diff --git a/doc/Eqs/pair_gauss.jpg b/doc/Eqs/pair_gauss.jpg
new file mode 100644
index 000000000..c6c4b6a52
Binary files /dev/null and b/doc/Eqs/pair_gauss.jpg differ
diff --git a/doc/Eqs/pair_gauss.tex b/doc/Eqs/pair_gauss.tex
new file mode 100644
index 000000000..1821ae31d
--- /dev/null
+++ b/doc/Eqs/pair_gauss.tex
@@ -0,0 +1,9 @@
+\documentclass[12pt]{article}
+
+\begin{document}
+
+$$
+   E = A \exp(-B r^2) \qquad r < r_c
+$$
+
+\end{document}
diff --git a/doc/Section_commands.html b/doc/Section_commands.html
index 82252b721..0945b4a55 100644
--- a/doc/Section_commands.html
+++ b/doc/Section_commands.html
@@ -1,482 +1,483 @@
 <HTML>
 <CENTER><A HREF = "Section_start.html">Previous Section</A> - <A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A> - <A HREF = "Section_howto.html">Next Section</A> 
 </CENTER>
 
 
 
 
 
 
 <HR>
 
 <H3>3. Commands 
 </H3>
 <P>This section describes how a LAMMPS input script is formatted and what
 commands are used to define a LAMMPS simulation.
 </P>
 3.1 <A HREF = "#3_1">LAMMPS input script</A><BR>
 3.2 <A HREF = "#3_2">Parsing rules</A><BR>
 3.3 <A HREF = "#3_3">Input script structure</A><BR>
 3.4 <A HREF = "#3_4">Commands listed by category</A><BR>
 3.5 <A HREF = "#3_5">Commands listed alphabetically</A> <BR>
 
 <HR>
 
 <A NAME = "3_1"></A><H4>3.1 LAMMPS input script 
 </H4>
 <P>LAMMPS executes by reading commands from a input script (text file),
 one line at a time.  When the input script ends, LAMMPS exits.  Each
 command causes LAMMPS to take some action.  It may set an internal
 variable, read in a file, or run a simulation.  Most commands have
 default settings, which means you only need to use the command if you
 wish to change the default.
 </P>
 <P>In many cases, the ordering of commands in an input script is not
 important.  However the following rules apply:
 </P>
 <P>(1) LAMMPS does not read your entire input script and then perform a
 simulation with all the settings.  Rather, the input script is read
 one line at a time and each command takes effect when it is read.
 Thus this sequence of commands:
 </P>
 <PRE>timestep 0.5 
 run      100 
 run      100 
 </PRE>
 <P>does something different than this sequence:
 </P>
 <PRE>run      100 
 timestep 0.5 
 run      100 
 </PRE>
 <P>In the first case, the specified timestep (0.5 fmsec) is used for two
 simulations of 100 timesteps each.  In the 2nd case, the default
 timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5
 fmsec timestep is used for the 2nd one.
 </P>
 <P>(2) Some commands are only valid when they follow other commands.  For
 example you cannot set the temperature of a group of atoms until atoms
 have been defined and a group command is used to define which atoms
 belong to the group.
 </P>
 <P>(3) Sometimes command B will use values that can be set by command A.
 This means command A must precede command B in the input script if it
 is to have the desired effect.  For example, the
 <A HREF = "read_data.html">read_data</A> command initializes the system by setting
 up the simulation box and assigning atoms to processors.  If default
 values are not desired, the <A HREF = "processors.html">processors</A> and
 <A HREF = "boundary.html">boundary</A> commands need to be used before read_data to
 tell LAMMPS how to map processors to the simulation box.
 </P>
 <P>Many input script errors are detected by LAMMPS and an ERROR or
 WARNING message is printed.  <A HREF = "Section_errors.html">This section</A> gives
 more information on what errors mean.  The documentation for each
 command lists restrictions on how the command can be used.
 </P>
 <HR>
 
 <A NAME = "3_2"></A><H4>3.2 Parsing rules 
 </H4>
 <P>Each non-blank line in the input script is treated as a command.
 LAMMPS commands are case sensitive.  Command names are lower-case, as
 are specified command arguments.  Upper case letters may be used in
 file names or user-chosen ID strings.
 </P>
 <P>Here is how each line in the input script is parsed by LAMMPS:
 </P>
 <P>(1) If the last printable character on the line is a "&" character
 (with no surrounding quotes), the command is assumed to continue on
 the next line.  The next line is concatenated to the previous line by
 removing the "&" character and newline.  This allows long commands to
 be continued across two or more lines.
 </P>
 <P>(2) All characters from the first "#" character onward are treated as
 comment and discarded.  See an exception in (6).  Note that a
 comment after a trailing "&" character will prevent the command from
 continuing on the next line.  Also note that for multi-line commands a
 single leading "#" will comment out the entire command.
 </P>
 <P>(3) The line is searched repeatedly for $ characters, which indicate
 variables that are replaced with a text string.  See an exception in
 (6).  If the $ is followed by curly brackets, then the variable name
 is the text inside the curly brackets.  If no curly brackets follow
 the $, then the variable name is the single character immediately
 following the $.  Thus ${myTemp} and $x refer to variable names
 "myTemp" and "x".  See the <A HREF = "variable.html">variable</A> command for
 details of how strings are assigned to variables and how they are
 substituted for in input script commands.
 </P>
 <P>(4) The line is broken into "words" separated by whitespace (tabs,
 spaces).  Note that words can thus contain letters, digits,
 underscores, or punctuation characters.
 </P>
 <P>(5) The first word is the command name.  All successive words in the
 line are arguments.
 </P>
 <P>(6) If you want text with spaces to be treated as a single argument,
 it can be enclosed in double quotes.  The quotes are removed when the
 single argument is stored in its final form.  See the <A HREF = "dump_modify.html">dump modify
 format</A> or <A HREF = "if.html">if</A> commands for examples.  A "#"
 or "$" character that is between double quotes will not be treated as
 a comment indicator in (2) or substituted for as a variable in (3).
 </P>
 <HR>
 
 <H4><A NAME = "3_3"></A>3.3 Input script structure 
 </H4>
 <P>This section describes the structure of a typical LAMMPS input script.
 The "examples" directory in the LAMMPS distribution contains many
 sample input scripts; the corresponding problems are discussed in
 <A HREF = "Section_example.html">this section</A>, and animated on the <A HREF = "http://lammps.sandia.gov">LAMMPS WWW
 Site</A>.
 </P>
 <P>A LAMMPS input script typically has 4 parts:
 </P>
 <OL><LI>Initialization
 <LI>Atom definition
 <LI>Settings
 <LI>Run a simulation 
 </OL>
 <P>The last 2 parts can be repeated as many times as desired.  I.e. run a
 simulation, change some settings, run some more, etc.  Each of the 4
 parts is now described in more detail.  Remember that almost all the
 commands need only be used if a non-default value is desired.
 </P>
 <P>(1) Initialization
 </P>
 <P>Set parameters that need to be defined before atoms are created or
 read-in from a file.
 </P>
 <P>The relevant commands are <A HREF = "units.html">units</A>,
 <A HREF = "dimension.html">dimension</A>, <A HREF = "newton.html">newton</A>,
 <A HREF = "processors.html">processors</A>, <A HREF = "boundary.html">boundary</A>,
 <A HREF = "atom_style.html">atom_style</A>, <A HREF = "atom_modify.html">atom_modify</A>.
 </P>
 <P>If force-field parameters appear in the files that will be read, these
 commands tell LAMMPS what kinds of force fields are being used:
 <A HREF = "pair_style.html">pair_style</A>, <A HREF = "bond_style.html">bond_style</A>,
 <A HREF = "angle_style.html">angle_style</A>, <A HREF = "dihedral_style.html">dihedral_style</A>,
 <A HREF = "improper_style.html">improper_style</A>.
 </P>
 <P>(2) Atom definition
 </P>
 <P>There are 3 ways to define atoms in LAMMPS.  Read them in from a data
 or restart file via the <A HREF = "read_data.html">read_data</A> or
 <A HREF = "read_restart.html">read_restart</A> commands.  These files can contain
 molecular topology information.  Or create atoms on a lattice (with no
 molecular topology), using these commands: <A HREF = "lattice.html">lattice</A>,
 <A HREF = "region.html">region</A>, <A HREF = "create_box.html">create_box</A>,
 <A HREF = "create_atoms.html">create_atoms</A>.  The entire set of atoms can be
 duplicated to make a larger simulation using the
 <A HREF = "replicate.html">replicate</A> command.
 </P>
 <P>(3) Settings
 </P>
 <P>Once atoms and molecular topology are defined, a variety of settings
 can be specified: force field coefficients, simulation parameters,
 output options, etc.
 </P>
 <P>Force field coefficients are set by these commands (they can also be
 set in the read-in files): <A HREF = "pair_coeff.html">pair_coeff</A>,
 <A HREF = "bond_coeff.html">bond_coeff</A>, <A HREF = "angle_coeff.html">angle_coeff</A>,
 <A HREF = "dihedral_coeff.html">dihedral_coeff</A>,
 <A HREF = "improper_coeff.html">improper_coeff</A>,
 <A HREF = "kspace_style.html">kspace_style</A>, <A HREF = "dielectric.html">dielectric</A>,
 <A HREF = "special_bonds.html">special_bonds</A>.
 </P>
 <P>Various simulation parameters are set by these commands:
 <A HREF = "neighbor.html">neighbor</A>, <A HREF = "neigh_modify.html">neigh_modify</A>,
 <A HREF = "group.html">group</A>, <A HREF = "timestep.html">timestep</A>,
 <A HREF = "reset_timestep.html">reset_timestep</A>, <A HREF = "run_style.html">run_style</A>,
 <A HREF = "min_style.html">min_style</A>, <A HREF = "min_modify.html">min_modify</A>.
 </P>
 <P>Fixes impose a variety of boundary conditions, time integration, and
 diagnostic options.  The <A HREF = "fix.html">fix</A> command comes in many flavors.
 </P>
 <P>Various computations can be specified for execution during a
 simulation using the <A HREF = "compute.html">compute</A>,
 <A HREF = "compute_modify.html">compute_modify</A>, and <A HREF = "variable.html">variable</A>
 commands.
 </P>
 <P>Output options are set by the <A HREF = "thermo.html">thermo</A>, <A HREF = "dump.html">dump</A>,
 and <A HREF = "restart.html">restart</A> commands.
 </P>
 <P>(4) Run a simulation
 </P>
 <P>A molecular dynamics simulation is run using the <A HREF = "run.html">run</A>
 command.  Energy minimization (molecular statics) is performed using
 the <A HREF = "minimize.html">minimize</A> command.  A parallel tempering
 (replica-exchange) simulation can be run using the
 <A HREF = "temper.html">temper</A> command.
 </P>
 <HR>
 
 <A NAME = "3_4"></A><H4>3.4 Commands listed by category 
 </H4>
 <P>This section lists all LAMMPS commands, grouped by category.  The
 <A HREF = "#3_5">next section</A> lists the same commands alphabetically.  Note that
 some style options for some commands are part of specific LAMMPS
 packages, which means they cannot be used unless the package was
 included when LAMMPS was built.  Not all packages are included in a
 default LAMMPS build.  These dependencies are listed as Restrictions
 in the command's documentation.
 </P>
 <P>Initialization:
 </P>
 <P><A HREF = "atom_modify.html">atom_modify</A>, <A HREF = "atom_style.html">atom_style</A>,
 <A HREF = "boundary.html">boundary</A>, <A HREF = "dimension.html">dimension</A>,
 <A HREF = "newton.html">newton</A>, <A HREF = "processors.html">processors</A>, <A HREF = "units.html">units</A>
 </P>
 <P>Atom definition:
 </P>
 <P><A HREF = "create_atoms.html">create_atoms</A>, <A HREF = "create_box.html">create_box</A>,
 <A HREF = "lattice.html">lattice</A>, <A HREF = "read_data.html">read_data</A>,
 <A HREF = "read_restart.html">read_restart</A>, <A HREF = "region.html">region</A>,
 <A HREF = "replicate.html">replicate</A>
 </P>
 <P>Force fields:
 </P>
 <P><A HREF = "angle_coeff.html">angle_coeff</A>, <A HREF = "angle_style.html">angle_style</A>,
 <A HREF = "bond_coeff.html">bond_coeff</A>, <A HREF = "bond_style.html">bond_style</A>,
 <A HREF = "dielectric.html">dielectric</A>, <A HREF = "dihedral_coeff.html">dihedral_coeff</A>,
 <A HREF = "dihedral_style.html">dihedral_style</A>,
 <A HREF = "improper_coeff.html">improper_coeff</A>,
 <A HREF = "improper_style.html">improper_style</A>,
 <A HREF = "kspace_modify.html">kspace_modify</A>, <A HREF = "kspace_style.html">kspace_style</A>,
 <A HREF = "pair_coeff.html">pair_coeff</A>, <A HREF = "pair_modify.html">pair_modify</A>,
 <A HREF = "pair_style.html">pair_style</A>, <A HREF = "pair_write.html">pair_write</A>,
 <A HREF = "special_bonds.html">special_bonds</A>
 </P>
 <P>Settings:
 </P>
 <P><A HREF = "communicate.html">communicate</A>, <A HREF = "dipole.html">dipole</A>,
 <A HREF = "group.html">group</A>, <A HREF = "mass.html">mass</A>, <A HREF = "min_modify.html">min_modify</A>,
 <A HREF = "min_style.html">min_style</A>, <A HREF = "neigh_modify.html">neigh_modify</A>,
 <A HREF = "neighbor.html">neighbor</A>, <A HREF = "reset_timestep.html">reset_timestep</A>,
 <A HREF = "run_style.html">run_style</A>, <A HREF = "set.html">set</A>, <A HREF = "shape.html">shape</A>,
 <A HREF = "timestep.html">timestep</A>, <A HREF = "velocity.html">velocity</A>
 </P>
 <P>Fixes:
 </P>
 <P><A HREF = "fix.html">fix</A>, <A HREF = "fix_modify.html">fix_modify</A>, <A HREF = "unfix.html">unfix</A>
 </P>
 <P>Computes:
 </P>
 <P><A HREF = "compute.html">compute</A>, <A HREF = "compute_modify.html">compute_modify</A>,
 <A HREF = "uncompute.html">uncompute</A>
 </P>
 <P>Output:
 </P>
 <P><A HREF = "dump.html">dump</A>, <A HREF = "dump_modify.html">dump_modify</A>,
 <A HREF = "restart.html">restart</A>, <A HREF = "thermo.html">thermo</A>,
 <A HREF = "thermo_modify.html">thermo_modify</A>, <A HREF = "thermo_style.html">thermo_style</A>,
 <A HREF = "undump.html">undump</A>, <A HREF = "write_restart.html">write_restart</A>
 </P>
 <P>Actions:
 </P>
 <P><A HREF = "delete_atoms.html">delete_atoms</A>, <A HREF = "delete_bonds.html">delete_bonds</A>,
 <A HREF = "displace_atoms.html">displace_atoms</A>,
 <A HREF = "displace_box.html">displace_box</A>, <A HREF = "minimize.html">minimize</A>,
 <A HREF = "neb.html">neb</A> <A HREF = "prd.html">prd</A>, <A HREF = "run.html">run</A>, <A HREF = "temper.html">temper</A>
 </P>
 <P>Miscellaneous:
 </P>
 <P><A HREF = "clear.html">clear</A>, <A HREF = "echo.html">echo</A>, <A HREF = "if.html">if</A>,
 <A HREF = "include.html">include</A>, <A HREF = "jump.html">jump</A>, <A HREF = "label.html">label</A>,
 <A HREF = "log.html">log</A>, <A HREF = "next.html">next</A>, <A HREF = "print.html">print</A>,
 <A HREF = "shell.html">shell</A>, <A HREF = "variable.html">variable</A>
 </P>
 <HR>
 
