diff --git a/src/CLASS2/angle_class2.cpp b/src/CLASS2/angle_class2.cpp
index 2eabc20b3..09ff5860e 100644
--- a/src/CLASS2/angle_class2.cpp
+++ b/src/CLASS2/angle_class2.cpp
@@ -1,465 +1,465 @@
 /* ----------------------------------------------------------------------
    LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
    http://lammps.sandia.gov, Sandia National Laboratories
    Steve Plimpton, sjplimp@sandia.gov
 
    Copyright (2003) Sandia Corporation.  Under the terms of Contract
    DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
    certain rights in this software.  This software is distributed under
    the GNU General Public License.
 
    See the README file in the top-level LAMMPS directory.
 ------------------------------------------------------------------------- */
 
 /* ----------------------------------------------------------------------
    Contributing author: Eric Simon (Cray)
 ------------------------------------------------------------------------- */
 
 #include "math.h"
 #include "string.h"
 #include "stdlib.h"
 #include "angle_class2.h"
 #include "atom.h"
 #include "neighbor.h"
 #include "domain.h"
 #include "comm.h"
 #include "force.h"
 #include "math_const.h"
 #include "memory.h"
 #include "error.h"
 
 using namespace LAMMPS_NS;
 using namespace MathConst;
 
 #define SMALL 0.001
 
 /* ---------------------------------------------------------------------- */
 
 AngleClass2::AngleClass2(LAMMPS *lmp) : Angle(lmp) {}
 
 /* ---------------------------------------------------------------------- */
 
 AngleClass2::~AngleClass2()
 {
   if (allocated) {
     memory->destroy(setflag);
     memory->destroy(setflag_a);
     memory->destroy(setflag_bb);
     memory->destroy(setflag_ba);
 
     memory->destroy(theta0);
     memory->destroy(k2);
     memory->destroy(k3);
     memory->destroy(k4);
 
     memory->destroy(bb_k);
     memory->destroy(bb_r1);
     memory->destroy(bb_r2);
 
     memory->destroy(ba_k1);
     memory->destroy(ba_k2);
     memory->destroy(ba_r1);
     memory->destroy(ba_r2);
   }
 }
 
 /* ---------------------------------------------------------------------- */
 
 void AngleClass2::compute(int eflag, int vflag)
 {
   int i1,i2,i3,n,type;
   double delx1,dely1,delz1,delx2,dely2,delz2;
   double eangle,f1[3],f3[3];
   double dtheta,dtheta2,dtheta3,dtheta4,de_angle;
   double dr1,dr2,tk1,tk2,aa1,aa2,aa11,aa12,aa21,aa22;
   double rsq1,rsq2,r1,r2,c,s,a,a11,a12,a22,b1,b2;
   double vx11,vx12,vy11,vy12,vz11,vz12,vx21,vx22,vy21,vy22,vz21,vz22;
 
   eangle = 0.0;
   if (eflag || vflag) ev_setup(eflag,vflag);
   else evflag = 0;
 
   double **x = atom->x;
   double **f = atom->f;
   int **anglelist = neighbor->anglelist;
   int nanglelist = neighbor->nanglelist;
   int nlocal = atom->nlocal;
   int newton_bond = force->newton_bond;
 
   for (n = 0; n < nanglelist; n++) {
     i1 = anglelist[n][0];
     i2 = anglelist[n][1];
     i3 = anglelist[n][2];
     type = anglelist[n][3];
 
     // 1st bond
 
     delx1 = x[i1][0] - x[i2][0];
     dely1 = x[i1][1] - x[i2][1];
     delz1 = x[i1][2] - x[i2][2];
 
     rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
     r1 = sqrt(rsq1);
 
     // 2nd bond
 
     delx2 = x[i3][0] - x[i2][0];
     dely2 = x[i3][1] - x[i2][1];
     delz2 = x[i3][2] - x[i2][2];
 
     rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
     r2 = sqrt(rsq2);
 
     // angle (cos and sin)
 
     c = delx1*delx2 + dely1*dely2 + delz1*delz2;
     c /= r1*r2;
 
     if (c > 1.0) c = 1.0;
     if (c < -1.0) c = -1.0;
 
     s = sqrt(1.0 - c*c);
     if (s < SMALL) s = SMALL;
     s = 1.0/s;
 
