diff --git a/src/USER-OMP/thr_data.cpp b/src/USER-OMP/thr_data.cpp index aaf7c41db..b6f5c20e1 100644 --- a/src/USER-OMP/thr_data.cpp +++ b/src/USER-OMP/thr_data.cpp @@ -1,370 +1,370 @@ /* ------------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- per-thread data management for LAMMPS Contributing author: Axel Kohlmeyer (Temple U) ------------------------------------------------------------------------- */ #include "thr_data.h" #include <string.h> #include <stdio.h> #include "memory.h" #include "timer.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ ThrData::ThrData(int tid, Timer *t) : _f(0),_torque(0),_erforce(0),_de(0),_drho(0),_mu(0),_lambda(0),_rhoB(0), _D_values(0),_rho(0),_fp(0),_rho1d(0),_drho1d(0),_tid(tid), _timer(t) { _timer_active = 0; } /* ---------------------------------------------------------------------- */ void ThrData::check_tid(int tid) { if (tid != _tid) fprintf(stderr,"WARNING: external and internal tid mismatch %d != %d\n",tid,_tid); } /* ---------------------------------------------------------------------- */ void ThrData::_stamp(enum Timer::ttype flag) { // do nothing until it gets set to 0 in ::setup() if (_timer_active < 0) return; if (flag == Timer::START) { _timer_active = 1; } if (_timer_active) _timer->stamp(flag); } /* ---------------------------------------------------------------------- */ double ThrData::get_time(enum Timer::ttype flag) { if (_timer) return _timer->get_wall(flag); else return 0.0; } /* ---------------------------------------------------------------------- */ void ThrData::init_force(int nall, double **f, double **torque, double *erforce, double *de, double *drho) { eng_vdwl=eng_coul=eng_bond=eng_angle=eng_dihed=eng_imprp=eng_kspce=0.0; memset(virial_pair,0,6*sizeof(double)); memset(virial_bond,0,6*sizeof(double)); memset(virial_angle,0,6*sizeof(double)); memset(virial_dihed,0,6*sizeof(double)); memset(virial_imprp,0,6*sizeof(double)); memset(virial_kspce,0,6*sizeof(double)); eatom_pair=eatom_bond=eatom_angle=eatom_dihed=eatom_imprp=eatom_kspce=NULL; vatom_pair=vatom_bond=vatom_angle=vatom_dihed=vatom_imprp=vatom_kspce=NULL; _f = f + _tid*nall; if (nall > 0) memset(&(_f[0][0]),0,nall*3*sizeof(double)); if (torque) { _torque = torque + _tid*nall; if (nall > 0) memset(&(_torque[0][0]),0,nall*3*sizeof(double)); } else _torque = NULL; if (erforce) { _erforce = erforce + _tid*nall; if (nall > 0) memset(&(_erforce[0]),0,nall*sizeof(double)); } else _erforce = NULL; if (de) { _de = de + _tid*nall; if (nall > 0) memset(&(_de[0]),0,nall*sizeof(double)); } else _de = NULL; if (drho) { _drho = drho + _tid*nall; if (nall > 0) memset(&(_drho[0]),0,nall*sizeof(double)); } else _drho = NULL; } /* ---------------------------------------------------------------------- set up and clear out locally managed per atom arrays ------------------------------------------------------------------------- */ void ThrData::init_eam(int nall, double *rho) { _rho = rho + _tid*nall; if (nall > 0) memset(_rho, 0, nall*sizeof(double)); } /* ---------------------------------------------------------------------- */ void ThrData::init_adp(int nall, double *rho, double **mu, double **lambda) { init_eam(nall, rho); _mu = mu + _tid*nall; _lambda = lambda + _tid*nall; if (nall > 0) { memset(&(_mu[0][0]), 0, nall*3*sizeof(double)); memset(&(_lambda[0][0]), 0, nall*6*sizeof(double)); } } /* ---------------------------------------------------------------------- */ void ThrData::init_cdeam(int nall, double *rho, double *rhoB, double *D_values) { init_eam(nall, rho); _rhoB = rhoB + _tid*nall; _D_values = D_values + _tid*nall; if (nall > 0) { memset(_rhoB, 0, nall*sizeof(double)); memset(_D_values, 0, nall*sizeof(double)); } } /* ---------------------------------------------------------------------- */ void ThrData::init_eim(int nall, double *rho, double *fp) { init_eam(nall, rho); _fp = fp + _tid*nall; if (nall > 0) memset(_fp,0,nall*sizeof(double)); } /* ---------------------------------------------------------------------- if order > 0 : set up per thread storage for PPPM if order < 0 : free per thread storage for PPPM ------------------------------------------------------------------------- */ #if defined(FFT_SINGLE) typedef float FFT_SCALAR; #else typedef double FFT_SCALAR; #endif void ThrData::init_pppm(int order, Memory *memory) { FFT_SCALAR **rho1d, **drho1d; if (order > 0) { memory->create2d_offset(rho1d,3,-order/2,order/2,"thr_data:rho1d"); memory->create2d_offset(drho1d,3,-order/2,order/2,"thr_data:drho1d"); _rho1d = static_cast<void *>(rho1d); _drho1d = static_cast<void *>(drho1d); } else { order = -order; rho1d = static_cast<FFT_SCALAR **>(_rho1d); drho1d = static_cast<FFT_SCALAR **>(_drho1d); memory->destroy2d_offset(rho1d,-order/2); memory->destroy2d_offset(drho1d,-order/2); } } /* ---------------------------------------------------------------------- if order > 0 : set up per thread storage for PPPM if order < 0 : free per thread storage for PPPM ------------------------------------------------------------------------- */ #if defined(FFT_SINGLE) typedef float FFT_SCALAR; #else typedef double FFT_SCALAR; #endif void ThrData::init_pppm_disp(int order_6, Memory *memory) { FFT_SCALAR **rho1d_6, **drho1d_6; if (order_6 > 0) { memory->create2d_offset(rho1d_6,3,-order_6/2,order_6/2,"thr_data:rho1d_6"); memory->create2d_offset(drho1d_6,3,-order_6/2,order_6/2,"thr_data:drho1d_6"); _rho1d_6 = static_cast<void *>(rho1d_6); _drho1d_6 = static_cast<void *>(drho1d_6); } else { order_6 = -order_6; rho1d_6 = static_cast<FFT_SCALAR **>(_rho1d_6); drho1d_6 = static_cast<FFT_SCALAR **>(_drho1d_6); memory->destroy2d_offset(rho1d_6,-order_6/2); memory->destroy2d_offset(drho1d_6,-order_6/2); } } /* ---------------------------------------------------------------------- compute global pair virial via summing F dot r over own & ghost atoms at this point, only pairwise forces have been accumulated in atom->f ------------------------------------------------------------------------- */ void ThrData::virial_fdotr_compute(double **x, int nlocal, int nghost, int nfirst) { // sum over force on all particles including ghosts if (nfirst < 0) { int nall = nlocal + nghost; for (int i = 0; i < nall; i++) { virial_pair[0] += _f[i][0]*x[i][0]; virial_pair[1] += _f[i][1]*x[i][1]; virial_pair[2] += _f[i][2]*x[i][2]; virial_pair[3] += _f[i][1]*x[i][0]; virial_pair[4] += _f[i][2]*x[i][0]; virial_pair[5] += _f[i][2]*x[i][1]; } // neighbor