 <H4><A NAME = "3_5"></A><A NAME = "comm"></A>3.5 Individual commands 
 </H4>
 <P>This section lists all LAMMPS commands alphabetically, with a separate
 listing below of styles within certain commands.  The <A HREF = "#3_4">previous
 section</A> lists the same commands, grouped by category.  Note that
 some style options for some commands are part of specific LAMMPS
 packages, which means they cannot be used unless the package was
 included when LAMMPS was built.  Not all packages are included in a
 default LAMMPS build.  These dependencies are listed as Restrictions
 in the command's documentation.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "angle_coeff.html">angle_coeff</A></TD><TD ><A HREF = "angle_style.html">angle_style</A></TD><TD ><A HREF = "atom_modify.html">atom_modify</A></TD><TD ><A HREF = "atom_style.html">atom_style</A></TD><TD ><A HREF = "bond_coeff.html">bond_coeff</A></TD><TD ><A HREF = "bond_style.html">bond_style</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "boundary.html">boundary</A></TD><TD ><A HREF = "change_box.html">change_box</A></TD><TD ><A HREF = "clear.html">clear</A></TD><TD ><A HREF = "communicate.html">communicate</A></TD><TD ><A HREF = "compute.html">compute</A></TD><TD ><A HREF = "compute_modify.html">compute_modify</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "create_atoms.html">create_atoms</A></TD><TD ><A HREF = "create_box.html">create_box</A></TD><TD ><A HREF = "delete_atoms.html">delete_atoms</A></TD><TD ><A HREF = "delete_bonds.html">delete_bonds</A></TD><TD ><A HREF = "dielectric.html">dielectric</A></TD><TD ><A HREF = "dihedral_coeff.html">dihedral_coeff</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "dihedral_style.html">dihedral_style</A></TD><TD ><A HREF = "dimension.html">dimension</A></TD><TD ><A HREF = "dipole.html">dipole</A></TD><TD ><A HREF = "displace_atoms.html">displace_atoms</A></TD><TD ><A HREF = "displace_box.html">displace_box</A></TD><TD ><A HREF = "dump.html">dump</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "dump_modify.html">dump_modify</A></TD><TD ><A HREF = "echo.html">echo</A></TD><TD ><A HREF = "fix.html">fix</A></TD><TD ><A HREF = "fix_modify.html">fix_modify</A></TD><TD ><A HREF = "group.html">group</A></TD><TD ><A HREF = "if.html">if</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "improper_coeff.html">improper_coeff</A></TD><TD ><A HREF = "improper_style.html">improper_style</A></TD><TD ><A HREF = "include.html">include</A></TD><TD ><A HREF = "jump.html">jump</A></TD><TD ><A HREF = "kspace_modify.html">kspace_modify</A></TD><TD ><A HREF = "kspace_style.html">kspace_style</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "label.html">label</A></TD><TD ><A HREF = "lattice.html">lattice</A></TD><TD ><A HREF = "log.html">log</A></TD><TD ><A HREF = "mass.html">mass</A></TD><TD ><A HREF = "minimize.html">minimize</A></TD><TD ><A HREF = "min_modify.html">min_modify</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "min_style.html">min_style</A></TD><TD ><A HREF = "neb.html">neb</A></TD><TD ><A HREF = "neigh_modify.html">neigh_modify</A></TD><TD ><A HREF = "neighbor.html">neighbor</A></TD><TD ><A HREF = "newton.html">newton</A></TD><TD ><A HREF = "next.html">next</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_coeff.html">pair_coeff</A></TD><TD ><A HREF = "pair_modify.html">pair_modify</A></TD><TD ><A HREF = "pair_style.html">pair_style</A></TD><TD ><A HREF = "pair_write.html">pair_write</A></TD><TD ><A HREF = "prd.html">prd</A></TD><TD ><A HREF = "print.html">print</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "processors.html">processors</A></TD><TD ><A HREF = "read_data.html">read_data</A></TD><TD ><A HREF = "read_restart.html">read_restart</A></TD><TD ><A HREF = "region.html">region</A></TD><TD ><A HREF = "replicate.html">replicate</A></TD><TD ><A HREF = "reset_timestep.html">reset_timestep</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "restart.html">restart</A></TD><TD ><A HREF = "run.html">run</A></TD><TD ><A HREF = "run_style.html">run_style</A></TD><TD ><A HREF = "set.html">set</A></TD><TD ><A HREF = "shape.html">shape</A></TD><TD ><A HREF = "shell.html">shell</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "special_bonds.html">special_bonds</A></TD><TD ><A HREF = "temper.html">temper</A></TD><TD ><A HREF = "thermo.html">thermo</A></TD><TD ><A HREF = "thermo_modify.html">thermo_modify</A></TD><TD ><A HREF = "thermo_style.html">thermo_style</A></TD><TD ><A HREF = "timestep.html">timestep</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "uncompute.html">uncompute</A></TD><TD ><A HREF = "undump.html">undump</A></TD><TD ><A HREF = "unfix.html">unfix</A></TD><TD ><A HREF = "units.html">units</A></TD><TD ><A HREF = "variable.html">variable</A></TD><TD ><A HREF = "velocity.html">velocity</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "write_restart.html">write_restart</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Fix styles 
 </H4>
 <P>See the <A HREF = "fix.html">fix</A> command for one-line descriptions
 of each style or click on the style itself for a full description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "fix_adapt.html">adapt</A></TD><TD ><A HREF = "fix_addforce.html">addforce</A></TD><TD ><A HREF = "fix_aveforce.html">aveforce</A></TD><TD ><A HREF = "fix_ave_atom.html">ave/atom</A></TD><TD ><A HREF = "fix_ave_correlate.html">ave/correlate</A></TD><TD ><A HREF = "fix_ave_histo.html">ave/histo</A></TD><TD ><A HREF = "fix_ave_spatial.html">ave/spatial</A></TD><TD ><A HREF = "fix_ave_time.html">ave/time</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_bond_break.html">bond/break</A></TD><TD ><A HREF = "fix_bond_create.html">bond/create</A></TD><TD ><A HREF = "fix_bond_swap.html">bond/swap</A></TD><TD ><A HREF = "fix_box_relax.html">box/relax</A></TD><TD ><A HREF = "fix_deform.html">deform</A></TD><TD ><A HREF = "fix_deposit.html">deposit</A></TD><TD ><A HREF = "fix_drag.html">drag</A></TD><TD ><A HREF = "fix_dt_reset.html">dt/reset</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_efield.html">efield</A></TD><TD ><A HREF = "fix_enforce2d.html">enforce2d</A></TD><TD ><A HREF = "fix_evaporate.html">evaporate</A></TD><TD ><A HREF = "fix_external.html">external</A></TD><TD ><A HREF = "fix_freeze.html">freeze</A></TD><TD ><A HREF = "fix_gravity.html">gravity</A></TD><TD ><A HREF = "fix_heat.html">heat</A></TD><TD ><A HREF = "fix_indent.html">indent</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_langevin.html">langevin</A></TD><TD ><A HREF = "fix_lineforce.html">lineforce</A></TD><TD ><A HREF = "fix_momentum.html">momentum</A></TD><TD ><A HREF = "fix_move.html">move</A></TD><TD ><A HREF = "fix_msst.html">msst</A></TD><TD ><A HREF = "fix_neb.html">neb</A></TD><TD ><A HREF = "fix_nh.html">nph</A></TD><TD ><A HREF = "fix_nph_asphere.html">nph/asphere</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_nph_sphere.html">nph/sphere</A></TD><TD ><A HREF = "fix_nh.html">npt</A></TD><TD ><A HREF = "fix_npt_asphere.html">npt/asphere</A></TD><TD ><A HREF = "fix_npt_sphere.html">npt/sphere</A></TD><TD ><A HREF = "fix_nve.html">nve</A></TD><TD ><A HREF = "fix_nve_asphere.html">nve/asphere</A></TD><TD ><A HREF = "fix_nve_limit.html">nve/limit</A></TD><TD ><A HREF = "fix_nve_noforce.html">nve/noforce</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_nve_sphere.html">nve/sphere</A></TD><TD ><A HREF = "fix_nh.html">nvt</A></TD><TD ><A HREF = "fix_nvt_asphere.html">nvt/asphere</A></TD><TD ><A HREF = "fix_nvt_sllod.html">nvt/sllod</A></TD><TD ><A HREF = "fix_nvt_sphere.html">nvt/sphere</A></TD><TD ><A HREF = "fix_orient_fcc.html">orient/fcc</A></TD><TD ><A HREF = "fix_planeforce.html">planeforce</A></TD><TD ><A HREF = "fix_poems.html">poems</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_pour.html">pour</A></TD><TD ><A HREF = "fix_press_berendsen.html">press/berendsen</A></TD><TD ><A HREF = "fix_print.html">print</A></TD><TD ><A HREF = "fix_qeq_comb.html">qeq/comb</A></TD><TD ><A HREF = "fix_reax_bonds.html">reax/bonds</A></TD><TD ><A HREF = "fix_recenter.html">recenter</A></TD><TD ><A HREF = "fix_rigid.html">rigid</A></TD><TD ><A HREF = "fix_rigid.html">rigid/nve</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_rigid.html">rigid/nvt</A></TD><TD ><A HREF = "fix_setforce.html">setforce</A></TD><TD ><A HREF = "fix_shake.html">shake</A></TD><TD ><A HREF = "fix_spring.html">spring</A></TD><TD ><A HREF = "fix_spring_rg.html">spring/rg</A></TD><TD ><A HREF = "fix_spring_self.html">spring/self</A></TD><TD ><A HREF = "fix_srd.html">srd</A></TD><TD ><A HREF = "fix_store_force.html">store/force</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_store_state.html">store/state</A></TD><TD ><A HREF = "fix_temp_berendsen.html">temp/berendsen</A></TD><TD ><A HREF = "fix_temp_rescale.html">temp/rescale</A></TD><TD ><A HREF = "fix_thermal_conductivity.html">thermal/conductivity</A></TD><TD ><A HREF = "fix_tmd.html">tmd</A></TD><TD ><A HREF = "fix_ttm.html">ttm</A></TD><TD ><A HREF = "fix_viscosity.html">viscosity</A></TD><TD ><A HREF = "fix_viscous.html">viscous</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_wall.html">wall/colloid</A></TD><TD ><A HREF = "fix_wall_gran.html">wall/gran</A></TD><TD ><A HREF = "fix_wall.html">wall/harmonic</A></TD><TD ><A HREF = "fix_wall.html">wall/lj126</A></TD><TD ><A HREF = "fix_wall.html">wall/lj93</A></TD><TD ><A HREF = "fix_wall_reflect.html">wall/reflect</A></TD><TD ><A HREF = "fix_wall_region.html">wall/region</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are fix styles contributed by users, which can be used if
 <A HREF = "Section_start.html#2_3">LAMMPS is built with the appropriate package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "fix_atc.html">atc</A></TD><TD ><A HREF = "fix_imd.html">imd</A></TD><TD ><A HREF = "fix_langevin_eff.html">langevin/eff</A></TD><TD ><A HREF = "fix_nh_eff.html">nph/eff</A></TD><TD ><A HREF = "fix_nh_eff.html">npt/eff</A></TD><TD ><A HREF = "fix_nve_eff.html">nve/eff</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "fix_nh_eff.html">nvt/eff</A></TD><TD ><A HREF = "fix_nvt_sllod_eff.html">nvt/sllod/eff</A></TD><TD ><A HREF = "fix_qeq_reax.html">qeq/reax</A></TD><TD ><A HREF = "fix_smd.html">smd</A></TD><TD ><A HREF = "fix_temp_rescale_eff.html">temp/rescale/eff</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Compute styles 
 </H4>
 <P>See the <A HREF = "compute.html">compute</A> command for one-line descriptions of
 each style or click on the style itself for a full description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "compute_angle_local.html">angle/local</A></TD><TD ><A HREF = "compute_bond_local.html">bond/local</A></TD><TD ><A HREF = "compute_centro_atom.html">centro/atom</A></TD><TD ><A HREF = "compute_cna_atom.html">cna/atom</A></TD><TD ><A HREF = "compute_com.html">com</A></TD><TD ><A HREF = "compute_com_molecule.html">com/molecule</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_coord_atom.html">coord/atom</A></TD><TD ><A HREF = "compute_damage_atom.html">damage/atom</A></TD><TD ><A HREF = "compute_dihedral_local.html">dihedral/local</A></TD><TD ><A HREF = "compute_displace_atom.html">displace/atom</A></TD><TD ><A HREF = "compute_erotate_asphere.html">erotate/asphere</A></TD><TD ><A HREF = "compute_erotate_sphere.html">erotate/sphere</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_event_displace.html">event/displace</A></TD><TD ><A HREF = "compute_group_group.html">group/group</A></TD><TD ><A HREF = "compute_gyration.html">gyration</A></TD><TD ><A HREF = "compute_gyration_molecule.html">gyration/molecule</A></TD><TD ><A HREF = "compute_heat_flux.html">heat/flux</A></TD><TD ><A HREF = "compute_improper_local.html">improper/local</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_ke.html">ke</A></TD><TD ><A HREF = "compute_ke_atom.html">ke/atom</A></TD><TD ><A HREF = "compute_msd.html">msd</A></TD><TD ><A HREF = "compute_msd_molecule.html">msd/molecule</A></TD><TD ><A HREF = "compute_pair_local.html">pair/local</A></TD><TD ><A HREF = "compute_pe.html">pe</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_pe_atom.html">pe/atom</A></TD><TD ><A HREF = "compute_pressure.html">pressure</A></TD><TD ><A HREF = "compute_property_atom.html">property/atom</A></TD><TD ><A HREF = "compute_property_local.html">property/local</A></TD><TD ><A HREF = "compute_property_molecule.html">property/molecule</A></TD><TD ><A HREF = "compute_rdf.html">rdf</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_reduce.html">reduce</A></TD><TD ><A HREF = "compute_reduce.html">reduce/region</A></TD><TD ><A HREF = "compute_stress_atom.html">stress/atom</A></TD><TD ><A HREF = "compute_temp.html">temp</A></TD><TD ><A HREF = "compute_temp_asphere.html">temp/asphere</A></TD><TD ><A HREF = "compute_temp_com.html">temp/com</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "compute_temp_deform.html">temp/deform</A></TD><TD ><A HREF = "compute_temp_partial.html">temp/partial</A></TD><TD ><A HREF = "compute_temp_profile.html">temp/profile</A></TD><TD ><A HREF = "compute_temp_ramp.html">temp/ramp</A></TD><TD ><A HREF = "compute_temp_region.html">temp/region</A></TD><TD ><A HREF = "compute_temp_sphere.html">temp/sphere</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are compute styles contributed by users, which can be used if
 <A HREF = "Section_start.html#2_3">LAMMPS is built with the appropriate package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "compute_ackland_atom.html">ackland/atom</A></TD><TD ><A HREF = "compute_ke_eff.html">ke/eff</A></TD><TD ><A HREF = "compute_ke_atom_eff.html">ke/atom/eff</A></TD><TD ><A HREF = "compute_temp_eff.html">temp/eff</A></TD><TD ><A HREF = "compute_temp_deform_eff.html">temp/deform/eff</A></TD><TD ><A HREF = "compute_temp_region_eff.html">temp/region/eff</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Pair_style potentials 
 </H4>
 <P>See the <A HREF = "pair_style.html">pair_style</A> command for an overview of pair
 potentials.  Click on the style itself for a full description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "pair_none.html">none</A></TD><TD ><A HREF = "pair_hybrid.html">hybrid</A></TD><TD ><A HREF = "pair_hybrid.html">hybrid/overlay</A></TD><TD ><A HREF = "pair_airebo.html">airebo</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_born.html">born/coul/long</A></TD><TD ><A HREF = "pair_buck.html">buck</A></TD><TD ><A HREF = "pair_buck.html">buck/coul/cut</A></TD><TD ><A HREF = "pair_buck.html">buck/coul/long</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_colloid.html">colloid</A></TD><TD ><A HREF = "pair_comb.html">comb</A></TD><TD ><A HREF = "pair_coul.html">coul/cut</A></TD><TD ><A HREF = "pair_coul.html">coul/debye</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_coul.html">coul/long</A></TD><TD ><A HREF = "pair_dipole.html">dipole/cut</A></TD><TD ><A HREF = "pair_dpd.html">dpd</A></TD><TD ><A HREF = "pair_dpd.html">dpd/tstat</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_dsmc.html">dsmc</A></TD><TD ><A HREF = "pair_eam.html">eam</A></TD><TD ><A HREF = "pair_eam.html">eam/opt</A></TD><TD ><A HREF = "pair_eam.html">eam/alloy</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_eam.html">eam/alloy/opt</A></TD><TD ><A HREF = "pair_eam.html">eam/fs</A></TD><TD ><A HREF = "pair_eam.html">eam/fs/opt</A></TD><TD ><A HREF = "pair_eim.html">eim</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_gayberne.html">gayberne</A></TD><TD ><A HREF = "pair_gayberne.html">gayberne/gpu</A></TD><TD ><A HREF = "pair_gran.html">gran/hertz/history</A></TD><TD ><A HREF = "pair_gran.html">gran/hooke</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_gran.html">gran/hooke/history</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm/implicit</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/long</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/long/opt</A></TD><TD ><A HREF = "pair_class2.html">lj/class2</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/coul/cut</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/coul/long</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/gpu</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/opt</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/cut</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut/coul/debye</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/long</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/long/tip4p</A></TD><TD ><A HREF = "pair_lj_expand.html">lj/expand</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_gromacs.html">lj/gromacs</A></TD><TD ><A HREF = "pair_gromacs.html">lj/gromacs/coul/gromacs</A></TD><TD ><A HREF = "pair_lj_smooth.html">lj/smooth</A></TD><TD ><A HREF = "pair_lj96_cut.html">lj96/cut</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_lubricate.html">lubricate</A></TD><TD ><A HREF = "pair_meam.html">meam</A></TD><TD ><A HREF = "pair_morse.html">morse</A></TD><TD ><A HREF = "pair_morse.html">morse/opt</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_peri.html">peri/lps</A></TD><TD ><A HREF = "pair_peri.html">peri/pmb</A></TD><TD ><A HREF = "pair_reax.html">reax</A></TD><TD ><A HREF = "pair_resquared.html">resquared</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_soft.html">soft</A></TD><TD ><A HREF = "pair_sw.html">sw</A></TD><TD ><A HREF = "pair_table.html">table</A></TD><TD ><A HREF = "pair_tersoff.html">tersoff</A></TD></TR>
-<TR ALIGN="center"><TD ><A HREF = "pair_tersoff_zbl.html">tersoff/zbl</A></TD><TD ><A HREF = "pair_yukawa.html">yukawa</A></TD><TD ><A HREF = "pair_yukawa_colloid.html">yukawa/colloid</A> 
+<TR ALIGN="center"><TD ><A HREF = "pair_born.html">born</A></TD><TD ><A HREF = "pair_born.html">born/coul/long</A></TD><TD ><A HREF = "pair_buck.html">buck</A></TD><TD ><A HREF = "pair_buck.html">buck/coul/cut</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_buck.html">buck/coul/long</A></TD><TD ><A HREF = "pair_colloid.html">colloid</A></TD><TD ><A HREF = "pair_comb.html">comb</A></TD><TD ><A HREF = "pair_coul.html">coul/cut</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_coul.html">coul/debye</A></TD><TD ><A HREF = "pair_coul.html">coul/long</A></TD><TD ><A HREF = "pair_dipole.html">dipole/cut</A></TD><TD ><A HREF = "pair_dpd.html">dpd</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_dpd.html">dpd/tstat</A></TD><TD ><A HREF = "pair_dsmc.html">dsmc</A></TD><TD ><A HREF = "pair_eam.html">eam</A></TD><TD ><A HREF = "pair_eam.html">eam/opt</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_eam.html">eam/alloy</A></TD><TD ><A HREF = "pair_eam.html">eam/alloy/opt</A></TD><TD ><A HREF = "pair_eam.html">eam/fs</A></TD><TD ><A HREF = "pair_eam.html">eam/fs/opt</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_eim.html">eim</A></TD><TD ><A HREF = "pair_gauss.html">gauss</A></TD><TD ><A HREF = "pair_gayberne.html">gayberne</A></TD><TD ><A HREF = "pair_gayberne.html">gayberne/gpu</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_gran.html">gran/hertz/history</A></TD><TD ><A HREF = "pair_gran.html">gran/hooke</A></TD><TD ><A HREF = "pair_gran.html">gran/hooke/history</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/charmm/implicit</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/long</A></TD><TD ><A HREF = "pair_charmm.html">lj/charmm/coul/long/opt</A></TD><TD ><A HREF = "pair_class2.html">lj/class2</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_class2.html">lj/class2/coul/cut</A></TD><TD ><A HREF = "pair_class2.html">lj/class2/coul/long</A></TD><TD ><A HREF = "pair_lj.html">lj/cut</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/gpu</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut/opt</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/cut</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/debye</A></TD><TD ><A HREF = "pair_lj.html">lj/cut/coul/long</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_lj.html">lj/cut/coul/long/tip4p</A></TD><TD ><A HREF = "pair_lj_expand.html">lj/expand</A></TD><TD ><A HREF = "pair_gromacs.html">lj/gromacs</A></TD><TD ><A HREF = "pair_gromacs.html">lj/gromacs/coul/gromacs</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_lj_smooth.html">lj/smooth</A></TD><TD ><A HREF = "pair_lj96_cut.html">lj96/cut</A></TD><TD ><A HREF = "pair_lubricate.html">lubricate</A></TD><TD ><A HREF = "pair_meam.html">meam</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_morse.html">morse</A></TD><TD ><A HREF = "pair_morse.html">morse/opt</A></TD><TD ><A HREF = "pair_peri.html">peri/lps</A></TD><TD ><A HREF = "pair_peri.html">peri/pmb</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_reax.html">reax</A></TD><TD ><A HREF = "pair_resquared.html">resquared</A></TD><TD ><A HREF = "pair_soft.html">soft</A></TD><TD ><A HREF = "pair_sw.html">sw</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_table.html">table</A></TD><TD ><A HREF = "pair_tersoff.html">tersoff</A></TD><TD ><A HREF = "pair_tersoff_zbl.html">tersoff/zbl</A></TD><TD ><A HREF = "pair_yukawa.html">yukawa</A></TD></TR>
+<TR ALIGN="center"><TD ><A HREF = "pair_yukawa_colloid.html">yukawa/colloid</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are pair styles contributed by users, which can be used if
 <A HREF = "Section_start.html#2_3">LAMMPS is built with the appropriate package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "pair_buck_coul.html">buck/coul</A></TD><TD ><A HREF = "pair_cmm.html">cg/cmm</A></TD><TD ><A HREF = "pair_cmm.html">cg/cmm/coul/cut</A></TD><TD ><A HREF = "pair_cmm.html">cg/cmm/coul/long</A></TD></TR>
 <TR ALIGN="center"><TD ><A HREF = "pair_eam.html">eam/cd</A></TD><TD ><A HREF = "pair_eff.html">eff/cut</A></TD><TD ><A HREF = "pair_lj_coul.html">lj/coul</A></TD><TD ><A HREF = "pair_reax_c.html">reax/c</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Bond_style potentials 
 </H4>
 <P>See the <A HREF = "bond_style.html">bond_style</A> command for an overview of bond
 potentials.  Click on the style itself for a full description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "bond_none.html">none</A></TD><TD WIDTH="100"><A HREF = "bond_hybrid.html">hybrid</A></TD><TD WIDTH="100"><A HREF = "bond_class2.html">class2</A></TD><TD WIDTH="100"><A HREF = "bond_fene.html">fene</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "bond_fene_expand.html">fene/expand</A></TD><TD WIDTH="100"><A HREF = "bond_harmonic.html">harmonic</A></TD><TD WIDTH="100"><A HREF = "bond_morse.html">morse</A></TD><TD WIDTH="100"><A HREF = "bond_nonlinear.html">nonlinear</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "bond_quartic.html">quartic</A></TD><TD WIDTH="100"><A HREF = "bond_table.html">table</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Angle_style potentials 
 </H4>
 <P>See the <A HREF = "angle_style.html">angle_style</A> command for an overview of
 angle potentials.  Click on the style itself for a full description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "angle_none.html">none</A></TD><TD WIDTH="100"><A HREF = "angle_hybrid.html">hybrid</A></TD><TD WIDTH="100"><A HREF = "angle_charmm.html">charmm</A></TD><TD WIDTH="100"><A HREF = "angle_class2.html">class2</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "angle_cosine.html">cosine</A></TD><TD WIDTH="100"><A HREF = "angle_cosine_delta.html">cosine/delta</A></TD><TD WIDTH="100"><A HREF = "angle_cosine_squared.html">cosine/squared</A></TD><TD WIDTH="100"><A HREF = "angle_harmonic.html">harmonic</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "angle_table.html">table</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are angle styles contributed by users, which can be used if
 <A HREF = "Section_start.html#2_3">LAMMPS is built with the appropriate package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD ><A HREF = "angle_cmm.html">cg/cmm</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Dihedral_style potentials 
 </H4>
 <P>See the <A HREF = "dihedral_style.html">dihedral_style</A> command for an overview
 of dihedral potentials.  Click on the style itself for a full
 description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "dihedral_none.html">none</A></TD><TD WIDTH="100"><A HREF = "dihedral_hybrid.html">hybrid</A></TD><TD WIDTH="100"><A HREF = "dihedral_charmm.html">charmm</A></TD><TD WIDTH="100"><A HREF = "dihedral_class2.html">class2</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "dihedral_harmonic.html">harmonic</A></TD><TD WIDTH="100"><A HREF = "dihedral_helix.html">helix</A></TD><TD WIDTH="100"><A HREF = "dihedral_multi_harmonic.html">multi/harmonic</A></TD><TD WIDTH="100"><A HREF = "dihedral_opls.html">opls</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Improper_style potentials 
 </H4>
 <P>See the <A HREF = "improper_style.html">improper_style</A> command for an overview
 of improper potentials.  Click on the style itself for a full
 description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "improper_none.html">none</A></TD><TD WIDTH="100"><A HREF = "improper_hybrid.html">hybrid</A></TD><TD WIDTH="100"><A HREF = "improper_class2.html">class2</A></TD><TD WIDTH="100"><A HREF = "improper_cvff.html">cvff</A></TD></TR>
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "improper_harmonic.html">harmonic</A> 
 </TD></TR></TABLE></DIV>
 