     // force & energy for angle term
 
     dtheta = acos(c) - theta0[type];
     dtheta2 = dtheta*dtheta;
     dtheta3 = dtheta2*dtheta;
     dtheta4 = dtheta3*dtheta;
 
     de_angle = 2.0*k2[type]*dtheta + 3.0*k3[type]*dtheta2 +
       4.0*k4[type]*dtheta3;
 
     a = -de_angle*s;
     a11 = a*c / rsq1;
     a12 = -a / (r1*r2);
     a22 = a*c / rsq2;
 
     f1[0] = a11*delx1 + a12*delx2;
     f1[1] = a11*dely1 + a12*dely2;
     f1[2] = a11*delz1 + a12*delz2;
 
     f3[0] = a22*delx2 + a12*delx1;
     f3[1] = a22*dely2 + a12*dely1;
     f3[2] = a22*delz2 + a12*delz1;
 
     if (eflag) eangle = k2[type]*dtheta2 + k3[type]*dtheta3 + k4[type]*dtheta4;
 
     // force & energy for bond-bond term
 
     dr1 = r1 - bb_r1[type];
     dr2 = r2 - bb_r2[type];
     tk1 = bb_k[type] * dr1;
     tk2 = bb_k[type] * dr2;
 
     f1[0] -= delx1*tk2/r1;
     f1[1] -= dely1*tk2/r1;
     f1[2] -= delz1*tk2/r1;
 
     f3[0] -= delx2*tk1/r2;
     f3[1] -= dely2*tk1/r2;
     f3[2] -= delz2*tk1/r2;
 
     if (eflag) eangle += bb_k[type]*dr1*dr2;
 
     // force & energy for bond-angle term
 
     aa1 = s * dr1 * ba_k1[type];
     aa2 = s * dr2 * ba_k2[type];
 
     aa11 = aa1 * c / rsq1;
     aa12 = -aa1 / (r1 * r2);
     aa21 = aa2 * c / rsq1;
     aa22 = -aa2 / (r1 * r2);
 
     vx11 = (aa11 * delx1) + (aa12 * delx2);
     vx12 = (aa21 * delx1) + (aa22 * delx2);
     vy11 = (aa11 * dely1) + (aa12 * dely2);
     vy12 = (aa21 * dely1) + (aa22 * dely2);
     vz11 = (aa11 * delz1) + (aa12 * delz2);
     vz12 = (aa21 * delz1) + (aa22 * delz2);
 
     aa11 = aa1 * c / rsq2;
     aa21 = aa2 * c / rsq2;
 
     vx21 = (aa11 * delx2) + (aa12 * delx1);
     vx22 = (aa21 * delx2) + (aa22 * delx1);
     vy21 = (aa11 * dely2) + (aa12 * dely1);
     vy22 = (aa21 * dely2) + (aa22 * dely1);
     vz21 = (aa11 * delz2) + (aa12 * delz1);
     vz22 = (aa21 * delz2) + (aa22 * delz1);
 
     b1 = ba_k1[type] * dtheta / r1;
     b2 = ba_k2[type] * dtheta / r2;
 
     f1[0] -= vx11 + b1*delx1 + vx12;
     f1[1] -= vy11 + b1*dely1 + vy12;
     f1[2] -= vz11 + b1*delz1 + vz12;
 
     f3[0] -= vx21 + b2*delx2 + vx22;
     f3[1] -= vy21 + b2*dely2 + vy22;
     f3[2] -= vz21 + b2*delz2 + vz22;
 
     if (eflag) eangle += ba_k1[type]*dr1*dtheta + ba_k2[type]*dr2*dtheta;
 
     // apply force to each of 3 atoms
 
     if (newton_bond || i1 < nlocal) {
       f[i1][0] += f1[0];
       f[i1][1] += f1[1];
       f[i1][2] += f1[2];
     }
 
     if (newton_bond || i2 < nlocal) {
       f[i2][0] -= f1[0] + f3[0];
       f[i2][1] -= f1[1] + f3[1];
       f[i2][2] -= f1[2] + f3[2];
     }
 
     if (newton_bond || i3 < nlocal) {
       f[i3][0] += f3[0];
       f[i3][1] += f3[1];
       f[i3][2] += f3[2];
     }
 
     if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
                          delx1,dely1,delz1,delx2,dely2,delz2);
   }
 }
 
 /* ---------------------------------------------------------------------- */
 
 void AngleClass2::allocate()
 {
   allocated = 1;
   int n = atom->nangletypes;
 
   memory->create(theta0,n+1,"angle:theta0");
   memory->create(k2,n+1,"angle:k2");
   memory->create(k3,n+1,"angle:k3");
   memory->create(k4,n+1,"angle:k4");
 
   memory->create(bb_k,n+1,"angle:bb_k");
   memory->create(bb_r1,n+1,"angle:bb_r1");
   memory->create(bb_r2,n+1,"angle:bb_r2");
 
   memory->create(ba_k1,n+1,"angle:ba_k1");
   memory->create(ba_k2,n+1,"angle:ba_k2");
   memory->create(ba_r1,n+1,"angle:ba_r1");
   memory->create(ba_r2,n+1,"angle:ba_r2");
 
   memory->create(setflag,n+1,"angle:setflag");
   memory->create(setflag_a,n+1,"angle:setflag_a");
   memory->create(setflag_bb,n+1,"angle:setflag_bb");
   memory->create(setflag_ba,n+1,"angle:setflag_ba");
   for (int i = 1; i <= n; i++)
     setflag[i] = setflag_a[i] = setflag_bb[i] = setflag_ba[i] = 0;
 }
 
