diff --git a/CMakeLists.txt b/CMakeLists.txt index c410b72..56c7b10 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,233 +1,233 @@ # ============================================================================= # file CMakeLists.txt # # @author Till Junge # # @date 08 Jan 2018 # # @brief Main configuration file # # @section LICENSE # # Copyright © 2018 Till Junge # # µSpectre is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3, or (at # your option) any later version. # # µSpectre is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License -# along with GNU Emacs; see the file COPYING. If not, write to the +# along with µSpectre; see the file COPYING. If not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # ============================================================================= cmake_minimum_required(VERSION 3.0.0) project(µSpectre) set(CMAKE_CXX_STANDARD 14) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_EXPORT_COMPILE_COMMANDS ON) set(BUILD_SHARED_LIBS ON) set(MUSPECTRE_PYTHON_MAJOR_VERSION 3) add_compile_options(-Wall -Wextra -Weffc++) set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${CMAKE_SOURCE_DIR}/cmake) set(MAKE_DOC_TARGET "OFF" CACHE BOOL "If on, a target dev_doc (which builds the documentation) is added") set(MAKE_TESTS "ON" CACHE BOOL "If on, several ctest targets will be built automatically") set(MAKE_EXAMPLES "ON" CACHE BOOL "If on, the executables in the bin folder will be compiled") set(MAKE_BENCHMARKS "ON" CACHE BOOL "If on, the benchmarks will be compiled") set(MPI_PARALLEL "OFF" CACHE BOOL "If on, MPI-parallel solvers become available") set(RUNNING_IN_CI "OFF" CACHE INTERNAL "changes output format for tests") if(${MAKE_TESTS}) enable_testing() find_package(Boost COMPONENTS unit_test_framework REQUIRED) endif(${MAKE_TESTS}) if(${MPI_PARALLEL}) add_definitions(-DWITH_MPI) find_package(MPI) if (NOT ${MPI_FOUND}) message(SEND_ERROR "You chose MPI but CMake cannot find the MPI package") endif(NOT ${MPI_FOUND}) endif(${MPI_PARALLEL}) include(muspectreTools) string( TOLOWER "${CMAKE_BUILD_TYPE}" build_type ) if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang" OR "${CMAKE_CXX_COMPILER_ID}" STREQUAL "AppleClang") # using Clang add_compile_options(-Wno-missing-braces) if ("debug" STREQUAL "${build_type}") add_compile_options(-O0) endif() elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU") # using GCC add_compile_options(-Wno-non-virtual-dtor) add_compile_options(-march=native) if (("relwithdebinfo" STREQUAL "${build_type}") OR ("release" STREQUAL "${build_type}" )) add_compile_options(-march=native) endif() if ("debug" STREQUAL "${build_type}" ) add_compile_options(-O0) endif() elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Intel") # using Intel C++ elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC") # using Visual Studio C++ endif() # Do not trust old gcc. the std::optional has memory bugs if(${CMAKE_COMPILER_IS_GNUCC}) if(${CMAKE_CXX_COMPILER_VERSION} VERSION_LESS 6.0.0) add_definitions(-DNO_EXPERIMENTAL) endif() endif() add_external_package(Eigen3 VERSION 3.3.0 CONFIG) add_external_package(pybind11 VERSION 2.2 CONFIG) include_directories( ${CMAKE_SOURCE_DIR}/src ${CMAKE_SOURCE_DIR} ) if(APPLE) include_directories(${CMAKE_INSTALL_PREFIX}/include ${Boost_INCLUDE_DIRS}) endif() #build tests (these are before we add -Werror to the compile options) if (${MAKE_TESTS}) ############################################################################## # build library tests file( GLOB TEST_SRCS "${CMAKE_SOURCE_DIR}/tests/test_*.cc") add_executable(main_test_suite tests/main_test_suite.cc ${TEST_SRCS}) target_link_libraries(main_test_suite ${Boost_LIBRARIES} muSpectre) muSpectre_add_test(main_test_suite TYPE BOOST main_test_suite --report_level=detailed) # build header tests file( GLOB HEADER_TEST_SRCS "${CMAKE_SOURCE_DIR}/tests/header_test_*.cc") foreach(header_test ${HEADER_TEST_SRCS}) get_filename_component(header_test_name ${header_test} NAME_WE) string(SUBSTRING ${header_test_name} 12 -1 test_name) list(APPEND header_tests ${test_name}) add_executable(${test_name} tests/main_test_suite.cc ${header_test}) target_link_libraries(${test_name} ${Boost_LIBRARIES} Eigen3::Eigen) target_include_directories(${test_name} INTERFACE ${muSpectre_INCLUDES}) muSpectre_add_test(${test_name} TYPE BOOST ${test_name} --report_level=detailed) endforeach(header_test ${HEADER_TEST_SRCS}) add_custom_target(header_tests) add_dependencies(header_tests ${header_tests}) ############################################################################## # copy python test file( GLOB PY_TEST_SRCS "${CMAKE_SOURCE_DIR}/tests/python_*.py") foreach(pytest ${PY_TEST_SRCS}) get_filename_component(pytest_name ${pytest} NAME) configure_file( ${pytest} "${CMAKE_BINARY_DIR}/${pytest_name}" COPYONLY) endforeach(pytest ${PY_TEST_SRCS}) find_package(PythonInterp ${MUSPECTRE_PYTHON_MAJOR_VERSION} REQUIRED) muSpectre_add_test(python_binding_test TYPE PYTHON python_binding_tests.py) if(${MPI_PARALLEL}) ############################################################################ # add MPI tests file( GLOB TEST_SRCS "${CMAKE_SOURCE_DIR}/tests/mpi_test_*.cc") add_executable(mpi_main_test_suite tests/mpi_main_test_suite.cc ${TEST_SRCS}) target_link_libraries(mpi_main_test_suite ${Boost_LIBRARIES} muSpectre) muSpectre_add_test(mpi_main_test_suite1 TYPE BOOST MPI_NB_PROCS 1 mpi_main_test_suite --report_level=detailed) muSpectre_add_test(mpi_main_test_suite2 TYPE BOOST MPI_NB_PROCS 2 mpi_main_test_suite --report_level=detailed) muSpectre_add_test(python_mpi_binding_test1 TYPE PYTHON MPI_NB_PROCS 1 python_mpi_binding_tests.py) muSpectre_add_test(python_mpi_binding_test2 TYPE PYTHON MPI_NB_PROCS 2 python_mpi_binding_tests.py) endif(${MPI_PARALLEL}) endif(${MAKE_TESTS}) ################################################################################ # compile the library add_compile_options( -Werror) add_subdirectory( ${CMAKE_SOURCE_DIR}/src/ ) add_subdirectory( ${CMAKE_SOURCE_DIR}/language_bindings/ ) if (${MAKE_DOC_TARGET}) add_subdirectory( ${CMAKE_SOURCE_DIR}/doc/ ) endif() ################################################################################ if (${MAKE_EXAMPLES}) #compile executables set(binaries ${CMAKE_SOURCE_DIR}/bin/demonstrator1.cc ${CMAKE_SOURCE_DIR}/bin/demonstrator_dynamic_solve.cc ${CMAKE_SOURCE_DIR}/bin/demonstrator2.cc ${CMAKE_SOURCE_DIR}/bin/hyper-elasticity.cc ${CMAKE_SOURCE_DIR}/bin/small_case.cc) if (${MPI_PARALLEL}) set (binaries ${binaries} ${CMAKE_SOURCE_DIR}/bin/demonstrator_mpi.cc ) endif (${MPI_PARALLEL}) foreach(binaryfile ${binaries}) get_filename_component(binaryname ${binaryfile} NAME_WE) add_executable(${binaryname} ${binaryfile}) target_link_libraries(${binaryname} ${Boost_LIBRARIES} muSpectre) endforeach(binaryfile ${binaries}) #or copy them file (GLOB pybins "${CMAKE_SOURCE_DIR}/bin/*.py") foreach(pybin ${pybins}) get_filename_component(binaryname ${pybin} NAME_WE) configure_file( ${pybin} "${CMAKE_BINARY_DIR}/${binaryname}.py" COPYONLY) endforeach(pybin ${pybins}) endif (${MAKE_EXAMPLES}) ################################################################################ # compile benchmarks if(${MAKE_BENCHMARKS}) file(GLOB benchmarks "${CMAKE_SOURCE_DIR}/benchmarks/benchmark*cc") foreach(benchmark ${benchmarks}) get_filename_component(benchmark_name ${benchmark} NAME_WE) add_executable(${benchmark_name} ${benchmark}) target_link_libraries(${benchmark_name} ${BOOST_LIBRARIES} muSpectre) endforeach(benchmark ${benchmark}) endif(${MAKE_BENCHMARKS}) diff --git a/bin/demonstrator1.cc b/bin/demonstrator1.cc index 6888d4b..52dff7d 100644 --- a/bin/demonstrator1.cc +++ b/bin/demonstrator1.cc @@ -1,139 +1,139 @@ /** * @file demonstrator1.cc * * @author Till Junge * * @date 03 Jan 2018 * * @brief larger problem to show off * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include #include "external/cxxopts.hpp" #include "common/common.hh" #include "common/ccoord_operations.hh" #include "cell/cell_factory.hh" #include "materials/material_linear_elastic1.hh" #include "solver/deprecated_solvers.hh" #include "solver/deprecated_solver_cg.hh" using opt_ptr = std::unique_ptr; opt_ptr parse_args(int argc, char **argv) { opt_ptr options = std::make_unique(argv[0], "Tests MPI fft scalability"); try { options->add_options() ("0,N0", "number of rows", cxxopts::value(), "N0") ("h,help", "print help") ("positional", "Positional arguments: these are the arguments that are entered " "without an option", cxxopts::value>()); options->parse_positional(std::vector{"N0", "positional"}); options->parse(argc, argv); if (options->count("help")) { std::cout << options->help({"", "Group"}) << std::endl; exit(0); } if (options->count("N0") != 1 ) { throw cxxopts::OptionException("Parameter N0 missing"); } else if ((*options)["N0"].as()%2 != 1) { throw cxxopts::OptionException("N0 must be odd"); } else if (options->count("positional") > 0) { throw cxxopts::OptionException("There are too many positional arguments"); } } catch (const cxxopts::OptionException & e) { std::cout << "Error parsing options: " << e.what() << std::endl; exit(1); } return options; } using namespace muSpectre; int main(int argc, char *argv[]) { banner("demonstrator1", 2018, "Till Junge "); auto options{parse_args(argc, argv)}; auto & opt{*options}; const Dim_t size{opt["N0"].as()}; constexpr Real fsize{1.}; constexpr Dim_t dim{3}; const Dim_t nb_dofs{ipow(size, dim)*ipow(dim, 2)}; std::cout << "Number of dofs: " << nb_dofs << std::endl; constexpr Formulation form{Formulation::finite_strain}; const Rcoord_t lengths{CcoordOps::get_cube(fsize)}; const Ccoord_t resolutions{CcoordOps::get_cube(size)}; auto cell{make_cell(resolutions, lengths, form)}; constexpr Real E{1.0030648180242636}; constexpr Real nu{0.29930675909878679}; using Material_t = MaterialLinearElastic1; auto & Material_soft{Material_t::make(cell, "soft", E, nu)}; auto & Material_hard{Material_t::make(cell, "hard", 10*E, nu)}; int counter{0}; for (const auto && pixel:cell) { int sum = 0; for (Dim_t i = 0; i < dim; ++i) { sum += pixel[i]*2 / resolutions[i]; } if (sum == 0) { Material_hard.add_pixel(pixel); counter ++; } else { Material_soft.add_pixel(pixel); } } std::cout << counter << " Pixel out of " << cell.size() << " are in the hard material" << std::endl; cell.initialise(FFT_PlanFlags::measure); constexpr Real newton_tol{1e-4}; constexpr Real cg_tol{1e-7}; const Uint maxiter = nb_dofs; Grad_t DeltaF{Grad_t::Zero()}; DeltaF(0, 1) = .1; Dim_t verbose {1}; auto start = std::chrono::high_resolution_clock::now(); GradIncrements grads{DeltaF}; DeprecatedSolverCG cg{cell, cg_tol, maxiter, bool(verbose)}; deprecated_newton_cg(cell, grads, cg, newton_tol, verbose); std::chrono::duration dur = std::chrono::high_resolution_clock::now() - start; std::cout << "Resolution time = " << dur.count() << "s" << std::endl; return 0; } diff --git a/bin/demonstrator2.cc b/bin/demonstrator2.cc index 8ec224d..11a74ea 100644 --- a/bin/demonstrator2.cc +++ b/bin/demonstrator2.cc @@ -1,90 +1,90 @@ /** * @file demonstrator1.cc * * @author Till Junge * * @date 03 Jan 2018 * * @brief larger problem to show off * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include #include "common/common.hh" #include "common/ccoord_operations.hh" #include "cell/cell_factory.hh" #include "materials/material_linear_elastic1.hh" #include "solver/solvers.hh" #include "solver/solver_cg.hh" using namespace muSpectre; int main() { banner("demonstrator1", 2018, "Till Junge "); constexpr Dim_t dim{2}; constexpr Formulation form{Formulation::finite_strain}; const Rcoord_t lengths{5.2, 8.3}; const Ccoord_t resolutions{5, 7}; auto cell{make_cell(resolutions, lengths, form)}; constexpr Real E{1.0030648180242636}; constexpr Real nu{0.29930675909878679}; using Material_t = MaterialLinearElastic1; auto & soft{Material_t::make(cell, "soft", E, nu)}; auto & hard{Material_t::make(cell, "hard", 10*E, nu)}; int counter{0}; for (const auto && pixel:cell) { if (counter < 3) { hard.add_pixel(pixel); counter++; } else { soft.add_pixel(pixel); } } std::cout << counter << " Pixel out of " << cell.size() << " are in the hard material" << std::endl; cell.initialise(); constexpr Real newton_tol{1e-4}; constexpr Real cg_tol{1e-7}; const size_t maxiter = 100; Eigen::MatrixXd DeltaF{Eigen::MatrixXd::Zero(dim, dim)}; DeltaF(0, 1) = .1; Dim_t verbose {1}; auto start = std::chrono::high_resolution_clock::now(); SolverCG cg{cell, cg_tol, maxiter, bool(verbose)}; auto res = de_geus(cell, DeltaF, cg, newton_tol, verbose); std::chrono::duration dur = std::chrono::high_resolution_clock::now() - start; std::cout << "Resolution time = " << dur.count() << "s" << std::endl; std::cout << res.grad.transpose() << std::endl; return 0; } diff --git a/bin/demonstrator_dynamic_solve.cc b/bin/demonstrator_dynamic_solve.cc index c54a6d9..2a3233f 100644 --- a/bin/demonstrator_dynamic_solve.cc +++ b/bin/demonstrator_dynamic_solve.cc @@ -1,139 +1,139 @@ /** * @file demonstrator1.cc * * @author Till Junge * * @date 03 Jan 2018 * * @brief larger problem to show off * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include #include "external/cxxopts.hpp" #include "common/common.hh" #include "common/ccoord_operations.hh" #include "cell/cell_factory.hh" #include "materials/material_linear_elastic1.hh" #include "solver/solvers.hh" #include "solver/solver_cg.hh" using opt_ptr = std::unique_ptr; opt_ptr parse_args(int argc, char **argv) { opt_ptr options = std::make_unique(argv[0], "Tests MPI fft scalability"); try { options->add_options() ("0,N0", "number of rows", cxxopts::value(), "N0") ("h,help", "print help") ("positional", "Positional arguments: these are the arguments that are entered " "without an option", cxxopts::value>()); options->parse_positional(std::vector{"N0", "positional"}); options->parse(argc, argv); if (options->count("help")) { std::cout << options->help({"", "Group"}) << std::endl; exit(0); } if (options->count("N0") != 1 ) { throw cxxopts::OptionException("Parameter N0 missing"); } else if ((*options)["N0"].as()%2 != 1) { throw cxxopts::OptionException("N0 must be odd"); } else if (options->count("positional") > 0) { throw cxxopts::OptionException("There are too many positional arguments"); } } catch (const cxxopts::OptionException & e) { std::cout << "Error parsing options: " << e.what() << std::endl; exit(1); } return options; } using namespace muSpectre; int main(int argc, char *argv[]) { banner("demonstrator1", 2018, "Till Junge "); auto options{parse_args(argc, argv)}; auto & opt{*options}; const Dim_t size{opt["N0"].as()}; constexpr Real fsize{1.}; constexpr Dim_t dim{3}; const Dim_t nb_dofs{ipow(size, dim)*ipow(dim, 2)}; std::cout << "Number of dofs: " << nb_dofs << std::endl; constexpr Formulation form{Formulation::finite_strain}; const Rcoord_t lengths{CcoordOps::get_cube(fsize)}; const Ccoord_t resolutions{CcoordOps::get_cube(size)}; auto cell{make_cell(resolutions, lengths, form)}; constexpr Real E{1.0030648180242636}; constexpr Real nu{0.29930675909878679}; using Material_t = MaterialLinearElastic1; auto & Material_soft{Material_t::make(cell, "soft", E, nu)}; auto & Material_hard{Material_t::make(cell, "hard", 10*E, nu)}; int counter{0}; for (const auto && pixel:cell) { int sum = 0; for (Dim_t i = 0; i < dim; ++i) { sum += pixel[i]*2 / resolutions[i]; } if (sum == 0) { Material_hard.add_pixel(pixel); counter ++; } else { Material_soft.add_pixel(pixel); } } std::cout << counter << " Pixel out of " << cell.size() << " are in the hard material" << std::endl; cell.initialise(FFT_PlanFlags::measure); constexpr Real newton_tol{1e-4}; constexpr Real cg_tol{1e-7}; const Uint maxiter = nb_dofs; Eigen::MatrixXd DeltaF{Eigen::MatrixXd::Zero(dim, dim)}; DeltaF(0, 1) = .1; Dim_t verbose {1}; auto start = std::chrono::high_resolution_clock::now(); LoadSteps_t loads{DeltaF}; SolverCG cg{cell, cg_tol, maxiter, bool(verbose)}; newton_cg(cell, loads, cg, newton_tol, verbose); std::chrono::duration dur = std::chrono::high_resolution_clock::now() - start; std::cout << "Resolution time = " << dur.count() << "s" << std::endl; return 0; } diff --git a/bin/demonstrator_mpi.cc b/bin/demonstrator_mpi.cc index bfe63b6..6bc775c 100644 --- a/bin/demonstrator_mpi.cc +++ b/bin/demonstrator_mpi.cc @@ -1,153 +1,153 @@ /** * file demonstrator_mpi.cc * * @author Till Junge * * @date 04 Apr 2018 * * @brief MPI parallel demonstration problem * * @section LICENSE * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include #include "external/cxxopts.hpp" #include "common/common.hh" #include "common/ccoord_operations.hh" #include "cell/cell_factory.hh" #include "materials/material_linear_elastic1.hh" #include "solver/solvers.hh" #include "solver/solver_cg.hh" using opt_ptr = std::unique_ptr; opt_ptr parse_args(int argc, char **argv) { opt_ptr options = std::make_unique(argv[0], "Tests MPI fft scalability"); try { options->add_options() ("0,N0", "number of rows", cxxopts::value(), "N0") ("h,help", "print help") ("positional", "Positional arguments: these are the arguments that are entered " "without an option", cxxopts::value>()); options->parse_positional(std::vector{"N0", "positional"}); options->parse(argc, argv); if (options->count("help")) { std::cout << options->help({"", "Group"}) << std::endl; exit(0); } if (options->count("N0") != 1 ) { throw cxxopts::OptionException("Parameter N0 missing"); } else if ((*options)["N0"].as()%2 != 1) { throw cxxopts::OptionException("N0 must be odd"); } else if (options->count("positional") > 0) { throw cxxopts::OptionException("There are too many positional arguments"); } } catch (const cxxopts::OptionException & e) { std::cout << "Error parsing options: " << e.what() << std::endl; exit(1); } return options; } using namespace muSpectre; int main(int argc, char *argv[]) { banner("demonstrator mpi", 2018, "Till Junge "); auto options{parse_args(argc, argv)}; auto & opt{*options}; const Dim_t size{opt["N0"].as()}; constexpr Real fsize{1.}; constexpr Dim_t dim{3}; const Dim_t nb_dofs{ipow(size, dim)*ipow(dim, 2)}; std::cout << "Number of dofs: " << nb_dofs << std::endl; constexpr Formulation form{Formulation::finite_strain}; const Rcoord_t lengths{CcoordOps::get_cube(fsize)}; const Ccoord_t resolutions{CcoordOps::get_cube(size)}; { Communicator comm{MPI_COMM_WORLD}; MPI_Init(&argc, &argv); auto cell{make_parallel_cell(resolutions, lengths, form, comm)}; constexpr Real E{1.0030648180242636}; constexpr Real nu{0.29930675909878679}; using Material_t = MaterialLinearElastic1; auto Material_soft{std::make_unique("soft", E, nu)}; auto Material_hard{std::make_unique("hard", 10*E, nu)}; int counter{0}; for (const auto && pixel:cell) { int sum = 0; for (Dim_t i = 0; i < dim; ++i) { sum += pixel[i]*2 / resolutions[i]; } if (sum == 0) { Material_hard->add_pixel(pixel); counter ++; } else { Material_soft->add_pixel(pixel); } } if (comm.rank() == 0) { std::cout << counter << " Pixel out of " << cell.size() << " are in the hard material" << std::endl; } cell.add_material(std::move(Material_soft)); cell.add_material(std::move(Material_hard)); cell.initialise(FFT_PlanFlags::measure); constexpr Real newton_tol{1e-4}; constexpr Real cg_tol{1e-7}; const Uint maxiter = nb_dofs; Eigen::MatrixXd DeltaF{Eigen::MatrixXd::Zero(dim, dim)}; DeltaF(0, 1) = .1; Dim_t verbose {1}; auto start = std::chrono::high_resolution_clock::now(); LoadSteps_t grads{DeltaF}; SolverCG cg{cell, cg_tol, maxiter, bool(verbose)}; de_geus(cell, grads, cg, newton_tol, verbose); std::chrono::duration dur = std::chrono::high_resolution_clock::now() - start; if (comm.rank() == 0) { std::cout << "Resolution time = " << dur.count() << "s" << std::endl; } MPI_Barrier(comm.get_mpi_comm()); } MPI_Finalize(); return 0; } diff --git a/bin/hyper-elasticity.cc b/bin/hyper-elasticity.cc index dff918b..6e52cf7 100644 --- a/bin/hyper-elasticity.cc +++ b/bin/hyper-elasticity.cc @@ -1,90 +1,90 @@ /** * @file hyper-elasticity.cc * * @author Till Junge * * @date 16 Jan 2018 * * @brief Recreation of GooseFFT's hyper-elasticity.py calculation * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "cell/cell_factory.hh" #include "materials/material_linear_elastic1.hh" #include "solver/solvers.hh" #include "solver/solver_cg.hh" #include #include using namespace muSpectre; int main() { constexpr Dim_t dim{3}; constexpr Ccoord_t N{CcoordOps::get_cube(11)}; constexpr Rcoord_t lens{CcoordOps::get_cube(1.)}; constexpr Dim_t incl_size{3}; auto cell{make_cell(N, lens, Formulation::small_strain)}; // constexpr Real K_hard{8.33}, K_soft{.833}; // constexpr Real mu_hard{3.86}, mu_soft{.386}; // auto E = [](Real K, Real G) {return 9*K*G / (3*K+G);}; //G is mu // auto nu= [](Real K, Real G) {return (3*K-2*G) / (2*(3*K+G));}; // auto & hard{MaterialLinearElastic1::make(cell, "hard", // E(K_hard, mu_hard), // nu(K_hard, mu_hard))}; // auto & soft{MaterialLinearElastic1::make(cell, "soft", // E(K_soft, mu_soft), // nu(K_soft, mu_soft))}; Real ex{1e-5}; using Mat_t = MaterialLinearElastic1; auto & hard{Mat_t::make(cell, "hard", 210.*ex, .33)}; auto & soft{Mat_t::make(cell, "soft", 70.*ex, .33)}; for (auto pixel: cell) { if ((pixel[0] >= N[0]-incl_size) && (pixel[1] < incl_size) && (pixel[2] >= N[2]-incl_size)) { hard.add_pixel(pixel); } else { soft.add_pixel(pixel); } } std::cout << hard.size() << " pixels in the inclusion" << std::endl; cell.initialise(); constexpr Real cg_tol{1e-8}, newton_tol{1e-5}; constexpr Dim_t maxiter{200}; constexpr Dim_t verbose{1}; Eigen::MatrixXd dF_bar{Eigen::MatrixXd::Zero(dim, dim)}; dF_bar(0, 1) = 1.; SolverCG cg{cell, cg_tol, maxiter, verbose}; auto optimize_res = de_geus(cell, dF_bar, cg, newton_tol, verbose); std::cout << "nb_cg: " << optimize_res.nb_fev << std::endl; std::cout << optimize_res.grad.transpose().block(0,0,10,9) << std::endl; return 0; } diff --git a/bin/hyper-elasticity.py b/bin/hyper-elasticity.py index 00630c1..688c070 100755 --- a/bin/hyper-elasticity.py +++ b/bin/hyper-elasticity.py @@ -1,81 +1,81 @@ #!