 <HR>
 
 <H4>Kspace solvers 
 </H4>
 <P>See the <A HREF = "kspace_style.html">kspace_style</A> command for an overview of
 Kspace solvers.  Click on the style itself for a full description:
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "kspace_style.html">ewald</A></TD><TD WIDTH="100"><A HREF = "kspace_style.html">pppm</A></TD><TD WIDTH="100"><A HREF = "kspace_style.html">pppm/tip4p</A> 
 </TD></TR></TABLE></DIV>
 
 <P>These are Kspace solvers contributed by users, which can be used if
 <A HREF = "Section_start.html#2_3">LAMMPS is built with the appropriate package</A>.
 </P>
 <DIV ALIGN=center><TABLE  BORDER=1 >
 <TR ALIGN="center"><TD WIDTH="100"><A HREF = "kspace_style.html">ewald/n</A> 
 </TD></TR></TABLE></DIV>
 
 </HTML>
diff --git a/doc/Section_commands.txt b/doc/Section_commands.txt
index 0397f0849..af57e63cf 100644
--- a/doc/Section_commands.txt
+++ b/doc/Section_commands.txt
@@ -1,709 +1,711 @@
 "Previous Section"_Section_start.html - "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc - "Next Section"_Section_howto.html :c
 
 :link(lws,http://lammps.sandia.gov)
 :link(ld,Manual.html)
 :link(lc,Section_commands.html#comm)
 
 :line
 
 3. Commands :h3
 
 This section describes how a LAMMPS input script is formatted and what
 commands are used to define a LAMMPS simulation.
 
 3.1 "LAMMPS input script"_#3_1
 3.2 "Parsing rules"_#3_2
 3.3 "Input script structure"_#3_3
 3.4 "Commands listed by category"_#3_4
 3.5 "Commands listed alphabetically"_#3_5 :all(b)
 
 :line
 
 3.1 LAMMPS input script :link(3_1),h4
 
 LAMMPS executes by reading commands from a input script (text file),
 one line at a time.  When the input script ends, LAMMPS exits.  Each
 command causes LAMMPS to take some action.  It may set an internal
 variable, read in a file, or run a simulation.  Most commands have
 default settings, which means you only need to use the command if you
 wish to change the default.
 
 In many cases, the ordering of commands in an input script is not
 important.  However the following rules apply:
 
 (1) LAMMPS does not read your entire input script and then perform a
 simulation with all the settings.  Rather, the input script is read
 one line at a time and each command takes effect when it is read.
 Thus this sequence of commands:
 
 timestep 0.5 
 run      100 
 run      100 :pre
 
 does something different than this sequence:
 
 run      100 
 timestep 0.5 
 run      100 :pre
 
 In the first case, the specified timestep (0.5 fmsec) is used for two
 simulations of 100 timesteps each.  In the 2nd case, the default
 timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5
 fmsec timestep is used for the 2nd one.
 
 (2) Some commands are only valid when they follow other commands.  For
 example you cannot set the temperature of a group of atoms until atoms
 have been defined and a group command is used to define which atoms
 belong to the group.
 
 (3) Sometimes command B will use values that can be set by command A.
 This means command A must precede command B in the input script if it
 is to have the desired effect.  For example, the
 "read_data"_read_data.html command initializes the system by setting
 up the simulation box and assigning atoms to processors.  If default
 values are not desired, the "processors"_processors.html and
 "boundary"_boundary.html commands need to be used before read_data to
 tell LAMMPS how to map processors to the simulation box.
 
 Many input script errors are detected by LAMMPS and an ERROR or
 WARNING message is printed.  "This section"_Section_errors.html gives
 more information on what errors mean.  The documentation for each
 command lists restrictions on how the command can be used.
 
 :line
 
 3.2 Parsing rules :link(3_2),h4
 
 Each non-blank line in the input script is treated as a command.
 LAMMPS commands are case sensitive.  Command names are lower-case, as
 are specified command arguments.  Upper case letters may be used in
 file names or user-chosen ID strings.
 
 Here is how each line in the input script is parsed by LAMMPS:
 
 (1) If the last printable character on the line is a "&" character
 (with no surrounding quotes), the command is assumed to continue on
 the next line.  The next line is concatenated to the previous line by
 removing the "&" character and newline.  This allows long commands to
 be continued across two or more lines.
 
 (2) All characters from the first "#" character onward are treated as
 comment and discarded.  See an exception in (6).  Note that a
 comment after a trailing "&" character will prevent the command from
 continuing on the next line.  Also note that for multi-line commands a
 single leading "#" will comment out the entire command.
 
 (3) The line is searched repeatedly for $ characters, which indicate
 variables that are replaced with a text string.  See an exception in
 (6).  If the $ is followed by curly brackets, then the variable name
 is the text inside the curly brackets.  If no curly brackets follow
 the $, then the variable name is the single character immediately
 following the $.  Thus $\{myTemp\} and $x refer to variable names
 "myTemp" and "x".  See the "variable"_variable.html command for
 details of how strings are assigned to variables and how they are
 substituted for in input script commands.
 
 (4) The line is broken into "words" separated by whitespace (tabs,
 spaces).  Note that words can thus contain letters, digits,
 underscores, or punctuation characters.
 
 (5) The first word is the command name.  All successive words in the
 line are arguments.
 
 (6) If you want text with spaces to be treated as a single argument,
 it can be enclosed in double quotes.  The quotes are removed when the
 single argument is stored in its final form.  See the "dump modify
 format"_dump_modify.html or "if"_if.html commands for examples.  A "#"
 or "$" character that is between double quotes will not be treated as
 a comment indicator in (2) or substituted for as a variable in (3).
 
 :line
 
 3.3 Input script structure :h4,link(3_3)
 
 This section describes the structure of a typical LAMMPS input script.
 The "examples" directory in the LAMMPS distribution contains many
 sample input scripts; the corresponding problems are discussed in
 "this section"_Section_example.html, and animated on the "LAMMPS WWW
 Site"_lws.
 
 A LAMMPS input script typically has 4 parts:
 
 Initialization
 Atom definition
 Settings
 Run a simulation :ol
 
 The last 2 parts can be repeated as many times as desired.  I.e. run a
 simulation, change some settings, run some more, etc.  Each of the 4
 parts is now described in more detail.  Remember that almost all the
 commands need only be used if a non-default value is desired.
 
 (1) Initialization
 
 Set parameters that need to be defined before atoms are created or
 read-in from a file.
 
 The relevant commands are "units"_units.html,
 "dimension"_dimension.html, "newton"_newton.html,
 "processors"_processors.html, "boundary"_boundary.html,
 "atom_style"_atom_style.html, "atom_modify"_atom_modify.html.
 
 If force-field parameters appear in the files that will be read, these
 commands tell LAMMPS what kinds of force fields are being used:
 "pair_style"_pair_style.html, "bond_style"_bond_style.html,
 "angle_style"_angle_style.html, "dihedral_style"_dihedral_style.html,
 "improper_style"_improper_style.html.
 
 (2) Atom definition
 
 There are 3 ways to define atoms in LAMMPS.  Read them in from a data
 or restart file via the "read_data"_read_data.html or
 "read_restart"_read_restart.html commands.  These files can contain
 molecular topology information.  Or create atoms on a lattice (with no
 molecular topology), using these commands: "lattice"_lattice.html,
 "region"_region.html, "create_box"_create_box.html,
 "create_atoms"_create_atoms.html.  The entire set of atoms can be
 duplicated to make a larger simulation using the
 "replicate"_replicate.html command.
 
 (3) Settings
 
 Once atoms and molecular topology are defined, a variety of settings
 can be specified: force field coefficients, simulation parameters,
 output options, etc.
 
 Force field coefficients are set by these commands (they can also be
 set in the read-in files): "pair_coeff"_pair_coeff.html,
 "bond_coeff"_bond_coeff.html, "angle_coeff"_angle_coeff.html,
 "dihedral_coeff"_dihedral_coeff.html,
 "improper_coeff"_improper_coeff.html,
 "kspace_style"_kspace_style.html, "dielectric"_dielectric.html,
 "special_bonds"_special_bonds.html.
 
 Various simulation parameters are set by these commands:
 "neighbor"_neighbor.html, "neigh_modify"_neigh_modify.html,
 "group"_group.html, "timestep"_timestep.html,
 "reset_timestep"_reset_timestep.html, "run_style"_run_style.html,
 "min_style"_min_style.html, "min_modify"_min_modify.html.
 
 Fixes impose a variety of boundary conditions, time integration, and
 diagnostic options.  The "fix"_fix.html command comes in many flavors.
 
 Various computations can be specified for execution during a
 simulation using the "compute"_compute.html,
 "compute_modify"_compute_modify.html, and "variable"_variable.html
 commands.
 
 Output options are set by the "thermo"_thermo.html, "dump"_dump.html,
 and "restart"_restart.html commands.
 
 (4) Run a simulation
 
 A molecular dynamics simulation is run using the "run"_run.html
 command.  Energy minimization (molecular statics) is performed using
 the "minimize"_minimize.html command.  A parallel tempering
 (replica-exchange) simulation can be run using the
 "temper"_temper.html command.
 
 :line
 
 3.4 Commands listed by category :link(3_4),h4
 
 This section lists all LAMMPS commands, grouped by category.  The
 "next section"_#3_5 lists the same commands alphabetically.  Note that
 some style options for some commands are part of specific LAMMPS
 packages, which means they cannot be used unless the package was
 included when LAMMPS was built.  Not all packages are included in a
 default LAMMPS build.  These dependencies are listed as Restrictions
 in the command's documentation.
 
 Initialization:
 
 "atom_modify"_atom_modify.html, "atom_style"_atom_style.html,
 "boundary"_boundary.html, "dimension"_dimension.html,
 "newton"_newton.html, "processors"_processors.html, "units"_units.html
 
 Atom definition:
 
 "create_atoms"_create_atoms.html, "create_box"_create_box.html,
 "lattice"_lattice.html, "read_data"_read_data.html,
 "read_restart"_read_restart.html, "region"_region.html,
 "replicate"_replicate.html
 
 Force fields:
 
 "angle_coeff"_angle_coeff.html, "angle_style"_angle_style.html,
 "bond_coeff"_bond_coeff.html, "bond_style"_bond_style.html,
 "dielectric"_dielectric.html, "dihedral_coeff"_dihedral_coeff.html,
 "dihedral_style"_dihedral_style.html,
 "improper_coeff"_improper_coeff.html,
 "improper_style"_improper_style.html,
 "kspace_modify"_kspace_modify.html, "kspace_style"_kspace_style.html,
 "pair_coeff"_pair_coeff.html, "pair_modify"_pair_modify.html,
 "pair_style"_pair_style.html, "pair_write"_pair_write.html,
 "special_bonds"_special_bonds.html
 
 Settings:
 
 "communicate"_communicate.html, "dipole"_dipole.html,
 "group"_group.html, "mass"_mass.html, "min_modify"_min_modify.html,
 "min_style"_min_style.html, "neigh_modify"_neigh_modify.html,
 "neighbor"_neighbor.html, "reset_timestep"_reset_timestep.html,
 "run_style"_run_style.html, "set"_set.html, "shape"_shape.html,
 "timestep"_timestep.html, "velocity"_velocity.html
 
 Fixes:
 
 "fix"_fix.html, "fix_modify"_fix_modify.html, "unfix"_unfix.html
 
 Computes:
 
 "compute"_compute.html, "compute_modify"_compute_modify.html,
 "uncompute"_uncompute.html
 
 Output:
 
 "dump"_dump.html, "dump_modify"_dump_modify.html,
 "restart"_restart.html, "thermo"_thermo.html,
 "thermo_modify"_thermo_modify.html, "thermo_style"_thermo_style.html,
 "undump"_undump.html, "write_restart"_write_restart.html
 
 Actions:
 
 "delete_atoms"_delete_atoms.html, "delete_bonds"_delete_bonds.html,
 "displace_atoms"_displace_atoms.html,
 "displace_box"_displace_box.html, "minimize"_minimize.html,
 "neb"_neb.html "prd"_prd.html, "run"_run.html, "temper"_temper.html
 
 Miscellaneous:
 
 "clear"_clear.html, "echo"_echo.html, "if"_if.html,
 "include"_include.html, "jump"_jump.html, "label"_label.html,
 "log"_log.html, "next"_next.html, "print"_print.html,
 "shell"_shell.html, "variable"_variable.html
 
 :line
 
 3.5 Individual commands :h4,link(3_5),link(comm)
 
 This section lists all LAMMPS commands alphabetically, with a separate
 listing below of styles within certain commands.  The "previous
 section"_#3_4 lists the same commands, grouped by category.  Note that
 some style options for some commands are part of specific LAMMPS
 packages, which means they cannot be used unless the package was
 included when LAMMPS was built.  Not all packages are included in a
 default LAMMPS build.  These dependencies are listed as Restrictions
 in the command's documentation.
 
