diff --git a/src/CLASS2/angle_class2.cpp b/src/CLASS2/angle_class2.cpp index 2eabc20b3..09ff5860e 100644 --- a/src/CLASS2/angle_class2.cpp +++ b/src/CLASS2/angle_class2.cpp @@ -1,465 +1,465 @@ /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Eric Simon (Cray) ------------------------------------------------------------------------- */ #include "math.h" #include "string.h" #include "stdlib.h" #include "angle_class2.h" #include "atom.h" #include "neighbor.h" #include "domain.h" #include "comm.h" #include "force.h" #include "math_const.h" #include "memory.h" #include "error.h" using namespace LAMMPS_NS; using namespace MathConst; #define SMALL 0.001 /* ---------------------------------------------------------------------- */ AngleClass2::AngleClass2(LAMMPS *lmp) : Angle(lmp) {} /* ---------------------------------------------------------------------- */ AngleClass2::~AngleClass2() { if (allocated) { memory->destroy(setflag); memory->destroy(setflag_a); memory->destroy(setflag_bb); memory->destroy(setflag_ba); memory->destroy(theta0); memory->destroy(k2); memory->destroy(k3); memory->destroy(k4); memory->destroy(bb_k); memory->destroy(bb_r1); memory->destroy(bb_r2); memory->destroy(ba_k1); memory->destroy(ba_k2); memory->destroy(ba_r1); memory->destroy(ba_r2); } } /* ---------------------------------------------------------------------- */ void AngleClass2::compute(int eflag, int vflag) { int i1,i2,i3,n,type; double delx1,dely1,delz1,delx2,dely2,delz2; double eangle,f1[3],f3[3]; double dtheta,dtheta2,dtheta3,dtheta4,de_angle; double dr1,dr2,tk1,tk2,aa1,aa2,aa11,aa12,aa21,aa22; double rsq1,rsq2,r1,r2,c,s,a,a11,a12,a22,b1,b2; double vx11,vx12,vy11,vy12,vz11,vz12,vx21,vx22,vy21,vy22,vz21,vz22; eangle = 0.0; if (eflag || vflag) ev_setup(eflag,vflag); else evflag = 0; double **x = atom->x; double **f = atom->f; int **anglelist = neighbor->anglelist; int nanglelist = neighbor->nanglelist; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; for (n = 0; n < nanglelist; n++) { i1 = anglelist[n][0]; i2 = anglelist[n][1]; i3 = anglelist[n][2]; type = anglelist[n][3]; // 1st bond delx1 = x[i1][0] - x[i2][0]; dely1 = x[i1][1] - x[i2][1]; delz1 = x[i1][2] - x[i2][2]; rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1; r1 = sqrt(rsq1); // 2nd bond delx2 = x[i3][0] - x[i2][0]; dely2 = x[i3][1] - x[i2][1]; delz2 = x[i3][2] - x[i2][2]; rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2; r2 = sqrt(rsq2); // angle (cos and sin) c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; s = sqrt(1.0 - c*c); if (s < SMALL) s = SMALL; s = 1.0/s; // force & energy for angle term dtheta = acos(c) - theta0[type]; dtheta2 = dtheta*dtheta; dtheta3 = dtheta2*dtheta; dtheta4 = dtheta3*dtheta; de_angle = 2.0*k2[type]*dtheta + 3.0*k3[type]*dtheta2 + 4.0*k4[type]*dtheta3; a = -de_angle*s; a11 = a*c / rsq1; a12 = -a / (r1*r2); a22 = a*c / rsq2; f1[0] = a11*delx1 + a12*delx2; f1[1] = a11*dely1 + a12*dely2; f1[2] = a11*delz1 + a12*delz2; f3[0] = a22*delx2 + a12*delx1; f3[1] = a22*dely2 + a12*dely1; f3[2] = a22*delz2 + a12*delz1; if (eflag) eangle = k2[type]*dtheta2 + k3[type]*dtheta3 + k4[type]*dtheta4; // force & energy for bond-bond term dr1 = r1 - bb_r1[type]; dr2 = r2 - bb_r2[type]; tk1 = bb_k[type] * dr1; tk2 = bb_k[type] * dr2; f1[0] -= delx1*tk2/r1; f1[1] -= dely1*tk2/r1; f1[2] -= delz1*tk2/r1; f3[0] -= delx2*tk1/r2; f3[1] -= dely2*tk1/r2; f3[2] -= delz2*tk1/r2; if (eflag) eangle += bb_k[type]*dr1*dr2; // force & energy for bond-angle term aa1 = s * dr1 * ba_k1[type]; aa2 = s * dr2 * ba_k2[type]; aa11 = aa1 * c / rsq1; aa12 = -aa1 / (r1 * r2); aa21 = aa2 * c / rsq1; aa22 = -aa2 / (r1 * r2); vx11 = (aa11 * delx1) + (aa12 * delx2); vx12 = (aa21 * delx1) + (aa22 * delx2); vy11 = (aa11 * dely1) + (aa12 * dely2); vy12 = (aa21 * dely1) + (aa22 * dely2); vz11 = (aa11 * delz1) + (aa12 * delz2); vz12 = (aa21 * delz1) + (aa22 * delz2); aa11 = aa1 * c / rsq2; aa21 = aa2 * c / rsq2; vx21 = (aa11 * delx2) + (aa12 * delx1); vx22 = (aa21 * delx2) + (aa22 * delx1); vy21 = (aa11 * dely2) + (aa12 * dely1); vy22 = (aa21 * dely2) + (aa22 * dely1); vz21 = (aa11 * delz2) + (aa12 * delz1); vz22 = (aa21 * delz2) + (aa22 * delz1); b1 = ba_k1[type] * dtheta / r1; b2 = ba_k2[type] * dtheta / r2; f1[0] -= vx11 + b1*delx1 + vx12; f1[1] -= vy11 + b1*dely1 + vy12; f1[2] -= vz11 + b1*delz1 + vz12; f3[0] -= vx21 + b2*delx2 + vx22; f3[1] -= vy21 + b2*dely2 + vy22; f3[2] -= vz21 + b2*delz2 + vz22; if (eflag) eangle += ba_k1[type]*dr1*dtheta + ba_k2[type]*dr2*dtheta; // apply force to each of 3 atoms if (newton_bond || i1 < nlocal) { f[i1][0] += f1[0]; f[i1][1] += f1[1]; f[i1][2] += f1[2]; } if (newton_bond || i2 < nlocal) { f[i2][0] -= f1[0] + f3[0]; f[i2][1] -= f1[1] + f3[1]; f[i2][2] -= f1[2] + f3[2]; } if (newton_bond || i3 < nlocal) { f[i3][0] += f3[0]; f[i3][1] += f3[1]; f[i3][2] += f3[2]; } if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3, delx1,dely1,delz1,delx2,dely2,delz2); } } /* ---------------------------------------------------------------------- */ void AngleClass2::allocate() { allocated = 1; int n = atom->nangletypes; memory->create(theta0,n+1,"angle:theta0"); memory->create(k2,n+1,"angle:k2"); memory->create(k3,n+1,"angle:k3"); memory->create(k4,n+1,"angle:k4"); memory->create(bb_k,n+1,"angle:bb_k"); memory->create(bb_r1,n+1,"angle:bb_r1"); memory->create(bb_r2,n+1,"angle:bb_r2"); memory->create(ba_k1,n+1,"angle:ba_k1"); memory->create(ba_k2,n+1,"angle:ba_k2"); memory->create(ba_r1,n+1,"angle:ba_r1"); memory->create(ba_r2,n+1,"angle:ba_r2"); memory->create(setflag,n+1,"angle:setflag"); memory->create(setflag_a,n+1,"angle:setflag_a"); memory->create(setflag_bb,n+1,"angle:setflag_bb"); memory->create(setflag_ba,n+1,"angle:setflag_ba"); for (int i = 1; i <= n; i++) setflag[i] = setflag_a[i] = setflag_bb[i] = setflag_ba[i] = 0; } /* ---------------------------------------------------------------------- set coeffs for one or more types arg1 = "bb" -> BondBond coeffs arg1 = "ba" -> BondAngle coeffs else -> Angle coeffs ------------------------------------------------------------------------- */ void AngleClass2::coeff(int narg, char **arg) { if (narg < 2) error->all(FLERR,"Incorrect args for angle coefficients"); if (!allocated) allocate(); int ilo,ihi; force->bounds(arg[0],atom->nangletypes,ilo,ihi); int count = 0; if (strcmp(arg[1],"bb") == 0) { if (narg != 5) error->all(FLERR,"Incorrect args for angle coefficients"); double bb_k_one = force->numeric(FLERR,arg[2]); double bb_r1_one = force->numeric(FLERR,arg[3]); double bb_r2_one = force->numeric(FLERR,arg[4]); for (int i = ilo; i <= ihi; i++) { bb_k[i] = bb_k_one; bb_r1[i] = bb_r1_one; bb_r2[i] = bb_r2_one; setflag_bb[i] = 1; count++; } } else if (strcmp(arg[1],"ba") == 0) { if (narg != 6) error->all(FLERR,"Incorrect args for angle coefficients"); double ba_k1_one = force->numeric(FLERR,arg[2]); double ba_k2_one = force->numeric(FLERR,arg[3]); double ba_r1_one = force->numeric(FLERR,arg[4]); double ba_r2_one = force->numeric(FLERR,arg[5]); for (int i = ilo; i <= ihi; i++) { ba_k1[i] = ba_k1_one; ba_k2[i] = ba_k2_one; ba_r1[i] = ba_r1_one; ba_r2[i] = ba_r2_one; setflag_ba[i] = 1; count++; } } else { if (narg != 5) error->all(FLERR,"Incorrect args for angle coefficients"); double theta0_one = force->numeric(FLERR,arg[1]); double k2_one = force->numeric(FLERR,arg[2]); double k3_one = force->numeric(FLERR,arg[3]); double k4_one = force->numeric(FLERR,arg[4]); // convert theta0 from degrees to radians for (int i = ilo; i <= ihi; i++) { theta0[i] = theta0_one/180.0 * MY_PI; k2[i] = k2_one; k3[i] = k3_one; k4[i] = k4_one; setflag_a[i] = 1; count++; } } if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients"); for (int i = ilo; i <= ihi; i++) if (setflag_a[i] == 1 && setflag_bb[i] == 1 && setflag_ba[i] == 1) setflag[i] = 1; } /* ---------------------------------------------------------------------- */ double AngleClass2::equilibrium_angle(int i) { return theta0[i]; } /* ---------------------------------------------------------------------- proc 0 writes out coeffs to restart file ------------------------------------------------------------------------- */ void AngleClass2::write_restart(FILE *fp) { fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp); fwrite(&k2[1],sizeof(double),atom->nangletypes,fp); fwrite(&k3[1],sizeof(double),atom->nangletypes,fp); fwrite(&k4[1],sizeof(double),atom->nangletypes,fp); fwrite(&bb_k[1],sizeof(double),atom->nangletypes,fp); fwrite(&bb_r1[1],sizeof(double),atom->nangletypes,fp); fwrite(&bb_r2[1],sizeof(double),atom->nangletypes,fp); fwrite(&ba_k1[1],sizeof(double),atom->nangletypes,fp); fwrite(&ba_k2[1],sizeof(double),atom->nangletypes,fp); fwrite(&ba_r1[1],sizeof(double),atom->nangletypes,fp); fwrite(&ba_r2[1],sizeof(double),atom->nangletypes,fp); } /* ---------------------------------------------------------------------- proc 0 reads coeffs from restart file, bcasts them ------------------------------------------------------------------------- */ void AngleClass2::read_restart(FILE *fp) { allocate(); if (comm->me == 0) { fread(&theta0[1],sizeof(double),atom->nangletypes,fp); fread(&k2[1],sizeof(double),atom->nangletypes,fp); fread(&k3[1],sizeof(double),atom->nangletypes,fp); fread(&k4[1],sizeof(double),atom->nangletypes,fp); fread(&bb_k[1],sizeof(double),atom->nangletypes,fp); fread(&bb_r1[1],sizeof(double),atom->nangletypes,fp); fread(&bb_r2[1],sizeof(double),atom->nangletypes,fp); fread(&ba_k1[1],sizeof(double),atom->nangletypes,fp); fread(&ba_k2[1],sizeof(double),atom->nangletypes,fp); fread(&ba_r1[1],sizeof(double),atom->nangletypes,fp); fread(&ba_r2[1],sizeof(double),atom->nangletypes,fp); } MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&k2[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&k3[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&k4[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&bb_k[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&bb_r1[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&bb_r2[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&ba_k1[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&ba_k2[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&ba_r1[1],atom->nangletypes,MPI_DOUBLE,0,world); MPI_Bcast(&ba_r2[1],atom->nangletypes,MPI_DOUBLE,0,world); for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1; } /* ---------------------------------------------------------------------- proc 0 writes to data file ------------------------------------------------------------------------- */ void AngleClass2::write_data(FILE *fp) { for (int i = 1; i <= atom->nangletypes; i++) fprintf(fp,"%d %g %g %g %g\n", i,theta0[i]/MY_PI*180.0,k2[i],k3[i],k4[i]); fprintf(fp,"\nBondBond Coeffs\n\n"); for (int i = 1; i <= atom->nangletypes; i++) fprintf(fp,"%d %g %g %g\n",i,bb_k[i],bb_r1[i],bb_r2[i]); fprintf(fp,"\nBondAngle Coeffs\n\n"); for (int i = 1; i <= atom->nangletypes; i++) - fprintf(fp,"%d %g %g %g %gx\n",i,ba_k1[i],ba_k2[i],ba_r1[i],ba_r2[i]); + fprintf(fp,"%d %g %g %g %g\n",i,ba_k1[i],ba_k2[i],ba_r1[i],ba_r2[i]); } /* ---------------------------------------------------------------------- */ double AngleClass2::single(int type, int i1, int i2, int i3) { double **x = atom->x; double delx1 = x[i1][0] - x[i2][0]; double dely1 = x[i1][1] - x[i2][1]; double delz1 = x[i1][2] - x[i2][2]; domain->minimum_image(delx1,dely1,delz1); double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1); double delx2 = x[i3][0] - x[i2][0]; double dely2 = x[i3][1] - x[i2][1]; double delz2 = x[i3][2] - x[i2][2]; domain->minimum_image(delx2,dely2,delz2); double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2); double c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; double s = sqrt(1.0 - c*c); if (s < SMALL) s = SMALL; s = 1.0/s; double dtheta = acos(c) - theta0[type]; double dtheta2 = dtheta*dtheta; double dtheta3 = dtheta2*dtheta; double dtheta4 = dtheta3*dtheta; double energy = k2[type]*dtheta2 + k3[type]*dtheta3 + k4[type]*dtheta4; double dr1 = r1 - bb_r1[type]; double dr2 = r2 - bb_r2[type]; energy += bb_k[type]*dr1*dr2; energy += ba_k1[type]*dr1*dtheta + ba_k2[type]*dr2*dtheta; return energy; }