/usr/bin/env python3 """ file hyper-elasticity.py @author Till Junge @date 16 Jan 2018 @brief Recreation of GooseFFT's hyper-elasticity.py calculation @section LICENSE Copyright © 2018 Till Junge µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with µSpectre; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ import sys import os import numpy as np import argparse sys.path.append(os.path.join(os.getcwd(), "language_bindings/python")) import muSpectre as µ def compute(): N = [11, 11, 11] lens = [1., 1., 1.] incl_size = 3 formulation = µ.Formulation.finite_strain cell = µ.Cell(N, lens, formulation) hard = µ.material.MaterialLinearElastic1_3d.make(cell, "hard", 210.e9, .33) soft = µ.material.MaterialLinearElastic1_3d.make(cell, "soft", 70.e9, .33) for pixel in cell: # if ((pixel[0] >= N[0]-incl_size) and # (pixel[1] < incl_size) and # (pixel[2] >= N[2]-incl_size)): if (pixel[0] < 1): hard.add_pixel(pixel) else: soft.add_pixel(pixel) print("{} pixels in the inclusion".format(hard.size())) cell.initialise(); cg_tol, newton_tol = 1e-8, 1e-5 maxiter = 40 verbose = 3 dF_bar = np.array([[0, .02, 0], [0, 0, 0], [0, 0, 0]]) if formulation == µ.Formulation.small_strain: dF_bar = .5*(dF_bar + dF_bar.T) test_grad = np.zeros((9, cell.size)) test_grad[:,:] = dF_bar.reshape(-1,1) print(cell.directional_stiffness(test_grad)[:,:3]) solver = µ.solvers.SolverCG(cell, cg_tol, maxiter, verbose=False); optimize_res = µ.solvers.de_geus( cell, dF_bar, solver, newton_tol, verbose) print("nb_cg: {}\n{}".format(optimize_res.nb_fev, optimize_res.grad.T[:2,:])) def main(): compute() if __name__ == "__main__": main() diff --git a/bin/small_case.cc b/bin/small_case.cc index 5b7d838..9c36fbd 100644 --- a/bin/small_case.cc +++ b/bin/small_case.cc @@ -1,83 +1,83 @@ /** * @file small_case.cc * * @author Till Junge * * @date 12 Jan 2018 * * @brief small case for debugging * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/common.hh" #include "common/iterators.hh" #include "cell/cell_factory.hh" #include "materials/material_linear_elastic1.hh" #include "solver/solvers.hh" #include "solver/solver_cg.hh" #include using namespace muSpectre; int main() { constexpr Dim_t dim{twoD}; Ccoord_t resolution{11, 11}; Rcoord_t lengths{CcoordOps::get_cube(11.)};//{5.2e-9, 8.3e-9, 8.3e-9}; Formulation form{Formulation::finite_strain}; auto rve{make_cell(resolution, lengths, form)}; auto & hard{MaterialLinearElastic1::make (rve, "hard", 210., .33)}; auto & soft{MaterialLinearElastic1::make (rve, "soft", 70., .33)}; for (auto && tup: akantu::enumerate(rve)) { auto & i = std::get<0>(tup); auto & pixel = std::get<1>(tup); if (i < 3) { hard.add_pixel(pixel); } else { soft.add_pixel(pixel); } } rve.initialise(); Real tol{1e-6}; Eigen::MatrixXd Del0{}; Del0 << 0, .1, 0, 0; Uint maxiter{31}; Dim_t verbose{3}; SolverCG cg{rve, tol, maxiter, bool(verbose)}; auto res = de_geus(rve, Del0, cg, tol, verbose); std::cout << res.grad.transpose() << std::endl; return 0; } diff --git a/bin/small_case.py b/bin/small_case.py index c7be9be..da43e69 100755 --- a/bin/small_case.py +++ b/bin/small_case.py @@ -1,110 +1,110 @@ #!/usr/bin/env python3 """ file small_case.py @author Till Junge @date 12 Jan 2018 @brief small case for debugging @section LICENSE Copyright © 2018 Till Junge µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with µSpectre; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ import sys import os import numpy as np sys.path.append(os.path.join(os.getcwd(), "language_bindings/python")) import muSpectre as µ resolution = [51, 51] center = np.array([r//2 for r in resolution]) incl = resolution[0]//5 lengths = [7., 5.] formulation = µ.Formulation.small_strain rve = µ.Cell(resolution, lengths, formulation) hard = µ.material.MaterialLinearElastic1_2d.make( rve, "hard", 10e9, .33) soft = µ.material.MaterialLinearElastic1_2d.make( rve, "soft", 70e9, .33) for i, pixel in enumerate(rve): if np.linalg.norm(center - np.array(pixel),2) # # @date 11 Jan 2018 # # @brief some tool to help to do stuff with cmake in µSpectre # # @section LICENSE # # Copyright © 2018 Till Junge # # µSpectre is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3, or (at # your option) any later version. # # µSpectre is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License -# along with GNU Emacs; see the file COPYING. If not, write to the +# along with µSpectre; see the file COPYING. If not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # #[=[.rst: µSpectreTools ------------- This module provide some helper functions for µSpectre :: download_external_project(project_name URL BACKEND [TAG ] [THIRD_PARTY_SRC_DIR ] [NO_UPDATE] ) Downloads the external project based on the uri ``THIRD_PARTY_SRC_DIR `` Specifies where to download the source ``NO_UPDATE`` Does not try to update existing download :: mark_as_advanced_prefix(prefix) Marks as advanced all variables whoes names start with prefix :: add_external_dep(package [IGNORE_SYSTEM] [VERSION ] [...]) Tries to find the external package and if not found but a local ${package}.cmake files exists, it includes it. The extra arguments are passed to find_package() ``IGNORE_SYSTEM`` does not do the find_package ``VERSION`` Specifies the required minimum version ]=] # function(download_external_project project_name) include(CMakeParseArguments) set(_dep_flags NO_UPDATE) set(_dep_one_variables URL TAG BACKEND THIRD_PARTY_SRC_DIR ) set(_dep_multi_variables) cmake_parse_arguments(_dep_args "${_dep_flags}" "${_dep_one_variables}" "${_dep_multi_variables}" ${ARGN} ) if(NOT _dep_args_URL) message(FATAL_ERROR "You have to provide a URL for the project ${project_name}") endif() if(NOT _dep_args_BACKEND) message(FATAL_ERROR "You have to provide a backend to download ${project_name}") endif() if(_dep_args_TAG) set(_ep_tag "${_dep_args_BACKEND}_TAG ${_dep_args_TAG}") endif() set(_src_dir ${PROJECT_SOURCE_DIR}/third-party/${project_name}) if (_dep_args_THIRD_PARTY_SRC_DIR) set(_src_dir ${_dep_args_THIRD_PARTY_SRC_DIR}/${project_name}) endif() if(EXISTS ${_src_dir}/.DOWNLOAD_SUCCESS AND _dep_args_NO_UPDATE) return() endif() set(_working_dir ${PROJECT_BINARY_DIR}/third-party/${project_name}-download) file(WRITE ${_working_dir}/CMakeLists.txt " cmake_minimum_required(VERSION 3.1) project(${project_name}-download NONE) include(ExternalProject) ExternalProject_Add(${project_name} SOURCE_DIR ${_src_dir} BINARY_DIR ${_working_dir} ${_dep_args_BACKEND}_REPOSITORY ${_dep_args_URL} ${_ep_tag} CONFIGURE_COMMAND \"\" BUILD_COMMAND \"\" INSTALL_COMMAND \"\" TEST_COMMAND \"\" ) ") message(STATUS "Downloading ${project_name} ${_dep_args_GIT_TAG}") execute_process(COMMAND ${CMAKE_COMMAND} -G "${CMAKE_GENERATOR}" . RESULT_VARIABLE _result WORKING_DIRECTORY ${_working_dir} OUTPUT_FILE ${_working_dir}/configure-out.log ERROR_FILE ${_working_dir}/configure-error.log) if(_result) message(FATAL_ERROR "Something went wrong (${_result}) during the download" " process of ${project_name} check the file" " ${_working_dir}/configure-error.log for more details:") file(STRINGS "${_working_dir}/configure-error.log" ERROR_MSG) message("${ERROR_MSG}") endif() execute_process(COMMAND "${CMAKE_COMMAND}" --build . RESULT_VARIABLE _result WORKING_DIRECTORY ${_working_dir} OUTPUT_FILE ${_working_dir}/build-out.log ERROR_FILE ${_working_dir}/build-error.log) if(_result) message(FATAL_ERROR "Something went wrong (${_result}) during the download" " process of ${project_name} check the file" " ${_working_dir}/build-error.log for more details") endif() file(WRITE ${_src_dir}/.DOWNLOAD_SUCCESS "") endfunction() # ------------------------------------------------------------------------------ function(mark_as_advanced_prefix prefix) get_property(_list DIRECTORY PROPERTY VARIABLES) foreach(_var ${_list}) if(${_var} MATCHES "^${prefix}.*") mark_as_advanced(${_var}) endif() endforeach() endfunction() # ------------------------------------------------------------------------------ function(add_external_package package) include(CMakeParseArguments) set(_cmake_includes ${PROJECT_SOURCE_DIR}/cmake) set(_${package}_external_dir ${PROJECT_BINARY_DIR}/external) set(_aep_flags IGNORE_SYSTEM ) set(_aep_one_variables VERSION ) set(_aep_multi_variables) cmake_parse_arguments(_aep_args "${_aep_flags}" "${_aep_one_variables}" "${_aep_multi_variables}" ${ARGN} ) if(_aep_args_VERSION) set(_${package}_version ${_aep_args_VERSION}) endif() if(NOT EXISTS ${_cmake_includes}/${package}.cmake) set(_required REQUIRED) endif() if(NOT _aep_args_IGNORE_SYSTEM) find_package(${package} ${_${package}_version} ${_required} ${_aep_UNPARSED_ARGUMENTS} QUIET) if(${package}_FOUND AND NOT ${package}_FOUND_EXTERNAL) return() endif() endif() if(EXISTS ${_cmake_includes}/${package}.cmake) include(${_cmake_includes}/${package}.cmake) endif() endfunction() function(muSpectre_add_test test_name) include(CMakeParseArguments) set(_mat_flags ) set(_mat_one_variables TYPE MPI_NB_PROCS ) set(_mat_multi_variables) cmake_parse_arguments(_mat_args "${_mat_flags}" "${_mat_one_variables}" "${_mat_multi_variables}" ${ARGN} ) if ("${_mat_args_TYPE}" STREQUAL "BOOST") elseif("${_mat_args_TYPE}" STREQUAL "PYTHON") else () message (SEND_ERROR "Can only handle types 'BOOST' and 'PYTHON'") endif ("${_mat_args_TYPE}" STREQUAL "BOOST") set(_exe ${_mat_args_UNPARSED_ARGUMENTS}) if (${RUNNING_IN_CI}) if ("${_mat_args_TYPE}" STREQUAL "BOOST") LIST(APPEND _exe "--logger=JUNIT,all,test_results_${test_name}.xml") elseif("${_mat_args_TYPE}" STREQUAL "PYTHON") set(_exe ${PYTHON_EXECUTABLE} -m pytest --junitxml test_results_${test_name}.xml ${_exe}) endif ("${_mat_args_TYPE}" STREQUAL "BOOST") else () if("${_mat_args_TYPE}" STREQUAL "PYTHON") set(_exe ${PYTHON_EXECUTABLE} ${_exe}) endif ("${_mat_args_TYPE}" STREQUAL "PYTHON") endif (${RUNNING_IN_CI}) if(${_mat_args_MPI_NB_PROCS}) set(_exe ${MPIEXEC_EXECUTABLE} ${MPIEXEC_PREFLAGS} ${MPIEXEC_NUMPROC_FLAG} ${_mat_args_MPI_NB_PROCS} ${_exe}) endif(${_mat_args_MPI_NB_PROCS}) add_test(${test_name} ${_exe}) endfunction() diff --git a/doc/CMakeLists.txt b/doc/CMakeLists.txt index d2a3f70..34baa5e 100644 --- a/doc/CMakeLists.txt +++ b/doc/CMakeLists.txt @@ -1,69 +1,69 @@ #============================================================================== # file CMakeLists.txt # # @author Till Junge # # @date 01 Feb 2018 # # @brief builds the µSpectre documentation # # @section LICENSE # # Copyright © 2018 Till Junge # # µSpectre is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3, or (at # your option) any later version. # # µSpectre is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License -# along with GNU Emacs; see the file COPYING. If not, write to the +# along with µSpectre; see the file COPYING. If not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # find_package(Sphinx REQUIRED) # configured documentation tools and intermediate build results set(BINARY_BUILD_DIR "${CMAKE_CURRENT_BINARY_DIR}/_build") # Sphinx cache with pickled ReST documents set(SPHINX_CACHE_DIR "${CMAKE_CURRENT_BINARY_DIR}/_doctrees") # HTML output directory set(SPHINX_HTML_DIR "${CMAKE_CURRENT_BINARY_DIR}/html") configure_file( "${CMAKE_CURRENT_SOURCE_DIR}/dev-docs/source/conf.py" "${CMAKE_CURRENT_BINARY_DIR}/conf.py" @ONLY) configure_file( "${CMAKE_CURRENT_SOURCE_DIR}/dev-docs/source/Doxyfile" "${CMAKE_CURRENT_BINARY_DIR}/Doxyfile" @ONLY) configure_file( "${CMAKE_CURRENT_SOURCE_DIR}/dev-docs/source/input_def.in" "${CMAKE_CURRENT_BINARY_DIR}/input_def" @ONLY) configure_file( "${CMAKE_CURRENT_SOURCE_DIR}/dev-docs/source/xml_output_def.in" "${CMAKE_CURRENT_BINARY_DIR}/xml_output_def" @ONLY) add_custom_target(dev_doc ${SPHINX_EXECUTABLE} -j 4 -q -b html -c "${CMAKE_CURRENT_BINARY_DIR}" -d "${SPHINX_CACHE_DIR}" "${CMAKE_CURRENT_SOURCE_DIR}/dev-docs/source" "${SPHINX_HTML_DIR}" COMMENT "Building HTML documentation with Sphinx") diff --git a/language_bindings/CMakeLists.txt b/language_bindings/CMakeLists.txt index 539a1ba..92a2c08 100644 --- a/language_bindings/CMakeLists.txt +++ b/language_bindings/CMakeLists.txt @@ -1,30 +1,30 @@ #============================================================================== # file CMakeLists.txt # # @author Till Junge # # @date 08 Jan 2018 # # @brief configuration for language bindings # # @section LICENSE # # Copyright © 2018 Till Junge # # µSpectre is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3, or (at # your option) any later version. # # µSpectre is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License -# along with GNU Emacs; see the file COPYING. If not, write to the +# along with µSpectre; see the file COPYING. If not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # add_subdirectory(python) diff --git a/language_bindings/python/CMakeLists.txt b/language_bindings/python/CMakeLists.txt index 2a4292a..f668480 100644 --- a/language_bindings/python/CMakeLists.txt +++ b/language_bindings/python/CMakeLists.txt @@ -1,76 +1,76 @@ #============================================================================== # file CMakeLists.txt # # @author Till Junge # # @date 08 Jan 2018 # # @brief configuration for python binding using pybind11 # # @section LICENSE # # Copyright © 2018 Till Junge # # µSpectre is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3, or (at # your option) any later version. # # µSpectre is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License -# along with GNU Emacs; see the file COPYING. If not, write to the +# along with µSpectre; see the file COPYING. If not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # # FIXME! The user should have a choice to configure this path. execute_process(COMMAND "${PYTHON_EXECUTABLE}" "-m" "site" "--user-site" RESULT_VARIABLE _PYTHON_SUCCESS OUTPUT_VARIABLE PYTHON_USER_SITE ERROR_VARIABLE _PYTHON_ERROR_VALUE) if(NOT _PYTHON_SUCCESS MATCHES 0) message(FATAL_ERROR "Python config failure:\n${_PYTHON_ERROR_VALUE}") endif() string(REGEX REPLACE "\n" "" PYTHON_USER_SITE ${PYTHON_USER_SITE}) set (PY_BINDING_SRCS ${CMAKE_CURRENT_SOURCE_DIR}/bind_py_module.cc ${CMAKE_CURRENT_SOURCE_DIR}/bind_py_common.cc ${CMAKE_CURRENT_SOURCE_DIR}/bind_py_cell.cc ${CMAKE_CURRENT_SOURCE_DIR}/bind_py_material.cc ${CMAKE_CURRENT_SOURCE_DIR}/bind_py_solvers.cc ${CMAKE_CURRENT_SOURCE_DIR}/bind_py_fftengine.cc ${CMAKE_CURRENT_SOURCE_DIR}/bind_py_projections.cc ${CMAKE_CURRENT_SOURCE_DIR}/bind_py_field_collection.cc ) if (${USE_FFTWMPI}) add_definitions(-DWITH_FFTWMPI) endif(${USE_FFTWMPI}) if (${USE_PFFT}) add_definitions(-DWITH_PFFT) endif(${USE_PFFT}) find_package(PythonLibsNew ${MUSPECTRE_PYTHON_MAJOR_VERSION} MODULE REQUIRED) pybind11_add_module(pyMuSpectreLib ${PY_BINDING_SRCS}) target_link_libraries(pyMuSpectreLib PRIVATE muSpectre) # Want to rename the output, so that the python module is called muSpectre set_target_properties(pyMuSpectreLib PROPERTIES OUTPUT_NAME _muSpectre) target_include_directories(pyMuSpectreLib PUBLIC ${PYTHON_INCLUDE_DIRS}) add_custom_target(pyMuSpectre ALL SOURCES muSpectre/__init__.py muSpectre/fft.py) add_custom_command(TARGET pyMuSpectre POST_BUILD COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_SOURCE_DIR}/language_bindings/python/muSpectre $/muSpectre) install(TARGETS pyMuSpectreLib LIBRARY DESTINATION ${PYTHON_USER_SITE}) install(FILES muSpectre/__init__.py muSpectre/fft.py DESTINATION ${PYTHON_USER_SITE}/muSpectre) diff --git a/language_bindings/python/bind_py_cell.cc b/language_bindings/python/bind_py_cell.cc index 128f844..c5bc6c2 100644 --- a/language_bindings/python/bind_py_cell.cc +++ b/language_bindings/python/bind_py_cell.cc @@ -1,227 +1,227 @@ /** * @file bind_py_cell.cc * * @author Till Junge * * @date 09 Jan 2018 * * @brief Python bindings for the cell factory function * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/common.hh" #include "common/ccoord_operations.hh" #include "cell/cell_factory.hh" #include "cell/cell_base.hh" #ifdef WITH_FFTWMPI #include "fft/fftwmpi_engine.hh" #endif #ifdef WITH_PFFT #include "fft/pfft_engine.hh" #endif #include #include #include "pybind11/eigen.h" #include #include using namespace muSpectre; namespace py=pybind11; using namespace pybind11::literals; /** * cell factory for specific FFT engine */ #ifdef WITH_MPI template void add_parallel_cell_factory_helper(py::module & mod, const char *name) { using Ccoord = Ccoord_t; using Rcoord = Rcoord_t; mod.def (name, [](Ccoord res, Rcoord lens, Formulation form, size_t comm) { return make_parallel_cell , FFTEngine> (std::move(res), std::move(lens), std::move(form), std::move(Communicator(MPI_Comm(comm)))); }, "resolutions"_a, "lengths"_a=CcoordOps::get_cube(1.), "formulation"_a=Formulation::finite_strain, "communicator"_a=size_t(MPI_COMM_SELF)); } #endif /** * the cell factory is only bound for default template parameters */ template void add_cell_factory_helper(py::module & mod) { using Ccoord = Ccoord_t; using Rcoord = Rcoord_t; mod.def ("CellFactory", [](Ccoord res, Rcoord lens, Formulation form) { return make_cell(std::move(res), std::move(lens), std::move(form)); }, "resolutions"_a, "lengths"_a=CcoordOps::get_cube(1.), "formulation"_a=Formulation::finite_strain); #ifdef WITH_FFTWMPI add_parallel_cell_factory_helper>( mod, "FFTWMPICellFactory"); #endif #ifdef WITH_PFFT add_parallel_cell_factory_helper>( mod, "PFFTCellFactory"); #endif } void add_cell_factory(py::module & mod) { add_cell_factory_helper(mod); add_cell_factory_helper(mod); } /** * CellBase for which the material and spatial dimension are identical */ template void add_cell_base_helper(py::module & mod) { std::stringstream name_stream{}; name_stream << "CellBase" << dim << 'd'; const std::string name = name_stream.str(); using sys_t = CellBase; py::class_(mod, name.c_str()) .def("__len__", &sys_t::size) .def("__iter__", [](sys_t & s) { return py::make_iterator(s.begin(), s.end()); }) .def("initialise", &sys_t::initialise, "flags"_a=FFT_PlanFlags::estimate) .def("directional_stiffness", [](sys_t& cell, py::EigenDRef& v) { if ((size_t(v.cols()) != cell.size() || size_t(v.rows()) != dim*dim)) { std::stringstream err{}; err << "need array of shape (" << dim*dim << ", " << cell.size() << ") but got (" << v.rows() << ", " << v.cols() << ")."; throw std::runtime_error(err.str()); } if (!cell.is_initialised()) { cell.initialise(); } const std::string out_name{"temp output for directional stiffness"}; const std::string in_name{"temp input for directional stiffness"}; constexpr bool create_tangent{true}; auto & K = cell.get_tangent(create_tangent); auto & input = cell.get_managed_T2_field(in_name); auto & output = cell.get_managed_T2_field(out_name); input.eigen() = v; cell.directional_stiffness(K, input, output); return output.eigen(); }, "δF"_a) .def("project", [](sys_t& cell, py::EigenDRef& v) { if ((size_t(v.cols()) != cell.size() || size_t(v.rows()) != dim*dim)) { std::stringstream err{}; err << "need array of shape (" << dim*dim << ", " << cell.size() << ") but got (" << v.rows() << ", " << v.cols() << ")."; throw std::runtime_error(err.str()); } if (!cell.is_initialised()) { cell.initialise(); } const std::string in_name{"temp input for projection"}; auto & input = cell.get_managed_T2_field(in_name); input.eigen() = v; cell.project(input); return input.eigen(); }, "field"_a) .def("get_strain",[](sys_t & s) { return Eigen::ArrayXXd(s.get_strain().eigen()); }) .def("get_stress",[](sys_t & s) { return Eigen::ArrayXXd(s.get_stress().eigen()); }) .def_property_readonly("size", &sys_t::size) .def("evaluate_stress_tangent", [](sys_t& cell, py::EigenDRef& v ) { if ((size_t(v.cols()) != cell.size() || size_t(v.rows()) != dim*dim)) { std::stringstream err{}; err << "need array of shape (" << dim*dim << ", " << cell.size() << ") but got (" << v.rows() << ", " << v.cols() << ")."; throw std::runtime_error(err.str()); } auto & strain{cell.get_strain()}; strain.eigen() = v; cell.evaluate_stress_tangent(strain); }, "strain"_a) .def("get_projection", &sys_t::get_projection) .def("get_subdomain_resolutions", &sys_t::get_subdomain_resolutions) .def("get_subdomain_locations", &sys_t::get_subdomain_locations) .def("get_domain_resolutions", &sys_t::get_domain_resolutions) .def("get_domain_lengths", &sys_t::get_domain_resolutions); } void add_cell_base(py::module & mod) { py::class_(mod, "Cell") .def("get_globalised_internal_real_array", &Cell::get_globalised_internal_real_array, "unique_name"_a, "Convenience function to copy local (internal) fields of " "materials into a global field. At least one of the materials in " "the cell needs to contain an internal field named " "`unique_name`. If multiple materials contain such a field, they " "all need to be of same scalar type and same number of " "components. This does not work for split pixel cells or " "laminate pixel cells, as they can have multiple entries for the " "same pixel. Pixels for which no field named `unique_name` " "exists get an array of zeros." "\n" "Parameters:\n" "unique_name: fieldname to fill the global field with. At " "least one material must have such a field, or an " "Exception is raised."); add_cell_base_helper (mod); add_cell_base_helper(mod); } void add_cell(py::module & mod) { add_cell_factory(mod); auto cell{mod.def_submodule("cell")}; cell.doc() = "bindings for cells and cell factories"; add_cell_base(cell); } diff --git a/language_bindings/python/bind_py_common.cc b/language_bindings/python/bind_py_common.cc index d2d41ac..5db0ffc 100644 --- a/language_bindings/python/bind_py_common.cc +++ b/language_bindings/python/bind_py_common.cc @@ -1,158 +1,158 @@ /** * @file bind_py_common.cc * * @author Till Junge * * @date 08 Jan 2018 * * @brief Python bindings for the common part of µSpectre * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/common.hh" #include "common/ccoord_operations.hh" #include #include #include using namespace muSpectre; namespace py = pybind11; using namespace pybind11::literals; template void add_get_cube_helper(py::module & mod) { std::stringstream