 "angle_coeff"_angle_coeff.html,
 "angle_style"_angle_style.html,
 "atom_modify"_atom_modify.html,
 "atom_style"_atom_style.html,
 "bond_coeff"_bond_coeff.html,
 "bond_style"_bond_style.html,
 "boundary"_boundary.html,
 "change_box"_change_box.html,
 "clear"_clear.html,
 "communicate"_communicate.html,
 "compute"_compute.html,
 "compute_modify"_compute_modify.html,
 "create_atoms"_create_atoms.html,
 "create_box"_create_box.html,
 "delete_atoms"_delete_atoms.html,
 "delete_bonds"_delete_bonds.html,
 "dielectric"_dielectric.html,
 "dihedral_coeff"_dihedral_coeff.html,
 "dihedral_style"_dihedral_style.html,
 "dimension"_dimension.html,
 "dipole"_dipole.html,
 "displace_atoms"_displace_atoms.html,
 "displace_box"_displace_box.html,
 "dump"_dump.html,
 "dump_modify"_dump_modify.html,
 "echo"_echo.html,
 "fix"_fix.html,
 "fix_modify"_fix_modify.html,
 "group"_group.html,
 "if"_if.html,
 "improper_coeff"_improper_coeff.html,
 "improper_style"_improper_style.html,
 "include"_include.html,
 "jump"_jump.html,
 "kspace_modify"_kspace_modify.html,
 "kspace_style"_kspace_style.html,
 "label"_label.html,
 "lattice"_lattice.html,
 "log"_log.html,
 "mass"_mass.html,
 "minimize"_minimize.html,
 "min_modify"_min_modify.html,
 "min_style"_min_style.html,
 "neb"_neb.html,
 "neigh_modify"_neigh_modify.html,
 "neighbor"_neighbor.html,
 "newton"_newton.html,
 "next"_next.html,
 "pair_coeff"_pair_coeff.html,
 "pair_modify"_pair_modify.html,
 "pair_style"_pair_style.html,
 "pair_write"_pair_write.html,
 "prd"_prd.html,
 "print"_print.html,
 "processors"_processors.html,
 "read_data"_read_data.html,
 "read_restart"_read_restart.html,
 "region"_region.html,
 "replicate"_replicate.html,
 "reset_timestep"_reset_timestep.html,
 "restart"_restart.html,
 "run"_run.html,
 "run_style"_run_style.html,
 "set"_set.html,
 "shape"_shape.html,
 "shell"_shell.html,
 "special_bonds"_special_bonds.html,
 "temper"_temper.html,
 "thermo"_thermo.html,
 "thermo_modify"_thermo_modify.html,
 "thermo_style"_thermo_style.html,
 "timestep"_timestep.html,
 "uncompute"_uncompute.html,
 "undump"_undump.html,
 "unfix"_unfix.html,
 "units"_units.html,
 "variable"_variable.html,
 "velocity"_velocity.html,
 "write_restart"_write_restart.html :tb(c=6,ea=c)
 
 :line
 
 Fix styles :h4
 
 See the "fix"_fix.html command for one-line descriptions
 of each style or click on the style itself for a full description:
 
 "adapt"_fix_adapt.html,
 "addforce"_fix_addforce.html,
 "aveforce"_fix_aveforce.html,
 "ave/atom"_fix_ave_atom.html,
 "ave/correlate"_fix_ave_correlate.html,
 "ave/histo"_fix_ave_histo.html,
 "ave/spatial"_fix_ave_spatial.html,
 "ave/time"_fix_ave_time.html,
 "bond/break"_fix_bond_break.html,
 "bond/create"_fix_bond_create.html,
 "bond/swap"_fix_bond_swap.html,
 "box/relax"_fix_box_relax.html,
 "deform"_fix_deform.html,
 "deposit"_fix_deposit.html,
 "drag"_fix_drag.html,
 "dt/reset"_fix_dt_reset.html,
 "efield"_fix_efield.html,
 "enforce2d"_fix_enforce2d.html,
 "evaporate"_fix_evaporate.html,
 "external"_fix_external.html,
 "freeze"_fix_freeze.html,
 "gravity"_fix_gravity.html,
 "heat"_fix_heat.html,
 "indent"_fix_indent.html,
 "langevin"_fix_langevin.html,
 "lineforce"_fix_lineforce.html,
 "momentum"_fix_momentum.html,
 "move"_fix_move.html,
 "msst"_fix_msst.html,
 "neb"_fix_neb.html,
 "nph"_fix_nh.html,
 "nph/asphere"_fix_nph_asphere.html,
 "nph/sphere"_fix_nph_sphere.html,
 "npt"_fix_nh.html,
 "npt/asphere"_fix_npt_asphere.html,
 "npt/sphere"_fix_npt_sphere.html,
 "nve"_fix_nve.html,
 "nve/asphere"_fix_nve_asphere.html,
 "nve/limit"_fix_nve_limit.html,
 "nve/noforce"_fix_nve_noforce.html,
 "nve/sphere"_fix_nve_sphere.html,
 "nvt"_fix_nh.html,
 "nvt/asphere"_fix_nvt_asphere.html,
 "nvt/sllod"_fix_nvt_sllod.html,
 "nvt/sphere"_fix_nvt_sphere.html,
 "orient/fcc"_fix_orient_fcc.html,
 "planeforce"_fix_planeforce.html,
 "poems"_fix_poems.html,
 "pour"_fix_pour.html,
 "press/berendsen"_fix_press_berendsen.html,
 "print"_fix_print.html,
 "qeq/comb"_fix_qeq_comb.html,
 "reax/bonds"_fix_reax_bonds.html,
 "recenter"_fix_recenter.html,
 "rigid"_fix_rigid.html,
 "rigid/nve"_fix_rigid.html,
 "rigid/nvt"_fix_rigid.html,
 "setforce"_fix_setforce.html,
 "shake"_fix_shake.html,
 "spring"_fix_spring.html,
 "spring/rg"_fix_spring_rg.html,
 "spring/self"_fix_spring_self.html,
 "srd"_fix_srd.html,
 "store/force"_fix_store_force.html,
 "store/state"_fix_store_state.html,
 "temp/berendsen"_fix_temp_berendsen.html,
 "temp/rescale"_fix_temp_rescale.html,
 "thermal/conductivity"_fix_thermal_conductivity.html,
 "tmd"_fix_tmd.html,
 "ttm"_fix_ttm.html,
 "viscosity"_fix_viscosity.html,
 "viscous"_fix_viscous.html,
 "wall/colloid"_fix_wall.html,
 "wall/gran"_fix_wall_gran.html,
 "wall/harmonic"_fix_wall.html,
 "wall/lj126"_fix_wall.html,
 "wall/lj93"_fix_wall.html,
 "wall/reflect"_fix_wall_reflect.html,
 "wall/region"_fix_wall_region.html :tb(c=8,ea=c)
 
 These are fix styles contributed by users, which can be used if
 "LAMMPS is built with the appropriate package"_Section_start.html#2_3.
 
 "atc"_fix_atc.html,
 "imd"_fix_imd.html,
 "langevin/eff"_fix_langevin_eff.html,
 "nph/eff"_fix_nh_eff.html,
 "npt/eff"_fix_nh_eff.html,
 "nve/eff"_fix_nve_eff.html,
 "nvt/eff"_fix_nh_eff.html,
 "nvt/sllod/eff"_fix_nvt_sllod_eff.html,
 "qeq/reax"_fix_qeq_reax.html,
 "smd"_fix_smd.html,
 "temp/rescale/eff"_fix_temp_rescale_eff.html :tb(c=6,ea=c)
 
 :line
 
 Compute styles :h4
 
 See the "compute"_compute.html command for one-line descriptions of
 each style or click on the style itself for a full description:
 
 "angle/local"_compute_angle_local.html,
 "bond/local"_compute_bond_local.html,
 "centro/atom"_compute_centro_atom.html,
 "cna/atom"_compute_cna_atom.html,
 "com"_compute_com.html,
 "com/molecule"_compute_com_molecule.html,
 "coord/atom"_compute_coord_atom.html,
 "damage/atom"_compute_damage_atom.html,
 "dihedral/local"_compute_dihedral_local.html,
 "displace/atom"_compute_displace_atom.html,
 "erotate/asphere"_compute_erotate_asphere.html,
 "erotate/sphere"_compute_erotate_sphere.html,
 "event/displace"_compute_event_displace.html,
 "group/group"_compute_group_group.html,
 "gyration"_compute_gyration.html,
 "gyration/molecule"_compute_gyration_molecule.html,
 "heat/flux"_compute_heat_flux.html,
 "improper/local"_compute_improper_local.html,
 "ke"_compute_ke.html,
 "ke/atom"_compute_ke_atom.html,
 "msd"_compute_msd.html,
 "msd/molecule"_compute_msd_molecule.html,
 "pair/local"_compute_pair_local.html,
 "pe"_compute_pe.html,
 "pe/atom"_compute_pe_atom.html,
 "pressure"_compute_pressure.html,
 "property/atom"_compute_property_atom.html,
 "property/local"_compute_property_local.html,
 "property/molecule"_compute_property_molecule.html,
 "rdf"_compute_rdf.html,
 "reduce"_compute_reduce.html,
 "reduce/region"_compute_reduce.html,
 "stress/atom"_compute_stress_atom.html,
 "temp"_compute_temp.html,
 "temp/asphere"_compute_temp_asphere.html,
 "temp/com"_compute_temp_com.html,
 "temp/deform"_compute_temp_deform.html,
 "temp/partial"_compute_temp_partial.html,
 "temp/profile"_compute_temp_profile.html,
 "temp/ramp"_compute_temp_ramp.html,
 "temp/region"_compute_temp_region.html,
 "temp/sphere"_compute_temp_sphere.html :tb(c=6,ea=c)
 
 These are compute styles contributed by users, which can be used if
 "LAMMPS is built with the appropriate package"_Section_start.html#2_3.
 
 "ackland/atom"_compute_ackland_atom.html,
 "ke/eff"_compute_ke_eff.html,
 "ke/atom/eff"_compute_ke_atom_eff.html,
 "temp/eff"_compute_temp_eff.html,
 "temp/deform/eff"_compute_temp_deform_eff.html,
 "temp/region/eff"_compute_temp_region_eff.html :tb(c=6,ea=c)
 
 :line
 
 Pair_style potentials :h4
 
 See the "pair_style"_pair_style.html command for an overview of pair
 potentials.  Click on the style itself for a full description:
 
 "none"_pair_none.html,
 "hybrid"_pair_hybrid.html,
 "hybrid/overlay"_pair_hybrid.html,
 "airebo"_pair_airebo.html,
+"born"_pair_born.html,
 "born/coul/long"_pair_born.html,
 "buck"_pair_buck.html,
 "buck/coul/cut"_pair_buck.html,
 "buck/coul/long"_pair_buck.html,
 "colloid"_pair_colloid.html,
 "comb"_pair_comb.html,
 "coul/cut"_pair_coul.html,
 "coul/debye"_pair_coul.html,
 "coul/long"_pair_coul.html,
 "dipole/cut"_pair_dipole.html,
 "dpd"_pair_dpd.html,
 "dpd/tstat"_pair_dpd.html,
 "dsmc"_pair_dsmc.html,
 "eam"_pair_eam.html,
 "eam/opt"_pair_eam.html,
 "eam/alloy"_pair_eam.html,
 "eam/alloy/opt"_pair_eam.html,
 "eam/fs"_pair_eam.html,
 "eam/fs/opt"_pair_eam.html,
 "eim"_pair_eim.html,
+"gauss"_pair_gauss.html,
 "gayberne"_pair_gayberne.html,
 "gayberne/gpu"_pair_gayberne.html,
 "gran/hertz/history"_pair_gran.html,
 "gran/hooke"_pair_gran.html,
 "gran/hooke/history"_pair_gran.html,
 "lj/charmm/coul/charmm"_pair_charmm.html,
 "lj/charmm/coul/charmm/implicit"_pair_charmm.html,
 "lj/charmm/coul/long"_pair_charmm.html,
 "lj/charmm/coul/long/opt"_pair_charmm.html,
 "lj/class2"_pair_class2.html,
 "lj/class2/coul/cut"_pair_class2.html,
 "lj/class2/coul/long"_pair_class2.html,
 "lj/cut"_pair_lj.html,
 "lj/cut/gpu"_pair_lj.html,
 "lj/cut/opt"_pair_lj.html,
 "lj/cut/coul/cut"_pair_lj.html,
 "lj/cut/coul/debye"_pair_lj.html,
 "lj/cut/coul/long"_pair_lj.html,
 "lj/cut/coul/long/tip4p"_pair_lj.html,
 "lj/expand"_pair_lj_expand.html,
 "lj/gromacs"_pair_gromacs.html,
 "lj/gromacs/coul/gromacs"_pair_gromacs.html,
 "lj/smooth"_pair_lj_smooth.html,
 "lj96/cut"_pair_lj96_cut.html,
 "lubricate"_pair_lubricate.html,
 "meam"_pair_meam.html,
 "morse"_pair_morse.html,
 "morse/opt"_pair_morse.html,
 "peri/lps"_pair_peri.html,
 "peri/pmb"_pair_peri.html,
 "reax"_pair_reax.html,
 "resquared"_pair_resquared.html,
 "soft"_pair_soft.html,
 "sw"_pair_sw.html,
 "table"_pair_table.html,
 "tersoff"_pair_tersoff.html,
 "tersoff/zbl"_pair_tersoff_zbl.html,
 "yukawa"_pair_yukawa.html,
 "yukawa/colloid"_pair_yukawa_colloid.html :tb(c=4,ea=c)
 
 These are pair styles contributed by users, which can be used if
 "LAMMPS is built with the appropriate package"_Section_start.html#2_3.
 
 "buck/coul"_pair_buck_coul.html,
 "cg/cmm"_pair_cmm.html,
 "cg/cmm/coul/cut"_pair_cmm.html,
 "cg/cmm/coul/long"_pair_cmm.html,
 "eam/cd"_pair_eam.html,
 "eff/cut"_pair_eff.html,
 "lj/coul"_pair_lj_coul.html,
 "reax/c"_pair_reax_c.html :tb(c=4,ea=c)
 
 :line
 
 Bond_style potentials :h4
 
 See the "bond_style"_bond_style.html command for an overview of bond
 potentials.  Click on the style itself for a full description:
 
 "none"_bond_none.html,
 "hybrid"_bond_hybrid.html,
 "class2"_bond_class2.html,
 "fene"_bond_fene.html,
 "fene/expand"_bond_fene_expand.html,
 "harmonic"_bond_harmonic.html,
 "morse"_bond_morse.html,
 "nonlinear"_bond_nonlinear.html,
 "quartic"_bond_quartic.html,
 "table"_bond_table.html :tb(c=4,ea=c,w=100)
 
 :line
 
 Angle_style potentials :h4
 
 See the "angle_style"_angle_style.html command for an overview of
 angle potentials.  Click on the style itself for a full description:
 
 "none"_angle_none.html,
 "hybrid"_angle_hybrid.html,
 "charmm"_angle_charmm.html,
 "class2"_angle_class2.html,
 "cosine"_angle_cosine.html,
 "cosine/delta"_angle_cosine_delta.html,
 "cosine/squared"_angle_cosine_squared.html,
 "harmonic"_angle_harmonic.html,
 "table"_angle_table.html :tb(c=4,ea=c,w=100)
 
 These are angle styles contributed by users, which can be used if
 "LAMMPS is built with the appropriate package"_Section_start.html#2_3.
 
 "cg/cmm"_angle_cmm.html :tb(c=4,ea=c)
 
 :line
 
 Dihedral_style potentials :h4
 
 See the "dihedral_style"_dihedral_style.html command for an overview
 of dihedral potentials.  Click on the style itself for a full
 description:
 
 "none"_dihedral_none.html,
 "hybrid"_dihedral_hybrid.html,
 "charmm"_dihedral_charmm.html,
 "class2"_dihedral_class2.html,
 "harmonic"_dihedral_harmonic.html,
 "helix"_dihedral_helix.html,
 "multi/harmonic"_dihedral_multi_harmonic.html,
 "opls"_dihedral_opls.html :tb(c=4,ea=c,w=100)
 
 :line
 
 Improper_style potentials :h4
 
 See the "improper_style"_improper_style.html command for an overview
 of improper potentials.  Click on the style itself for a full
 description:
 
 "none"_improper_none.html,
 "hybrid"_improper_hybrid.html,
 "class2"_improper_class2.html,
 "cvff"_improper_cvff.html,
 "harmonic"_improper_harmonic.html :tb(c=4,ea=c,w=100)
 
 :line
 
 Kspace solvers :h4
 
 See the "kspace_style"_kspace_style.html command for an overview of
 Kspace solvers.  Click on the style itself for a full description:
 
 "ewald"_kspace_style.html,
 "pppm"_kspace_style.html,
 "pppm/tip4p"_kspace_style.html :tb(c=4,ea=c,w=100)
 
 These are Kspace solvers contributed by users, which can be used if
 "LAMMPS is built with the appropriate package"_Section_start.html#2_3.
 
