke_temp/force->mvv2e; omega[direction]=-1*sqrt(fac1); double fac2 = omega[direction]/v0; if ( comm->me == 0 && tscale != 1.0) { if ( screen ) fprintf(screen,"Fix MSST initial strain rate of %12.5e established " "by reducing temperature by factor of %12.5e\n", fac2,tscale); if ( logfile ) fprintf(logfile,"Fix MSST initial strain rate of %12.5e established " "by reducing temperature by factor of %12.5e\n", fac2,tscale); } for (int i = 0; i < atom->nlocal; i++) { if (mask[i] & groupbit) { for (int k = 0; k < 3; k++ ) { v[i][k]*=sqrt_initial_temperature_scaling; } } } } // trigger virial computation on next timestep pe->addstep(update->ntimestep+1); pressure->addstep(update->ntimestep+1); } /* ---------------------------------------------------------------------- 1st half of Verlet update ------------------------------------------------------------------------- */ void FixMSST::initial_integrate(int vflag) { int i,k; double p_msst; // MSST driving pressure double vol; int nlocal = atom->nlocal; int *mask = atom->mask; double **v = atom->v; double **f = atom->f; double *mass = atom->mass; int *type = atom->type; double **x = atom->x; int sd = direction; // realloc old_velocity if necessary if (nlocal > maxold) { memory->destroy(old_velocity); maxold = atom->nmax; memory->create(old_velocity,maxold,3,"msst:old_velocity"); } // for DFTB, extract TS_dftb from fix external // must convert energy to mv^2 units if (dftb) { const double TS_dftb = fix_external->compute_vector(0); const double TS = force->ftm2v*TS_dftb; // update S_elec terms and compute TS_dot via finite differences S_elec_2 = S_elec_1; S_elec_1 = S_elec; const double Temp = temperature->compute_scalar(); S_elec = TS/Temp; TS_dot = Temp*(3.0*S_elec-4.0*S_elec_1+S_elec_2)/(2.0*update->dt); TS_int += (update->dt*TS_dot); if (update->ntimestep == 1) T0S0 = TS; } // compute new pressure and volume temperature->compute_vector(); pressure->compute_vector(); couple(); vol = compute_vol(); // compute etot + extra terms for conserved quantity double e_scale = compute_etotal() + compute_scalar(); // propagate the time derivative of // the volume 1/2 step at fixed vol, r, rdot p_msst = nktv2p * mvv2e * velocity * velocity * total_mass * ( v0 - vol)/( v0 * v0); double A = total_mass * ( p_current[sd] - p0 - p_msst ) / (qmass * nktv2p * mvv2e); double B = total_mass * mu / ( qmass * vol ); // prevent blow-up of the volume if (vol > v0 && A > 0.0) A = -A; // use Taylor expansion to avoid singularity at B = 0 if ( B * dthalf > 1.0e-06 ) { omega[sd] = ( omega[sd] + A * ( exp(B * dthalf) - 1.0 ) / B ) * exp(-B * dthalf); } else { omega[sd] = omega[sd] + (A - B * omega[sd]) * dthalf + 0.5 * (B * B * omega[sd] - A * B ) * dthalf * dthalf; } // propagate velocity sum 1/2 step by // temporarily propagating the velocities velocity_sum = compute_vsum(); if (dftb) { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { for ( k = 0; k < 3; k++ ) { const double C = f[i][k] * force->ftm2v / mass[type[i]]; const double TS_term = TS_dot/(mass[type[i]]*velocity_sum); const double escale_term = force->ftm2v*beta*(e0-e_scale) / (mass[type[i]]*velocity_sum); double D = mu * omega[sd] * omega[sd] / (velocity_sum * mass[type[i]] * vol ); D += escale_term - TS_term; old_velocity[i][k] = v[i][k]; if ( k == direction ) D -= 2.0 * omega[sd] / vol; if ( fabs(dthalf * D) > 1.0e-06 ) { const double expd = exp(D * dthalf); v[i][k] = expd * ( C + D * v[i][k] - C / expd ) / D; } else { v[i][k] = v[i][k] + ( C + D * v[i][k] ) * dthalf + 0.5 * (D * D * v[i][k] + C * D ) * dthalf * dthalf; } } } } } else { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { for ( k = 0; k < 3; k++ ) { const double C = f[i][k] * force->ftm2v / mass[type[i]]; double D = mu * omega[sd] * omega[sd] / (velocity_sum * mass[type[i]] * vol ); old_velocity[i][k] = v[i][k]; if ( k == direction ) { D -= 2.0 * omega[sd] / vol; } if ( fabs(dthalf * D) > 1.0e-06 ) { const double expd = exp(D * dthalf); v[i][k] = expd * ( C + D * v[i][k] - C / expd ) / D; } else { v[i][k] = v[i][k] + ( C + D * v[i][k] ) * dthalf + 0.5 * (D * D * v[i][k] + C * D ) * dthalf * dthalf; } } } } } velocity_sum = compute_vsum(); // reset the velocities for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { v[i][0] = old_velocity[i][0]; v[i][1] = old_velocity[i][1]; v[i][2] = old_velocity[i][2]; } } // propagate velocities 1/2 step using the new velocity sum if (dftb) { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { for ( k = 0; k < 3; k++ ) { const double C = f[i][k] * force->ftm2v / mass[type[i]]; const double TS_term = TS_dot/(mass[type[i]]*velocity_sum); const double escale_term = force->ftm2v*beta*(e0-e_scale) / (mass[type[i]]*velocity_sum); double D = mu * omega[sd] * omega[sd] / (velocity_sum * mass[type[i]] * vol ); D += escale_term - TS_term; if ( k == direction ) D -= 2.0 * omega[sd] / vol; if ( fabs(dthalf * D) > 1.0e-06 ) { const double expd = exp(D * dthalf); v[i][k] = expd * ( C + D * v[i][k] - C / expd ) / D; } else { v[i][k] = v[i][k] + ( C + D * v[i][k] ) * dthalf + 0.5 * (D * D * v[i][k] + C * D ) * dthalf * dthalf; } } } } } else { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { for ( k = 0; k < 3; k++ ) { const double C = f[i][k] * force->ftm2v / mass[type[i]]; double D = mu * omega[sd] * omega[sd] / (velocity_sum * mass[type[i]] * vol ); if ( k == direction ) { D -= 2.0 * omega[sd] / vol; } if ( fabs(dthalf * D) > 1.0e-06 ) { const double expd = exp(D * dthalf); v[i][k] = expd * ( C + D * v[i][k] - C / expd ) / D; } else { v[i][k] = v[i][k] + ( C + D * v[i][k] ) * dthalf + 0.5 * (D * D * v[i][k] + C * D ) * dthalf * dthalf; } } } } } // propagate the volume 1/2 step double vol1 = vol + omega[sd] * dthalf; // rescale positions and change box size dilation[sd] = vol1/vol; remap(0); // propagate particle positions 1 time step for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { x[i][0] += dtv * v[i][0]; x[i][1] += dtv * v[i][1]; x[i][2] += dtv * v[i][2]; } } // propagate the volume 1/2 step double vol2 = vol1 + omega[sd] * dthalf; // rescale positions and change box size dilation[sd] = vol2/vol1; remap(0); if (kspace_flag) force->kspace->setup(); } /* ---------------------------------------------------------------------- 2nd half of Verlet update ------------------------------------------------------------------------- */ void FixMSST::final_integrate() { int i; double p_msst; // MSST driving pressure // v update only for atoms in MSST group double **v = atom->v; double **f = atom->f; double *mass = atom->mass; int *type = atom->type; int *mask = atom->mask; int nlocal = atom->nlocal; double vol = compute_vol(); int sd = direction; // compute etot + extra terms for conserved quantity double e_scale = compute_etotal() + compute_scalar(); // for DFTB, extract TS_dftb from fix external // must convert energy to mv^2 units if (dftb) { const double TS_dftb = fix_external->compute_vector(0); const double TS = force->ftm2v*TS_dftb; S_elec_2 = S_elec_1; S_elec_1 = S_elec; const double Temp = temperature->compute_scalar(); // update S_elec terms and compute TS_dot via finite differences S_elec = TS/Temp; TS_dot = Temp*(3.0*S_elec-4.0*S_elec_1+S_elec_2)/(2.0*update->dt); TS_int += (update->dt*TS_dot); if (update->ntimestep == 1) T0S0 = TS; } // propagate particle velocities 1/2 step if (dftb) { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { for ( int k = 0; k < 3; k++ ) { const double C = f[i][k] * force->ftm2v / mass[type[i]]; const double TS_term = TS_dot/(mass[type[i]]*velocity_sum); const double escale_term = force->ftm2v*beta*(e0-e_scale) / (mass[type[i]]*velocity_sum); double D = mu * omega[sd] * omega[sd] / (velocity_sum * mass[type[i]] * vol ); D += escale_term - TS_term; if ( k == direction ) D -= 2.0 * omega[sd] / vol; if ( fabs(dthalf * D) > 1.0e-06 ) { const double expd = exp(D * dthalf); v[i][k] = expd * ( C + D * v[i][k] - C / expd ) / D; } else { v[i][k] = v[i][k] + ( C + D * v[i][k] ) * dthalf + 0.5 * (D * D * v[i][k] + C * D ) * dthalf * dthalf; } } } } } else { for (i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { for ( int k = 0; k < 3; k++ ) { const double C = f[i][k] * force->ftm2v / mass[type[i]]; double D = mu * omega[sd] * omega[sd] / (velocity_sum * mass[type[i]] * vol ); if ( k == direction ) { D -= 2.0 * omega[sd] / vol; } if ( fabs(dthalf * D) > 1.0e-06 ) { const double expd = exp(D * dthalf); v[i][k] = expd * ( C + D * v[i][k] - C / expd ) / D; } else { v[i][k] = v[i][k] + ( C + D * v[i][k] ) * dthalf + 0.5 * (D * D * v[i][k] + C * D ) * dthalf * dthalf; } } } } } // compute new pressure and volume temperature->compute_vector(); pressure->compute_vector(); couple(); velocity_sum = compute_vsum(); vol = compute_vol(); // propagate the time derivative of the volume 1/2 step at fixed V, r, rdot p_msst = nktv2p * mvv2e * velocity * velocity * total_mass * ( v0 - vol )/( v0 * v0 ); double A = total_mass * ( p_current[sd] - p0 - p_msst ) / ( qmass * nktv2p * mvv2e ); const double B = total_mass * mu / ( qmass * vol ); // prevent blow-up of the volume if ( vol > v0 && A > 0.0 ) A = -A; // use taylor expansion to avoid singularity at B == 0. if ( B * dthalf > 1.0e-06 ) { omega[sd] = ( omega[sd] + A * ( exp(B * dthalf) - 1.0 ) / B ) * exp(-B * dthalf); } else { omega[sd] = omega[sd] + (A - B * omega[sd]) * dthalf + 0.5 * (B * B * omega[sd] - A * B ) * dthalf * dthalf; } // calculate Lagrangian position of computational cell lagrangian_position -= velocity*vol/v0*update->dt; // trigger energy and virial computation on next timestep pe->addstep(update->ntimestep+1); pressure->addstep(update->ntimestep+1); } /* ---------------------------------------------------------------------- */ void FixMSST::couple() { double *tensor = pressure->vector; p_current[0] = tensor[0]; p_current[1] = tensor[1]; p_current[2] = tensor[2]; } /* ---------------------------------------------------------------------- change box size remap owned or owned+ghost atoms depending on flag if rigid bodies exist, scale rigid body centers-of-mass ------------------------------------------------------------------------- */ void FixMSST::remap(int flag) { int i,n; double oldlo,oldhi,ctr; double **v = atom->v; if (flag) n = atom->nlocal + atom->nghost; else n = atom->nlocal; // convert pertinent atoms and rigid bodies to lamda coords domain->x2lamda(n); if (nrigid) for (i = 0; i < nrigid; i++) modify->fix[rfix[i]]->deform(0); // reset global and local box to new size/shape for (i = 0; i < 3; i++) { if ( direction == i ) { oldlo = domain->boxlo[i]; oldhi = domain->boxhi[i]; ctr = 0.5 * (oldlo + oldhi); domain->boxlo[i] = (oldlo-ctr)*dilation[i] + ctr; domain->boxhi[i] = (oldhi-ctr)*dilation[i] + ctr; } } domain->set_global_box(); domain->set_local_box(); // convert pertinent atoms and rigid bodies back to box coords domain->lamda2x(n); if (nrigid) for (i = 0; i < nrigid; i++) modify->fix[rfix[i]]->deform(1); for (i = 0; i < n; i++) { v[i][direction] = v[i][direction] * dilation[direction]; } } /* ---------------------------------------------------------------------- pack entire state of Fix into one write ------------------------------------------------------------------------- */ void FixMSST::write_restart(FILE *fp) { int n = 0; double list[5]; list[n++] = omega[direction]; list[n++] = e0; list[n++] = v0; list[n++] = p0; list[n++] = TS_int; if (comm->me == 0) { int size = n * sizeof(double); fwrite(&size,sizeof(int),1,fp); fwrite(&list,sizeof(double),n,fp); } } /* ---------------------------------------------------------------------- use