name {}; name << "get_" << dim << "d_cube"; mod.def (name.str().c_str(), &CcoordOps::get_cube, "size"_a, "return a Ccoord with the value 'size' repeated in each dimension"); } template void add_get_hermitian_helper(py::module & mod) { mod.def ("get_hermitian_sizes", &CcoordOps::get_hermitian_sizes, "full_sizes"_a, "return the hermitian sizes corresponding to the true sizes"); } template void add_get_ccoord_helper(py::module & mod) { using Ccoord = Ccoord_t; mod.def ("get_domain_ccoord", [](Ccoord resolutions, Dim_t index){ return CcoordOps::get_ccoord(resolutions, Ccoord{}, index); }, "resolutions"_a, "i"_a, "return the cell coordinate corresponding to the i'th cell in a grid of " "shape resolutions"); } void add_get_cube(py::module & mod) { add_get_cube_helper(mod); add_get_cube_helper(mod); add_get_cube_helper(mod); add_get_cube_helper(mod); add_get_hermitian_helper< twoD>(mod); add_get_hermitian_helper(mod); add_get_ccoord_helper< twoD>(mod); add_get_ccoord_helper(mod); } template void add_get_index_helper(py::module & mod) { using Ccoord = Ccoord_t; mod.def("get_domain_index", [](Ccoord sizes, Ccoord ccoord){ return CcoordOps::get_index(sizes, Ccoord{}, ccoord);}, "sizes"_a, "ccoord"_a, "return the linear index corresponding to grid point 'ccoord' in a " "grid of size 'sizes'"); } void add_get_index(py::module & mod) { add_get_index_helper< twoD>(mod); add_get_index_helper(mod); } template void add_Pixels_helper(py::module & mod) { std::stringstream name{}; name << "Pixels" << dim << "d"; using Ccoord = Ccoord_t; py::class_> Pixels(mod, name.str().c_str()); Pixels.def(py::init()); } void add_Pixels(py::module & mod) { add_Pixels_helper(mod); add_Pixels_helper(mod); } void add_common (py::module & mod) { py::enum_(mod, "Formulation") .value("finite_strain", Formulation::finite_strain) //"µSpectre handles a problem in terms of tranformation gradient F and" //" first Piola-Kirchhoff stress P") .value("small_strain", Formulation::small_strain) //"µSpectre handles a problem in terms of the infinitesimal strain " //"tensor ε and Cauchy stress σ"); ; py::enum_(mod, "StressMeasure") .value("Cauchy", StressMeasure::Cauchy) .value("PK1", StressMeasure::PK1) .value("PK2", StressMeasure::PK2) .value("Kirchhoff", StressMeasure::Kirchhoff) .value("Biot", StressMeasure::Biot) .value("Mandel", StressMeasure::Mandel) .value("no_stress_", StressMeasure::no_stress_); py::enum_(mod, "StrainMeasure") .value("Gradient", StrainMeasure::Gradient) .value("Infinitesimal", StrainMeasure::Infinitesimal) .value("GreenLagrange", StrainMeasure::GreenLagrange) .value("Biot", StrainMeasure::Biot) .value("Log", StrainMeasure::Log) .value("Almansi", StrainMeasure::Almansi) .value("RCauchyGreen", StrainMeasure::RCauchyGreen) .value("LCauchyGreen", StrainMeasure::LCauchyGreen) .value("no_strain_", StrainMeasure::no_strain_); py::enum_(mod, "FFT_PlanFlags") .value("estimate", FFT_PlanFlags::estimate) .value("measure", FFT_PlanFlags::measure) .value("patient", FFT_PlanFlags::patient); mod.def("banner", &banner, "name"_a, "year"_a, "copyright_holder"_a); add_get_cube(mod); add_Pixels(mod); add_get_index(mod); } diff --git a/language_bindings/python/bind_py_declarations.hh b/language_bindings/python/bind_py_declarations.hh index 8ef2ff4..497ce29 100644 --- a/language_bindings/python/bind_py_declarations.hh +++ b/language_bindings/python/bind_py_declarations.hh @@ -1,42 +1,42 @@ /** * @file bind_py_common.hh * * @author Till Junge * * @date 12 Jan 2018 * * @brief header for python bindings for the common part of µSpectre * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef BIND_PY_DECLARATIONS_H #define BIND_PY_DECLARATIONS_H #include namespace py = pybind11; void add_common(py::module & mod); void add_cell(py::module & mod); void add_material(py::module & mod); void add_solvers(py::module & mod); void add_fft_engines(py::module & mod); void add_projections(py::module & submodule); void add_field_collections(py::module & submodule); #endif /* BIND_PY_DECLARATIONS_H */ diff --git a/language_bindings/python/bind_py_fftengine.cc b/language_bindings/python/bind_py_fftengine.cc index 5007523..665d5ab 100644 --- a/language_bindings/python/bind_py_fftengine.cc +++ b/language_bindings/python/bind_py_fftengine.cc @@ -1,114 +1,114 @@ /** * @file bind_py_fftengine.cc * * @author Till Junge * * @date 17 Jan 2018 * * @brief Python bindings for the FFT engines * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "fft/fftw_engine.hh" #ifdef WITH_FFTWMPI #include "fft/fftwmpi_engine.hh" #endif #ifdef WITH_PFFT #include "fft/pfft_engine.hh" #endif #include "bind_py_declarations.hh" #include #include #include using namespace muSpectre; namespace py=pybind11; using namespace pybind11::literals; template void add_engine_helper(py::module & mod, std::string name) { using Ccoord = Ccoord_t; using ArrayXXc = Eigen::Array; py::class_(mod, name.c_str()) #ifdef WITH_MPI .def(py::init([](Ccoord res, Dim_t nb_components, size_t comm) { return new Engine(res, nb_components, std::move(Communicator(MPI_Comm(comm)))); }), "resolutions"_a, "nb_components"_a, "communicator"_a=size_t(MPI_COMM_SELF)) #else .def(py::init()) #endif .def("fft", [](Engine & eng, py::EigenDRef v) { using Coll_t = typename Engine::GFieldCollection_t; using Field_t = typename Engine::Field_t; Coll_t coll{}; coll.initialise(eng.get_subdomain_resolutions(), eng.get_subdomain_locations()); Field_t & temp{make_field("temp_field", coll, eng.get_nb_components())}; temp.eigen() = v; return ArrayXXc{eng.fft(temp).eigen()}; }, "array"_a) .def("ifft", [](Engine & eng, py::EigenDRef v) { using Coll_t = typename Engine::GFieldCollection_t; using Field_t = typename Engine::Field_t; Coll_t coll{}; coll.initialise(eng.get_subdomain_resolutions(), eng.get_subdomain_locations()); Field_t & temp{make_field("temp_field", coll, eng.get_nb_components())}; eng.get_work_space().eigen() = v; eng.ifft(temp); return Eigen::ArrayXXd{temp.eigen()}; }, "array"_a) .def("initialise", &Engine::initialise, "flags"_a=FFT_PlanFlags::estimate) .def("normalisation", &Engine::normalisation) .def("get_subdomain_resolutions", &Engine::get_subdomain_resolutions) .def("get_subdomain_locations", &Engine::get_subdomain_locations) .def("get_fourier_resolutions", &Engine::get_fourier_resolutions) .def("get_fourier_locations", &Engine::get_fourier_locations) .def("get_domain_resolutions", &Engine::get_domain_resolutions); } void add_fft_engines(py::module & mod) { auto fft{mod.def_submodule("fft")}; fft.doc() = "bindings for µSpectre's fft engines"; add_engine_helper, twoD>(fft, "FFTW_2d"); add_engine_helper, threeD>(fft, "FFTW_3d"); #ifdef WITH_FFTWMPI add_engine_helper, twoD>(fft, "FFTWMPI_2d"); add_engine_helper, threeD>(fft, "FFTWMPI_3d"); #endif #ifdef WITH_PFFT add_engine_helper, twoD>(fft, "PFFT_2d"); add_engine_helper, threeD>(fft, "PFFT_3d"); #endif add_projections(fft); } diff --git a/language_bindings/python/bind_py_field_collection.cc b/language_bindings/python/bind_py_field_collection.cc index 3e27dae..3c0fdc3 100644 --- a/language_bindings/python/bind_py_field_collection.cc +++ b/language_bindings/python/bind_py_field_collection.cc @@ -1,222 +1,222 @@ /** * file bind_py_field_collection.cc * * @author Till Junge * * @date 05 Jul 2018 * * @brief Python bindings for µSpectre field collections * * @section LICENSE * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/common.hh" #include "common/field.hh" #include "common/field_collection.hh" #include #include #include #include #include using namespace muSpectre; namespace py = pybind11; using namespace pybind11::literals; template void add_field_collection(py::module & mod) { std::stringstream name_stream{}; name_stream << "_" << (FieldCollectionDerived::Global ? "Global" : "Local") << "FieldCollection_" << Dim << 'd'; const auto name {name_stream.str()}; using FC_t = FieldCollectionBase; py::class_(mod, name.c_str()) .def("get_real_field", [](FC_t & field_collection, std::string unique_name) -> typename FC_t::template TypedField_t & { return field_collection.template get_typed_field(unique_name); }, "unique_name"_a, py::return_value_policy::reference_internal) .def("get_int_field", [](FC_t & field_collection, std::string unique_name) -> typename FC_t::template TypedField_t & { return field_collection.template get_typed_field(unique_name); }, "unique_name"_a, py::return_value_policy::reference_internal) .def("get_uint_field", [](FC_t & field_collection, std::string unique_name) -> typename FC_t::template TypedField_t & { return field_collection.template get_typed_field(unique_name); }, "unique_name"_a, py::return_value_policy::reference_internal) .def("get_complex_field", [](FC_t & field_collection, std::string unique_name) -> typename FC_t::template TypedField_t & { return field_collection.template get_typed_field(unique_name); }, "unique_name"_a, py::return_value_policy::reference_internal) .def("get_real_statefield", [](FC_t & field_collection, std::string unique_name) -> typename FC_t::template TypedStateField_t & { return field_collection.template get_typed_statefield(unique_name); }, "unique_name"_a, py::return_value_policy::reference_internal) .def("get_int_statefield", [](FC_t & field_collection, std::string unique_name) -> typename FC_t::template TypedStateField_t & { return field_collection.template get_typed_statefield(unique_name); }, "unique_name"_a, py::return_value_policy::reference_internal) .def("get_uint_statefield", [](FC_t & field_collection, std::string unique_name) -> typename FC_t::template TypedStateField_t & { return field_collection.template get_typed_statefield(unique_name); }, "unique_name"_a, py::return_value_policy::reference_internal) .def("get_complex_statefield", [](FC_t & field_collection, std::string unique_name) -> typename FC_t::template TypedStateField_t & { return field_collection.template get_typed_statefield(unique_name); }, "unique_name"_a, py::return_value_policy::reference_internal) .def_property_readonly("field_names", &FC_t::get_field_names, "returns the names of all fields in this collection") .def_property_readonly("statefield_names", &FC_t::get_statefield_names, "returns the names of all state fields in this " "collection"); } template void add_field(py::module & mod, std::string dtype_name) { using Field_t = TypedField; std::stringstream name_stream{}; name_stream << (FieldCollection::Global ? "Global" : "Local") << "Field" << dtype_name << "_" << FieldCollection::spatial_dim(); std::string name{name_stream.str()}; using Ref_t = py::EigenDRef>; py::class_(mod, name.c_str()) .def_property("array", [](Field_t & field) {return field.eigen();}, [](Field_t & field, Ref_t mat) {field.eigen() = mat;}, "array of stored data") .def_property_readonly("array", [](const Field_t & field) {return field.eigen();}, "array of stored data") .def_property("vector", [](Field_t& field) {return field.eigenvec();}, [](Field_t & field, Ref_t mat) {field.eigen() = mat;}, "flattened array of stored data") .def_property_readonly("vector", [](const Field_t& field) {return field.eigenvec();}, "flattened array of stored data"); } template void add_field_helper(py::module & mod) { std::stringstream name_stream{}; name_stream << (FieldCollection::Global ? "Global" : "Local") << "Field" << "_" << Dim; std::string name{name_stream.str()}; using Field_t = internal::FieldBase; py::class_(mod, name.c_str()) .def_property_readonly("name", &Field_t::get_name, "field name") .def_property_readonly("collection", &Field_t::get_collection, "Collection containing this field") .def_property_readonly("nb_components", &Field_t::get_nb_components, "number of scalars stored per pixel in this field") .def_property_readonly("stored_type", [](const Field_t & field) { return field.get_stored_typeid().name(); }, "fundamental type of scalars stored in this field") .def_property_readonly("size", &Field_t::size, "number of pixels in this field") .def("set_zero", &Field_t::set_zero, "Set all components in the field to zero"); add_field(mod, "Real"); add_field(mod, "Int"); } template void add_statefield(py::module & mod, std::string dtype_name) { using StateField_t = TypedStateField; std::stringstream name_stream{}; name_stream << (FieldCollection::Global ? "Global" : "Local") << "StateField" << dtype_name << "_" << FieldCollection::spatial_dim(); std::string name{name_stream.str()}; py::class_(mod, name.c_str()) .def("get_current_field", &StateField_t::get_current_field, "returns the current field value", py::return_value_policy::reference_internal) .def("get_old_field", &StateField_t::get_old_field, "nb_steps_ago"_a = 1, "returns the value this field held 'nb_steps_ago' steps ago", py::return_value_policy::reference_internal); } template void add_statefield_helper(py::module & mod) { std::stringstream name_stream{}; name_stream << (FieldCollection::Global ? "Global" : "Local") << "StateField" << "_" << Dim; std::string name{name_stream.str()}; using StateField_t = StateFieldBase; py::class_(mod, name.c_str()) .def_property_readonly("prefix", &StateField_t::get_prefix, "state field prefix") .def_property_readonly("collection", &StateField_t::get_collection, "Collection containing this field") .def_property_readonly("nb_memory", &StateField_t::get_nb_memory, "number of old states stored") .def_property_readonly("stored_type", [](const StateField_t & field) { return field.get_stored_typeid().name(); }, "fundamental type of scalars stored in this field"); add_statefield(mod, "Real"); add_statefield(mod, "Int"); } template void add_field_collection_helper(py::module & mod) { add_field_helper>(mod); add_field_helper>(mod); add_statefield_helper>(mod); add_statefield_helper>(mod); add_field_collection>(mod); add_field_collection>(mod); } void add_field_collections (py::module & mod) { add_field_collection_helper< twoD>(mod); add_field_collection_helper(mod); } diff --git a/language_bindings/python/bind_py_material.cc b/language_bindings/python/bind_py_material.cc index 01fb87f..872ab65 100644 --- a/language_bindings/python/bind_py_material.cc +++ b/language_bindings/python/bind_py_material.cc @@ -1,180 +1,180 @@ /** * @file bind_py_material.cc * * @author Till Junge * * @date 09 Jan 2018 * * @brief python bindings for µSpectre's materials * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/common.hh" #include "materials/material_linear_elastic1.hh" #include "materials/material_linear_elastic2.hh" #include "materials/material_linear_elastic3.hh" #include "materials/material_linear_elastic4.hh" #include "cell/cell_base.hh" #include "common/field_collection.hh" #include #include #include #include #include using namespace muSpectre; namespace py = pybind11; using namespace pybind11::literals; /** * python binding for the optionally objective form of Hooke's law */ template void add_material_linear_elastic1_helper(py::module & mod) { std::stringstream name_stream{}; name_stream << "MaterialLinearElastic1_" << dim << 'd'; const auto name {name_stream.str()}; using Mat_t = MaterialLinearElastic1; using Sys_t = CellBase; py::class_>(mod, name.c_str()) .def_static("make", [](Sys_t & sys, std::string n, Real e, Real p) -> Mat_t & { return Mat_t::make(sys, n, e, p); }, "cell"_a, "name"_a, "Young"_a, "Poisson"_a, py::return_value_policy::reference, py::keep_alive<1, 0>()) .def("add_pixel", [] (Mat_t & mat, Ccoord_t pix) { mat.add_pixel(pix);}, "pixel"_a) .def("size", &Mat_t::size); } template void add_material_linear_elastic2_helper(py::module & mod) { std::stringstream name_stream{}; name_stream << "MaterialLinearElastic2_" << dim << 'd'; const auto name {name_stream.str()}; using Mat_t = MaterialLinearElastic2; using Sys_t = CellBase; py::class_>(mod, name.c_str()) .def_static("make", [](Sys_t & sys, std::string n, Real e, Real p) -> Mat_t & { return Mat_t::make(sys, n, e, p); }, "cell"_a, "name"_a, "Young"_a, "Poisson"_a, py::return_value_policy::reference, py::keep_alive<1, 0>()) .def("add_pixel", [] (Mat_t & mat, Ccoord_t pix, py::EigenDRef& eig) { Eigen::Matrix eig_strain{eig}; mat.add_pixel(pix, eig_strain);}, "pixel"_a, "eigenstrain"_a) .def("size", &Mat_t::size); } template void add_material_linear_elastic3_helper(py::module & mod) { std::stringstream name_stream{}; name_stream << "MaterialLinearElastic3_" << dim << 'd'; const auto name {name_stream.str()}; using Mat_t = MaterialLinearElastic3; using Sys_t = CellBase; py::class_>(mod, name.c_str()) .def(py::init(), "name"_a) .def_static("make", [](Sys_t & sys, std::string n) -> Mat_t & { return Mat_t::make(sys, n); }, "cell"_a, "name"_a, py::return_value_policy::reference, py::keep_alive<1, 0>()) .def("add_pixel", [] (Mat_t & mat, Ccoord_t pix, Real Young, Real Poisson) { mat.add_pixel(pix, Young, Poisson);}, "pixel"_a, "Young"_a, "Poisson"_a) .def("size", &Mat_t::size); } template void add_material_linear_elastic4_helper(py::module & mod) { std::stringstream name_stream{}; name_stream << "MaterialLinearElastic4_" << dim << 'd'; const auto name {name_stream.str()}; using Mat_t = MaterialLinearElastic4; using Sys_t = CellBase; py::class_>(mod, name.c_str()) .def(py::init(), "name"_a) .def_static("make", [](Sys_t & sys, std::string n) -> Mat_t & { return Mat_t::make(sys, n); }, "cell"_a, "name"_a, py::return_value_policy::reference, py::keep_alive<1, 0>()) .def("add_pixel", [] (Mat_t & mat, Ccoord_t pix, Real Young, Real Poisson) { mat.add_pixel(pix, Young, Poisson);}, "pixel"_a, "Young"_a, "Poisson"_a) .def("size", &Mat_t::size); } template void add_material_helper(py::module & mod) { std::stringstream name_stream{}; name_stream << "Material_" << dim << 'd'; const std::string name{name_stream.str()}; using Mat_t = MaterialBase; using FC_t = LocalFieldCollection; using FCBase_t = FieldCollectionBase; py::class_(mod, name.c_str()). def_property_readonly ("collection", [](Mat_t & material) -> FCBase_t &{ return material.get_collection();}, "returns the field collection containing internal " "fields of this material", py::return_value_policy::reference_internal); add_material_linear_elastic1_helper(mod); add_material_linear_elastic2_helper(mod); add_material_linear_elastic3_helper(mod); add_material_linear_elastic4_helper(mod); } void add_material(py::module & mod) { auto material{mod.def_submodule("material")}; material.doc() = "bindings for constitutive laws"; add_material_helper(material); add_material_helper(material); } diff --git a/language_bindings/python/bind_py_module.cc b/language_bindings/python/bind_py_module.cc index 7302b5d..944ed57 100644 --- a/language_bindings/python/bind_py_module.cc +++ b/language_bindings/python/bind_py_module.cc @@ -1,44 +1,44 @@ /** * @file bind_py_module.cc * * @author Till Junge * * @date 12 Jan 2018 * * @brief Python bindings for µSpectre * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "bind_py_declarations.hh" #include using namespace pybind11::literals; namespace py=pybind11; PYBIND11_MODULE(_muSpectre, mod) { mod.doc() = "Python bindings to the µSpectre library"; add_common(mod); add_cell(mod); add_material(mod); add_solvers(mod); add_fft_engines(mod); add_field_collections(mod); } diff --git a/language_bindings/python/bind_py_projections.cc b/language_bindings/python/bind_py_projections.cc index f9560e6..b843bc6 100644 --- a/language_bindings/python/bind_py_projections.cc +++ b/language_bindings/python/bind_py_projections.cc @@ -1,198 +1,198 @@ /** * @file bind_py_projections.cc * * @author Till Junge * * @date 18 Jan 2018 * * @brief Python bindings for the Projection operators * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "fft/projection_small_strain.hh" #include "fft/projection_finite_strain.hh" #include "fft/projection_finite_strain_fast.hh" #include "fft/fftw_engine.hh" #ifdef WITH_FFTWMPI #include "fft/fftwmpi_engine.hh" #endif #ifdef WITH_PFFT #include "fft/pfft_engine.hh" #endif #include #include #include #include #include using namespace muSpectre; namespace py=pybind11; using namespace pybind11::literals; /** * "Trampoline" class for handling the pure virtual methods, see * [http://pybind11.readthedocs.io/en/stable/advanced/classes.html#overriding-virtual-functions-in-python] * for details */ template class PyProjectionBase: public ProjectionBase { public: //! base class using Parent = ProjectionBase; //! field type on which projection is applied using Field_t = typename Parent::Field_t; void apply_projection(Field_t & field) override { PYBIND11_OVERLOAD_PURE (void, Parent, apply_projection, field ); } Eigen::Map get_operator() override { PYBIND11_OVERLOAD_PURE (Eigen::Map, Parent, get_operator ); } }; template void add_proj_helper(py::module & mod, std::string name_start) { using Ccoord = Ccoord_t; using Rcoord = Rcoord_t; using Field_t = typename Proj::Field_t; static_assert(DimS == DimM, "currently only for DimS==DimM"); std::stringstream name{}; name << name_start << '_' << DimS << 'd'; py::class_(mod, name.str().c_str()) #ifdef WITH_MPI .def(py::init([](Ccoord res, Rcoord lengths, const std::string & fft, size_t comm) { if (fft == "fftw") { auto engine = std::make_unique> (res, Proj::NbComponents(), std::move(Communicator(MPI_Comm(comm)))); return Proj(std::move(engine), lengths); } #else .def(py::init([](Ccoord res, Rcoord lengths, const std::string & fft) { if (fft == "fftw") { auto engine = std::make_unique> (res, Proj::NbComponents()); return Proj(std::move(engine), lengths); } #endif #ifdef WITH_FFTWMPI else if (fft == "fftwmpi") { auto engine = std::make_unique> (res, Proj::NbComponents(), std::move(Communicator(MPI_Comm(comm)))); return Proj(std::move(engine), lengths); } #endif #ifdef WITH_PFFT else if (fft == "pfft") { auto engine = std::make_unique> (res, Proj::NbComponents(), std::move(Communicator(MPI_Comm(comm)))); return Proj(std::move(engine), lengths); } #endif else { throw std::runtime_error("Unknown FFT engine '"+fft+"' specified."); } }), "resolutions"_a, "lengths"_a, #ifdef WITH_MPI "fft"_a="fftw", "communicator"_a=size_t(MPI_COMM_SELF)) #else "fft"_a="fftw") #endif .def("initialise", &Proj::initialise, "flags"_a=FFT_PlanFlags::estimate, "initialises the fft engine (plan the transform)") .def("apply_projection", [](Proj & proj, py::EigenDRef v){ typename FFTEngineBase::GFieldCollection_t coll{}; Eigen::Index subdomain_size = CcoordOps::get_size(proj.get_subdomain_resolutions()); if (v.rows() != DimS*DimM || v.cols() != subdomain_size) { throw std::runtime_error("Expected input array of shape ("+ std::to_string(DimS*DimM)+", "+ std::to_string(subdomain_size)+ "), but input array has shape ("+ std::to_string(v.rows())+", "+ std::to_string(v.cols())+")."); } coll.initialise(proj.get_subdomain_resolutions(), proj.get_subdomain_locations()); Field_t & temp{make_field("temp_field", coll, proj.get_nb_components())}; temp.eigen() = v; proj.apply_projection(temp); return Eigen::ArrayXXd{temp.eigen()}; }) .def("get_operator", &Proj::get_operator) .def("get_formulation", &Proj::get_formulation, "return a Formulation enum indicating whether the projection is small" " or finite strain") .def("get_subdomain_resolutions", &Proj::get_subdomain_resolutions) .def("get_subdomain_locations", &Proj::get_subdomain_locations) .def("get_domain_resolutions", &Proj::get_domain_resolutions) .def("get_domain_lengths", &Proj::get_domain_resolutions); } void add_proj_dispatcher(py::module & mod) { add_proj_helper< ProjectionSmallStrain< twoD, twoD>, twoD>(mod, "ProjectionSmallStrain"); add_proj_helper< ProjectionSmallStrain, threeD>(mod, "ProjectionSmallStrain"); add_proj_helper< ProjectionFiniteStrain< twoD, twoD>, twoD>(mod, "ProjectionFiniteStrain"); add_proj_helper< ProjectionFiniteStrain, threeD>(mod, "ProjectionFiniteStrain"); add_proj_helper< ProjectionFiniteStrainFast< twoD, twoD>, twoD>(mod, "ProjectionFiniteStrainFast"); add_proj_helper< ProjectionFiniteStrainFast, threeD>(mod, "ProjectionFiniteStrainFast"); } void add_projections(py::module & mod) { add_proj_dispatcher(mod); } diff --git a/language_bindings/python/bind_py_solvers.cc b/language_bindings/python/bind_py_solvers.cc index 12d63e7..223dba2 100644 --- a/language_bindings/python/bind_py_solvers.cc +++ b/language_bindings/python/bind_py_solvers.cc @@ -1,154 +1,154 @@ /** * @file bind_py_solver.cc * * @author Till Junge * * @date 09 Jan 2018 * * @brief python bindings for the muSpectre solvers * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/common.hh" #include "solver/solvers.hh" #include "solver/solver_cg.hh" #include "solver/solver_eigen.hh" #include #include #include using namespace muSpectre; namespace py=pybind11; using namespace pybind11::literals; /** * Solvers instanciated for cells with equal spatial and material dimension */ template void add_iterative_solver_helper(py::module & mod, std::string name) { py::class_(mod, name.c_str()) .def(py::init(), "cell"_a, "tol"_a, "maxiter"_a, "verbose"_a=false) .def("name", &Solver::get_name); } void add_iterative_solver(py::module & mod) { std::stringstream name{}; name << "SolverBase"; py::class_(mod, name.str().c_str()); add_iterative_solver_helper(mod, "SolverCG"); add_iterative_solver_helper(mod, "SolverCGEigen"); add_iterative_solver_helper(mod, "SolverGMRESEigen"); add_iterative_solver_helper(mod, "SolverBiCGSTABEigen"); add_iterative_solver_helper(mod, "SolverDGMRESEigen"); add_iterative_solver_helper(mod, "SolverMINRESEigen"); } void add_newton_cg_helper(py::module & mod) { const char name []{"newton_cg"}; using solver = SolverBase; using grad = py::EigenDRef; using grad_vec = LoadSteps_t; mod.def(name, [](Cell & s, const grad & g, solver & so, Real nt, Real eqt, Dim_t verb) -> OptimizeResult { Eigen::MatrixXd tmp{g}; return newton_cg(s, tmp, so, nt, eqt, verb); }, "cell"_a, "ΔF₀"_a, "solver"_a, "newton_tol"_a, "equil_tol"_a, "verbose"_a=0); mod.def(name, [](Cell & s, const grad_vec & g, solver & so, Real nt, Real eqt, Dim_t verb) -> std::vector { return newton_cg(s, g, so, nt, eqt, verb); }, "cell"_a, "ΔF₀"_a, "solver"_a, "newton_tol"_a, "equilibrium_tol"_a, "verbose"_a=0); } void add_de_geus_helper(py::module & mod) { const char name []{"de_geus"}; using solver = SolverBase; using grad = py::EigenDRef; using grad_vec = LoadSteps_t; mod.def(name, [](Cell & s, const grad & g, solver & so, Real nt, Real eqt, Dim_t verb) -> OptimizeResult { Eigen::MatrixXd tmp{g}; return de_geus(s, tmp, so, nt, eqt, verb); }, "cell"_a, "ΔF₀"_a, "solver"_a, "newton_tol"_a, "equilibrium_tol"_a, "verbose"_a=0); mod.def(name, [](Cell & s, const grad_vec & g, solver & so, Real nt, Real eqt, Dim_t verb) -> std::vector { return de_geus(s, g, so, nt, eqt, verb); }, "cell"_a, "ΔF₀"_a, "solver"_a, "newton_tol"_a, "equilibrium_tol"_a, "verbose"_a=0); } void add_solver_helper(py::module & mod) { add_newton_cg_helper(mod); add_de_geus_helper (mod); } void add_solvers(py::module & mod) { auto solvers{mod.def_submodule("solvers")}; solvers.doc() = "bindings for solvers"; py::class_(mod, "OptimizeResult") .def_readwrite("grad", &OptimizeResult::grad) .def_readwrite("stress", &OptimizeResult::stress) .def_readwrite("success", &OptimizeResult::success) .def_readwrite("status", &OptimizeResult::status) .def_readwrite("message", &OptimizeResult::message) .def_readwrite("nb_it", &OptimizeResult::nb_it) .def_readwrite("nb_fev", &OptimizeResult::nb_fev); add_iterative_solver(solvers); add_solver_helper(solvers); } diff --git a/language_bindings/python/muSpectre/__init__.py b/language_bindings/python/muSpectre/__init__.py index 4c94d3c..e9761b4 100644 --- a/language_bindings/python/muSpectre/__init__.py +++ b/language_bindings/python/muSpectre/__init__.py @@ -1,93 +1,93 @@ # # @file __init__.py # # @author Lars Pastewka # # @date 21 Mar 2018 # # @brief Main entry point for muSpectre Python module # # Copyright © 2018 Till Junge # # µSpectre is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3, or (at # your option) any later version. # # µSpectre is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License -# along with GNU Emacs; see the file COPYING. If not, write to the +# along with µSpectre; see the file COPYING. If not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # try: from mpi4py import MPI except ImportError: MPI = None import _muSpectre from _muSpectre import (Formulation, get_domain_ccoord, get_domain_index, get_hermitian_sizes, material, solvers) import muSpectre.fft _factories = {'fftw': ('CellFactory', False), 'fftwmpi': ('FFTWMPICellFactory', True), 'pfft': ('PFFTCellFactory', True), 'p3dfft': ('P3DFFTCellFactory', True)} def Cell(resolutions, lengths, formulation=Formulation.finite_strain, fft='fftw', communicator=None): """ Instantiate a muSpectre Cell class. Parameters ---------- resolutions: list Grid resolutions in the Cartesian directions. lengths: list Physical size of the cell in the Cartesian directions. formulation: Formulation Formulation for strains and stresses used by the solver. Options are `Formulation.finite_strain` and `Formulation.small_strain`. Finite strain formulation is the default. fft: string FFT engine to use. Options are 'fftw', 'fftwmpi', 'pfft' and 'p3dfft'. Default is 'fftw'. communicator: mpi4py communicator mpi4py communicator object passed to parallel FFT engines. Note that the default 'fftw' engine does not support parallel execution. Returns ------- cell: object Return a muSpectre Cell object. """ try: factory_name, is_parallel = _factories[fft] except KeyError: raise KeyError("Unknown FFT engine '{}'.".format(fft)) try: factory = _muSpectre.__dict__[factory_name] except KeyError: raise KeyError("FFT engine '{}' has not been compiled into the " "muSpectre library.".format(fft)) if is_parallel: if MPI is None: raise RuntimeError('Parallel solver requested but mpi4py could' ' not be imported.') if communicator is None: communicator = MPI.COMM_SELF return factory(resolutions, lengths, formulation, MPI._handleof(communicator)) else: if communicator is not None: raise ValueError("FFT engine '{}' does not support parallel " "execution.".format(fft)) return factory(resolutions, lengths, formulation) diff --git a/language_bindings/python/muSpectre/fft.py b/language_bindings/python/muSpectre/fft.py index ae9b569..b7ed9d5 100644 --- a/language_bindings/python/muSpectre/fft.py +++ b/language_bindings/python/muSpectre/fft.py @@ -1,142 +1,142 @@ # # @file fft.py # # @author Lars Pastewka # # @date 27 Mar 2018 # # @brief Wrapper for muSpectre's FFT engines # # Copyright © 2018 Till Junge # # µSpectre is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3, or (at # your option) any later version. # # µSpectre is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License -# along with GNU Emacs; see the file COPYING. If not, write to the +# along with µSpectre; see the file COPYING. If not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # try: from mpi4py import MPI except ImportError: MPI = None import _muSpectre # This is a list of FFT engines that are potentially available. _factories = {'fftw': ('FFTW_2d', 'FFTW_3d', False), 'fftwmpi': ('FFTWMPI_2d', 'FFTWMPI_3d', True), 'pfft': ('PFFT_2d', 'PFFT_3d', True), 'p3dfft': ('P3DFFT_2d', 'P3DFFT_3d', True)} _projections = {_muSpectre.Formulation.finite_strain: 'FiniteStrainFast', _muSpectre.Formulation.small_strain: 'SmallStrain'} # Detect FFT engines. This is a convenience dictionary that allows enumeration # of all engines that have been compiled into the library. fft_engines = [] for fft, (factory_name_2d, factory_name_3d, is_parallel) in _factories.items(): if factory_name_2d in _muSpectre.fft.__dict__ and \ factory_name_3d in _muSpectre.fft.__dict__: fft_engines += [(fft, is_parallel)] def FFT(resolutions, nb_components, fft='fftw', communicator=None): """ Instantiate a muSpectre FFT class. Parameters ---------- resolutions: list Grid resolutions in the Cartesian directions. nb_components: int number of degrees of freedom per pixel in the transform fft: string FFT engine to use. Options are 'fftw', 'fftwmpi', 'pfft' and 'p3dfft'. Default is 'fftw'. communicator: mpi4py communicator mpi4py communicator object passed to parallel FFT engines. Note that the default 'fftw' engine does not support parallel execution. Returns ------- cell: object Return a muSpectre Cell object. """ try: factory_name_2d, factory_name_3d, is_parallel = _factories[fft] except KeyError: raise KeyError("Unknown FFT engine '{}'.".format(fft)) if len(resolutions) == 2: factory_name = factory_name_2d elif len(resolutions) == 3: factory_name = factory_name_3d else: raise ValueError('{}-d transforms are not supported' .format(len(resolutions))) try: factory = _muSpectre.fft.__dict__[factory_name] except KeyError: raise KeyError("FFT engine '{}' has not been compiled into the " "muSpectre library.".format(factory_name)) if is_parallel: if MPI is None: raise RuntimeError('Parallel solver requested but mpi4py could' ' not be imported.') if communicator is None: communicator = MPI.COMM_SELF return factory(resolutions, nb_components, MPI._handleof(communicator)) else: if communicator is not None: raise ValueError("FFT engine '{}' does not support parallel " "execution.".format(fft)) return factory(resolutions, nb_components) def Projection(resolutions, lengths, formulation=_muSpectre.Formulation.finite_strain, fft='fftw', communicator=None): """ Instantiate a muSpectre Projection class. Parameters ---------- resolutions: list Grid resolutions in the Cartesian directions. formulation: muSpectre.Formulation Determines whether to use finite or small strain formulation. fft: string FFT engine to use. Options are 'fftw', 'fftwmpi', 'pfft' and 'p3dfft'. Default is 'fftw'. communicator: mpi4py communicator mpi4py communicator object passed to parallel FFT engines. Note that the default 'fftw' engine does not support parallel execution. Returns ------- cell: object Return a muSpectre Cell object. """ factory_name = 'Projection{}_{}d'.format(_projections[formulation], len(resolutions)) try: factory = _muSpectre.fft.__dict__[factory_name] except KeyError: raise KeyError("Projection engine '{}' has not been compiled into the " "muSpectre library.".format(factory_name)) if communicator is None: communicator = MPI.COMM_SELF return factory(resolutions, lengths, fft, MPI._handleof(communicator)) diff --git "a/snippets/\302\265Spectre_cpp_header" "b/snippets/\302\265Spectre_cpp_header" index d3dd6cf..67dced5 100644 --- "a/snippets/\302\265Spectre_cpp_header" +++ "b/snippets/\302\265Spectre_cpp_header" @@ -1,31 +1,31 @@ # -*- mode: snippet; require-final-newline: nil -*- # name: muSpectreCXXHeader -# key: mspcch +# key: msph # binding: direct-keybinding # -- /** * @file `(file-name-nondirectory buffer-file-name)` * * @author `(format "%s <%s>" user-full-name user-mail-address)` * * @date `(format-time-string "%d %b %Y")` * * @brief ${1:description} * * Copyright © `(format-time-string "%Y")` `user-full-name` * * ${2:µSpectre} is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * $2 is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with $2; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ \ No newline at end of file diff --git "a/snippets/\302\265Spectre_py_header" "b/snippets/\302\265Spectre_py_header" index 1ac2848..769a6eb 100644 --- "a/snippets/\302\265Spectre_py_header" +++ "b/snippets/\302\265Spectre_py_header" @@ -1,35 +1,35 @@ # -*- mode: snippet -*- # name: muSpectrePyHeader # key: msppyh # binding: direct-keybinding # -- #!/usr/bin/env python3 # -*- coding:utf-8 -*- """ @file `(file-name-nondirectory buffer-file-name)` @author `(format "%s <%s>" user-full-name user-mail-address)` @date `(format-time-string "%d %b %Y")` @brief ${1:description} @section LICENSE Copyright © `(format-time-string "%Y")` `user-full-name` ${2:µSpectre} is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. $2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with $2; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index 0595edb..1cc4f4b 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -1,79 +1,79 @@ # ============================================================================= # file CMakeLists.txt # # @author Till Junge # # @date 08 Jan 2018 # # @brief Configuration for libmuSpectre # # @section LICENSE # # Copyright © 2018 Till Junge # # µSpectre is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3, or (at # your option) any later version. # # µSpectre is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License -# along with GNU Emacs; see the file COPYING. If not, write to the +# along with µSpectre; see the file COPYING. If not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # ============================================================================= add_library(muSpectre "") set("PRIVATE_MUSPECTRE_LIBS" "") add_subdirectory(common) add_subdirectory(materials) add_subdirectory(fft) add_subdirectory(cell) add_subdirectory(solver) if (${MPI_PARALLEL}) target_link_libraries(muSpectre PUBLIC ${MPI_LIBRARIES}) target_include_directories(muSpectre SYSTEM PUBLIC ${MPI_C_INCLUDE_PATH}) endif(${MPI_PARALLEL}) find_package(FFTW REQUIRED) # The following checks whether std::optional exists and replaces it by # boost::optional if necessary include(CheckCXXSourceCompiles) check_cxx_source_compiles( "#include int main() { std::experimental::optional A{}; }" HAS_STD_OPTIONAL) add_definitions(-DBAR) if( NOT HAS_STD_OPTIONAL) add_definitions(-DNO_EXPERIMENTAL) endif() file(GLOB_RECURSE _headers RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*.hh") list(APPEND muSpectre_SRC ${_headers}) set(muSpectre_INCLUDES ${FFTW_INCLUDES}) target_include_directories(muSpectre INTERFACE ${muSpectre_INCLUDES}) target_link_libraries(muSpectre PRIVATE ${FFTW_LIBRARIES} ${PRIVATE_MUSPECTRE_LIBS}) target_link_libraries(muSpectre PUBLIC Eigen3::Eigen) set_property(TARGET muSpectre PROPERTY PUBLIC_HEADER ${_headers}) install(TARGETS muSpectre LIBRARY DESTINATION lib PUBLIC_HEADER DESTINATION include) diff --git a/src/cell/CMakeLists.txt b/src/cell/CMakeLists.txt index 284ce60..297d316 100644 --- a/src/cell/CMakeLists.txt +++ b/src/cell/CMakeLists.txt @@ -1,34 +1,34 @@ # ============================================================================= # file CMakeLists.txt # # @author Till Junge # # @date 08 Jan 2018 # # @brief configuration for cell implementations # # @section LICENSE # # Copyright © 2018 Till Junge # # µSpectre is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3, or (at # your option) any later version. # # µSpectre is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License -# along with GNU Emacs; see the file COPYING. If not, write to the +# along with µSpectre; see the file COPYING. If not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # ============================================================================= set (cells_SRC ${CMAKE_CURRENT_SOURCE_DIR}/cell_base.cc ) target_sources(muSpectre PRIVATE ${cells_SRC}) diff --git a/src/cell/cell_base.cc b/src/cell/cell_base.cc index cea15f2..49db80a 100644 --- a/src/cell/cell_base.cc +++ b/src/cell/cell_base.cc @@ -1,524 +1,524 @@ /** * @file cell_base.cc * * @author Till Junge * * @date 01 Nov 2017 * * @brief Implementation for cell base class * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "cell/cell_base.hh" #include "common/ccoord_operations.hh" #include "common/iterators.hh" #include "common/tensor_algebra.hh" #include #include #include #include namespace muSpectre { /* ---------------------------------------------------------------------- */ template CellBase::CellBase(Projection_ptr projection_) :subdomain_resolutions{projection_->get_subdomain_resolutions()}, subdomain_locations{projection_->get_subdomain_locations()}, domain_resolutions{projection_->get_domain_resolutions()}, pixels(subdomain_resolutions, subdomain_locations), domain_lengths{projection_->get_domain_lengths()}, fields{std::make_unique()}, F{make_field("Gradient", *this->fields)}, P{make_field("Piola-Kirchhoff-1", *this->fields)}, projection{std::move(projection_)} { // resize all global fields (strain, stress, etc) this->fields->initialise(this->subdomain_resolutions, this->subdomain_locations); } /** * turns out that the default move container in combination with * clang segfaults under certain (unclear) cicumstances, because the * move constructor of the optional appears to be busted in gcc * 7.2. Copying it (K) instead of moving it fixes the issue, and * since it is a reference, the cost is practically nil */ template CellBase::CellBase(CellBase && other): subdomain_resolutions{std::move(other.subdomain_resolutions)}, subdomain_locations{std::move(other.subdomain_locations)}, domain_resolutions{std::move(other.domain_resolutions)}, pixels{std::move(other.pixels)}, domain_lengths{std::move(other.domain_lengths)}, fields{std::move(other.fields)}, F{other.F}, P{other.P}, K{other.K}, // this seems to segfault under clang if it's not a move materials{std::move(other.materials)}, projection{std::move(other.projection)} { } /* ---------------------------------------------------------------------- */ template typename CellBase::Material_t & CellBase::add_material(Material_ptr mat) { this->materials.push_back(std::move(mat)); return *this->materials.back(); } /* ---------------------------------------------------------------------- */ template auto CellBase::get_strain_vector() -> Vector_ref { return this->get_strain().eigenvec(); } /* ---------------------------------------------------------------------- */ template auto CellBase::get_stress_vector() const -> ConstVector_ref { return this->get_stress().eigenvec(); } /* ---------------------------------------------------------------------- */ template void CellBase:: set_uniform_strain(const Eigen::Ref & strain) { this->F.get_map() = strain; } /* ---------------------------------------------------------------------- */ template auto CellBase::evaluate_stress() -> ConstVector_ref { if (not this->initialised) { this->initialise(); } for (auto & mat: this->materials) { mat->compute_stresses(this->F, this->P, this->get_formulation()); } return this->P.const_eigenvec(); } /* ---------------------------------------------------------------------- */ template auto CellBase:: evaluate_stress_tangent() -> std::array { if (not this->initialised) { this->initialise(); } constexpr bool create_tangent{true}; this->get_tangent(create_tangent); for (auto & mat: this->materials) { mat->compute_stresses_tangent(this->F, this->P, this->K.value(), this->get_formulation()); } const TangentField_t & k = this->K.value(); return std::array{ this->P.const_eigenvec(), k.const_eigenvec()}; } /* ---------------------------------------------------------------------- */ template auto CellBase:: evaluate_projected_directional_stiffness (Eigen::Ref delF) -> Vector_ref { // the following const_cast should be safe, as long as the // constructed delF_field is const itself const TypedField delF_field ("Proxied raw memory for strain increment", *this->fields, Eigen::Map(const_cast(delF.data()), delF.size()), this->F.get_nb_components()); if (!this->K) { throw std::runtime_error ("currently only implemented for cases where a stiffness matrix " "exists"); } if (delF.size() != this->get_nb_dof()) { std::stringstream err{}; err << "input should be of size ndof = ¶(" << this->subdomain_resolutions << ") × " << DimS << "² = "<< this->get_nb_dof() << " but I got " << delF.size(); throw std::runtime_error(err.str()); } const std::string out_name{"δP; temp output for directional stiffness"}; auto & delP = this->get_managed_T2_field(out_name); auto Kmap{this->K.value().get().get_map()}; auto delPmap{delP.get_map()}; MatrixFieldMap delFmap(delF_field); for (auto && tup: akantu::zip(Kmap, delFmap, delPmap)) { auto & k = std::get<0>(tup); auto & df = std::get<1>(tup); auto & dp = std::get<2>(tup); dp = Matrices::tensmult(k, df); } return Vector_ref(this->project(delP).data(), this->get_nb_dof()); } /* ---------------------------------------------------------------------- */ template std::array CellBase::get_strain_shape() const { return this->projection->get_strain_shape(); } /* ---------------------------------------------------------------------- */ template void CellBase::apply_projection(Eigen::Ref vec) { TypedField field("Proxy for projection", *this->fields, vec, this->F.get_nb_components()); this->projection->apply_projection(field); } /* ---------------------------------------------------------------------- */ template typename CellBase::FullResponse_t CellBase::evaluate_stress_tangent(StrainField_t & grad) { if (this->initialised == false) { this->initialise(); } //! High level compatibility checks if (grad.size() != this->F.size()) { throw std::runtime_error("Size mismatch"); } constexpr bool create_tangent{true}; this->get_tangent(create_tangent); for (auto & mat: this->materials) { mat->compute_stresses_tangent(grad, this->P, this->K.value(), this->get_formulation()); } return std::tie(this->P, this->K.value()); } /* ---------------------------------------------------------------------- */ template typename CellBase::StressField_t & CellBase::directional_stiffness(const TangentField_t &K, const StrainField_t &delF, StressField_t &delP) { for (auto && tup: akantu::zip(K.get_map(), delF.get_map(), delP.get_map())){ auto & k = std::get<0>(tup); auto & df = std::get<1>(tup); auto & dp = std::get<2>(tup); dp = Matrices::tensmult(k, df); } return this->project(delP); } /* ---------------------------------------------------------------------- */ template typename CellBase::Vector_ref CellBase::directional_stiffness_vec(const Eigen::Ref &delF) { if (!this->K) { throw std::runtime_error ("currently only implemented for cases where a stiffness matrix " "exists"); } if (delF.size() != this->get_nb_dof()) { std::stringstream err{}; err << "input should be of size ndof = ¶(" << this->subdomain_resolutions << ") × " << DimS << "² = "<< this->get_nb_dof() << " but I got " << delF.size(); throw std::runtime_error(err.str()); } const std::string out_name{"temp output for directional stiffness"}; const std::string in_name{"temp input for directional stiffness"}; auto & out_tempref = this->get_managed_T2_field(out_name); auto & in_tempref = this->get_managed_T2_field(in_name); Vector_ref(in_tempref.data(), this->get_nb_dof()) = delF; this->directional_stiffness(this->K.value(), in_tempref, out_tempref); return Vector_ref(out_tempref.data(), this->get_nb_dof()); } /* ---------------------------------------------------------------------- */ template Eigen::ArrayXXd CellBase:: directional_stiffness_with_copy (Eigen::Ref delF) { if (!this->K) { throw std::runtime_error ("currently only implemented for cases where a stiffness matrix " "exists"); } const std::string out_name{"temp output for directional stiffness"}; const std::string in_name{"temp input for directional stiffness"}; auto & out_tempref = this->get_managed_T2_field(out_name); auto & in_tempref = this->get_managed_T2_field(in_name); in_tempref.eigen() = delF; this->directional_stiffness(this->K.value(), in_tempref, out_tempref); return out_tempref.eigen(); } /* ---------------------------------------------------------------------- */ template typename CellBase::StressField_t & CellBase::project(StressField_t &field) { this->projection->apply_projection(field); return field; } /* ---------------------------------------------------------------------- */ template typename CellBase::StrainField_t & CellBase::get_strain() { if (this->initialised == false) { this->initialise(); } return this->F; } /* ---------------------------------------------------------------------- */ template const typename CellBase::StressField_t & CellBase::get_stress() const { return this->P; } /* ---------------------------------------------------------------------- */ template const typename CellBase::TangentField_t & CellBase::get_tangent(bool create) { if (!this->K) { if (create) { this->K = make_field("Tangent Stiffness", *this->fields); } else { throw std::runtime_error ("K does not exist"); } } return this->K.value(); } /* ---------------------------------------------------------------------- */ template typename CellBase::StrainField_t & CellBase::get_managed_T2_field(std::string unique_name) { if (!this->fields->check_field_exists(unique_name)) { return make_field(unique_name, *this->fields); } else { return static_cast(this->fields->at(unique_name)); } } /* ---------------------------------------------------------------------- */ template auto CellBase::get_managed_real_field(std::string unique_name, size_t nb_components) -> Field_t & { if (!this->fields->check_field_exists(unique_name)) { return make_field>(unique_name, *this->fields, nb_components); } else { auto & ret_ref{Field_t::check_ref(this->fields->at(unique_name))}; if (ret_ref.get_nb_components() != nb_components) { std::stringstream err{}; err << "Field '" << unique_name << "' already exists and it has " << ret_ref.get_nb_components() << " components. You asked for a field " << "with " << nb_components << "components."; throw std::runtime_error(err.str()); } return ret_ref; } } /* ---------------------------------------------------------------------- */ template auto CellBase:: get_globalised_internal_real_field(const std::string & unique_name) -> Field_t & { using LField_t = typename Field_t::LocalField_t; // start by checking that the field exists at least once, and that // it always has th same number of components std::set nb_component_categories{}; std::vector> local_fields; for (auto & mat: this->materials) { auto & coll = mat->get_collection(); if (coll.check_field_exists(unique_name)) { auto & field{LField_t::check_ref(coll[unique_name])}; local_fields.emplace_back(field); nb_component_categories.insert(field.get_nb_components()); } } if (nb_component_categories.size() != 1) { const auto & nb_match{nb_component_categories.size()}; std::stringstream err_str{}; if (nb_match > 1) { err_str << "The fields named '" << unique_name << "' do not have the " << "same number of components in every material, which is a " << "requirement for globalising them! The following values were " << "found by material:" << std::endl; for (auto & mat: this->materials) { auto & coll = mat->get_collection(); if (coll.check_field_exists(unique_name)) { auto & field{LField_t::check_ref(coll[unique_name])}; err_str << field.get_nb_components() << " components in material '" << mat->get_name() << "'" << std::endl; } } } else { err_str << "The field named '" << unique_name << "' does not exist in " << "any of the materials and can therefore not be globalised!"; } throw std::runtime_error(err_str.str()); } const Dim_t nb_components{*nb_component_categories.begin()}; // get and prepare the field auto & field{this->get_managed_real_field(unique_name, nb_components)}; field.set_zero(); // fill it with local internal values for (auto & local_field: local_fields) { field.fill_from_local(local_field); } return field; } /* ---------------------------------------------------------------------- */ template auto CellBase::get_managed_real_array(std::string unique_name, size_t nb_components) -> Array_ref { auto & field{this->get_managed_real_field(unique_name, nb_components)}; return Array_ref {field.data(), Dim_t(nb_components), Dim_t(field.size())}; } /* ---------------------------------------------------------------------- */ template auto CellBase:: get_globalised_internal_real_array(const std::string & unique_name) -> Array_ref { auto & field{this->get_globalised_internal_real_field(unique_name)}; return Array_ref {field.data(), Dim_t(field.get_nb_components()), Dim_t(field.size())}; } /* ---------------------------------------------------------------------- */ template void CellBase::initialise(FFT_PlanFlags flags) { // check that all pixels have been assigned exactly one material this->check_material_coverage(); for (auto && mat: this->materials) { mat->initialise(); } // initialise the projection and compute the fft plan this->projection->initialise(flags); this->initialised = true; } /* ---------------------------------------------------------------------- */ template void CellBase::save_history_variables() { for (auto && mat: this->materials) { mat->save_history_variables(); } } /* ---------------------------------------------------------------------- */ template typename CellBase::iterator CellBase::begin() { return this->pixels.begin(); } /* ---------------------------------------------------------------------- */ template typename CellBase::iterator CellBase::end() { return this->pixels.end(); } /* ---------------------------------------------------------------------- */ template auto CellBase::get_adaptor() -> Adaptor { return Adaptor(*this); } /* ---------------------------------------------------------------------- */ template void CellBase::check_material_coverage() { auto nb_pixels = CcoordOps::get_size(this->subdomain_resolutions); std::vector*> assignments(nb_pixels, nullptr); for (auto & mat: this->materials) { for (auto & pixel: *mat) { auto index = CcoordOps::get_index(this->subdomain_resolutions, this->subdomain_locations, pixel); auto& assignment{assignments.at(index)}; if (assignment != nullptr) { std::stringstream err{}; err << "Pixel " << pixel << "is already assigned to material '" << assignment->get_name() << "' and cannot be reassigned to material '" << mat->get_name(); throw std::runtime_error(err.str()); } else { assignments[index] = mat.get(); } } } // find and identify unassigned pixels std::vector unassigned_pixels; for (size_t i = 0; i < assignments.size(); ++i) { if (assignments[i] == nullptr) { unassigned_pixels.push_back( CcoordOps::get_ccoord(this->subdomain_resolutions, this->subdomain_locations, i)); } } if (unassigned_pixels.size() != 0) { std::stringstream err {}; err << "The following pixels have were not assigned a material: "; for (auto & pixel: unassigned_pixels) { err << pixel << ", "; } err << "and that cannot be handled"; throw std::runtime_error(err.str()); } } template class CellBase; template class CellBase; } // muSpectre diff --git a/src/cell/cell_base.hh b/src/cell/cell_base.hh index d0c1052..3b78149 100644 --- a/src/cell/cell_base.hh +++ b/src/cell/cell_base.hh @@ -1,588 +1,588 @@ /** * @file cell_base.hh * * @author Till Junge * * @date 01 Nov 2017 * * @brief Base class representing a unit cell cell with single * projection operator * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef CELL_BASE_H #define CELL_BASE_H #include "common/common.hh" #include "common/ccoord_operations.hh" #include "common/field.hh" #include "common/utilities.hh" #include "materials/material_base.hh" #include "fft/projection_base.hh" #include "cell/cell_traits.hh" #include #include #include #include #include namespace muSpectre { /** * Cell adaptors implement the matrix-vector multiplication and * allow the system to be used like a sparse matrix in * conjugate-gradient-type solvers */ template class CellAdaptor; /** * Base class for cells that is not templated and therefore can be * in solvers that see cells as runtime-polymorphic objects. This * allows the use of standard * (i.e. spectral-method-implementation-agnostic) solvers, as for * instance the scipy solvers */ class Cell { public: //! sparse matrix emulation using Adaptor = CellAdaptor; //! dynamic vector type for interactions with numpy/scipy/solvers etc. using Vector_t = Eigen::Matrix; //! dynamic matrix type for setting strains using Matrix_t = Eigen::Matrix; //! dynamic generic array type for interaction with numpy, i/o, etc template using Array_t = Eigen::Array; //! ref to dynamic generic array template using Array_ref = Eigen::Map>; //! ref to constant vector using ConstVector_ref = Eigen::Map; //! output vector reference for solvers using Vector_ref = Eigen::Map; //! Default constructor Cell() = default; //! Copy constructor Cell(const Cell &other) = default; //! Move constructor Cell(Cell &&other) = default; //! Destructor virtual ~Cell() = default; //! Copy assignment operator Cell& operator=(const Cell &other) = default; //! Move assignment operator Cell& operator=(Cell &&other) = default; //! for handling double initialisations right bool is_initialised() const {return this->initialised;} //! returns the number of degrees of freedom in the cell virtual Dim_t get_nb_dof() const = 0; //! number of pixels in the cell virtual size_t size() const = 0; //! return the communicator object virtual const Communicator & get_communicator() const = 0; /** * formulation is hard set by the choice of the projection class */ virtual const Formulation & get_formulation() const = 0; /** * returns the material dimension of the problem */ virtual Dim_t get_material_dim() const = 0; /** * returns the number of rows and cols for the strain matrix type * (for full storage, the strain is stored in material_dim × * material_dim matrices, but in symmetriy storage, it is a column * vector) */ virtual std::array get_strain_shape() const = 0; /** * returns a writable map onto the strain field of this cell. This * corresponds to the unknowns in a typical solve cycle. */ virtual Vector_ref get_strain_vector() = 0; /** * returns a read-only map onto the stress field of this * cell. This corresponds to the intermediate (and finally, total) * solution in a typical solve cycle */ virtual ConstVector_ref get_stress_vector() const = 0; /** * evaluates and returns the stress for the currently set strain */ virtual ConstVector_ref evaluate_stress() = 0; /** * evaluates and returns the stress and stiffness for the currently set strain */ virtual std::array evaluate_stress_tangent() = 0; /** * applies the projection operator in-place on the input vector */ virtual void apply_projection(Eigen::Ref vec) = 0; /** * freezes all the history variables of the materials */ virtual void save_history_variables() = 0; /** * evaluates the directional and projected stiffness (this * corresponds to G:K:δF in de Geus 2017, * http://dx.doi.org/10.1016/j.cma.2016.12.032). It seems that * this operation needs to be implemented with a copy in oder to * be compatible with scipy and EigenCG etc (At the very least, * the copy is only made once) */ virtual Vector_ref evaluate_projected_directional_stiffness (Eigen::Ref delF) = 0; /** * returns a ref to a field named 'unique_name" of real values * managed by the cell. If the field does not yet exist, it is * created. * * @param unique_name name of the field. If the field already * exists, an array ref mapped onto it is returned. Else, a new * field with that name is created and returned- * * @param nb_components number of components to be stored *per * pixel*. For new fields any positive number can be chosen. When * accessing an existing field, this must correspond to the * existing field size, and a `std::runtime_error` is thrown if * this is not satisfied */ virtual Array_ref get_managed_real_array(std::string unique_name, size_t nb_components) = 0; /** * Convenience function to copy local (internal) fields of * materials into a global field. At least one of the materials in * the cell needs to contain an internal field named * `unique_name`. If multiple materials contain such a field, they * all need to be of same scalar type and same number of * components. This does not work for split pixel cells or * laminate pixel cells, as they can have multiple entries for the * same pixel. Pixels for which no field named `unique_name` * exists get an array of zeros. * * @param unique_name fieldname to fill the global field with. At * least one material must have such a field, or a * `std::runtime_error` is thrown */ virtual Array_ref get_globalised_internal_real_array(const std::string & unique_name) = 0; /** * set uniform strain (typically used to initialise problems */ virtual void set_uniform_strain(const Eigen::Ref &) = 0; //! get a sparse matrix view on the cell virtual Adaptor get_adaptor() = 0; protected: bool initialised{false}; //!< to handle double initialisation right private: }; //! DimS spatial dimension (dimension of problem //! DimM material_dimension (dimension of constitutive law) template class CellBase: public Cell { public: using Parent = Cell; using Ccoord = Ccoord_t; //!< cell coordinates type using Rcoord = Rcoord_t; //!< physical coordinates type //! global field collection using FieldCollection_t = GlobalFieldCollection; //! the collection is handled in a `std::unique_ptr` using Collection_ptr = std::unique_ptr; //! polymorphic base material type using Material_t = MaterialBase; //! materials handled through `std::unique_ptr`s using Material_ptr = std::unique_ptr; //! polymorphic base projection type using Projection_t = ProjectionBase; //! projections handled through `std::unique_ptr`s using Projection_ptr = std::unique_ptr; //! dynamic global fields template using Field_t = TypedField; //! expected type for strain fields using StrainField_t = TensorField; //! expected type for stress fields using StressField_t = TensorField; //! expected type for tangent stiffness fields using TangentField_t = TensorField; //! combined stress and tangent field using FullResponse_t = std::tuple; //! iterator type over all cell pixel's using iterator = typename CcoordOps::Pixels::iterator; //! dynamic vector type for interactions with numpy/scipy/solvers etc. using Vector_t = typename Parent::Vector_t; //! ref to constant vector using ConstVector_ref = typename Parent::ConstVector_ref; //! output vector reference for solvers using Vector_ref = typename Parent::Vector_ref; //! dynamic array type for interactions with numpy/scipy/solvers, etc. template using Array_t = typename Parent::Array_t; //! dynamic array type for interactions with numpy/scipy/solvers, etc. template using Array_ref = typename Parent::Array_ref; //! sparse matrix emulation using Adaptor = Parent::Adaptor; //! Default constructor CellBase() = delete; //! constructor using sizes and resolution CellBase(Projection_ptr projection); //! Copy constructor CellBase(const CellBase &other) = delete; //! Move constructor CellBase(CellBase &&other); //! Destructor virtual ~CellBase() = default; //! Copy assignment operator CellBase& operator=(const CellBase &other) = delete; //! Move assignment operator CellBase& operator=(CellBase &&other) = default; /** * Materials can only be moved. This is to assure exclusive * ownership of any material by this cell */ Material_t & add_material(Material_ptr mat); /** * returns a writable map onto the strain field of this cell. This * corresponds to the unknowns in a typical solve cycle. */ virtual Vector_ref get_strain_vector() override; /** * returns a read-only map onto the stress field of this * cell. This corresponds to the intermediate (and finally, total) * solution in a typical solve cycle */ virtual ConstVector_ref get_stress_vector() const override; /** * evaluates and returns the stress for the currently set strain */ virtual ConstVector_ref evaluate_stress() override; /** * evaluates and returns the stress and stiffness for the currently set strain */ virtual std::array evaluate_stress_tangent() override; /** * evaluates the directional and projected stiffness (this * corresponds to G:K:δF in de Geus 2017, * http://dx.doi.org/10.1016/j.cma.2016.12.032). It seems that * this operation needs to be implemented with a copy in oder to * be compatible with scipy and EigenCG etc. (At the very least, * the copy is only made once) */ virtual Vector_ref evaluate_projected_directional_stiffness (Eigen::Ref delF) override; //! return the template param DimM (required for polymorphic use of `Cell` Dim_t get_material_dim() const override final {return DimM;} /** * returns the number of rows and cols for the strain matrix type * (for full storage, the strain is stored in material_dim × * material_dim matrices, but in symmetriy storage, it is a column * vector) */ std::array get_strain_shape() const override final; /** * applies the projection operator in-place on the input vector */ void apply_projection(Eigen::Ref vec) override final; /** * set uniform strain (typically used to initialise problems */ void set_uniform_strain(const Eigen::Ref &) override; /** * evaluates all materials */ FullResponse_t evaluate_stress_tangent(StrainField_t & F); /** * evaluate directional stiffness (i.e. G:K:δF or G:K:δε) */ StressField_t & directional_stiffness(const TangentField_t & K, const StrainField_t & delF, StressField_t & delP); /** * vectorized version for eigen solvers, no copy, but only works * when fields have ArrayStore=false */ Vector_ref directional_stiffness_vec(const Eigen::Ref & delF); /** * Evaluate directional stiffness into a temporary array and * return a copy. This is a costly and wasteful interface to * directional_stiffness and should only be used for debugging or * in the python interface */ Eigen::ArrayXXd directional_stiffness_with_copy (Eigen::Ref delF); /** * Convenience function circumventing the neeed to use the * underlying projection */ StressField_t & project(StressField_t & field); //! returns a ref to the cell's strain field StrainField_t & get_strain(); //! returns a ref to the cell's stress field const StressField_t & get_stress() const; //! returns a ref to the cell's tangent stiffness field const TangentField_t & get_tangent(bool create = false); //! returns a ref to a temporary field managed by the cell StrainField_t & get_managed_T2_field(std::string unique_name); //! returns a ref to a temporary field of real values managed by the cell Field_t & get_managed_real_field(std::string unique_name, size_t nb_components); //! returns a Array ref to a temporary field of real values managed by the cell virtual Array_ref get_managed_real_array(std::string unique_name, size_t nb_components) override final; /** * returns a global field filled from local (internal) fields of * the materials. see `Cell::get_globalised_internal_array` for * details. */ Field_t & get_globalised_internal_real_field(const std::string & unique_name); //! see `Cell::get_globalised_internal_array` for details Array_ref get_globalised_internal_real_array(const std::string & unique_name) override final; /** * general initialisation; initialises the projection and * fft_engine (i.e. infrastructure) but not the materials. These * need to be initialised separately */ void initialise(FFT_PlanFlags flags = FFT_PlanFlags::estimate); /** * for materials with state variables, these typically need to be * saved/updated an the end of each load increment, this function * calls this update for each material in the cell */ void save_history_variables() override final; iterator begin(); //!