 "ewald/n"_kspace_style.html :tb(c=4,ea=c,w=100)
diff --git a/doc/pair_born.html b/doc/pair_born.html
index 999e9ffb9..a478fcf3b 100644
--- a/doc/pair_born.html
+++ b/doc/pair_born.html
@@ -1,123 +1,136 @@
 <HTML>
 <CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A> 
 </CENTER>
 
 
 
 
 
 
 <HR>
 
+<H3>pair_style born command 
+</H3>
 <H3>pair_style born/coul/long command 
 </H3>
 <P><B>Syntax:</B>
 </P>
-<PRE>pair_style born/coul/long cutoff (cutoff2) 
+<PRE>pair_style style args 
 </PRE>
-<UL><LI>cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
-<LI>cutoff2 = global cutoff for Coulombic (optional) (distance units) 
+<UL><LI>style = <I>born</I> or <I>born/coul/long</I>
+<LI>args = list of arguments for a particular style 
 </UL>
+<PRE>  <I>born</I> args = cutoff
+    cutoff = global cutoff for non-Coulombic interactions (distance units)
+  <I>born/coul/long</I> args = cutoff (cutoff2)
+    cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
+    cutoff2 = global cutoff for Coulombic (optional) (distance units) 
+</PRE>
 <P><B>Examples:</B>
 </P>
+<PRE>pair_style born 10.0
+pair_coeff * * 6.08 0.317 2.340 24.18 11.51
+pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51 
+</PRE>
 <PRE>pair_style born/coul/long 10.0
 pair_style born/coul/long 10.0 8.0
 pair_coeff * * 6.08 0.317 2.340 24.18 11.51
 pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51 
 </PRE>
 <P><B>Description:</B>
 </P>
-<P>This pair style compute the Born-Mayer-Huggins potential described in
-<A HREF = "#FumiTosi">(Fumi and Tosi)</A>, given by
+<P>The <I>born</I> style computes the Born-Mayer-Huggins or Tosi/Fumi
+potential described in <A HREF = "#FumiTosi">(Fumi and Tosi)</A>, given by
 </P>
 <CENTER><IMG SRC = "Eqs/pair_born.jpg">
 </CENTER>
 <P>where sigma is an interaction-dependent length parameter, rho is an
-ionic-pair dependent length parameter, and the last term represents
-the usual Coulombic pairwise interaction between atoms I and J.  In
-the Coulombic term, k is an energy-conversion constant, Qi and Qj are
-the charges on the 2 atoms, and epsilon is the dielectric constant
-which can be set by the <A HREF = "dielectric.html">dielectric</A> command.
-</P>
-<P>If one cutoff is specified in the pair_style command, it is used for
-both the A,C,D and Coulombic terms.  If two cutoffs are specified, the
-first is used as the cutoff for the A,C,D terms, and the second is the
-cutoff for the Coulombic term.
-</P>
-<P>Note that this potential is identical to the <A HREF = "pair_buck.html">Buckingham
-potential</A> when sigma = D = 0.
-</P>
-<P>An additional damping factor is applied to the Coulombic term so it
-can be used in conjunction with the <A HREF = "kspace_style.html">kspace_style</A>
-command and its <I>ewald</I> or <I>pppm</I> option.  The Coulombic cutoff
-specified for this style means that pairwise interactions within this
-distance are computed directly; interactions outside that distance are
-computed in reciprocal space.
+ionic-pair dependent length parameter, and Rc is the cutoff.
+</P>
+<P>The <I>born/coul/long</I> style adds a Coulombic term as described for the
+<A HREF = "pair_lj.html">lj/cut</A> pair styles.  An additional damping factor is
+applied to the Coulombic term so it can be used in conjunction with
+the <A HREF = "kspace_style.html">kspace_style</A> command and its <I>ewald</I> or <I>pppm</I>
+option.  The Coulombic cutoff specified for this style means that
+pairwise interactions within this distance are computed directly;
+interactions outside that distance are computed in reciprocal space.
+</P>
+<P>If one cutoff is specified for the <I>born/coulk/long</I> style, it is used
+for both the A,C,D and Coulombic terms.  If two cutoffs are specified,
+the first is used as the cutoff for the A,C,D terms, and the second is
+the cutoff for the Coulombic term.
+</P>
+<P>Note that these potentials are related to the <A HREF = "pair_born.html">Buckingham
+potential</A>.
 </P>
 <P>The following coefficients must be defined for each pair of atoms
 types via the <A HREF = "pair_coeff.html">pair_coeff</A> command as in the examples
 above, or in the data file or restart files read by the
 <A HREF = "read_data.html">read_data</A> or <A HREF = "read_restart.html">read_restart</A>
 commands, or by mixing as described below:
 </P>
 <UL><LI>A (energy units)
 <LI>rho (distance units)
 <LI>sigma (distance units)
 <LI>C (energy units * distance units^6)
 <LI>D (energy units * distance units^8)
 <LI>cutoff (distance units) 
 </UL>
+<P>The second coefficient, rho, must be greater than zero.
+</P>
 <P>The last coefficient is optional.  If not specified, the global A,C,D
-cutoff specified in the pair_style command is used.  Only the A,C,D
-cutoff can be specified since a Coulombic cutoff cannot be specified
-for an individual I,J type pair.  All type pairs use the same global
+cutoff specified in the pair_style command is used.
+</P>
+<P>For <I>buck/coul/long</I> no Coulombic cutoff can be specified for an
+individual I,J type pair.  All type pairs use the same global
 Coulombic cutoff specified in the pair_style command.
 </P>
 <HR>
 
 <P><B>Mixing, shift, table, tail correction, restart, rRESPA info</B>:
 </P>
-<P>This style does not support mixing.  Thus, coefficients for all
+<P>These pair styles do not support mixing.  Thus, coefficients for all
 I,J pairs must be specified explicitly.
 </P>
-<P>This style supports the <A HREF = "pair_modify.html">pair_modify</A> shift option
+<P>These styles support the <A HREF = "pair_modify.html">pair_modify</A> shift option
 for the energy of the exp(), 1/r^6, and 1/r^8 portion of the pair
 interaction.
 </P>
-<P>This style does not support the <A HREF = "pair_modify.html">pair_modify</A>
-table option since a tabulation capability has not yet been added to
-this potential.
+<P>The <I>born/coul/long</I> pair style does not support the
+<A HREF = "pair_modify.html">pair_modify</A> table option since a tabulation
+capability has not yet been added to this potential.
 </P>
-<P>This style does not support the pair_modify tail option for
-adding long-range tail corrections to energy and pressure.
+<P>These styles support the pair_modify tail option for adding long-range
+tail corrections to energy and pressure.
 </P>
-<P>This style writes its information to binary
-<A HREF = "restart.html">restart</A> files, so pair_style and pair_coeff commands do
-not need to be specified in an input script that reads a restart file.
+<P>Thess styles writes thei information to binary <A HREF = "restart.html">restart</A>
+files, so pair_style and pair_coeff commands do not need to be
+specified in an input script that reads a restart file.
 </P>
-<P>This style only supports the <I>pair</I> keyword of run_style respa.
-See the <A HREF = "run_style.html">run_style</A> command for details.
+<P>These styles can only be used via the <I>pair</I> keyword of the <A HREF = "run_style.html">run_style
+respa</A> command.  They do not support the <I>inner</I>,
+<I>middle</I>, <I>outer</I> keywords.
 </P>
 <HR>
 
 <P><B>Restrictions:</B>
 </P>
 <P>The <I>born/coul/long</I> style is part of the "kspace" package.  It is
 only enabled if LAMMPS was built with that package (which it is by
 default).  See the <A HREF = "Section_start.html#2_3">Making LAMMPS</A> section for
 more info.
 </P>
 <P><B>Related commands:</B>
 </P>
 <P><A HREF = "pair_coeff.html">pair_coeff</A>, <A HREF = "pair_buck.html">pair_style buck</A>
 </P>
 <P><B>Default:</B> none
 </P>
 <HR>
 
 <A NAME = "FumiTosi"></A>
 
 <P>Fumi and Tosi, J Phys Chem Solids, 25, 31 (1964),
 Fumi and Tosi, J Phys Chem Solids, 25, 45 (1964).
 </P>
 </HTML>
diff --git a/doc/pair_born.txt b/doc/pair_born.txt
index fcc0f9124..5c737b3dc 100644
--- a/doc/pair_born.txt
+++ b/doc/pair_born.txt
@@ -1,118 +1,129 @@
 "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
 
 
 :link(lws,http://lammps.sandia.gov)
 :link(ld,Manual.html)
 :link(lc,Section_commands.html#comm)
 
 :line
 
+pair_style born command :h3
 pair_style born/coul/long command :h3
 
 [Syntax:]
 
-pair_style born/coul/long cutoff (cutoff2) :pre
+pair_style style args :pre
 
-cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
-cutoff2 = global cutoff for Coulombic (optional) (distance units) :ul
+style = {born} or {born/coul/long}
+args = list of arguments for a particular style :ul
+  {born} args = cutoff
+    cutoff = global cutoff for non-Coulombic interactions (distance units)
+  {born/coul/long} args = cutoff (cutoff2)
+    cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
+    cutoff2 = global cutoff for Coulombic (optional) (distance units) :pre
 
 [Examples:]
 
+pair_style born 10.0
+pair_coeff * * 6.08 0.317 2.340 24.18 11.51
+pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51 :pre
+
 pair_style born/coul/long 10.0
 pair_style born/coul/long 10.0 8.0
 pair_coeff * * 6.08 0.317 2.340 24.18 11.51
 pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51 :pre
 
 [Description:]
 
-This pair style compute the Born-Mayer-Huggins potential described in
-"(Fumi and Tosi)"_#FumiTosi, given by
+The {born} style computes the Born-Mayer-Huggins or Tosi/Fumi
+potential described in "(Fumi and Tosi)"_#FumiTosi, given by
 
 :c,image(Eqs/pair_born.jpg)
 
 where sigma is an interaction-dependent length parameter, rho is an
-ionic-pair dependent length parameter, and the last term represents
-the usual Coulombic pairwise interaction between atoms I and J.  In
-the Coulombic term, k is an energy-conversion constant, Qi and Qj are
-the charges on the 2 atoms, and epsilon is the dielectric constant
-which can be set by the "dielectric"_dielectric.html command.
-
-If one cutoff is specified in the pair_style command, it is used for
-both the A,C,D and Coulombic terms.  If two cutoffs are specified, the
-first is used as the cutoff for the A,C,D terms, and the second is the
-cutoff for the Coulombic term.
-
-Note that this potential is identical to the "Buckingham
-potential"_pair_buck.html when sigma = D = 0.
-
-An additional damping factor is applied to the Coulombic term so it
-can be used in conjunction with the "kspace_style"_kspace_style.html
-command and its {ewald} or {pppm} option.  The Coulombic cutoff
-specified for this style means that pairwise interactions within this
-distance are computed directly; interactions outside that distance are
-computed in reciprocal space.
+ionic-pair dependent length parameter, and Rc is the cutoff.
+
+The {born/coul/long} style adds a Coulombic term as described for the
+"lj/cut"_pair_lj.html pair styles.  An additional damping factor is
+applied to the Coulombic term so it can be used in conjunction with
+the "kspace_style"_kspace_style.html command and its {ewald} or {pppm}
+option.  The Coulombic cutoff specified for this style means that
+pairwise interactions within this distance are computed directly;
+interactions outside that distance are computed in reciprocal space.
+
+If one cutoff is specified for the {born/coulk/long} style, it is used
+for both the A,C,D and Coulombic terms.  If two cutoffs are specified,
+the first is used as the cutoff for the A,C,D terms, and the second is
+the cutoff for the Coulombic term.
+
+Note that these potentials are related to the "Buckingham
+potential"_pair_born.html.
 
 The following coefficients must be defined for each pair of atoms
 types via the "pair_coeff"_pair_coeff.html command as in the examples
 above, or in the data file or restart files read by the
 "read_data"_read_data.html or "read_restart"_read_restart.html
 commands, or by mixing as described below:
 
 A (energy units)
 rho (distance units)
 sigma (distance units)
 C (energy units * distance units^6)
 D (energy units * distance units^8)
 cutoff (distance units) :ul
 
+The second coefficient, rho, must be greater than zero.
+
 The last coefficient is optional.  If not specified, the global A,C,D
-cutoff specified in the pair_style command is used.  Only the A,C,D
-cutoff can be specified since a Coulombic cutoff cannot be specified
-for an individual I,J type pair.  All type pairs use the same global
+cutoff specified in the pair_style command is used.
+
+For {buck/coul/long} no Coulombic cutoff can be specified for an
+individual I,J type pair.  All type pairs use the same global
 Coulombic cutoff specified in the pair_style command.
 
 :line
 
 [Mixing, shift, table, tail correction, restart, rRESPA info]:
 
-This style does not support mixing.  Thus, coefficients for all
+These pair styles do not support mixing.  Thus, coefficients for all
 I,J pairs must be specified explicitly.
 
-This style supports the "pair_modify"_pair_modify.html shift option
+These styles support the "pair_modify"_pair_modify.html shift option
 for the energy of the exp(), 1/r^6, and 1/r^8 portion of the pair
 interaction.
 
-This style does not support the "pair_modify"_pair_modify.html
-table option since a tabulation capability has not yet been added to
-this potential.
+The {born/coul/long} pair style does not support the
+"pair_modify"_pair_modify.html table option since a tabulation
+capability has not yet been added to this potential.
 
-This style does not support the pair_modify tail option for
-adding long-range tail corrections to energy and pressure.
+These styles support the pair_modify tail option for adding long-range
+tail corrections to energy and pressure.
 
-This style writes its information to binary
-"restart"_restart.html files, so pair_style and pair_coeff commands do
-not need to be specified in an input script that reads a restart file.
+Thess styles writes thei information to binary "restart"_restart.html
+files, so pair_style and pair_coeff commands do not need to be
+specified in an input script that reads a restart file.
 
-This style only supports the {pair} keyword of run_style respa.
-See the "run_style"_run_style.html command for details.
+These styles can only be used via the {pair} keyword of the "run_style
+respa"_run_style.html command.  They do not support the {inner},
+{middle}, {outer} keywords.
 
 :line
 
 [Restrictions:]
 
 The {born/coul/long} style is part of the "kspace" package.  It is
 only enabled if LAMMPS was built with that package (which it is by
 default).  See the "Making LAMMPS"_Section_start.html#2_3 section for
 more info.
 
 [Related commands:]
 
 "pair_coeff"_pair_coeff.html, "pair_style buck"_pair_buck.html
 
 [Default:] none
 
 :line
 
 :link(FumiTosi)
 Fumi and Tosi, J Phys Chem Solids, 25, 31 (1964),
 Fumi and Tosi, J Phys Chem Solids, 25, 45 (1964).
diff --git a/doc/pair_buck.html b/doc/pair_buck.html
index 25ae507a2..9de6f201e 100644
--- a/doc/pair_buck.html
+++ b/doc/pair_buck.html
@@ -1,132 +1,143 @@
 <HTML>
 <CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A> 
 </CENTER>
 
 
 
 
 
 
 <HR>
 
 <H3>pair_style buck command 
 </H3>
 <H3>pair_style buck/coul/cut command 
 </H3>
 <H3>pair_style buck/coul/long command 
 </H3>
 <P><B>Syntax:</B>
 </P>
 <PRE>pair_style style args 
 </PRE>
 <UL><LI>style = <I>buck</I> or <I>buck/coul/cut</I> or <I>buck/coul/long</I>
 <LI>args = list of arguments for a particular style 
 </UL>
 <PRE>  <I>buck</I> args = cutoff
     cutoff = global cutoff for Buckingham interactions (distance units)
   <I>buck/coul/cut</I> args = cutoff (cutoff2)
     cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
     cutoff2 = global cutoff for Coulombic (optional) (distance units)
   <I>buck/coul/long</I> args = cutoff (cutoff2)
     cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
     cutoff2 = global cutoff for Coulombic (optional) (distance units) 
 </PRE>
 <P><B>Examples:</B>
 </P>
 <PRE>pair_style buck 2.5
 pair_coeff * * 100.0 1.5 200.0
 pair_coeff * * 100.0 1.5 200.0 3.0 
 </PRE>
 <PRE>pair_style buck/coul/cut 10.0
 pair_style buck/coul/cut 10.0 8.0
 pair_coeff * * 100.0 1.5 200.0
 pair_coeff 1 1 100.0 1.5 200.0 9.0
 pair_coeff 1 1 100.0 1.5 200.0 9.0 8.0 
 </PRE>
 <PRE>pair_style buck/coul/long 10.0
 pair_style buck/coul/long 10.0 8.0
 pair_coeff * * 100.0 1.5 200.0
 pair_coeff 1 1 100.0 1.5 200.0 9.0 
 </PRE>
 <P><B>Description:</B>
 </P>
 <P>The <I>buck</I> style computes a Buckingham potential (exp/6 instead of
 Lennard-Jones 12/6) given by
 </P>
 <CENTER><IMG SRC = "Eqs/pair_buck.jpg">
 </CENTER>
-<P>Rc is the cutoff.
+<P>where rho is an ionic-pair dependent length parameter, and Rc is the
+cutoff.
 </P>
 <P>The <I>buck/coul/cut</I> and <I>buck/coul/long</I> styles add a Coulombic term
-as described for the <A HREF = "pair_lj.html">lj/cut</A> pair styles.
-</P>
-<P>Note that this potential is related to the <A HREF = "pair_born.html">Born-Mayer-Huggins
+as described for the <A HREF = "pair_lj.html">lj/cut</A> pair styles.  For
+<I>buck/coul/long</I>, an additional damping factor is applied to the
+Coulombic term so it can be used in conjunction with the
+<A HREF = "kspace_style.html">kspace_style</A> command and its <I>ewald</I> or <I>pppm</I>
+option.  The Coulombic cutoff specified for this style means that
+pairwise interactions within this distance are computed directly;
+interactions outside that distance are computed in reciprocal space.
+</P>
+<P>If one cutoff is specified for the <I>born/coul/cut</I> and
+<I>born/coulk/long</I> styles, it is used for both the A,C and Coulombic
+terms.  If two cutoffs are specified, the first is used as the cutoff
+for the A,C terms, and the second is the cutoff for the Coulombic
+term.
+</P>
+<P>Note that these potentials are related to the <A HREF = "pair_born.html">Born-Mayer-Huggins
 potential</A>.
 </P>
 <P>The following coefficients must be defined for each pair of atoms
 types via the <A HREF = "pair_coeff.html">pair_coeff</A> command as in the examples
 above, or in the data file or restart files read by the
 <A HREF = "read_data.html">read_data</A> or <A HREF = "read_restart.html">read_restart</A>
 commands:
 </P>
 <UL><LI>A (energy units)
 <LI>rho (distance units)
 <LI>C (energy-distance^6 units)
 <LI>cutoff (distance units)
 <LI>cutoff2 (distance units) 
 </UL>
 <P>The second coefficient, rho, must be greater than zero.
 </P>
 <P>The latter 2 coefficients are optional.  If not specified, the global
 LJ and Coulombic cutoffs are used.  If only one cutoff is specified,
 it is used as the cutoff for both LJ and Coulombic interactions for
 this type pair.  If both coefficients are specified, they are used as
 the LJ and Coulombic cutoffs for this type pair.  You cannot specify 2
 cutoffs for style <I>buck</I>, since it has no Coulombic terms.
 </P>
 <P>For <I>buck/coul/long</I> only the LJ cutoff can be specified since a
 Coulombic cutoff cannot be specified for an individual I,J type pair.
 All type pairs use the same global Coulombic cutoff specified in the
 pair_style command.
 </P>
 <HR>
 
 <P><B>Mixing, shift, table, tail correction, restart, rRESPA info</B>:
 </P>
-<P>None of the Buckingham pair styles support mixing.  Thus, coefficients
-for all I,J pairs must be specified explicitly.
+<P>These pair styles do not support mixing.  Thus, coefficients for all
+I,J pairs must be specified explicitly.
 </P>
-<P>All of the Buckingham pair styles support the
-<A HREF = "pair_modify.html">pair_modify</A> shift option for the energy of the
-exp() and 1/r^6 portion of the pair interaction.
+<P>These styles support the <A HREF = "pair_modify.html">pair_modify</A> shift option
+for the energy of the exp() and 1/r^6 portion of the pair interaction.
 </P>
 <P>The <I>buck/coul/long</I> pair style does not support the
 <A HREF = "pair_modify.html">pair_modify</A> table option since a tabulation
 capability has not yet been added to this potential.
 </P>
-<P>None of the Buckingham pair styles support the
-<A HREF = "pair_modify.html">pair_modify</A> tail option for adding long-range tail
-corrections to energy and pressure.
+<P>These styles do not support the <A HREF = "pair_modify.html">pair_modify</A> tail
+option for adding long-range tail corrections to energy and pressure.
 </P>
-<P>All of the Buckingham pair styles write their information to <A HREF = "restart.html">binary
-restart files</A>, so pair_style and pair_coeff commands do
-not need to be specified in an input script that reads a restart file.
+<P>These styles write their information to <A HREF = "restart.html">binary restart
+files</A>, so pair_style and pair_coeff commands do not need
+to be specified in an input script that reads a restart file.
 </P>
-<P>All of the Buckingham pair styles can only be used via the <I>pair</I>
-keyword of the <A HREF = "run_style.html">run_style respa</A> command.  They do not
-support the <I>inner</I>, <I>middle</I>, <I>outer</I> keywords.
+<P>These styles can only be used via the <I>pair</I> keyword of the <A HREF = "run_style.html">run_style
+respa</A> command.  They do not support the <I>inner</I>,
+<I>middle</I>, <I>outer</I> keywords.
 </P>
 <P><B>Restrictions:</B>
 </P>
 <P>The <I>buck/coul/long</I> style is part of the "kspace" package.  It is
 only enabled if LAMMPS was built with that package (which it is by
 default).  See the <A HREF = "Section_start.html#2_3">Making LAMMPS</A> section for
 more info.
 </P>
 <P><B>Related commands:</B>
 </P>
 <P><A HREF = "pair_coeff.html">pair_coeff</A>, <A HREF = "pair_born.html">pair_style born</A>
 </P>
 <P><B>Default:</B> none
 </P>
 </HTML>
diff --git a/doc/pair_buck.txt b/doc/pair_buck.txt
index 47d9d49f5..000a0aa0a 100644
--- a/doc/pair_buck.txt
+++ b/doc/pair_buck.txt
@@ -1,124 +1,135 @@
 "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
 