state info from restart file to restart the Fix ------------------------------------------------------------------------- */ void FixMSST::restart(char *buf) { int n = 0; double *list = (double *) buf; omega[direction] = list[n++]; e0 = list[n++]; v0 = list[n++]; p0 = list[n++]; TS_int = list[n++]; tscale = 0.0; // set tscale to zero for restart p0_set = 1; v0_set = 1; e0_set = 1; } /* ---------------------------------------------------------------------- */ int FixMSST::modify_param(int narg, char **arg) { if (strcmp(arg[0],"temp") == 0) { if (narg < 2) error->all(FLERR,"Illegal fix_modify command"); if (tflag) { modify->delete_compute(id_temp); tflag = 0; } delete [] id_temp; int n = strlen(arg[1]) + 1; id_temp = new char[n]; strcpy(id_temp,arg[1]); int icompute = modify->find_compute(id_temp); if (icompute < 0) error->all(FLERR,"Could not find fix_modify temperature ID"); temperature = modify->compute[icompute]; if (temperature->tempflag == 0) error->all(FLERR,"Fix_modify temperature ID does not " "compute temperature"); if (temperature->igroup != 0 && comm->me == 0) error->warning(FLERR,"Temperature for MSST is not for group all"); return 2; } else if (strcmp(arg[0],"press") == 0) { if (narg < 2) error->all(FLERR,"Illegal fix_modify command"); if (pflag) { modify->delete_compute(id_press); pflag = 0; } delete [] id_press; int n = strlen(arg[1]) + 1; id_press = new char[n]; strcpy(id_press,arg[1]); int icompute = modify->find_compute(id_press); if (icompute < 0) error->all(FLERR,"Could not find fix_modify pressure ID"); pressure = modify->compute[icompute]; if (pressure->pressflag == 0) error->all(FLERR,"Fix_modify pressure ID does not compute pressure"); return 2; } return 0; } /* ---------------------------------------------------------------------- */ double FixMSST::compute_scalar() { - // compute new pressure and volume. + // compute new pressure and volume temperature->compute_vector(); pressure->compute_vector(); couple(); double volume = compute_vol(); double energy = 0.0; int i; i = direction; energy = qmass * omega[i] * omega[i] / (2.0 * total_mass) * mvv2e; energy -= 0.5 * total_mass * velocity * velocity * (1.0 - volume/ v0) * (1.0 - volume/ v0) * mvv2e; energy -= p0 * ( v0 - volume ) / nktv2p; // subtract off precomputed TS_int integral value + // TS_int = 0 for non DFTB calculations - if (dftb) { // TS_int == 0 for non DFTB calculations - energy -= TS_int; - } + if (dftb) energy -= TS_int; return energy; } /* ---------------------------------------------------------------------- return a single element from the following vector, [dhug,dray,lgr_vel,lgr_pos] ------------------------------------------------------------------------- */ double FixMSST::compute_vector(int n) { if (n == 0) { return compute_hugoniot(); } else if (n == 1) { return compute_rayleigh(); } else if (n == 2) { return compute_lagrangian_speed(); } else if (n == 3) { return compute_lagrangian_position(); } return 0.0; } /* ---------------------------------------------------------------------- Computes the deviation of the current point - from the Hugoniot in Kelvin for the MSST. + from the Hugoniot in Kelvin for the MSST ------------------------------------------------------------------------- */ double FixMSST::compute_hugoniot() { double v, e, p; double dhugo; e = compute_etotal(); temperature->compute_vector(); pressure->compute_vector(); p = pressure->vector[direction]; v = compute_vol(); dhugo = (0.5 * (p + p0 ) * ( v0 - v)) / force->nktv2p + e0 - e; dhugo /= temperature->dof * force->boltz; return dhugo; } /* ---------------------------------------------------------------------- Computes the deviation of the current point from the Rayleigh - in pressure units for the MSST. + in pressure units for the MSST ------------------------------------------------------------------------- */ double FixMSST::compute_rayleigh() { double v, p; double drayleigh; temperature->compute_vector(); pressure->compute_vector(); p = pressure->vector[direction]; v = compute_vol(); drayleigh = p - p0 - total_mass * velocity * velocity * force->mvv2e * (1.0 - v / v0 ) * force->nktv2p / v0; return drayleigh; } /* ---------------------------------------------------------------------- Computes the speed of the MSST computational cell in the unshocked material rest-frame ------------------------------------------------------------------------- */ double FixMSST::compute_lagrangian_speed() { double v = compute_vol(); return velocity*(1.0-v/v0); } /* ---------------------------------------------------------------------- Computes the distance behind the shock front of the MSST computational cell. ------------------------------------------------------------------------- */ double FixMSST::compute_lagrangian_position() { return lagrangian_position; } /* ---------------------------------------------------------------------- */ double FixMSST::compute_etotal() { double epot,ekin,etot; epot = pe->compute_scalar(); if (thermo_energy) epot -= compute_scalar(); ekin = temperature->compute_scalar(); ekin *= 0.5 * temperature->dof * force->boltz; etot = epot+ekin; return etot; } /* ---------------------------------------------------------------------- */ double FixMSST::compute_vol() { if (domain->dimension == 3) return domain->xprd * domain->yprd * domain->zprd; else return domain->xprd * domain->yprd; } /* ---------------------------------------------------------------------- */ double FixMSST::compute_vsum() { double vsum; double **v = atom->v; int *mask = atom->mask; int nlocal = atom->nlocal; double t = 0.0; for (int i = 0; i < nlocal; i++) { if (mask[i] & groupbit) { t += (v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) ; } } MPI_Allreduce(&t,&vsum,1,MPI_DOUBLE,MPI_SUM,world); return vsum; } /* ---------------------------------------------------------------------- memory usage of local atom-based array ------------------------------------------------------------------------- */ double FixMSST::memory_usage() { double bytes = 3*atom->nmax * sizeof(double); return bytes; } - diff --git a/src/SHOCK/fix_msst.h b/src/SHOCK/fix_msst.h index 092017bfb..b6229e752 100644 --- a/src/SHOCK/fix_msst.h +++ b/src/SHOCK/fix_msst.h @@ -1,175 +1,175 @@ /* -*- c++ -*- ---------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #ifdef FIX_CLASS FixStyle(msst,FixMSST) #else #ifndef FIX_MSST_H #define FIX_MSST_H #include "fix.h" namespace LAMMPS_NS { class FixMSST : public Fix { public: FixMSST(class LAMMPS *, int, char **); ~FixMSST(); int setmask(); void init(); void setup(int); void initial_integrate(int); void final_integrate(); double compute_scalar(); double compute_vector(int); void write_restart(FILE *); void restart(char *); int modify_param(int, char **); double memory_usage(); private: - double dtv,dtf,dthalf; // Full and half step sizes + double dtv,dtf,dthalf; // full and half step sizes double boltz,nktv2p, mvv2e; // Boltzmann factor and unit conversions - double total_mass; // Mass of the computational cell + double total_mass; // mass of the computational cell - double omega[3]; // Time derivative of the volume + double omega[3]; // time derivative of the volume double p_current[3],dilation[3]; - double qmass; // Effective cell mass - double mu; // Effective cell viscosity - double tscale; // Converts thermal energy to compressive + double qmass; // effective cell mass + double mu; // effective cell viscosity + double tscale; // converts thermal energy to compressive // strain ke at simulation start int dftb; // flag for use with DFTB+ - double velocity_sum; // Sum of the velocities squared - double damping; // Damping function for TS force term at + double