< iterator to the first pixel iterator end(); //!< iterator past the last pixel //! number of pixels in the cell size_t size() const override final{return pixels.size();} //! return the subdomain resolutions of the cell const Ccoord & get_subdomain_resolutions() const { return this->subdomain_resolutions;} //! return the subdomain locations of the cell const Ccoord & get_subdomain_locations() const { return this->subdomain_locations;} //! return the domain resolutions of the cell const Ccoord & get_domain_resolutions() const { return this->domain_resolutions;} //! return the sizes of the cell const Rcoord & get_domain_lengths() const {return this->domain_lengths;} /** * formulation is hard set by the choice of the projection class */ const Formulation & get_formulation() const override final { return this->projection->get_formulation();} /** * get a reference to the projection object. should only be * required for debugging */ Eigen::Map get_projection() { return this->projection->get_operator();} //! returns the spatial size constexpr static Dim_t get_sdim() {return DimS;}; //! return a sparse matrix adaptor to the cell Adaptor get_adaptor() override; //! returns the number of degrees of freedom in the cell Dim_t get_nb_dof() const override {return this->size()*ipow(DimS, 2);}; //! return the communicator object virtual const Communicator & get_communicator() const override { return this->projection->get_communicator(); } protected: //! make sure that every pixel is assigned to one and only one material void check_material_coverage(); const Ccoord & subdomain_resolutions; //!< the cell's subdomain resolutions const Ccoord & subdomain_locations; //!< the cell's subdomain resolutions const Ccoord & domain_resolutions; //!< the cell's domain resolutions CcoordOps::Pixels pixels; //!< helper to iterate over the pixels const Rcoord & domain_lengths; //!< the cell's lengths Collection_ptr fields; //!< handle for the global fields of the cell StrainField_t & F; //!< ref to strain field StressField_t & P; //!< ref to stress field //! Tangent field might not even be required; so this is an //! optional ref_wrapper instead of a ref optional> K{}; //! container of the materials present in the cell std::vector materials{}; Projection_ptr projection; //!< handle for the projection operator private: }; /** * lightweight resource handle wrapping a `muSpectre::Cell` or * a subclass thereof into `Eigen::EigenBase`, so it can be * interpreted as a sparse matrix by Eigen solvers */ template class CellAdaptor: public Eigen::EigenBase> { public: using Scalar = double; //!< sparse matrix traits using RealScalar = double; //!< sparse matrix traits using StorageIndex = int; //!< sparse matrix traits enum { ColsAtCompileTime = Eigen::Dynamic, MaxColsAtCompileTime = Eigen::Dynamic, RowsAtCompileTime = Eigen::Dynamic, MaxRowsAtCompileTime = Eigen::Dynamic, IsRowMajor = false }; //! constructor CellAdaptor(Cell & cell):cell{cell}{} //!returns the number of logical rows Eigen::Index rows() const {return this->cell.get_nb_dof();} //!returns the number of logical columns Eigen::Index cols() const {return this->rows();} //! implementation of the evaluation template Eigen::Product operator*(const Eigen::MatrixBase& x) const { return Eigen::Product (*this, x.derived()); } Cell & cell; //!< ref to the cell }; } // muSpectre namespace Eigen { namespace internal { //! Implementation of `muSpectre::CellAdaptor` * `Eigen::DenseVector` through a //! specialization of `Eigen::internal::generic_product_impl`: template struct generic_product_impl // GEMV stands for matrix-vector : generic_product_impl_base > { //! undocumented typedef typename Product::Scalar Scalar; //! undocumented template static void scaleAndAddTo(Dest& dst, const CellAdaptor& lhs, const Rhs& rhs, const Scalar& /*alpha*/) { // This method should implement "dst += alpha * lhs * rhs" inplace, // however, for iterative solvers, alpha is always equal to 1, so let's not bother about it. // Here we could simply call dst.noalias() += lhs.my_matrix() * rhs, dst.noalias() += const_cast(lhs).cell. evaluate_projected_directional_stiffness(rhs); } }; } } #endif /* CELL_BASE_H */ diff --git a/src/cell/cell_factory.hh b/src/cell/cell_factory.hh index c826b78..a80af6a 100644 --- a/src/cell/cell_factory.hh +++ b/src/cell/cell_factory.hh @@ -1,161 +1,161 @@ /** * @file cell_factory.hh * * @author Till Junge * * @date 15 Dec 2017 * * @brief Cell factories to help create cells with ease * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef CELL_FACTORY_H #define CELL_FACTORY_H #include "common/common.hh" #include "common/ccoord_operations.hh" #include "cell/cell_base.hh" #include "fft/projection_finite_strain_fast.hh" #include "fft/projection_small_strain.hh" #include "fft/fftw_engine.hh" #ifdef WITH_MPI #include "common/communicator.hh" #include "fft/fftwmpi_engine.hh" #endif #include namespace muSpectre { /** * Create a unique ptr to a Projection operator (with appropriate * FFT_engine) to be used in a cell constructor */ template > inline std::unique_ptr> cell_input(Ccoord_t resolutions, Rcoord_t lengths, Formulation form) { auto fft_ptr{ std::make_unique(resolutions, dof_for_formulation(form, DimS))}; switch (form) { case Formulation::finite_strain: { using Projection = ProjectionFiniteStrainFast; return std::make_unique(std::move(fft_ptr), lengths); break; } case Formulation::small_strain: { using Projection = ProjectionSmallStrain; return std::make_unique(std::move(fft_ptr), lengths); break; } default: { throw std::runtime_error("unknow formulation"); break; } } } /** * convenience function to create a cell (avoids having to build * and move the chain of unique_ptrs */ template , typename FFTEngine=FFTWEngine> inline Cell make_cell(Ccoord_t resolutions, Rcoord_t lengths, Formulation form) { auto && input = cell_input(resolutions, lengths, form); auto cell{Cell{std::move(input)}}; return cell; } #ifdef WITH_MPI /** * Create a unique ptr to a parallel Projection operator (with appropriate * FFT_engine) to be used in a cell constructor */ template > inline std::unique_ptr> parallel_cell_input(Ccoord_t resolutions, Rcoord_t lengths, Formulation form, const Communicator & comm) { auto fft_ptr{std::make_unique(resolutions, dof_for_formulation(form, DimM), comm)}; switch (form) { case Formulation::finite_strain: { using Projection = ProjectionFiniteStrainFast; return std::make_unique(std::move(fft_ptr), lengths); break; } case Formulation::small_strain: { using Projection = ProjectionSmallStrain; return std::make_unique(std::move(fft_ptr), lengths); break; } default: { throw std::runtime_error("unknown formulation"); break; } } } /** * convenience function to create a parallel cell (avoids having to build * and move the chain of unique_ptrs */ template , typename FFTEngine=FFTWMPIEngine> inline Cell make_parallel_cell(Ccoord_t resolutions, Rcoord_t lengths, Formulation form, const Communicator & comm) { auto && input = parallel_cell_input(resolutions, lengths, form, comm); auto cell{Cell{std::move(input)}}; return cell; } #endif /* WITH_MPI */ } // muSpectre #endif /* CELL_FACTORY_H */ diff --git a/src/cell/cell_traits.hh b/src/cell/cell_traits.hh index c6ac9e9..f30fc57 100644 --- a/src/cell/cell_traits.hh +++ b/src/cell/cell_traits.hh @@ -1,54 +1,54 @@ /** * @file cell_traits.hh * * @author Till Junge * * @date 19 Jan 2018 * * @brief Provides traits for Eigen solvers to be able to use Cells * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/common.hh" #include #ifndef CELL_TRAITS_H #define CELL_TRAITS_H namespace muSpectre { template class CellAdaptor; } // muSpectre namespace Eigen { namespace internal { using Dim_t = muSpectre::Dim_t; //!< universal index type using Real = muSpectre::Real; //!< universal real value type template struct traits> : public Eigen::internal::traits > {}; } // internal } // Eigen #endif /* CELL_TRAITS_H */ diff --git a/src/common/CMakeLists.txt b/src/common/CMakeLists.txt index 7e01c2c..da41e2c 100644 --- a/src/common/CMakeLists.txt +++ b/src/common/CMakeLists.txt @@ -1,34 +1,34 @@ # ============================================================================= # file CMakeLists.txt # # @author Till Junge # # @date 08 Jan 2018 # # @brief configuration for files in common # # @section LICENSE # # Copyright © 2018 Till Junge # # µSpectre is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3, or (at # your option) any later version. # # µSpectre is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License -# along with GNU Emacs; see the file COPYING. If not, write to the +# along with µSpectre; see the file COPYING. If not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # ============================================================================= set (common_SRC ${CMAKE_CURRENT_SOURCE_DIR}/common.cc ) target_sources(muSpectre PRIVATE ${common_SRC}) diff --git a/src/common/T4_map_proxy.hh b/src/common/T4_map_proxy.hh index 50e63ea..0aa9b53 100644 --- a/src/common/T4_map_proxy.hh +++ b/src/common/T4_map_proxy.hh @@ -1,227 +1,227 @@ /** * @file T4_map_proxy.hh * * @author Till Junge * * @date 19 Nov 2017 * * @brief Map type to allow fourth-order tensor-like maps on 2D matrices * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef T4_MAP_PROXY_H #define T4_MAP_PROXY_H #include "common/eigen_tools.hh" #include #include #include namespace muSpectre { /** * simple adapter function to create a matrix that can be mapped as a tensor */ template using T4Mat = Eigen::Matrix; /** * Map onto `muSpectre::T4Mat` */ template using T4MatMap = std::conditional_t>, Eigen::Map>>; template struct DimCounter{}; template struct DimCounter> { private: using Type = Eigen::MatrixBase; constexpr static Dim_t Rows{Type::RowsAtCompileTime}; public: static_assert(Rows != Eigen::Dynamic, "matrix type not statically sized"); static_assert(Rows == Type::ColsAtCompileTime, "matrix type not square"); constexpr static Dim_t value{ct_sqrt(Rows)}; static_assert(value*value == Rows, "Only integer numbers of dimensions allowed"); }; /** * provides index-based access to fourth-order Tensors represented * by square matrices */ template inline auto get(const Eigen::MatrixBase& t4, Dim_t i, Dim_t j, Dim_t k, Dim_t l) -> decltype(auto) { constexpr Dim_t Dim{DimCounter>::value}; const auto myColStride{ (t4.colStride() == 1) ? t4.colStride(): t4.colStride()/Dim}; const auto myRowStride{ (t4.rowStride() == 1) ? t4.rowStride(): t4.rowStride()/Dim}; return t4(i * myRowStride + j * myColStride, k * myRowStride + l * myColStride); } template inline auto get(Eigen::MatrixBase& t4, Dim_t i, Dim_t j, Dim_t k, Dim_t l) -> decltype(t4.coeffRef(i,j)) { constexpr Dim_t Dim{DimCounter>::value}; const auto myColStride{ (t4.colStride() == 1) ? t4.colStride(): t4.colStride()/Dim}; const auto myRowStride{ (t4.rowStride() == 1) ? t4.rowStride(): t4.rowStride()/Dim}; return t4.coeffRef(i * myRowStride + j * myColStride, k * myRowStride + l * myColStride); } // /* ---------------------------------------------------------------------- */ // /** Proxy class mapping a fourth-order tensor onto a 2D matrix (in // order to avoid the use of Eigen::Tensor. This class is, however // byte-compatible with Tensors (i.e., you can map this onto a // tensor instead of a matrix) // **/ // template > // class T4Map: // public Eigen::MapBase> // { // public: // typedef Eigen::MapBase Base; // EIGEN_DENSE_PUBLIC_INTERFACE(T4Map); // using matrix_type = Eigen::Matrix; // using PlainObjectType = // std::conditional_t; // using ConstType = T4Map; // using Base::colStride; // using Base::rowStride; // using Base::IsRowMajor; // typedef typename Base::PointerType PointerType; // typedef PointerType PointerArgType; // using trueScalar = std::conditional_t; // EIGEN_DEVICE_FUNC // inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; } // EIGEN_DEVICE_FUNC // inline Eigen::Index innerStride() const // { // return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1; // } // template // inline T4Map & operator=(const Eigen::MatrixBase & other) { // this->map = other; // return *this; // } // EIGEN_DEVICE_FUNC // inline Eigen::Index outerStride() const // { // return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer() // : IsVectorAtCompileTime ? this->size() // : int(Flags)&Eigen::RowMajorBit ? this->cols() // : this->rows(); // } // /** Constructor in the fixed-size case. // * // * \param dataPtr pointer to the array to map // * \param stride optional Stride object, passing the strides. // */ // EIGEN_DEVICE_FUNC // explicit inline T4Map(PointerArgType dataPtr, const StrideType& stride = StrideType()) // : Base(cast_to_pointer_type(dataPtr)), m_stride(stride), // map(cast_to_pointer_type(dataPtr)) // { // PlainObjectType::Base::_check_template_params(); // } // EIGEN_INHERIT_ASSIGNMENT_OPERATORS(T4Map); // /** My accessor to mimick tensorial access // **/ // inline const Scalar& operator()(Dim_t i, Dim_t j, Dim_t k, Dim_t l ) const { // const auto myColStride{ // (colStride() == 1) ? colStride(): colStride()/Dim}; // const auto myRowStride{ // (rowStride() == 1) ? rowStride(): rowStride()/Dim}; // return this->map.coeff(i * myRowStride + j * myColStride, // k * myRowStride + l * myColStride); // } // inline trueScalar& operator()(Dim_t i, Dim_t j, Dim_t k, Dim_t l ) { // const auto myColStride{ // (colStride() == 1) ? colStride(): colStride()/Dim}; // const auto myRowStride{ // (rowStride() == 1) ? rowStride(): rowStride()/Dim}; // return this->map.coeffRef(i * myRowStride + j * myColStride, // k * myRowStride + l * myColStride); // } // protected: // StrideType m_stride; // Eigen::Map map; // }; } // muSpectre // namespace Eigen { // //! forward declarations // template struct traits; // /* ---------------------------------------------------------------------- */ // namespace internal { // template // struct traits > // : public traits> // { // using PlainObjectType = Matrix; // typedef traits TraitsBase; // enum { // InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0 // ? int(PlainObjectType::InnerStrideAtCompileTime) // : int(StrideType::InnerStrideAtCompileTime), // OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0 // ? int(PlainObjectType::OuterStrideAtCompileTime) // : int(StrideType::OuterStrideAtCompileTime), // Alignment = int(MapOptions)&int(AlignedMask), // Flags0 = TraitsBase::Flags & (~NestByRefBit), // Flags = is_lvalue::value ? int(Flags0) : (int(Flags0) & ~LvalueBit) // }; // private: // enum { Options }; // Expressions don't have Options // }; // } // namespace internal // } // namespace Eigen #endif /* T4_MAP_PROXY_H */ diff --git a/src/common/ccoord_operations.hh b/src/common/ccoord_operations.hh index f2f9906..8c93372 100644 --- a/src/common/ccoord_operations.hh +++ b/src/common/ccoord_operations.hh @@ -1,324 +1,324 @@ /** * @file ccoord_operations.hh * * @author Till Junge * * @date 29 Sep 2017 * * @brief common operations on pixel addressing * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include "common/common.hh" #include "common/iterators.hh" #ifndef CCOORD_OPERATIONS_H #define CCOORD_OPERATIONS_H namespace muSpectre { namespace CcoordOps { namespace internal { //! simple helper returning the first argument and ignoring the second template constexpr T ret(T val, size_t /*dummy*/) {return val;} //! helper to build cubes template constexpr std::array cube_fun(T val, std::index_sequence) { return std::array{ret(val, I)...}; } //! computes hermitian size according to FFTW template constexpr Ccoord_t herm(const Ccoord_t & full_sizes, std::index_sequence) { return Ccoord_t{full_sizes[I]..., full_sizes.back()/2+1}; } //! compute the stride in a direction of a row-major grid template constexpr Dim_t stride(const Ccoord_t & sizes, const size_t index) { static_assert(Dim > 0, "only for positive numbers of dimensions"); auto const diff{Dim - 1 - Dim_t(index)}; Dim_t ret_val{1}; for (Dim_t i{0}; i < diff; ++i) { ret_val *= sizes[Dim-1-i]; } return ret_val; } //! get all strides from a row-major grid (helper function) template constexpr Ccoord_t compute_strides(const Ccoord_t & sizes, std::index_sequence) { return Ccoord_t{stride(sizes, I)...}; } } // internal //----------------------------------------------------------------------------// //! returns a grid of equal resolutions in each direction template constexpr std::array get_cube(T size) { return internal::cube_fun(size, std::make_index_sequence{}); } /* ---------------------------------------------------------------------- */ //! returns the hermition grid to correcsponding to a full grid template constexpr Ccoord_t get_hermitian_sizes(Ccoord_t full_sizes) { return internal::herm(full_sizes, std::make_index_sequence{}); } //! return physical vector of a cell of cubic pixels template Eigen::Matrix get_vector(const Ccoord_t & ccoord, Real pix_size = 1.) { Eigen::Matrix retval; for (size_t i = 0; i < dim; ++i) { retval[i] = pix_size * ccoord[i]; } return retval; } /* ---------------------------------------------------------------------- */ //! return physical vector of a cell of general pixels template Eigen::Matrix get_vector(const Ccoord_t & ccoord, Eigen::Matrix pix_size) { Eigen::Matrix retval = pix_size; for (size_t i = 0; i < dim; ++i) { retval[i] *= ccoord[i]; } return retval; } /* ---------------------------------------------------------------------- */ //! return physical vector of a cell of general pixels template Eigen::Matrix get_vector(const Ccoord_t & ccoord, const std::array& pix_size) { Eigen::Matrix retval{}; for (size_t i = 0; i < dim; ++i) { retval[i] = pix_size[i]*ccoord[i]; } return retval; } /* ---------------------------------------------------------------------- */ //! get all strides from a row-major grid template constexpr Ccoord_t get_default_strides(const Ccoord_t & sizes) { return internal::compute_strides(sizes, std::make_index_sequence{}); } //----------------------------------------------------------------------------// //! get the i-th pixel in a grid of size sizes template constexpr Ccoord_t get_ccoord(const Ccoord_t & resolutions, const Ccoord_t & locations, Dim_t index) { Ccoord_t retval{{0}}; Dim_t factor{1}; for (Dim_t i = dim-1; i >=0; --i) { retval[i] = index/factor%resolutions[i] + locations[i]; if (i != 0 ) { factor *= resolutions[i]; } } return retval; } //----------------------------------------------------------------------------// //! get the i-th pixel in a grid of size sizes template constexpr Ccoord_t get_ccoord(const Ccoord_t & resolutions, const Ccoord_t & locations, Dim_t index, std::index_sequence) { Ccoord_t ccoord{get_ccoord(resolutions, locations, index)}; return Ccoord_t({ccoord[I]...}); } //----------------------------------------------------------------------------// //! get the linear index of a pixel in a given grid template constexpr Dim_t get_index(const Ccoord_t & sizes, const Ccoord_t & locations, const Ccoord_t & ccoord) { Dim_t retval{0}; Dim_t factor{1}; for (Dim_t i = dim-1; i >=0; --i) { retval += (ccoord[i]-locations[i])*factor; if (i != 0) { factor *= sizes[i]; } } return retval; } //----------------------------------------------------------------------------// //! get the linear index of a pixel given a set of strides template constexpr Dim_t get_index_from_strides(const Ccoord_t & strides, const Ccoord_t & ccoord) { Dim_t retval{0}; for (const auto & tup: akantu::zip(strides, ccoord)) { const auto & stride = std::get<0>(tup); const auto & ccord_ = std::get<1>(tup); retval += stride * ccord_; } return retval; } //----------------------------------------------------------------------------// //! get the number of pixels in a grid template constexpr size_t get_size(const Ccoord_t& sizes) { Dim_t retval{1}; for (size_t i = 0; i < dim; ++i) { retval *= sizes[i]; } return retval; } //----------------------------------------------------------------------------// //! get the number of pixels in a grid given its strides template constexpr size_t get_size_from_strides(const Ccoord_t& sizes, const Ccoord_t& strides) { return sizes[0]*strides[0]; } /* ---------------------------------------------------------------------- */ /** * centralises iterating over square (or cubic) discretisation * grids. The optional parameter pack `dmap` can be used to * specify the order of the axes in which to iterate over the * dimensions (i.e., dmap = 0, 1, 2 is rowmajor, and 0, 2, 1 would * be a custom order in which the second and third dimension are * transposed */ template class Pixels { public: //! constructor Pixels(const Ccoord_t & resolutions=Ccoord_t{}, const Ccoord_t & locations=Ccoord_t{}) :resolutions{resolutions}, locations{locations}{}; //! copy constructor Pixels(const Pixels & other) = default; //! assignment operator Pixels & operator=(const Pixels & other) = default; virtual ~Pixels() = default; /** * iterators over `Pixels` dereferences to cell coordinates */ class iterator { public: using value_type = Ccoord_t; //!< stl conformance using const_value_type = const value_type; //!< stl conformance using pointer = value_type*; //!< stl conformance using difference_type = std::ptrdiff_t; //!< stl conformance using iterator_category = std::forward_iterator_tag;//!resolutions);} protected: Ccoord_t resolutions; //!< resolutions of this domain Ccoord_t locations; //!