includegroup flag is set // sum over force on initial nfirst particles and ghosts } else { int nall = nfirst; for (int i = 0; i < nall; i++) { virial_pair[0] += _f[i][0]*x[i][0]; virial_pair[1] += _f[i][1]*x[i][1]; virial_pair[2] += _f[i][2]*x[i][2]; virial_pair[3] += _f[i][1]*x[i][0]; virial_pair[4] += _f[i][2]*x[i][0]; virial_pair[5] += _f[i][2]*x[i][1]; } nall = nlocal + nghost; for (int i = nlocal; i < nall; i++) { virial_pair[0] += _f[i][0]*x[i][0]; virial_pair[1] += _f[i][1]*x[i][1]; virial_pair[2] += _f[i][2]*x[i][2]; virial_pair[3] += _f[i][1]*x[i][0]; virial_pair[4] += _f[i][2]*x[i][0]; virial_pair[5] += _f[i][2]*x[i][1]; } } } /* ---------------------------------------------------------------------- */ double ThrData::memory_usage() { double bytes = (7 + 6*6) * sizeof(double); bytes += 2 * sizeof(double*); bytes += 4 * sizeof(int); return bytes; } /* additional helper functions */ // reduce per thread data into the first part of the data // array that is used for the non-threaded parts and reset // the temporary storage to 0.0. this routine depends on // multi-dimensional arrays like force stored in this order // x1,y1,z1,x2,y2,z2,... // we need to post a barrier to wait until all threads are done // with writing to the array . void LAMMPS_NS::data_reduce_thr(double *dall, int nall, int nthreads, int ndim, int tid) { #if defined(_OPENMP) // NOOP in single-threaded execution. if (nthreads == 1) return; #pragma omp barrier { const int nvals = ndim*nall; const int idelta = nvals/nthreads + 1; const int ifrom = tid*idelta; const int ito = ((ifrom + idelta) > nvals) ? nvals : (ifrom + idelta); #if defined(USER_OMP_NO_UNROLL) if (ifrom < nvals) { int m = 0; for (m = ifrom; m < ito; ++m) { for (int n = 1; n < nthreads; ++n) { dall[m] += dall[n*nvals + m]; dall[n*nvals + m] = 0.0; } } } #else // this if protects against having more threads than atoms if (ifrom < nvals) { int m = 0; // for architectures that have L1 D-cache line sizes of 64 bytes // (8 doubles) wide, explictly unroll this loop to compute 8 // contiguous values in the array at a time // -- modify this code based on the size of the cache line double t0, t1, t2, t3, t4, t5, t6, t7; for (m = ifrom; m < (ito-7); m+=8) { t0 = dall[m ]; t1 = dall[m+1]; t2 = dall[m+2]; t3 = dall[m+3]; t4 = dall[m+4]; t5 = dall[m+5]; t6 = dall[m+6]; t7 = dall[m+7]; for (int n = 1; n < nthreads; ++n) { t0 += dall[n*nvals + m ]; t1 += dall[n*nvals + m+1]; t2 += dall[n*nvals + m+2]; t3 += dall[n*nvals + m+3]; t4 += dall[n*nvals + m+4]; t5 += dall[n*nvals + m+5]; t6 += dall[n*nvals + m+6]; t7 += dall[n*nvals + m+7]; dall[n*nvals + m ] = 0.0; dall[n*nvals + m+1] = 0.0; dall[n*nvals + m+2] = 0.0; dall[n*nvals + m+3] = 0.0; dall[n*nvals + m+4] = 0.0; dall[n*nvals + m+5] = 0.0; dall[n*nvals + m+6] = 0.0; dall[n*nvals + m+7] = 0.0; } dall[m ] = t0; dall[m+1] = t1; dall[m+2] = t2; dall[m+3] = t3; dall[m+4] = t4; dall[m+5] = t5; dall[m+6] = t6; dall[m+7] = t7; } // do the last < 8 values - for (m = m; m < ito; m++) { + for (; m < ito; m++) { for (int n = 1; n < nthreads; ++n) { dall[m] += dall[n*nvals + m]; dall[n*nvals + m] = 0.0; } } } #endif } #else // NOOP in non-threaded execution. return; #endif }