 :link(lws,http://lammps.sandia.gov)
 :link(ld,Manual.html)
 :link(lc,Section_commands.html#comm)
 
 :line
 
 pair_style buck command :h3
 pair_style buck/coul/cut command :h3
 pair_style buck/coul/long command :h3
 
 [Syntax:]
 
 pair_style style args :pre
 
 style = {buck} or {buck/coul/cut} or {buck/coul/long}
 args = list of arguments for a particular style :ul
   {buck} args = cutoff
     cutoff = global cutoff for Buckingham interactions (distance units)
   {buck/coul/cut} args = cutoff (cutoff2)
     cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
     cutoff2 = global cutoff for Coulombic (optional) (distance units)
   {buck/coul/long} args = cutoff (cutoff2)
     cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
     cutoff2 = global cutoff for Coulombic (optional) (distance units) :pre
 
 [Examples:]
 
 pair_style buck 2.5
 pair_coeff * * 100.0 1.5 200.0
 pair_coeff * * 100.0 1.5 200.0 3.0 :pre
 
 pair_style buck/coul/cut 10.0
 pair_style buck/coul/cut 10.0 8.0
 pair_coeff * * 100.0 1.5 200.0
 pair_coeff 1 1 100.0 1.5 200.0 9.0
 pair_coeff 1 1 100.0 1.5 200.0 9.0 8.0 :pre
 
 pair_style buck/coul/long 10.0
 pair_style buck/coul/long 10.0 8.0
 pair_coeff * * 100.0 1.5 200.0
 pair_coeff 1 1 100.0 1.5 200.0 9.0 :pre
 
 [Description:]
 
 The {buck} style computes a Buckingham potential (exp/6 instead of
 Lennard-Jones 12/6) given by
 
 :c,image(Eqs/pair_buck.jpg)
 
-Rc is the cutoff.
+where rho is an ionic-pair dependent length parameter, and Rc is the
+cutoff.
 
 The {buck/coul/cut} and {buck/coul/long} styles add a Coulombic term
-as described for the "lj/cut"_pair_lj.html pair styles.
-
-Note that this potential is related to the "Born-Mayer-Huggins
+as described for the "lj/cut"_pair_lj.html pair styles.  For
+{buck/coul/long}, an additional damping factor is applied to the
+Coulombic term so it can be used in conjunction with the
+"kspace_style"_kspace_style.html command and its {ewald} or {pppm}
+option.  The Coulombic cutoff specified for this style means that
+pairwise interactions within this distance are computed directly;
+interactions outside that distance are computed in reciprocal space.
+
+If one cutoff is specified for the {born/coul/cut} and
+{born/coulk/long} styles, it is used for both the A,C and Coulombic
+terms.  If two cutoffs are specified, the first is used as the cutoff
+for the A,C terms, and the second is the cutoff for the Coulombic
+term.
+
+Note that these potentials are related to the "Born-Mayer-Huggins
 potential"_pair_born.html.
 
 The following coefficients must be defined for each pair of atoms
 types via the "pair_coeff"_pair_coeff.html command as in the examples
 above, or in the data file or restart files read by the
 "read_data"_read_data.html or "read_restart"_read_restart.html
 commands:
 
 A (energy units)
 rho (distance units)
 C (energy-distance^6 units)
 cutoff (distance units)
 cutoff2 (distance units) :ul
 
 The second coefficient, rho, must be greater than zero.
 
 The latter 2 coefficients are optional.  If not specified, the global
 LJ and Coulombic cutoffs are used.  If only one cutoff is specified,
 it is used as the cutoff for both LJ and Coulombic interactions for
 this type pair.  If both coefficients are specified, they are used as
 the LJ and Coulombic cutoffs for this type pair.  You cannot specify 2
 cutoffs for style {buck}, since it has no Coulombic terms.
 
 For {buck/coul/long} only the LJ cutoff can be specified since a
 Coulombic cutoff cannot be specified for an individual I,J type pair.
 All type pairs use the same global Coulombic cutoff specified in the
 pair_style command.
 
 :line
 
 [Mixing, shift, table, tail correction, restart, rRESPA info]:
 
-None of the Buckingham pair styles support mixing.  Thus, coefficients
-for all I,J pairs must be specified explicitly.
+These pair styles do not support mixing.  Thus, coefficients for all
+I,J pairs must be specified explicitly.
 
-All of the Buckingham pair styles support the
-"pair_modify"_pair_modify.html shift option for the energy of the
-exp() and 1/r^6 portion of the pair interaction.
+These styles support the "pair_modify"_pair_modify.html shift option
+for the energy of the exp() and 1/r^6 portion of the pair interaction.
 
 The {buck/coul/long} pair style does not support the
 "pair_modify"_pair_modify.html table option since a tabulation
 capability has not yet been added to this potential.
 
-None of the Buckingham pair styles support the
-"pair_modify"_pair_modify.html tail option for adding long-range tail
-corrections to energy and pressure.
+These styles do not support the "pair_modify"_pair_modify.html tail
+option for adding long-range tail corrections to energy and pressure.
 
-All of the Buckingham pair styles write their information to "binary
-restart files"_restart.html, so pair_style and pair_coeff commands do
-not need to be specified in an input script that reads a restart file.
+These styles write their information to "binary restart
+files"_restart.html, so pair_style and pair_coeff commands do not need
+to be specified in an input script that reads a restart file.
 
-All of the Buckingham pair styles can only be used via the {pair}
-keyword of the "run_style respa"_run_style.html command.  They do not
-support the {inner}, {middle}, {outer} keywords.
+These styles can only be used via the {pair} keyword of the "run_style
+respa"_run_style.html command.  They do not support the {inner},
+{middle}, {outer} keywords.
 
 [Restrictions:]
 
 The {buck/coul/long} style is part of the "kspace" package.  It is
 only enabled if LAMMPS was built with that package (which it is by
 default).  See the "Making LAMMPS"_Section_start.html#2_3 section for
 more info.
 
 [Related commands:]
 
 "pair_coeff"_pair_coeff.html, "pair_style born"_pair_born.html
 
 [Default:] none
diff --git a/doc/pair_coeff.html b/doc/pair_coeff.html
index de26f20bb..34e172674 100644
--- a/doc/pair_coeff.html
+++ b/doc/pair_coeff.html
@@ -1,171 +1,173 @@
 <HTML>
 <CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A> 
 </CENTER>
 
 
 
 
 
 
 <HR>
 
 <H3>pair_coeff command 
 </H3>
 <P><B>Syntax:</B>
 </P>
 <PRE>pair_coeff I J args 
 </PRE>
 <UL><LI>I,J = atom types (see asterisk form below)
 <LI>args = coefficients for one or more pairs of atom types 
 </UL>
 <P><B>Examples:</B>
 </P>
 <PRE>pair_coeff 1 2 1.0 1.0 2.5
 pair_coeff 2 * 1.0 1.0
 pair_coeff 3* 1*2 1.0 1.0 2.5
 pair_coeff * * 1.0 1.0
 pair_coeff * * nialhjea 1 1 2
 pair_coeff * 3 morse.table ENTRY1
 pair_coeff 1 2 lj/cut 1.0 1.0 2.5 (for pair_style hybrid) 
 </PRE>
 <P><B>Description:</B>
 </P>
 <P>Specify the pairwise force field coefficients for one or more pairs of
 atom types.  The number and meaning of the coefficients depends on the
 pair style.  Pair coefficients can also be set in the data file read
 by the <A HREF = "read_data.html">read_data</A> command or in a restart file.
 </P>
 <P>I and J can be specified in one of two ways.  Explicit numeric values
 can be used for each, as in the 1st example above.  I <= J is
 required.  LAMMPS sets the coefficients for the symmetric J,I
 interaction to the same values.
 </P>
 <P>A wild-card asterisk can be used in place of or in conjunction with the
 I,J arguments to set the coefficients for multiple pairs of atom
 types.  This takes the form "*" or "*n" or "n*" or "m*n".  If N = the
 number of atom types, then an asterisk with no numeric values means all
 types from 1 to N.  A leading asterisk means all types from 1 to n
 (inclusive).  A trailing asterisk means all types from n to N
 (inclusive).  A middle asterisk means all types from m to n
 (inclusive).  Note that only type pairs with I <= J are considered; if
 asterisks imply type pairs where J < I, they are ignored.
 </P>
 <P>Note that a pair_coeff command can override a previous setting for the
 same I,J pair.  For example, these commands set the coeffs for all I,J
 pairs, then overwrite the coeffs for just the I,J = 2,3 pair:
 </P>
 <PRE>pair_coeff * * 1.0 1.0 2.5
 pair_coeff 2 3 2.0 1.0 1.12 
 </PRE>
 <P>A line in a data file that specifies pair coefficients uses the exact
 same format as the arguments of the pair_coeff command in an input
 script, with the exception of the I,J type arguments.  In each line of
 the "Pair Coeffs" section of a data file, only a single type I is
 specified, which sets the coefficients for type I interacting with
 type I.  This is because the section has exactly N lines, where N =
 the number of atom types.  For this reason, the wild-card asterisk
 should also not be used as part of the I argument.  Thus in a data
 file, the line corresponding to the 1st example above would be listed
 as
 </P>
 <PRE>2 1.0 1.0 2.5 
 </PRE>
 <P>For many potentials, if coefficients for type pairs with I != J are
 not set explicitly by a pair_coeff command, the values are inferred
 from the I,I and J,J settings by mixing rules; see the
 <A HREF = "pair_modify.html">pair_modify</A> command for a discussion.  Details on
 this option as it pertains to individual potentials are described on
 the doc page for the potential.
 </P>
 <HR>
 
 <P>Here is an alphabetic list of pair styles defined in LAMMPS.  Click on
 the style to display the formula it computes, arguments specified in
 the pair_style command, and coefficients specified by the associated
 <A HREF = "pair_coeff.html">pair_coeff</A> command:
 </P>
 <UL><LI><A HREF = "pair_hybrid.html">pair_style hybrid</A> - multiple styles of pairwise interactions
 <LI><A HREF = "pair_hybrid.html">pair_style hybrid/overlay</A> - multiple styles of superposed pairwise interactions 
 </UL>
 <UL><LI><A HREF = "pair_airebo.html">pair_style airebo</A> - AI-REBO potential
+<LI><A HREF = "pair_born.html">pair_style born</A> - Born-Mayer-Huggins potential
 <LI><A HREF = "pair_born.html">pair_style born/coul/long</A> - Born-Mayer-Huggins with long-range Coulomb
 <LI><A HREF = "pair_buck.html">pair_style buck</A> - Buckingham potential
 <LI><A HREF = "pair_buck.html">pair_style buck/coul/cut</A> - Buckingham with cutoff Coulomb
 <LI><A HREF = "pair_buck.html">pair_style buck/coul/long</A> - Buckingham with long-range Coulomb
 <LI><A HREF = "pair_colloid.html">pair_style colloid</A> - integrated colloidal potential
 <LI><A HREF = "pair_coul.html">pair_style coul/cut</A> - cutoff Coulombic potential
 <LI><A HREF = "pair_coul.html">pair_style coul/debye</A> - cutoff Coulombic potential with Debye screening
 <LI><A HREF = "pair_coul.html">pair_style coul/long</A> - long-range Coulombic potential
 <LI><A HREF = "pair_dipole.html">pair_style dipole/cut</A> - point dipoles with cutoff
 <LI><A HREF = "pair_dpd.html">pair_style dpd</A> - dissipative particle dynamics (DPD)
 <LI><A HREF = "pair_dpd.html">pair_style dpd/tstat</A> - DPD thermostatting
 <LI><A HREF = "pair_dsmc.html">pair_style dsmc</A> - Direct Simulation Monte Carlo (DSMC)
 <LI><A HREF = "pair_eam.html">pair_style eam</A> - embedded atom method (EAM)
 <LI><A HREF = "pair_eam.html">pair_style eam/opt</A> - optimized version of EAM
 <LI><A HREF = "pair_eam.html">pair_style eam/alloy</A> - alloy EAM
 <LI><A HREF = "pair_eam.html">pair_style eam/alloy/opt</A> - optimized version of alloy EAM
 <LI><A HREF = "pair_eam.html">pair_style eam/fs</A> - Finnis-Sinclair EAM
 <LI><A HREF = "pair_eam.html">pair_style eam/fs/opt</A> - optimized version of Finnis-Sinclair EAM
 <LI><A HREF = "pair_eim.html">pair_style eim</A> - embedded ion method (EIM)
+<LI><A HREF = "pair_gauss.html">pair_style gauss</A> - Gaussian potential
 <LI><A HREF = "pair_gayberne.html">pair_style gayberne</A> - Gay-Berne ellipsoidal potential
 <LI><A HREF = "pair_gayberne.html">pair_style gayberne/gpu</A> - GPU-enabled Gay-Berne ellipsoidal potential
 <LI><A HREF = "pair_gran.html">pair_style gran/hertz/history</A> - granular potential with Hertzian interactions
 <LI><A HREF = "pair_gran.html">pair_style gran/hooke</A> - granular potential with history effects
 <LI><A HREF = "pair_gran.html">pair_style gran/hooke/history</A> - granular potential without history effects
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/charmm</A> - CHARMM potential with cutoff Coulomb
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/charmm/implicit</A> - CHARMM for implicit solvent
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/long</A> - CHARMM with long-range Coulomb
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/long/opt</A> - optimized version of CHARMM with long-range Coulomb
 <LI><A HREF = "pair_class2.html">pair_style lj/class2</A> - COMPASS (class 2) force field with no Coulomb
 <LI><A HREF = "pair_class2.html">pair_style lj/class2/coul/cut</A> - COMPASS with cutoff Coulomb
 <LI><A HREF = "pair_class2.html">pair_style lj/class2/coul/long</A> - COMPASS with long-range Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut</A> - cutoff Lennard-Jones potential with no Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/gpu</A> - GPU-enabled version of cutoff LJ
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/opt</A> - optimized version of cutoff LJ
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/cut</A> - LJ with cutoff Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/debye</A> - LJ with Debye screening added to Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/long</A> - LJ with long-range Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/long/tip4p</A> - LJ with long-range Coulomb for TIP4P water
 <LI><A HREF = "pair_lj_expand.html">pair_style lj/expand</A> - Lennard-Jones for variable size particles
 <LI><A HREF = "pair_gromacs.html">pair_style lj/gromacs</A> - GROMACS-style Lennard-Jones potential
 <LI><A HREF = "pair_gromacs.html">pair_style lj/gromacs/coul/gromacs</A> - GROMACS-style LJ and Coulombic potential
 <LI><A HREF = "pair_lj_smooth.html">pair_style lj/smooth</A> - smoothed Lennard-Jones potential
 <LI><A HREF = "pair_lj96_cut.html">pair_style lj96/cut</A> - Lennard-Jones 9/6 potential
 <LI><A HREF = "pair_lubricate.html">pair_style lubricate</A> - hydrodynamic lubrication forces
 <LI><A HREF = "pair_meam.html">pair_style meam</A> - modified embedded atom method (MEAM)
 <LI><A HREF = "pair_morse.html">pair_style morse</A> - Morse potential
 <LI><A HREF = "pair_morse.html">pair_style morse/opt</A> - optimized version of Morse potential
 <LI><A HREF = "pair_peri.html">pair_style peri/lps</A> - peridynamic LPS potential
 <LI><A HREF = "pair_peri.html">pair_style peri/pmb</A> - peridynamic PMB potential
 <LI><A HREF = "pair_reax.html">pair_style reax</A> - ReaxFF potential
 <LI><A HREF = "pair_resquared.html">pair_style resquared</A> - Everaers RE-Squared ellipsoidal potential
 <LI><A HREF = "pair_soft.html">pair_style soft</A> - Soft (cosine) potential
 <LI><A HREF = "pair_sw.html">pair_style sw</A> - Stillinger-Weber 3-body potential
 <LI><A HREF = "pair_table.html">pair_style table</A> - tabulated pair potential
 <LI><A HREF = "pair_tersoff.html">pair_style tersoff</A> - Tersoff 3-body potential
 <LI><A HREF = "pair_tersoff_zbl.html">pair_style tersoff/zbl</A> - Tersoff/ZBL 3-body potential
 <LI><A HREF = "pair_yukawa.html">pair_style yukawa</A> - Yukawa potential
 <LI><A HREF = "pair_yukawa_colloid.html">pair_style yukawa/colloid</A> - screened Yukawa potential for finite-size particles 
 </UL>
 <P>There are also additional pair styles submitted by users which are
 included in the LAMMPS distribution.  The list of these with links to
 the individual styles are given in the pair section of <A HREF = "Section_commands.html#3_5">this
 page</A>.
 </P>
 <HR>
 
 <P><B>Restrictions:</B>
 </P>
 <P>This command must come after the simulation box is defined by a
 <A HREF = "read_data.html">read_data</A>, <A HREF = "read_restart.html">read_restart</A>, or
 <A HREF = "create_box.html">create_box</A> command.
 </P>
 <P><B>Related commands:</B>
 </P>
 <P><A HREF = "pair_style.html">pair_style</A>, <A HREF = "pair_modify.html">pair_modify</A>,
 <A HREF = "read_data.html">read_data</A>, <A HREF = "read_restart.html">read_restart</A>,
 <A HREF = "pair_write.html">pair_write</A>
 </P>
 <P><B>Default:</B> none
 </P>
 </HTML>
diff --git a/doc/pair_coeff.txt b/doc/pair_coeff.txt
index 9fb12c834..9060f6c3a 100644
--- a/doc/pair_coeff.txt
+++ b/doc/pair_coeff.txt
@@ -1,166 +1,168 @@
 "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
 
 :link(lws,http://lammps.sandia.gov)
 :link(ld,Manual.html)
 :link(lc,Section_commands.html#comm)
 
 :line
 
 pair_coeff command :h3
 
 [Syntax:]
 
 pair_coeff I J args :pre
 
 I,J = atom types (see asterisk form below)
 args = coefficients for one or more pairs of atom types :ul
 
 [Examples:]
 
 pair_coeff 1 2 1.0 1.0 2.5
 pair_coeff 2 * 1.0 1.0
 pair_coeff 3* 1*2 1.0 1.0 2.5
 pair_coeff * * 1.0 1.0
 pair_coeff * * nialhjea 1 1 2
 pair_coeff * 3 morse.table ENTRY1
 pair_coeff 1 2 lj/cut 1.0 1.0 2.5 (for pair_style hybrid) :pre
 
 [Description:]
 
 Specify the pairwise force field coefficients for one or more pairs of
 atom types.  The number and meaning of the coefficients depends on the
 pair style.  Pair coefficients can also be set in the data file read
 by the "read_data"_read_data.html command or in a restart file.
 