< locations of this domain }; /* ---------------------------------------------------------------------- */ template Pixels::iterator::iterator(const Pixels & pixels, bool begin) :pixels{pixels}, index{begin? 0: get_size(pixels.resolutions)} {} /* ---------------------------------------------------------------------- */ template typename Pixels::iterator::value_type Pixels::iterator::operator*() const { return get_ccoord(pixels.resolutions, pixels.locations, this->index, std::conditional_t, std::index_sequence>{}); } /* ---------------------------------------------------------------------- */ template bool Pixels::iterator::operator!=(const iterator &other) const { return (this->index != other.index) || (&this->pixels != &other.pixels); } /* ---------------------------------------------------------------------- */ template bool Pixels::iterator::operator==(const iterator &other) const { return !(*this!= other); } /* ---------------------------------------------------------------------- */ template typename Pixels::iterator& Pixels::iterator::operator++() { ++this->index; return *this; } } // CcoordOps } // muSpectre #endif /* CCOORD_OPERATIONS_H */ diff --git a/src/common/common.cc b/src/common/common.cc index 0e5c462..15cb85f 100644 --- a/src/common/common.cc +++ b/src/common/common.cc @@ -1,98 +1,98 @@ /** * @file common.cc * * @author Till Junge * * @date 15 Nov 2017 * * @brief Implementation for common functions * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/common.hh" #include namespace muSpectre { /* ---------------------------------------------------------------------- */ std::ostream & operator<<(std::ostream & os, Formulation f) { switch (f) { case Formulation::small_strain: {os << "small_strain"; break;} case Formulation::finite_strain: {os << "finite_strain"; break;} default: throw std::runtime_error ("unknown formulation."); break; } return os; } /* ---------------------------------------------------------------------- */ std::ostream & operator<<(std::ostream & os, StressMeasure s) { switch (s) { case StressMeasure::Cauchy: {os << "Cauchy"; break;} case StressMeasure::PK1: {os << "PK1"; break;} case StressMeasure::PK2: {os << "PK2"; break;} case StressMeasure::Kirchhoff: {os << "Kirchhoff"; break;} case StressMeasure::Biot: {os << "Biot"; break;} case StressMeasure::Mandel: {os << "Mandel"; break;} default: throw std::runtime_error ("a stress measure must be missing"); break; } return os; } /* ---------------------------------------------------------------------- */ std::ostream & operator<<(std::ostream & os, StrainMeasure s) { switch (s) { case StrainMeasure::Gradient: {os << "Gradient"; break;} case StrainMeasure::Infinitesimal: {os << "Infinitesimal"; break;} case StrainMeasure::GreenLagrange: {os << "Green-Lagrange"; break;} case StrainMeasure::Biot: {os << "Biot"; break;} case StrainMeasure::Log: {os << "Logarithmic"; break;} case StrainMeasure::Almansi: {os << "Almansi"; break;} case StrainMeasure::RCauchyGreen: {os << "Right Cauchy-Green"; break;} case StrainMeasure::LCauchyGreen: {os << "Left Cauchy-Green"; break;} default: throw std::runtime_error ("a strain measure must be missing"); } return os; } /* ---------------------------------------------------------------------- */ void banner(std::string name, Uint year, std::string cpy_holder) { std::cout << std::endl << "µSpectre "<< name << std::endl << "Copyright © " << year << " " << cpy_holder << std::endl << "This program comes with ABSOLUTELY NO WARRANTY." << std::endl << "This is free software, and you are welcome to redistribute it" << std::endl << "under certain conditions, see the license file." << std::endl << std::endl; } } // muSpectre diff --git a/src/common/common.hh b/src/common/common.hh index 9db6790..80c057e 100644 --- a/src/common/common.hh +++ b/src/common/common.hh @@ -1,311 +1,311 @@ /** * @file common.hh * * @author Till Junge * * @date 01 May 2017 * * @brief Small definitions of commonly used types throughout µSpectre * * @section LICENSE * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #ifndef COMMON_H #define COMMON_H namespace muSpectre { /** * Eigen uses signed integers for dimensions. For consistency, µSpectre uses them througout the code. needs to represent -1 for eigen */ using Dim_t = int; constexpr Dim_t oneD{1}; //!< constant for a one-dimensional problem constexpr Dim_t twoD{2}; //!< constant for a two-dimensional problem constexpr Dim_t threeD{3}; //!< constant for a three-dimensional problem constexpr Dim_t firstOrder{1}; //!< constant for vectors constexpr Dim_t secondOrder{2}; //!< constant second-order tensors constexpr Dim_t fourthOrder{4}; //!< constant fourth-order tensors //@{ //! @anchor scalars //! Scalar types used for mathematical calculations using Uint = unsigned int; using Int = int; using Real = double; using Complex = std::complex; //@} //! Ccoord_t are cell coordinates, i.e. integer coordinates template using Ccoord_t = std::array; //! Real space coordinates template using Rcoord_t = std::array; /** * Allows inserting `muSpectre::Ccoord_t` and `muSpectre::Rcoord_t` * into `std::ostream`s */ template std::ostream & operator << (std::ostream & os, const std::array & index) { os << "("; for (size_t i = 0; i < dim-1; ++i) { os << index[i] << ", "; } os << index.back() << ")"; return os; } //! element-wise division template Rcoord_t operator/(const Rcoord_t & a, const Rcoord_t & b) { Rcoord_t retval{a}; for (size_t i = 0; i < dim; ++i) { retval[i]/=b[i]; } return retval; } //! element-wise division template Rcoord_t operator/(const Rcoord_t & a, const Ccoord_t & b) { Rcoord_t retval{a}; for (size_t i = 0; i < dim; ++i) { retval[i]/=b[i]; } return retval; } //! convenience definitions constexpr Real pi{3.1415926535897932384626433}; //! compile-time potentiation required for field-size computations template constexpr R ipow(R base, I exponent) { static_assert(std::is_integral::value, "Type must be integer"); R retval{1}; for (I i = 0; i < exponent; ++i) { retval *= base; } return retval; } /** * Copyright banner to be printed to the terminal by executables * Arguments are the executable's name, year of writing and the name * + address of the copyright holder */ void banner(std::string name, Uint year, std::string cpy_holder); /** * Planner flags for FFT (follows FFTW, hopefully this choice will * be compatible with alternative FFT implementations) * @enum muSpectre::FFT_PlanFlags */ enum class FFT_PlanFlags { estimate, //!< cheapest plan for slowest execution measure, //!< more expensive plan for fast execution patient //!< very expensive plan for fastest execution }; //! continuum mechanics flags enum class Formulation{ finite_strain, //!< causes evaluation in PK1(F) small_strain, //!< causes evaluation in σ(ε) small_strain_sym //!< symmetric storage as vector ε }; /** * compile time computation of voigt vector */ template constexpr Dim_t vsize(Dim_t dim) { if (sym) { return (dim * (dim - 1) / 2 + dim); } else { return dim*dim; } } //! compute the number of degrees of freedom to store for the strain //! tenor given dimension dim constexpr Dim_t dof_for_formulation(const Formulation form, const Dim_t dim) { switch (form) { case Formulation::small_strain_sym: { return vsize(dim); break; } default: return ipow(dim, 2); break; } } //! inserts `muSpectre::Formulation`s into `std::ostream`s std::ostream & operator<<(std::ostream & os, Formulation f); /* ---------------------------------------------------------------------- */ //! Material laws can declare which type of stress measure they provide, //! and µSpectre will handle conversions enum class StressMeasure { Cauchy, //!< Cauchy stress σ PK1, //!< First Piola-Kirchhoff stress PK2, //!< Second Piola-Kirchhoff stress Kirchhoff, //!< Kirchhoff stress τ Biot, //!< Biot stress Mandel, //!< Mandel stress no_stress_ //!< only for triggering static_asserts }; //! inserts `muSpectre::StressMeasure`s into `std::ostream`s std::ostream & operator<<(std::ostream & os, StressMeasure s); /* ---------------------------------------------------------------------- */ //! Material laws can declare which type of strain measure they require and //! µSpectre will provide it enum class StrainMeasure { Gradient, //!< placement gradient (δy/δx) Infinitesimal, //!< small strain tensor .5(∇u + ∇uᵀ) GreenLagrange, //!< Green-Lagrange strain .5(Fᵀ·F - I) Biot, //!< Biot strain Log, //!< logarithmic strain Almansi, //!< Almansi strain RCauchyGreen, //!< Right Cauchy-Green tensor LCauchyGreen, //!< Left Cauchy-Green tensor no_strain_ //!< only for triggering static_assert }; //! inserts `muSpectre::StrainMeasure`s into `std::ostream`s std::ostream & operator<<(std::ostream & os, StrainMeasure s); /* ---------------------------------------------------------------------- */ /** * all isotropic elastic moduli to identify conversions, such as E * = µ(3λ + 2µ)/(λ+µ). For the full description, see * https://en.wikipedia.org/wiki/Lam%C3%A9_parameters * Not all the conversions are implemented, so please add as needed */ enum class ElasticModulus { Bulk, //!< Bulk modulus K K = Bulk, //!< alias for ``ElasticModulus::Bulk`` Young, //!< Young's modulus E E = Young, //!< alias for ``ElasticModulus::Young`` lambda, //!< Lamé's first parameter λ Shear, //!< Shear modulus G or µ G = Shear, //!< alias for ``ElasticModulus::Shear`` mu = Shear, //!< alias for ``ElasticModulus::Shear`` Poisson, //!< Poisson's ratio ν nu = Poisson, //!< alias for ``ElasticModulus::Poisson`` Pwave, //!< P-wave modulus M M=Pwave, //!< alias for ``ElasticModulus::Pwave`` no_modulus_}; //!< only for triggering static_asserts /** * define comparison in order to exploit that moduli can be * expressed in terms of any two other moduli in any order (e.g. K * = K(E, ν) = K(ν, E) */ constexpr inline bool operator<(ElasticModulus A, ElasticModulus B) { return static_cast(A) < static_cast(B); } /* ---------------------------------------------------------------------- */ /** Compile-time function to g strain measure stored by muSpectre depending on the formulation **/ constexpr StrainMeasure get_stored_strain_type(Formulation form) { switch (form) { case Formulation::finite_strain: { return StrainMeasure::Gradient; break; } case Formulation::small_strain: { return StrainMeasure::Infinitesimal; break; } default: return StrainMeasure::no_strain_; break; } } /** Compile-time function to g stress measure stored by muSpectre depending on the formulation **/ constexpr StressMeasure get_stored_stress_type(Formulation form) { switch (form) { case Formulation::finite_strain: { return StressMeasure::PK1; break; } case Formulation::small_strain: { return StressMeasure::Cauchy; break; } default: return StressMeasure::no_stress_; break; } } /* ---------------------------------------------------------------------- */ /** Compile-time functions to get the stress and strain measures after they may have been modified by choosing a formulation. For instance, a law that expecs a Green-Lagrange strain as input will get the infinitesimal strain tensor instead in a small strain computation **/ constexpr StrainMeasure get_formulation_strain_type(Formulation form, StrainMeasure expected) { switch (form) { case Formulation::finite_strain: { return expected; break; } case Formulation::small_strain: { return get_stored_strain_type(form); break; } default: return StrainMeasure::no_strain_; break; } } } // muSpectre #ifndef EXPLICITLY_TURNED_ON_CXX17 #include "common/utilities.hh" #endif #endif /* COMMON_H */ diff --git a/src/common/communicator.hh b/src/common/communicator.hh index 781e48a..af5bc1e 100644 --- a/src/common/communicator.hh +++ b/src/common/communicator.hh @@ -1,124 +1,124 @@ /** * @file communicator.hh * * @author Lars Pastewka * * @date 07 Mar 2018 * * @brief abstraction layer for the distributed memory communicator object * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef COMMUNICATOR_H #define COMMUNICATOR_H #ifdef WITH_MPI #include #endif namespace muSpectre { #ifdef WITH_MPI template decltype(auto) mpi_type() { }; template<> inline decltype(auto) mpi_type() { return MPI_CHAR; } template<> inline decltype(auto) mpi_type() { return MPI_SHORT; } template<> inline decltype(auto) mpi_type() { return MPI_INT; } template<> inline decltype(auto) mpi_type() { return MPI_LONG; } template<> inline decltype(auto) mpi_type() { return MPI_UNSIGNED_CHAR; } template<> inline decltype(auto) mpi_type() { return MPI_UNSIGNED_SHORT; } template<> inline decltype(auto) mpi_type() { return MPI_UNSIGNED; } template<> inline decltype(auto) mpi_type() { return MPI_UNSIGNED_LONG; } template<> inline decltype(auto) mpi_type() { return MPI_FLOAT; } template<> inline decltype(auto) mpi_type() { return MPI_DOUBLE; } //! lightweight abstraction for the MPI communicator object class Communicator { public: using MPI_Comm_ref = std::remove_pointer_t&; Communicator(MPI_Comm comm=MPI_COMM_NULL): comm{*comm} {}; ~Communicator() {}; //! get rank of present process int rank() const { if (&comm == MPI_COMM_NULL) return 0; int res; MPI_Comm_rank(&this->comm, &res); return res; } //! get total number of processes int size() const { if (&comm == MPI_COMM_NULL) return 1; int res; MPI_Comm_size(&this->comm, &res); return res; } //! sum reduction on scalar types template T sum(const T &arg) const { if (&comm == MPI_COMM_NULL) return arg; T res; MPI_Allreduce(&arg, &res, 1, mpi_type(), MPI_SUM, &this->comm); return res; } MPI_Comm get_mpi_comm() { return &this->comm; } private: MPI_Comm_ref comm; }; #else /* WITH_MPI */ //! stub communicator object that doesn't communicate anything class Communicator { public: Communicator() {}; ~Communicator() {}; //! get rank of present process int rank() const { return 0; } //! get total number of processes int size() const { return 1; } //! sum reduction on scalar types template T sum(const T &arg) const { return arg; } }; #endif } #endif /* COMMUNICATOR_H */ diff --git a/src/common/eigen_tools.hh b/src/common/eigen_tools.hh index 9c978c2..4e1b076 100644 --- a/src/common/eigen_tools.hh +++ b/src/common/eigen_tools.hh @@ -1,339 +1,339 @@ /** * @file eigen_tools.hh * * @author Till Junge * * @date 20 Sep 2017 * * @brief small tools to be used with Eigen * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef EIGEN_TOOLS_H #define EIGEN_TOOLS_H #include "common/common.hh" #include #include #include #include namespace muSpectre { /* ---------------------------------------------------------------------- */ namespace internal { //! Creates a Eigen::Sizes type for a Tensor defined by an order and dim template struct SizesByOrderHelper { //! type to use using Sizes = typename SizesByOrderHelper::Sizes; }; //! Creates a Eigen::Sizes type for a Tensor defined by an order and dim template struct SizesByOrderHelper<0, dim, dims...> { //! type to use using Sizes = Eigen::Sizes; }; } // internal //! Creates a Eigen::Sizes type for a Tensor defined by an order and dim template struct SizesByOrder { static_assert(order > 0, "works only for order greater than zero"); //! `Eigen::Sizes` using Sizes = typename internal::SizesByOrderHelper::Sizes; }; /* ---------------------------------------------------------------------- */ namespace internal { /* ---------------------------------------------------------------------- */ //! Call a passed lambda with the unpacked sizes as arguments template struct CallSizesHelper { //! applies the call static decltype(auto) call(Fun_t && fun) { static_assert(order > 0, "can't handle empty sizes b)"); return CallSizesHelper::call (fun); } }; /* ---------------------------------------------------------------------- */ template //! Call a passed lambda with the unpacked sizes as arguments struct CallSizesHelper<0, Fun_t, dim, args...> { //! applies the call static decltype(auto) call(Fun_t && fun) { return fun(args...); } }; } // internal /** * takes a lambda and calls it with the proper `Eigen::Sizes` * unpacked as arguments. Is used to call constructors of a * `Eigen::Tensor` or map thereof in a context where the spatial * dimension is templated */ template inline decltype(auto) call_sizes(Fun_t && fun) { static_assert(order > 1, "can't handle empty sizes"); return internal::CallSizesHelper:: call(std::forward(fun)); } //compile-time square root static constexpr Dim_t ct_sqrt(Dim_t res, Dim_t l, Dim_t r){ if(l == r){ return r; } else { const auto mid = (r + l) / 2; if(mid * mid >= res){ return ct_sqrt(res, l, mid); } else { return ct_sqrt(res, mid + 1, r); } } } static constexpr Dim_t ct_sqrt(Dim_t res){ return ct_sqrt(res, 1, res); } namespace EigenCheck { /** * Structure to determine whether an expression can be evaluated * into a `Eigen::Matrix`, `Eigen::Array`, etc. and which helps * determine compile-time size */ template struct is_matrix { //! raw type for testing using T = std::remove_reference_t; //! evaluated test constexpr static bool value{std::is_same::XprKind, Eigen::MatrixXpr>::value}; }; /** * Helper class to check whether an `Eigen::Array` or * `Eigen::Matrix` is statically sized */ template struct is_fixed { //! raw type for testing using T = std::remove_reference_t; //! evaluated test constexpr static bool value{T::SizeAtCompileTime != Eigen::Dynamic}; }; /** * Helper class to check whether an `Eigen::Array` or `Eigen::Matrix` is a * static-size and square. */ template struct is_square { //! raw type for testing using T = std::remove_reference_t; //! true if the object is square and statically sized constexpr static bool value{ (T::RowsAtCompileTime == T::ColsAtCompileTime) && is_fixed::value}; }; /** * computes the dimension from a second order tensor represented * square matrix or array */ template struct tensor_dim { //! raw type for testing using T = std::remove_reference_t; static_assert(is_matrix::value, "The type of t is not understood as an Eigen::Matrix"); static_assert(is_square::value, "t's matrix isn't square"); //! evaluated dimension constexpr static Dim_t value{T::RowsAtCompileTime}; }; //! computes the dimension from a fourth order tensor represented //! by a square matrix template struct tensor_4_dim { //! raw type for testing using T = std::remove_reference_t; static_assert(is_matrix::value, "The type of t is not understood as an Eigen::Matrix"); static_assert(is_square::value, "t's matrix isn't square"); //! evaluated dimension constexpr static Dim_t value{ct_sqrt(T::RowsAtCompileTime)}; static_assert(value*value == T::RowsAtCompileTime, "This is not a fourth-order tensor mapped on a square " "matrix"); }; }; namespace log_comp { //! Matrix type used for logarithm evaluation template using Mat_t = Eigen::Matrix; //! Vector type used for logarithm evaluation template using Vec_t = Eigen::Matrix; //! This is a static implementation of the explicit determination //! of log(Tensor) following Jog, C.S. J Elasticity (2008) 93: //! 141. https://doi.org/10.1007/s10659-008-9169-x /* ---------------------------------------------------------------------- */ template struct Proj { //! wrapped function (raison d'être) static inline decltype(auto) compute(const Vec_t & eigs, const Mat_t & T) { static_assert(dim > 0, "only works for positive dimensions"); return 1./(eigs(i) -eigs(j))*(T-eigs(j)*Mat_t::Identity()) * Proj::compute(eigs, T); } }; //! catch the case when there's nothing to do template struct Proj { //! wrapped function (raison d'être) static inline decltype(auto) compute(const Vec_t & eigs, const Mat_t & T) { static_assert(dim > 0, "only works for positive dimensions"); return Proj::compute(eigs, T); } }; //! catch the normal tail case template struct Proj { static constexpr Dim_t j{0}; //!< short-hand //! wrapped function (raison d'être) static inline decltype(auto) compute(const Vec_t & eigs, const Mat_t & T) { static_assert(dim > 0, "only works for positive dimensions"); return 1./(eigs(i) -eigs(j))*(T-eigs(j)*Mat_t::Identity()); } }; //! catch the tail case when the last dimension is i template struct Proj { static constexpr Dim_t i{0}; //!< short-hand static constexpr Dim_t j{1}; //!< short-hand //! wrapped function (raison d'être) static inline decltype(auto) compute(const Vec_t & eigs, const Mat_t & T) { static_assert(dim > 0, "only works for positive dimensions"); return 1./(eigs(i) -eigs(j))*(T-eigs(j)*Mat_t::Identity()); } }; //! catch the general tail case template <> struct Proj<1, 0, 0> { static constexpr Dim_t dim{1}; //!< short-hand static constexpr Dim_t i{0}; //!< short-hand static constexpr Dim_t j{0}; //!< short-hand //! wrapped function (raison d'être) static inline decltype(auto) compute(const Vec_t & /*eigs*/, const Mat_t & /*T*/) { return Mat_t::Identity(); } }; //! Product term template inline decltype(auto) P(const Vec_t & eigs, const Mat_t & T) { return Proj::compute(eigs, T); } //! sum term template struct Summand { //! wrapped function (raison d'être) static inline decltype(auto) compute(const Vec_t & eigs, const Mat_t & T) { return std::log(eigs(i))*P(eigs, T) + Summand::compute(eigs, T); } }; //! sum term template struct Summand { static constexpr Dim_t i{0}; //!