velocity_sum; // sum of the velocities squared + double damping; // damping function for TS force term at // small volume difference (v0 - vol) - double T0S0; // Initial TS term for DFTB+ simulations + double T0S0; // initial TS term for DFTB+ simulations double S_elec,S_elec_1,S_elec_2; // time history of electron entropy // for DFTB+ simulaitons double TS_dot; // time derivative of TS term for // DFTB+ simulations - double **old_velocity; // Saved velocities + double **old_velocity; // saved velocities int kspace_flag; // 1 if KSpace invoked, 0 if not int nrigid; // number of rigid fixes int *rfix; // indices of rigid fixes - char *id_temp,*id_press; // Strings with identifiers of + char *id_temp,*id_press; // strings with identifiers of char *id_pe; // created computes - class Compute *temperature; // Computes created to evaluate + class Compute *temperature; // computes created to evaluate class Compute *pressure; // thermodynamic quantities class Compute *pe; - int tflag,pflag,vsflag,peflag; // Flags to keep track of computes that + int tflag,pflag,vsflag,peflag; // flags to keep track of computes that // were created // shock initial conditions - double e0; // Initial energy - double v0; // Initial volume - double p0; // Initial pressure - double velocity; // Velocity of the shock + double e0; // initial energy + double v0; // initial volume + double p0; // initial pressure + double velocity; // velocity of the shock double lagrangian_position; // Lagrangian location of computational cell - int direction; // Direction of shock - int p0_set; // Is pressure set - int v0_set; // Is volume set - int e0_set; // Is energy set - double TS_int; // Needed for conserved quantity + int direction; // direction of shock + int p0_set; // is pressure set + int v0_set; // is volume set + int e0_set; // is energy set + double TS_int; // needed for conserved quantity // with thermal electronic excitations - double beta; // Energy conservation scaling factor + double beta; // energy conservation scaling factor int maxold; // allocated size of old_velocity class FixExternal *fix_external; // ptr to fix external // functions void couple(); void remap(int); double compute_etotal(); double compute_vol(); double compute_hugoniot(); double compute_rayleigh(); double compute_lagrangian_speed(); double compute_lagrangian_position(); double compute_vsum(); }; } #endif #endif /* ERROR/WARNING messages: E: Illegal ... command Self-explanatory. Check the input script syntax and compare to the documentation for the command. You can use -echo screen as a command-line option when running LAMMPS to see the offending line. E: Fix msst tscale must satisfy 0 <= tscale < 1 Self-explanatory. E: Fix msst requires a periodic box Self-explanatory. E: Cannot use fix msst without per-type mass defined Self-explanatory. E: Could not find fix msst compute ID Self-explanatory. E: Fix msst compute ID does not compute temperature Self-explanatory. E: Fix msst compute ID does not compute pressure Self-explanatory. E: Fix msst compute ID does not compute potential energy Self-explanatory. E: Could not find fix_modify temperature ID The compute ID for computing temperature does not exist. E: Fix_modify temperature ID does not compute temperature The compute ID assigned to the fix must compute temperature. W: Temperature for MSST is not for group all User-assigned temperature to MSST fix does not compute temperature for all atoms. Since MSST computes a global pressure, the kinetic energy contribution from the temperature is assumed to also be for all atoms. Thus the pressure used by MSST could be inaccurate. E: Could not find fix_modify pressure ID The compute ID for computing pressure does not exist. E: Fix_modify pressure ID does not compute pressure The compute ID assigned to the fix must compute pressure. */