 /* ----------------------------------------------------------------------
    set coeffs for one or more types
    arg1 = "bb" -> BondBond coeffs
    arg1 = "ba" -> BondAngle coeffs
    else -> Angle coeffs
 ------------------------------------------------------------------------- */
 
 void AngleClass2::coeff(int narg, char **arg)
 {
   if (narg < 2) error->all(FLERR,"Incorrect args for angle coefficients");
   if (!allocated) allocate();
 
   int ilo,ihi;
   force->bounds(arg[0],atom->nangletypes,ilo,ihi);
 
   int count = 0;
 
   if (strcmp(arg[1],"bb") == 0) {
     if (narg != 5) error->all(FLERR,"Incorrect args for angle coefficients");
 
     double bb_k_one = force->numeric(FLERR,arg[2]);
     double bb_r1_one = force->numeric(FLERR,arg[3]);
     double bb_r2_one = force->numeric(FLERR,arg[4]);
 
     for (int i = ilo; i <= ihi; i++) {
       bb_k[i] = bb_k_one;
       bb_r1[i] = bb_r1_one;
       bb_r2[i] = bb_r2_one;
       setflag_bb[i] = 1;
       count++;
     }
 
   } else if (strcmp(arg[1],"ba") == 0) {
     if (narg != 6) error->all(FLERR,"Incorrect args for angle coefficients");
 
     double ba_k1_one = force->numeric(FLERR,arg[2]);
     double ba_k2_one = force->numeric(FLERR,arg[3]);
     double ba_r1_one = force->numeric(FLERR,arg[4]);
     double ba_r2_one = force->numeric(FLERR,arg[5]);
 
     for (int i = ilo; i <= ihi; i++) {
       ba_k1[i] = ba_k1_one;
       ba_k2[i] = ba_k2_one;
       ba_r1[i] = ba_r1_one;
       ba_r2[i] = ba_r2_one;
       setflag_ba[i] = 1;
       count++;
     }
 
   } else {
     if (narg != 5) error->all(FLERR,"Incorrect args for angle coefficients");
 
     double theta0_one = force->numeric(FLERR,arg[1]);
     double k2_one = force->numeric(FLERR,arg[2]);
     double k3_one = force->numeric(FLERR,arg[3]);
     double k4_one = force->numeric(FLERR,arg[4]);
 
     // convert theta0 from degrees to radians
 
     for (int i = ilo; i <= ihi; i++) {
       theta0[i] = theta0_one/180.0 * MY_PI;
       k2[i] = k2_one;
       k3[i] = k3_one;
       k4[i] = k4_one;
       setflag_a[i] = 1;
       count++;
     }
   }
 
   if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients");
 
   for (int i = ilo; i <= ihi; i++)
     if (setflag_a[i] == 1 && setflag_bb[i] == 1 && setflag_ba[i] == 1)
       setflag[i] = 1;
 }
 
 /* ---------------------------------------------------------------------- */
 
 double AngleClass2::equilibrium_angle(int i)
 {
   return theta0[i];
 }
 
 /* ----------------------------------------------------------------------
    proc 0 writes out coeffs to restart file
 ------------------------------------------------------------------------- */
 
 void AngleClass2::write_restart(FILE *fp)
 {
   fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp);
   fwrite(&k2[1],sizeof(double),atom->nangletypes,fp);
   fwrite(&k3[1],sizeof(double),atom->nangletypes,fp);
   fwrite(&k4[1],sizeof(double),atom->nangletypes,fp);
 
   fwrite(&bb_k[1],sizeof(double),atom->nangletypes,fp);
   fwrite(&bb_r1[1],sizeof(double),atom->nangletypes,fp);
   fwrite(&bb_r2[1],sizeof(double),atom->nangletypes,fp);
 
   fwrite(&ba_k1[1],sizeof(double),atom->nangletypes,fp);
   fwrite(&ba_k2[1],sizeof(double),atom->nangletypes,fp);
   fwrite(&ba_r1[1],sizeof(double),atom->nangletypes,fp);
   fwrite(&ba_r2[1],sizeof(double),atom->nangletypes,fp);
 }
 