 I and J can be specified in one of two ways.  Explicit numeric values
 can be used for each, as in the 1st example above.  I <= J is
 required.  LAMMPS sets the coefficients for the symmetric J,I
 interaction to the same values.
 
 A wild-card asterisk can be used in place of or in conjunction with the
 I,J arguments to set the coefficients for multiple pairs of atom
 types.  This takes the form "*" or "*n" or "n*" or "m*n".  If N = the
 number of atom types, then an asterisk with no numeric values means all
 types from 1 to N.  A leading asterisk means all types from 1 to n
 (inclusive).  A trailing asterisk means all types from n to N
 (inclusive).  A middle asterisk means all types from m to n
 (inclusive).  Note that only type pairs with I <= J are considered; if
 asterisks imply type pairs where J < I, they are ignored.
 
 Note that a pair_coeff command can override a previous setting for the
 same I,J pair.  For example, these commands set the coeffs for all I,J
 pairs, then overwrite the coeffs for just the I,J = 2,3 pair:
 
 pair_coeff * * 1.0 1.0 2.5
 pair_coeff 2 3 2.0 1.0 1.12 :pre
 
 A line in a data file that specifies pair coefficients uses the exact
 same format as the arguments of the pair_coeff command in an input
 script, with the exception of the I,J type arguments.  In each line of
 the "Pair Coeffs" section of a data file, only a single type I is
 specified, which sets the coefficients for type I interacting with
 type I.  This is because the section has exactly N lines, where N =
 the number of atom types.  For this reason, the wild-card asterisk
 should also not be used as part of the I argument.  Thus in a data
 file, the line corresponding to the 1st example above would be listed
 as
 
 2 1.0 1.0 2.5 :pre
 
 For many potentials, if coefficients for type pairs with I != J are
 not set explicitly by a pair_coeff command, the values are inferred
 from the I,I and J,J settings by mixing rules; see the
 "pair_modify"_pair_modify.html command for a discussion.  Details on
 this option as it pertains to individual potentials are described on
 the doc page for the potential.
 
 :line
 
 Here is an alphabetic list of pair styles defined in LAMMPS.  Click on
 the style to display the formula it computes, arguments specified in
 the pair_style command, and coefficients specified by the associated
 "pair_coeff"_pair_coeff.html command:
 
 "pair_style hybrid"_pair_hybrid.html - multiple styles of pairwise interactions
 "pair_style hybrid/overlay"_pair_hybrid.html - multiple styles of superposed pairwise interactions :ul
 
 "pair_style airebo"_pair_airebo.html - AI-REBO potential
+"pair_style born"_pair_born.html - Born-Mayer-Huggins potential
 "pair_style born/coul/long"_pair_born.html - Born-Mayer-Huggins with long-range Coulomb
 "pair_style buck"_pair_buck.html - Buckingham potential
 "pair_style buck/coul/cut"_pair_buck.html - Buckingham with cutoff Coulomb
 "pair_style buck/coul/long"_pair_buck.html - Buckingham with long-range Coulomb
 "pair_style colloid"_pair_colloid.html - integrated colloidal potential
 "pair_style coul/cut"_pair_coul.html - cutoff Coulombic potential
 "pair_style coul/debye"_pair_coul.html - cutoff Coulombic potential with Debye screening
 "pair_style coul/long"_pair_coul.html - long-range Coulombic potential
 "pair_style dipole/cut"_pair_dipole.html - point dipoles with cutoff
 "pair_style dpd"_pair_dpd.html - dissipative particle dynamics (DPD)
 "pair_style dpd/tstat"_pair_dpd.html - DPD thermostatting
 "pair_style dsmc"_pair_dsmc.html - Direct Simulation Monte Carlo (DSMC)
 "pair_style eam"_pair_eam.html - embedded atom method (EAM)
 "pair_style eam/opt"_pair_eam.html - optimized version of EAM
 "pair_style eam/alloy"_pair_eam.html - alloy EAM
 "pair_style eam/alloy/opt"_pair_eam.html - optimized version of alloy EAM
 "pair_style eam/fs"_pair_eam.html - Finnis-Sinclair EAM
 "pair_style eam/fs/opt"_pair_eam.html - optimized version of Finnis-Sinclair EAM
 "pair_style eim"_pair_eim.html - embedded ion method (EIM)
+"pair_style gauss"_pair_gauss.html - Gaussian potential
 "pair_style gayberne"_pair_gayberne.html - Gay-Berne ellipsoidal potential
 "pair_style gayberne/gpu"_pair_gayberne.html - GPU-enabled Gay-Berne ellipsoidal potential
 "pair_style gran/hertz/history"_pair_gran.html - granular potential with Hertzian interactions
 "pair_style gran/hooke"_pair_gran.html - granular potential with history effects
 "pair_style gran/hooke/history"_pair_gran.html - granular potential without history effects
 "pair_style lj/charmm/coul/charmm"_pair_charmm.html - CHARMM potential with cutoff Coulomb
 "pair_style lj/charmm/coul/charmm/implicit"_pair_charmm.html - CHARMM for implicit solvent
 "pair_style lj/charmm/coul/long"_pair_charmm.html - CHARMM with long-range Coulomb
 "pair_style lj/charmm/coul/long/opt"_pair_charmm.html - optimized version of CHARMM with long-range Coulomb
 "pair_style lj/class2"_pair_class2.html - COMPASS (class 2) force field with no Coulomb
 "pair_style lj/class2/coul/cut"_pair_class2.html - COMPASS with cutoff Coulomb
 "pair_style lj/class2/coul/long"_pair_class2.html - COMPASS with long-range Coulomb
 "pair_style lj/cut"_pair_lj.html - cutoff Lennard-Jones potential with no Coulomb
 "pair_style lj/cut/gpu"_pair_lj.html - GPU-enabled version of cutoff LJ
 "pair_style lj/cut/opt"_pair_lj.html - optimized version of cutoff LJ
 "pair_style lj/cut/coul/cut"_pair_lj.html - LJ with cutoff Coulomb
 "pair_style lj/cut/coul/debye"_pair_lj.html - LJ with Debye screening added to Coulomb
 "pair_style lj/cut/coul/long"_pair_lj.html - LJ with long-range Coulomb
 "pair_style lj/cut/coul/long/tip4p"_pair_lj.html - LJ with long-range Coulomb for TIP4P water
 "pair_style lj/expand"_pair_lj_expand.html - Lennard-Jones for variable size particles
 "pair_style lj/gromacs"_pair_gromacs.html - GROMACS-style Lennard-Jones potential
 "pair_style lj/gromacs/coul/gromacs"_pair_gromacs.html - GROMACS-style LJ and Coulombic potential
 "pair_style lj/smooth"_pair_lj_smooth.html - smoothed Lennard-Jones potential
 "pair_style lj96/cut"_pair_lj96_cut.html - Lennard-Jones 9/6 potential
 "pair_style lubricate"_pair_lubricate.html - hydrodynamic lubrication forces
 "pair_style meam"_pair_meam.html - modified embedded atom method (MEAM)
 "pair_style morse"_pair_morse.html - Morse potential
 "pair_style morse/opt"_pair_morse.html - optimized version of Morse potential
 "pair_style peri/lps"_pair_peri.html - peridynamic LPS potential
 "pair_style peri/pmb"_pair_peri.html - peridynamic PMB potential
 "pair_style reax"_pair_reax.html - ReaxFF potential
 "pair_style resquared"_pair_resquared.html - Everaers RE-Squared ellipsoidal potential
 "pair_style soft"_pair_soft.html - Soft (cosine) potential
 "pair_style sw"_pair_sw.html - Stillinger-Weber 3-body potential
 "pair_style table"_pair_table.html - tabulated pair potential
 "pair_style tersoff"_pair_tersoff.html - Tersoff 3-body potential
 "pair_style tersoff/zbl"_pair_tersoff_zbl.html - Tersoff/ZBL 3-body potential
 "pair_style yukawa"_pair_yukawa.html - Yukawa potential
 "pair_style yukawa/colloid"_pair_yukawa_colloid.html - screened Yukawa potential for finite-size particles :ul
 
 There are also additional pair styles submitted by users which are
 included in the LAMMPS distribution.  The list of these with links to
 the individual styles are given in the pair section of "this
 page"_Section_commands.html#3_5.
 
 :line
 
 [Restrictions:]
 
 This command must come after the simulation box is defined by a
 "read_data"_read_data.html, "read_restart"_read_restart.html, or
 "create_box"_create_box.html command.
 
 [Related commands:]
 
 "pair_style"_pair_style.html, "pair_modify"_pair_modify.html,
 "read_data"_read_data.html, "read_restart"_read_restart.html,
 "pair_write"_pair_write.html
 
 [Default:] none
diff --git a/doc/pair_gauss.html b/doc/pair_gauss.html
new file mode 100644
index 000000000..696a48b6b
--- /dev/null
+++ b/doc/pair_gauss.html
@@ -0,0 +1,84 @@
+<HTML>
+<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A> 
+</CENTER>
+
+
+
+
+
+
+<HR>
+
+<H3>pair_style gauss command 
+</H3>
+<P><B>Syntax:</B> 
+</P>
+<PRE>pair_style gauss cutoff 
+</PRE>
+<UL><LI>cutoff = global cutoff for Gauss interactions (distance units) 
+</UL>
+<P><B>Examples:</B> 
+</P>
+<PRE>pair_style gauss 12.0 
+pair_coeff * * 1.0 0.9
+pair_coeff 1 4 1.0 0.9 10.0 
+</PRE>
+<P><B>Description:</B> 
+</P>
+<P>Style <I>gauss</I> computes a tethering potential of the form
+</P>
+<CENTER><IMG SRC = "Eqs/pair_gauss.jpg">
+</CENTER>
+<P>between an atom and its corresponding tether site which will typically
+be a frozen atom in the simulation.  Rc is the cutoff.
+</P>
+<P>The following coefficients must be defined for each pair of atom types
+via the <A HREF = "pair_coeff.html">pair_coeff</A> command as in the examples above,
+or in the data file or restart files read by the
+<A HREF = "read_data.html">read_data</A> or <A HREF = "read_restart.html">read_restart</A>
+commands:
+</P>
+<UL><LI>A (energy units)
+<LI>B (1/distance^2 units) 
+<LI>cutoff (distance units) 
+</UL>
+<P>The last coefficient is optional. If not specified, the global cutoff
+is used.
+</P>
+<HR>
+
+<P><B>Mixing, shift, table, tail correction, restart, rRESPA info</B>:
+</P>
+<P>This pair style does not support mixing.  Thus, coefficients for all
+I,J pairs must be specified explicitly.
+</P>
+<P>This pair style does not support the <A HREF = "pair_modify.html">pair_modify</A>
+shift option. There is no effect due to the Gaussian well beyond the
+cutoff; hence reasonable cutoffs need to be specified.
+</P>
+<P>The <A HREF = "pair_modify.html">pair_modify</A> table and tail options are not
+relevant for this pair style.
+</P>
+<P>This pair style does not support the <A HREF = "pair_modify.html">pair_modify</A>
+table option, since a tabulation capability does not exist for this
+potential.
+</P>
+<P>This pair style writes its information to <A HREF = "restart.html">binary restart
+files</A>, so pair_style and pair_coeff commands do not need
+to be specified in an input script that reads a restart file.
+</P>
+<P>This pair style can only be used via the <I>pair</I> keyword of the
+<A HREF = "run_style.html">run_style respa</A> command.  It does not support the
+<I>inner</I>, <I>middle</I>, <I>outer</I> keywords.
+</P>
+<HR>
+
+<P><B>Restrictions:</B> none
+</P>
+<P><B>Related commands:</B>
+</P>
+<P><A HREF = "pair_coeff.html">pair_coeff</A>, <A HREF = "fix_adapt.html">fix adapt</A>
+</P>
+<P><B>Default:</B> none
+</P>
+</HTML>
diff --git a/doc/pair_gauss.txt b/doc/pair_gauss.txt
new file mode 100644
index 000000000..809bb7d23
--- /dev/null
+++ b/doc/pair_gauss.txt
@@ -0,0 +1,79 @@
+"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
+
+:link(lws,http://lammps.sandia.gov)
+:link(ld,Manual.html)
+:link(lc,Section_commands.html#comm)
+
+:line
+
+pair_style gauss command :h3
+
+[Syntax:] 
+
+pair_style gauss cutoff :pre
+
+cutoff = global cutoff for Gauss interactions (distance units) :ul
+
+[Examples:] 
+
+pair_style gauss 12.0 
+pair_coeff * * 1.0 0.9
+pair_coeff 1 4 1.0 0.9 10.0 :pre
+
+[Description:] 
+
+Style {gauss} computes a tethering potential of the form
+
+:c,image(Eqs/pair_gauss.jpg)
+
+between an atom and its corresponding tether site which will typically
+be a frozen atom in the simulation.  Rc is the cutoff.
+
+The following coefficients must be defined for each pair of atom types
+via the "pair_coeff"_pair_coeff.html command as in the examples above,
+or in the data file or restart files read by the
+"read_data"_read_data.html or "read_restart"_read_restart.html
+commands:
+
+A (energy units)
+B (1/distance^2 units) 
+cutoff (distance units) :ul 
+
+The last coefficient is optional. If not specified, the global cutoff
+is used.
+
+:line
+
+[Mixing, shift, table, tail correction, restart, rRESPA info]:
+
+This pair style does not support mixing.  Thus, coefficients for all
+I,J pairs must be specified explicitly.
+
+This pair style does not support the "pair_modify"_pair_modify.html
+shift option. There is no effect due to the Gaussian well beyond the
+cutoff; hence reasonable cutoffs need to be specified.
+
+The "pair_modify"_pair_modify.html table and tail options are not
+relevant for this pair style.
+
+This pair style does not support the "pair_modify"_pair_modify.html
+table option, since a tabulation capability does not exist for this
+potential.
+
+This pair style writes its information to "binary restart
+files"_restart.html, so pair_style and pair_coeff commands do not need
+to be specified in an input script that reads a restart file.
+
+This pair style can only be used via the {pair} keyword of the
+"run_style respa"_run_style.html command.  It does not support the
+{inner}, {middle}, {outer} keywords.
+
+:line
+
+[Restrictions:] none
+
+[Related commands:]
+
+"pair_coeff"_pair_coeff.html, "fix adapt"_fix_adapt.html
+
+[Default:] none
diff --git a/doc/pair_style.html b/doc/pair_style.html
index 88957d663..ce191c2c1 100644
--- a/doc/pair_style.html
+++ b/doc/pair_style.html
@@ -1,181 +1,183 @@
 <HTML>
 <CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A> 
 </CENTER>
 
 
 
 
 
 
 <HR>
 
 <H3>pair_style command 
 </H3>
 <P><B>Syntax:</B>
 </P>
 <PRE>pair_style style args 
 </PRE>
 <UL><LI>style = one of the styles from the list below
 <LI>args = arguments used by a particular style 
 </UL>
 <P><B>Examples:</B>
 </P>
 <PRE>pair_style lj/cut 2.5
 pair_style eam/alloy
 pair_style hybrid lj/charmm/coul/long 10.0 eam
 pair_style table linear 1000
 pair_style none 
 </PRE>
 <P><B>Description:</B>
 </P>
 <P>Set the formula(s) LAMMPS uses to compute pairwise interactions.  In
 LAMMPS, pair potentials are defined between pairs of atoms that are
 within a cutoff distance and the set of active interactions typically
 changes over time.  See the <A HREF = "bond_style.html">bond_style</A> command to
 define potentials between pairs of bonded atoms, which typically
 remain in place for the duration of a simulation.
 </P>
 <P>In LAMMPS, pairwise force fields encompass a variety of interactions,
 some of which include many-body effects, e.g. EAM, Stillinger-Weber,
 Tersoff, REBO potentials.  They are still classified as "pairwise"
 potentials because the set of interacting atoms changes with time
 (unlike molecular bonds) and thus a neighbor list is used to find
 nearby interacting atoms.
 </P>
 <P>Hybrid models where specified pairs of atom types interact via
 different pair potentials can be setup using the <I>hybrid</I> pair style.
 </P>
 <P>The coefficients associated with a pair style are typically set for
 each pair of atom types, and are specified by the
 <A HREF = "pair_coeff.html">pair_coeff</A> command or read from a file by the
 <A HREF = "read_data.html">read_data</A> or <A HREF = "read_restart.html">read_restart</A>
 commands.
 </P>
 <P>The <A HREF = "pair_modify.html">pair_modify</A> command sets options for mixing of
 type I-J interaction coefficients and adding energy offsets or tail
 corrections to Lennard-Jones potentials.  Details on these options as
 they pertain to individual potentials are described on the doc page
 for the potential.  Likewise, info on whether the potential
 information is stored in a <A HREF = "write_restart.html">restart file</A> is listed
 on the potential doc page.
 </P>
 <P>In the formulas listed for each pair style, <I>E</I> is the energy of a
 pairwise interaction between two atoms separated by a distance <I>r</I>.
 The force between the atoms is the negative derivative of this
 expression.
 </P>
 <P>If the pair_style command has a cutoff argument, it sets global
 cutoffs for all pairs of atom types.  The distance(s) can be smaller
 or larger than the dimensions of the simulation box.
 </P>
 <P>Typically, the global cutoff value can be overridden for a specific
 pair of atom types by the <A HREF = "pair_coeff.html">pair_coeff</A> command.  The
 pair style settings (including global cutoffs) can be changed by a
 subsequent pair_style command using the same style.  This will reset
 the cutoffs for all atom type pairs, including those previously set
 explicitly by a <A HREF = "pair_coeff.html">pair_coeff</A> command.  The exceptions
 to this are that pair_style <I>table</I> and <I>hybrid</I> settings cannot be
 reset.  A new pair_style command for these styles will wipe out all
 previously specified pair_coeff values.
 </P>
 <HR>
 
 <P>Here is an alphabetic list of pair styles defined in LAMMPS.  Click on
 the style to display the formula it computes, arguments specified in
 the pair_style command, and coefficients specified by the associated
 <A HREF = "pair_coeff.html">pair_coeff</A> command:
 </P>
 <UL><LI><A HREF = "pair_none.html">pair_style none</A> - turn off pairwise interactions
 <LI><A HREF = "pair_hybrid.html">pair_style hybrid</A> - multiple styles of pairwise interactions
 <LI><A HREF = "pair_hybrid.html">pair_style hybrid/overlay</A> - multiple styles of superposed pairwise interactions 
 </UL>
 <UL><LI><A HREF = "pair_airebo.html">pair_style airebo</A> - AI-REBO potential
+<LI><A HREF = "pair_born.html">pair_style born</A> - Born-Mayer-Huggins potential
 <LI><A HREF = "pair_born.html">pair_style born/coul/long</A> - Born-Mayer-Huggins with long-range Coulomb
 <LI><A HREF = "pair_buck.html">pair_style buck</A> - Buckingham potential
 <LI><A HREF = "pair_buck.html">pair_style buck/coul/cut</A> - Buckingham with cutoff Coulomb
 <LI><A HREF = "pair_buck.html">pair_style buck/coul/long</A> - Buckingham with long-range Coulomb
 <LI><A HREF = "pair_colloid.html">pair_style colloid</A> - integrated colloidal potential
 <LI><A HREF = "pair_coul.html">pair_style coul/cut</A> - cutoff Coulombic potential
 <LI><A HREF = "pair_coul.html">pair_style coul/debye</A> - cutoff Coulombic potential with Debye screening
 <LI><A HREF = "pair_coul.html">pair_style coul/long</A> - long-range Coulombic potential
 <LI><A HREF = "pair_dipole.html">pair_style dipole/cut</A> - point dipoles with cutoff
 <LI><A HREF = "pair_dpd.html">pair_style dpd</A> - dissipative particle dynamics (DPD)
 <LI><A HREF = "pair_dpd.html">pair_style dpd/tstat</A> - DPD thermostatting
 <LI><A HREF = "pair_dsmc.html">pair_style dsmc</A> - Direct Simulation Monte Carlo (DSMC)
 <LI><A HREF = "pair_eam.html">pair_style eam</A> - embedded atom method (EAM)
 <LI><A HREF = "pair_eam.html">pair_style eam/opt</A> - optimized version of EAM
 <LI><A HREF = "pair_eam.html">pair_style eam/alloy</A> - alloy EAM
 <LI><A HREF = "pair_eam.html">pair_style eam/alloy/opt</A> - optimized version of alloy EAM
 <LI><A HREF = "pair_eam.html">pair_style eam/fs</A> - Finnis-Sinclair EAM
 <LI><A HREF = "pair_eam.html">pair_style eam/fs/opt</A> - optimized version of Finnis-Sinclair EAM
 <LI><A HREF = "pair_eim.html">pair_style eim</A> - embedded ion method (EIM)
+<LI><A HREF = "pair_gauss.html">pair_style gauss</A> - Gaussian potential
 <LI><A HREF = "pair_gayberne.html">pair_style gayberne</A> - Gay-Berne ellipsoidal potential
 <LI><A HREF = "pair_gayberne.html">pair_style gayberne/gpu</A> - GPU-enabled Gay-Berne ellipsoidal potential
 <LI><A HREF = "pair_gran.html">pair_style gran/hertz/history</A> - granular potential with Hertzian interactions
 <LI><A HREF = "pair_gran.html">pair_style gran/hooke</A> - granular potential with history effects
 <LI><A HREF = "pair_gran.html">pair_style gran/hooke/history</A> - granular potential without history effects
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/charmm</A> - CHARMM potential with cutoff Coulomb
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/charmm/implicit</A> - CHARMM for implicit solvent
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/long</A> - CHARMM with long-range Coulomb
 <LI><A HREF = "pair_charmm.html">pair_style lj/charmm/coul/long/opt</A> - optimized version of CHARMM with long-range Coulomb
 <LI><A HREF = "pair_class2.html">pair_style lj/class2</A> - COMPASS (class 2) force field with no Coulomb
 <LI><A HREF = "pair_class2.html">pair_style lj/class2/coul/cut</A> - COMPASS with cutoff Coulomb
 <LI><A HREF = "pair_class2.html">pair_style lj/class2/coul/long</A> - COMPASS with long-range Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut</A> - cutoff Lennard-Jones potential with no Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/gpu</A> - GPU-enabled version of cutoff LJ
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/opt</A> - optimized version of cutoff LJ
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/cut</A> - LJ with cutoff Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/debye</A> - LJ with Debye screening added to Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/long</A> - LJ with long-range Coulomb
 <LI><A HREF = "pair_lj.html">pair_style lj/cut/coul/long/tip4p</A> - LJ with long-range Coulomb for TIP4P water
 <LI><A HREF = "pair_lj_expand.html">pair_style lj/expand</A> - Lennard-Jones for variable size particles
 <LI><A HREF = "pair_gromacs.html">pair_style lj/gromacs</A> - GROMACS-style Lennard-Jones potential
 <LI><A HREF = "pair_gromacs.html">pair_style lj/gromacs/coul/gromacs</A> - GROMACS-style LJ and Coulombic potential
 <LI><A HREF = "pair_lj_smooth.html">pair_style lj/smooth</A> - smoothed Lennard-Jones potential
 <LI><A HREF = "pair_lj96_cut.html">pair_style lj96/cut</A> - Lennard-Jones 9/6 potential
 <LI><A HREF = "pair_lubricate.html">pair_style lubricate</A> - hydrodynamic lubrication forces
 <LI><A HREF = "pair_meam.html">pair_style meam</A> - modified embedded atom method (MEAM)
 <LI><A HREF = "pair_morse.html">pair_style morse</A> - Morse potential
 <LI><A HREF = "pair_morse.html">pair_style morse/opt</A> - optimized version of Morse potential
 <LI><A HREF = "pair_peri.html">pair_style peri/lps</A> - peridynamic LPS potential
 <LI><A HREF = "pair_peri.html">pair_style peri/pmb</A> - peridynamic PMB potential
 <LI><A HREF = "pair_reax.html">pair_style reax</A> - ReaxFF potential
 <LI><A HREF = "pair_resquared.html">pair_style resquared</A> - Everaers RE-Squared ellipsoidal potential
 <LI><A HREF = "pair_soft.html">pair_style soft</A> - Soft (cosine) potential
 <LI><A HREF = "pair_sw.html">pair_style sw</A> - Stillinger-Weber 3-body potential
 <LI><A HREF = "pair_table.html">pair_style table</A> - tabulated pair potential
 <LI><A HREF = "pair_tersoff.html">pair_style tersoff</A> - Tersoff 3-body potential
 <LI><A HREF = "pair_tersoff_zbl.html">pair_style tersoff/zbl</A> - Tersoff/ZBL 3-body potential
 <LI><A HREF = "pair_yukawa.html">pair_style yukawa</A> - Yukawa potential
 <LI><A HREF = "pair_yukawa_colloid.html">pair_style yukawa/colloid</A> - screened Yukawa potential for finite-size particles 
 </UL>
 <P>There are also additional pair styles submitted by users which are
 included in the LAMMPS distribution.  The list of these with links to
 the individual styles are given in the pair section of <A HREF = "Section_commands.html#3_5">this
 page</A>.
 </P>
 <HR>
 
 <P><B>Restrictions:</B>
 </P>
 <P>This command must be used before any coefficients are set by the
 <A HREF = "pair_coeff.html">pair_coeff</A>, <A HREF = "read_data.html">read_data</A>, or
 <A HREF = "read_restart.html">read_restart</A> commands.
 </P>
 <P>Some pair styles are part of specific packages.  They are only enabled
 if LAMMPS was built with that package.  See the <A HREF = "Section_start.html#2_3">Making
 LAMMPS</A> section for more info on packages.  The
 doc pages for individual pair potentials tell if it is part of a
 package.
 </P>
 <P><B>Related commands:</B>
 </P>
 <P><A HREF = "pair_coeff.html">pair_coeff</A>, <A HREF = "read_data.html">read_data</A>,
 <A HREF = "pair_modify.html">pair_modify</A>, <A HREF = "kspace_style.html">kspace_style</A>,
 <A HREF = "dielectric.html">dielectric</A>, <A HREF = "pair_write.html">pair_write</A>
 </P>
 <P><B>Default:</B>
 </P>
 <PRE>pair_style none 
 </PRE>
 </HTML>
diff --git a/doc/pair_style.txt b/doc/pair_style.txt
index fb2bac99f..ab05aed45 100644
--- a/doc/pair_style.txt
+++ b/doc/pair_style.txt
@@ -1,176 +1,178 @@
 "LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
 
 :link(lws,http://lammps.sandia.gov)
 :link(ld,Manual.html)
 :link(lc,Section_commands.html#comm)
 
 :line
 
 pair_style command :h3
 
 [Syntax:]
 
 pair_style style args :pre
 
 style = one of the styles from the list below
 args = arguments used by a particular style :ul
 
 [Examples:]
 
 pair_style lj/cut 2.5
 pair_style eam/alloy
 pair_style hybrid lj/charmm/coul/long 10.0 eam
 pair_style table linear 1000
 pair_style none :pre
 
 [Description:]
 
 Set the formula(s) LAMMPS uses to compute pairwise interactions.  In
 LAMMPS, pair potentials are defined between pairs of atoms that are
 within a cutoff distance and the set of active interactions typically
 changes over time.  See the "bond_style"_bond_style.html command to
 define potentials between pairs of bonded atoms, which typically
 remain in place for the duration of a simulation.
 
 In LAMMPS, pairwise force fields encompass a variety of interactions,
 some of which include many-body effects, e.g. EAM, Stillinger-Weber,
 Tersoff, REBO potentials.  They are still classified as "pairwise"
 potentials because the set of interacting atoms changes with time
 (unlike molecular bonds) and thus a neighbor list is used to find
 nearby interacting atoms.
 
 Hybrid models where specified pairs of atom types interact via
 different pair potentials can be setup using the {hybrid} pair style.
 
 The coefficients associated with a pair style are typically set for
 each pair of atom types, and are specified by the
 "pair_coeff"_pair_coeff.html command or read from a file by the
 "read_data"_read_data.html or "read_restart"_read_restart.html
 commands.
 
 The "pair_modify"_pair_modify.html command sets options for mixing of
 type I-J interaction coefficients and adding energy offsets or tail
 corrections to Lennard-Jones potentials.  Details on these options as
 they pertain to individual potentials are described on the doc page
 for the potential.  Likewise, info on whether the potential
 information is stored in a "restart file"_write_restart.html is listed
 on the potential doc page.
 
 In the formulas listed for each pair style, {E} is the energy of a
 pairwise interaction between two atoms separated by a distance {r}.
 The force between the atoms is the negative derivative of this
 expression.
 
 If the pair_style command has a cutoff argument, it sets global
 cutoffs for all pairs of atom types.  The distance(s) can be smaller
 or larger than the dimensions of the simulation box.
 
 Typically, the global cutoff value can be overridden for a specific
 pair of atom types by the "pair_coeff"_pair_coeff.html command.  The
 pair style settings (including global cutoffs) can be changed by a
 subsequent pair_style command using the same style.  This will reset
 the cutoffs for all atom type pairs, including those previously set
 explicitly by a "pair_coeff"_pair_coeff.html command.  The exceptions
 to this are that pair_style {table} and {hybrid} settings cannot be
 reset.  A new pair_style command for these styles will wipe out all
 previously specified pair_coeff values.
 
 :line
 
 Here is an alphabetic list of pair styles defined in LAMMPS.  Click on
 the style to display the formula it computes, arguments specified in
 the pair_style command, and coefficients specified by the associated
 "pair_coeff"_pair_coeff.html command:
 
 "pair_style none"_pair_none.html - turn off pairwise interactions
 "pair_style hybrid"_pair_hybrid.html - multiple styles of pairwise interactions
 "pair_style hybrid/overlay"_pair_hybrid.html - multiple styles of superposed pairwise interactions :ul
 
 "pair_style airebo"_pair_airebo.html - AI-REBO potential
+"pair_style born"_pair_born.html - Born-Mayer-Huggins potential
 "pair_style born/coul/long"_pair_born.html - Born-Mayer-Huggins with long-range Coulomb
 "pair_style buck"_pair_buck.html - Buckingham potential
 "pair_style buck/coul/cut"_pair_buck.html - Buckingham with cutoff Coulomb
 "pair_style buck/coul/long"_pair_buck.html - Buckingham with long-range Coulomb
 "pair_style colloid"_pair_colloid.html - integrated colloidal potential
 "pair_style coul/cut"_pair_coul.html - cutoff Coulombic potential
 "pair_style coul/debye"_pair_coul.html - cutoff Coulombic potential with Debye screening
 "pair_style coul/long"_pair_coul.html - long-range Coulombic potential
 "pair_style dipole/cut"_pair_dipole.html - point dipoles with cutoff
 "pair_style dpd"_pair_dpd.html - dissipative particle dynamics (DPD)
 "pair_style dpd/tstat"_pair_dpd.html - DPD thermostatting
 "pair_style dsmc"_pair_dsmc.html - Direct Simulation Monte Carlo (DSMC)
 "pair_style eam"_pair_eam.html - embedded atom method (EAM)
 "pair_style eam/opt"_pair_eam.html - optimized version of EAM
 "pair_style eam/alloy"_pair_eam.html - alloy EAM
 "pair_style eam/alloy/opt"_pair_eam.html - optimized version of alloy EAM
 "pair_style eam/fs"_pair_eam.html - Finnis-Sinclair EAM
 "pair_style eam/fs/opt"_pair_eam.html - optimized version of Finnis-Sinclair EAM
 "pair_style eim"_pair_eim.html - embedded ion method (EIM)
+"pair_style gauss"_pair_gauss.html - Gaussian potential
 "pair_style gayberne"_pair_gayberne.html - Gay-Berne ellipsoidal potential
 "pair_style gayberne/gpu"_pair_gayberne.html - GPU-enabled Gay-Berne ellipsoidal potential
 "pair_style gran/hertz/history"_pair_gran.html - granular potential with Hertzian interactions
 "pair_style gran/hooke"_pair_gran.html - granular potential with history effects
 "pair_style gran/hooke/history"_pair_gran.html - granular potential without history effects
 "pair_style lj/charmm/coul/charmm"_pair_charmm.html - CHARMM potential with cutoff Coulomb
 "pair_style lj/charmm/coul/charmm/implicit"_pair_charmm.html - CHARMM for implicit solvent
 "pair_style lj/charmm/coul/long"_pair_charmm.html - CHARMM with long-range Coulomb
 "pair_style lj/charmm/coul/long/opt"_pair_charmm.html - optimized version of CHARMM with long-range Coulomb
 "pair_style lj/class2"_pair_class2.html - COMPASS (class 2) force field with no Coulomb
 "pair_style lj/class2/coul/cut"_pair_class2.html - COMPASS with cutoff Coulomb
 "pair_style lj/class2/coul/long"_pair_class2.html - COMPASS with long-range Coulomb
 "pair_style lj/cut"_pair_lj.html - cutoff Lennard-Jones potential with no Coulomb
 "pair_style lj/cut/gpu"_pair_lj.html - GPU-enabled version of cutoff LJ
 "pair_style lj/cut/opt"_pair_lj.html - optimized version of cutoff LJ
 "pair_style lj/cut/coul/cut"_pair_lj.html - LJ with cutoff Coulomb
 "pair_style lj/cut/coul/debye"_pair_lj.html - LJ with Debye screening added to Coulomb
 "pair_style lj/cut/coul/long"_pair_lj.html - LJ with long-range Coulomb
 "pair_style lj/cut/coul/long/tip4p"_pair_lj.html - LJ with long-range Coulomb for TIP4P water
 "pair_style lj/expand"_pair_lj_expand.html - Lennard-Jones for variable size particles
 "pair_style lj/gromacs"_pair_gromacs.html - GROMACS-style Lennard-Jones potential
 "pair_style lj/gromacs/coul/gromacs"_pair_gromacs.html - GROMACS-style LJ and Coulombic potential
 "pair_style lj/smooth"_pair_lj_smooth.html - smoothed Lennard-Jones potential
 "pair_style lj96/cut"_pair_lj96_cut.html - Lennard-Jones 9/6 potential
 "pair_style lubricate"_pair_lubricate.html - hydrodynamic lubrication forces
 "pair_style meam"_pair_meam.html - modified embedded atom method (MEAM)
 "pair_style morse"_pair_morse.html - Morse potential
 "pair_style morse/opt"_pair_morse.html - optimized version of Morse potential
 "pair_style peri/lps"_pair_peri.html - peridynamic LPS potential
 "pair_style peri/pmb"_pair_peri.html - peridynamic PMB potential
 "pair_style reax"_pair_reax.html - ReaxFF potential
 "pair_style resquared"_pair_resquared.html - Everaers RE-Squared ellipsoidal potential
 "pair_style soft"_pair_soft.html - Soft (cosine) potential
 "pair_style sw"_pair_sw.html - Stillinger-Weber 3-body potential
 "pair_style table"_pair_table.html - tabulated pair potential
 "pair_style tersoff"_pair_tersoff.html - Tersoff 3-body potential
 "pair_style tersoff/zbl"_pair_tersoff_zbl.html - Tersoff/ZBL 3-body potential
 "pair_style yukawa"_pair_yukawa.html - Yukawa potential
 "pair_style yukawa/colloid"_pair_yukawa_colloid.html - screened Yukawa potential for finite-size particles :ul
 
 There are also additional pair styles submitted by users which are
 included in the LAMMPS distribution.  The list of these with links to
 the individual styles are given in the pair section of "this
 page"_Section_commands.html#3_5.
 
 :line
 
 [Restrictions:]
 
 This command must be used before any coefficients are set by the
 "pair_coeff"_pair_coeff.html, "read_data"_read_data.html, or
 "read_restart"_read_restart.html commands.
 
 Some pair styles are part of specific packages.  They are only enabled
 if LAMMPS was built with that package.  See the "Making
 LAMMPS"_Section_start.html#2_3 section for more info on packages.  The
 doc pages for individual pair potentials tell if it is part of a
 package.
 
 [Related commands:]
 
 "pair_coeff"_pair_coeff.html, "read_data"_read_data.html,
 "pair_modify"_pair_modify.html, "kspace_style"_kspace_style.html,
 "dielectric"_dielectric.html, "pair_write"_pair_write.html
 
 [Default:]
 
 pair_style none :pre