 /* ----------------------------------------------------------------------
    proc 0 reads coeffs from restart file, bcasts them
 ------------------------------------------------------------------------- */
 
 void AngleClass2::read_restart(FILE *fp)
 {
   allocate();
 
   if (comm->me == 0) {
     fread(&theta0[1],sizeof(double),atom->nangletypes,fp);
     fread(&k2[1],sizeof(double),atom->nangletypes,fp);
     fread(&k3[1],sizeof(double),atom->nangletypes,fp);
     fread(&k4[1],sizeof(double),atom->nangletypes,fp);
 
     fread(&bb_k[1],sizeof(double),atom->nangletypes,fp);
     fread(&bb_r1[1],sizeof(double),atom->nangletypes,fp);
     fread(&bb_r2[1],sizeof(double),atom->nangletypes,fp);
 
     fread(&ba_k1[1],sizeof(double),atom->nangletypes,fp);
     fread(&ba_k2[1],sizeof(double),atom->nangletypes,fp);
     fread(&ba_r1[1],sizeof(double),atom->nangletypes,fp);
     fread(&ba_r2[1],sizeof(double),atom->nangletypes,fp);
   }
 
   MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world);
   MPI_Bcast(&k2[1],atom->nangletypes,MPI_DOUBLE,0,world);
   MPI_Bcast(&k3[1],atom->nangletypes,MPI_DOUBLE,0,world);
   MPI_Bcast(&k4[1],atom->nangletypes,MPI_DOUBLE,0,world);
 
   MPI_Bcast(&bb_k[1],atom->nangletypes,MPI_DOUBLE,0,world);
   MPI_Bcast(&bb_r1[1],atom->nangletypes,MPI_DOUBLE,0,world);
   MPI_Bcast(&bb_r2[1],atom->nangletypes,MPI_DOUBLE,0,world);
 
   MPI_Bcast(&ba_k1[1],atom->nangletypes,MPI_DOUBLE,0,world);
   MPI_Bcast(&ba_k2[1],atom->nangletypes,MPI_DOUBLE,0,world);
   MPI_Bcast(&ba_r1[1],atom->nangletypes,MPI_DOUBLE,0,world);
   MPI_Bcast(&ba_r2[1],atom->nangletypes,MPI_DOUBLE,0,world);
 
   for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
 }
 
 /* ----------------------------------------------------------------------
    proc 0 writes to data file
 ------------------------------------------------------------------------- */
 
 void AngleClass2::write_data(FILE *fp)
 {
   for (int i = 1; i <= atom->nangletypes; i++)
     fprintf(fp,"%d %g %g %g %g\n",
             i,theta0[i]/MY_PI*180.0,k2[i],k3[i],k4[i]);
 
   fprintf(fp,"\nBondBond Coeffs\n\n");
   for (int i = 1; i <= atom->nangletypes; i++)
     fprintf(fp,"%d %g %g %g\n",i,bb_k[i],bb_r1[i],bb_r2[i]);
 
   fprintf(fp,"\nBondAngle Coeffs\n\n");
   for (int i = 1; i <= atom->nangletypes; i++)
-    fprintf(fp,"%d %g %g %g %gx\n",i,ba_k1[i],ba_k2[i],ba_r1[i],ba_r2[i]);
+    fprintf(fp,"%d %g %g %g %g\n",i,ba_k1[i],ba_k2[i],ba_r1[i],ba_r2[i]);
 }
 
 /* ---------------------------------------------------------------------- */
 
 double AngleClass2::single(int type, int i1, int i2, int i3)
 {
   double **x = atom->x;
 
   double delx1 = x[i1][0] - x[i2][0];
   double dely1 = x[i1][1] - x[i2][1];
   double delz1 = x[i1][2] - x[i2][2];
   domain->minimum_image(delx1,dely1,delz1);
   double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
 
   double delx2 = x[i3][0] - x[i2][0];
   double dely2 = x[i3][1] - x[i2][1];
   double delz2 = x[i3][2] - x[i2][2];
   domain->minimum_image(delx2,dely2,delz2);
   double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
 
   double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
   c /= r1*r2;
   if (c > 1.0) c = 1.0;
   if (c < -1.0) c = -1.0;
 
   double s = sqrt(1.0 - c*c);
   if (s < SMALL) s = SMALL;
   s = 1.0/s;
 
   double dtheta = acos(c) - theta0[type];
   double dtheta2 = dtheta*dtheta;
   double dtheta3 = dtheta2*dtheta;
   double dtheta4 = dtheta3*dtheta;
 
   double energy = k2[type]*dtheta2 + k3[type]*dtheta3 + k4[type]*dtheta4;
 
   double dr1 = r1 - bb_r1[type];
   double dr2 = r2 - bb_r2[type];
   energy += bb_k[type]*dr1*dr2;
 
   energy += ba_k1[type]*dr1*dtheta + ba_k2[type]*dr2*dtheta;
   return energy;
 }