< short-hand //! wrapped function (raison d'être) static inline decltype(auto) compute(const Vec_t & eigs, const Mat_t & T) { return std::log(eigs(i))*P(eigs, T); } }; //! sum implementation template inline decltype(auto) Sum(const Vec_t & eigs, const Mat_t & T) { return Summand::compute(eigs, T); } } // log_comp /** * computes the matrix logarithm efficiently for dim=1, 2, or 3 for * a diagonizable tensor. For larger tensors, better use the direct * eigenvalue/vector computation */ template inline decltype(auto) logm(const log_comp::Mat_t& mat) { using Mat = log_comp::Mat_t; Eigen::SelfAdjointEigenSolver Solver{}; Solver.computeDirect(mat, Eigen::EigenvaluesOnly); return Mat{log_comp::Sum(Solver.eigenvalues(), mat)}; } /** * compute the matrix exponential. This may not be the most * efficient way to do this */ template inline decltype(auto) expm(const log_comp::Mat_t& mat) { using Mat = log_comp::Mat_t; Eigen::SelfAdjointEigenSolver Solver{}; Solver.computeDirect(mat, Eigen::ComputeEigenvectors); Mat retval{Mat::Zero()}; for (Dim_t i = 0; i < dim; ++i) { const Real & val = Solver.eigenvalues()(i); auto & vec = Solver.eigenvectors().col(i); retval += std::exp(val) * vec * vec.transpose(); } return retval; } } // muSpectre #endif /* EIGEN_TOOLS_H */ diff --git a/src/common/field.hh b/src/common/field.hh index f3c8df2..7196a23 100644 --- a/src/common/field.hh +++ b/src/common/field.hh @@ -1,680 +1,680 @@ /** * @file field.hh * * @author Till Junge * * @date 07 Sep 2017 * * @brief header-only implementation of a field for field collections * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FIELD_H #define FIELD_H #include "common/T4_map_proxy.hh" #include "common/field_typed.hh" #include #include #include #include #include #include #include #include #include namespace muSpectre { namespace internal { /* ---------------------------------------------------------------------- */ //! declaraton for friending template class FieldMap; /* ---------------------------------------------------------------------- */ /** * A `TypedSizedFieldBase` is the base class for fields that contain a * statically known number of scalars of a statically known type per pixel * in a `FieldCollection`. The actual data for all pixels is * stored in `TypedSizeFieldBase::values`. * `TypedSizedFieldBase` is the base class for `MatrixField` and * `TensorField`. */ template class TypedSizedFieldBase: public TypedField { friend class FieldMap; friend class FieldMap; public: //! for compatibility checks constexpr static auto nb_components{NbComponents}; using Parent = TypedField; //!< base class using Scalar = T; //!< for type checking using Base = typename Parent::Base; //!< root base class //! storage container using Storage_t = typename Parent::Storage_t; //! Plain type that is being mapped (Eigen lingo) using EigenRep_t = Eigen::Array; //! maps returned when iterating over field using EigenMap_t = Eigen::Map; //! maps returned when iterating over field using ConstEigenMap_t = Eigen::Map; //! constructor TypedSizedFieldBase(std::string unique_name, FieldCollection& collection); virtual ~TypedSizedFieldBase() = default; //! add a new value at the end of the field template inline void push_back(const Eigen::DenseBase & value); //! add a new scalar value at the end of the field template inline std::enable_if_t push_back(const T & value); /** * returns an upcasted reference to a field, or throws an * exception if the field is incompatible */ static TypedSizedFieldBase & check_ref(Base & other); /** * returns an upcasted reference to a field, or throws an * exception if the field is incompatible */ static const TypedSizedFieldBase & check_ref(const Base & other); //! return a map representing the entire field as a single `Eigen::Array` inline EigenMap_t eigen(); //! return a map representing the entire field as a single `Eigen::Array` inline ConstEigenMap_t eigen() const; /** * return a map representing the entire field as a single * dynamically sized `Eigen::Array` (for python bindings) */ inline typename Parent::EigenMap_t dyn_eigen() {return Parent::eigen();} //! inner product between compatible fields template inline Real inner_product(const TypedSizedFieldBase< FieldCollection, T2, NbComponents> & other) const; protected: //! returns a raw pointer to the entry, for `Eigen::Map` inline T* get_ptr_to_entry(const size_t&& index); //! returns a raw pointer to the entry, for `Eigen::Map` inline const T* get_ptr_to_entry(const size_t&& index) const; }; } // internal /* ---------------------------------------------------------------------- */ /** * The `TensorField` is a subclass of `muSpectre::internal::TypedSizedFieldBase` * that represents tensorial fields, i.e. arbitrary-dimensional arrays with * identical number of rows/columns (that typically correspond to the spatial * cartesian dimensions). It is defined by the stored scalar type @a T, the * tensorial order @a order (often also called degree or rank) and the * number of spatial dimensions @a dim. */ template class TensorField: public internal::TypedSizedFieldBase { public: //! base class using Parent = internal::TypedSizedFieldBase; using Base = typename Parent::Base; //!< root base class //! polymorphic base class using Field_p = typename FieldCollection::Field_p; using Scalar = typename Parent::Scalar; //!< for type checking //! Copy constructor TensorField(const TensorField &other) = delete; //! Move constructor TensorField(TensorField &&other) = delete; //! Destructor virtual ~TensorField() = default; //! Copy assignment operator TensorField& operator=(const TensorField &other) = delete; //! Move assignment operator TensorField& operator=(TensorField &&other) = delete; //! return the order of the stored tensor inline Dim_t get_order() const; //! return the dimension of the stored tensor inline Dim_t get_dim() const; //! factory function template friend FieldType& make_field(std::string unique_name, CollectionType & collection, Args&&... args); //! return a reference or throw an exception if `other` is incompatible static TensorField & check_ref(Base & other) { return static_cast(Parent::check_ref(other));} //! return a reference or throw an exception if `other` is incompatible static const TensorField & check_ref(const Base & other) { return static_cast(Parent::check_ref(other));} /** * Convenience functions to return a map onto this field. A map allows * iteration over all pixels. The map's iterator returns an object that * represents the underlying mathematical structure of the field and * implements common linear algebra operations on it. * Specifically, this function returns * - A `MatrixFieldMap` with @a dim rows and one column if the tensorial * order @a order is unity. * - A `MatrixFieldMap` with @a dim rows and @a dim columns if the tensorial * order @a order is 2. * - A `T4MatrixFieldMap` if the tensorial order is 4. */ inline decltype(auto) get_map(); /** * Convenience functions to return a map onto this field. A map allows * iteration over all pixels. The map's iterator returns an object that * represents the underlying mathematical structure of the field and * implements common linear algebra operations on it. * Specifically, this function returns * - A `MatrixFieldMap` with @a dim rows and one column if the tensorial * order @a order is unity. * - A `MatrixFieldMap` with @a dim rows and @a dim columns if the tensorial * order @a order is 2. * - A `T4MatrixFieldMap` if the tensorial order is 4. */ inline decltype(auto) get_const_map(); /** * Convenience functions to return a map onto this field. A map allows * iteration over all pixels. The map's iterator returns an object that * represents the underlying mathematical structure of the field and * implements common linear algebra operations on it. * Specifically, this function returns * - A `MatrixFieldMap` with @a dim rows and one column if the tensorial * order @a order is unity. * - A `MatrixFieldMap` with @a dim rows and @a dim columns if the tensorial * order @a order is 2. * - A `T4MatrixFieldMap` if the tensorial order is 4. */ inline decltype(auto) get_map() const; /** * creates a `TensorField` same size and type as this, but all * entries are zero. Convenience function */ inline TensorField & get_zeros_like(std::string unique_name) const; protected: //! constructor protected! TensorField(std::string unique_name, FieldCollection & collection); private: }; /* ---------------------------------------------------------------------- */ /** * The `MatrixField` is subclass of `muSpectre::internal::TypedSizedFieldBase` * that represents matrix fields, i.e. a two dimensional arrays, defined by * the stored scalar type @a T and the number of rows @a NbRow and columns * @a NbCol of the matrix. */ template class MatrixField: public internal::TypedSizedFieldBase { public: //! base class using Parent = internal::TypedSizedFieldBase; using Base = typename Parent::Base; //!< root base class //! polymorphic base field ptr to store using Field_p = std::unique_ptr>; //! Copy constructor MatrixField(const MatrixField &other) = delete; //! Move constructor MatrixField(MatrixField &&other) = delete; //! Destructor virtual ~MatrixField() = default; //! Copy assignment operator MatrixField& operator=(const MatrixField &other) = delete; //! Move assignment operator MatrixField& operator=(MatrixField &&other) = delete; //! returns the number of rows inline Dim_t get_nb_row() const; //! returns the number of columns inline Dim_t get_nb_col() const; //! factory function template friend FieldType& make_field(std::string unique_name, CollectionType & collection, Args&&... args); //! returns a `MatrixField` reference if `other` is a compatible field static MatrixField & check_ref(Base & other) { return static_cast(Parent::check_ref(other));} //! returns a `MatrixField` reference if `other` is a compatible field static const MatrixField & check_ref(const Base & other) { return static_cast(Parent::check_ref(other));} /** * Convenience functions to return a map onto this field. A map allows * iteration over all pixels. The map's iterator returns an object that * represents the underlying mathematical structure of the field and * implements common linear algebra operations on it. * Specifically, this function returns * - A `ScalarFieldMap` if @a NbRows and @a NbCols are unity. * - A `MatrixFieldMap` with @a NbRows rows and @a NbCols columns * otherwise. */ inline decltype(auto) get_map(); /** * Convenience functions to return a map onto this field. A map allows * iteration over all pixels. The map's iterator returns an object that * represents the underlying mathematical structure of the field and * implements common linear algebra operations on it. * Specifically, this function returns * - A `ScalarFieldMap` if @a NbRows and @a NbCols are unity. * - A `MatrixFieldMap` with @a NbRows rows and @a NbCols columns * otherwise. */ inline decltype(auto) get_const_map(); /** * Convenience functions to return a map onto this field. A map allows * iteration over all pixels. The map's iterator returns an object that * represents the underlying mathematical structure of the field and * implements common linear algebra operations on it. * Specifically, this function returns * - A `ScalarFieldMap` if @a NbRows and @a NbCols are unity. * - A `MatrixFieldMap` with @a NbRows rows and @a NbCols columns * otherwise. */ inline decltype(auto) get_map() const; /** * creates a `MatrixField` same size and type as this, but all * entries are zero. Convenience function */ inline MatrixField & get_zeros_like(std::string unique_name) const; protected: //! constructor protected! MatrixField(std::string unique_name, FieldCollection & collection); private: }; /* ---------------------------------------------------------------------- */ //! convenience alias ( template using ScalarField = MatrixField; /* ---------------------------------------------------------------------- */ // Implementations /* ---------------------------------------------------------------------- */ namespace internal { /* ---------------------------------------------------------------------- */ template TypedSizedFieldBase:: TypedSizedFieldBase(std::string unique_name, FieldCollection & collection) :Parent(unique_name, collection, NbComponents){ static_assert ((std::is_arithmetic::value || std::is_same::value), "Use TypedSizedFieldBase for integer, real or complex scalars for T"); static_assert(NbComponents > 0, "Only fields with more than 0 components"); } /* ---------------------------------------------------------------------- */ template TypedSizedFieldBase & TypedSizedFieldBase:: check_ref(Base & other) { if (typeid(T).hash_code() != other.get_stored_typeid().hash_code()) { std::stringstream err_str{}; err_str << "Cannot create a reference of type '" << typeid(T).name() << "' for field '" << other.get_name() << "' of type '" << other.get_stored_typeid().name() << "'"; throw std::runtime_error(err_str.str()); } //check size compatibility if (NbComponents != other.get_nb_components()) { std::stringstream err_str{}; err_str << "Cannot create a reference to a field with " << NbComponents << " components " << "for field '" << other.get_name() << "' with " << other.get_nb_components() << " components"; throw std::runtime_error{err_str.str()}; } return static_cast(other); } /* ---------------------------------------------------------------------- */ template const TypedSizedFieldBase & TypedSizedFieldBase:: check_ref(const Base & other) { if (typeid(T).hash_code() != other.get_stored_typeid().hash_code()) { std::stringstream err_str{}; err_str << "Cannot create a reference of type '" << typeid(T).name() << "' for field '" << other.get_name() << "' of type '" << other.get_stored_typeid().name() << "'"; throw std::runtime_error (err_str.str()); } //check size compatibility if (NbComponents != other.get_nb_components()) { std::stringstream err_str{}; err_str << "Cannot create a reference toy a field with " << NbComponents << " components " << "for field '" << other.get_name() << "' with " << other.get_nb_components() << " components"; throw std::runtime_error{err_str.str()}; } return static_cast(other); } /* ---------------------------------------------------------------------- */ template auto TypedSizedFieldBase:: eigen() -> EigenMap_t{ return EigenMap_t(this->data(), NbComponents, this->size()); } /* ---------------------------------------------------------------------- */ template auto TypedSizedFieldBase:: eigen() const -> ConstEigenMap_t{ return ConstEigenMap_t(this->data(), NbComponents, this->size()); } /* ---------------------------------------------------------------------- */ template template Real TypedSizedFieldBase:: inner_product(const TypedSizedFieldBase & other) const { return (this->eigen() * other.eigen()).sum(); } /* ---------------------------------------------------------------------- */ template T* TypedSizedFieldBase:: get_ptr_to_entry(const size_t&& index) { return this->data_ptr + NbComponents*std::move(index); } /* ---------------------------------------------------------------------- */ template const T* TypedSizedFieldBase:: get_ptr_to_entry(const size_t&& index) const { return this->data_ptr + NbComponents*std::move(index); } /* ---------------------------------------------------------------------- */ template template void TypedSizedFieldBase:: push_back(const Eigen::DenseBase & value) { static_assert(Derived::SizeAtCompileTime == NbComponents, "You provided an array with the wrong number of entries."); static_assert((Derived::RowsAtCompileTime == 1) or (Derived::ColsAtCompileTime == 1), "You have not provided a column or row vector."); static_assert (not FieldCollection::Global, "You can only push_back data into local field " "collections."); for (Dim_t i = 0; i < NbComponents; ++i) { this->values.push_back(value(i)); } ++this->current_size; this->data_ptr = &this->values.front(); } /* ---------------------------------------------------------------------- */ template template std::enable_if_t TypedSizedFieldBase:: push_back(const T & value) { static_assert(scalar_store, "SFINAE"); this->values.push_back(value); ++this->current_size; this->data_ptr = &this->values.front(); } } // internal /* ---------------------------------------------------------------------- */ template TensorField:: TensorField(std::string unique_name, FieldCollection & collection) :Parent(unique_name, collection) {} /* ---------------------------------------------------------------------- */ template Dim_t TensorField:: get_order() const { return order; } /* ---------------------------------------------------------------------- */ template Dim_t TensorField:: get_dim() const { return dim; } /* ---------------------------------------------------------------------- */ template MatrixField:: MatrixField(std::string unique_name, FieldCollection & collection) :Parent(unique_name, collection) {} /* ---------------------------------------------------------------------- */ template Dim_t MatrixField:: get_nb_col() const { return NbCol; } /* ---------------------------------------------------------------------- */ template Dim_t MatrixField:: get_nb_row() const { return NbRow; } } // muSpectre #include "common/field_map.hh" namespace muSpectre { namespace internal { /* ---------------------------------------------------------------------- */ /** * defines the default mapped type obtained when calling * `muSpectre::TensorField::get_map()` */ template struct tensor_map_type { }; /// specialisation for vectors template struct tensor_map_type { //! use this type using type = MatrixFieldMap; }; /// specialisation to second-order tensors (matrices) template struct tensor_map_type { //! use this type using type = MatrixFieldMap; }; /// specialisation to fourth-order tensors template struct tensor_map_type { //! use this type using type = T4MatrixFieldMap; }; /* ---------------------------------------------------------------------- */ /** * defines the default mapped type obtained when calling * `muSpectre::MatrixField::get_map()` */ template struct matrix_map_type { //! mapping type using type = MatrixFieldMap; }; //! specialisation to scalar fields template struct matrix_map_type { //! mapping type using type = ScalarFieldMap; }; } // internal /* ---------------------------------------------------------------------- */ template auto TensorField:: get_map() -> decltype(auto) { constexpr bool map_constness{false}; using RawMap_t = typename internal::tensor_map_type::type; return RawMap_t(*this); } /* ---------------------------------------------------------------------- */ template auto TensorField:: get_const_map() -> decltype(auto) { constexpr bool map_constness{true}; using RawMap_t = typename internal::tensor_map_type::type; return RawMap_t(*this); } /* ---------------------------------------------------------------------- */ template auto TensorField:: get_map() const -> decltype(auto) { constexpr bool map_constness{true}; using RawMap_t = typename internal::tensor_map_type::type; return RawMap_t(*this); } /* ---------------------------------------------------------------------- */ template auto TensorField:: get_zeros_like(std::string unique_name) const -> TensorField & { return make_field(unique_name, this->collection); } /* ---------------------------------------------------------------------- */ template auto MatrixField:: get_map() -> decltype(auto) { constexpr bool map_constness{false}; using RawMap_t = typename internal::matrix_map_type::type; return RawMap_t(*this); } /* ---------------------------------------------------------------------- */ template auto MatrixField:: get_const_map() -> decltype(auto) { constexpr bool map_constness{true}; using RawMap_t = typename internal::matrix_map_type::type; return RawMap_t(*this); } /* ---------------------------------------------------------------------- */ template auto MatrixField:: get_map() const -> decltype(auto) { constexpr bool map_constness{true}; using RawMap_t = typename internal::matrix_map_type::type; return RawMap_t(*this); } /* ---------------------------------------------------------------------- */ template auto MatrixField:: get_zeros_like(std::string unique_name) const -> MatrixField & { return make_field(unique_name, this->collection); } } // muSpectre #endif /* FIELD_H */ diff --git a/src/common/field_base.hh b/src/common/field_base.hh index 752bb14..9a767a2 100644 --- a/src/common/field_base.hh +++ b/src/common/field_base.hh @@ -1,210 +1,210 @@ /** * file field_base.hh * * @author Till Junge * * @date 10 Apr 2018 * * @brief Virtual base class for fields * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FIELD_BASE_H #define FIELD_BASE_H #include #include namespace muSpectre { /* ---------------------------------------------------------------------- */ /** * base class for field collection-related exceptions */ class FieldCollectionError: public std::runtime_error { public: //! constructor explicit FieldCollectionError(const std::string& what) :std::runtime_error(what){} //! constructor explicit FieldCollectionError(const char * what) :std::runtime_error(what){} }; /// base class for field-related exceptions class FieldError: public FieldCollectionError { using Parent = FieldCollectionError; public: //! constructor explicit FieldError(const std::string& what) :Parent(what){} //! constructor explicit FieldError(const char * what) :Parent(what){} }; /** * Thrown when a associating a field map to and incompatible field * is attempted */ class FieldInterpretationError: public FieldError { public: //! constructor explicit FieldInterpretationError(const std::string & what) :FieldError(what){} //! constructor explicit FieldInterpretationError(const char * what) :FieldError(what){} }; namespace internal{ /* ---------------------------------------------------------------------- */ /** * Virtual base class for all fields. A field represents * meta-information for the per-pixel storage for a scalar, vector * or tensor quantity and is therefore the abstract class defining * the field. It is used for type and size checking at runtime and * for storage of polymorphic pointers to fully typed and sized * fields. `FieldBase` (and its children) are templated with a * specific `FieldCollection` (derived from * `muSpectre::FieldCollectionBase`). A `FieldCollection` stores * multiple fields that all apply to the same set of * pixels. Addressing and managing the data for all pixels is * handled by the `FieldCollection`. Note that `FieldBase` does * not know anything about about mathematical operations on the * data or how to iterate over all pixels. Mapping the raw data * onto for instance Eigen maps and iterating over those is * handled by the `FieldMap`. */ template class FieldBase { protected: //! constructor //! unique name (whithin Collection) //! number of components //! collection to which this field belongs (eg, material, cell) FieldBase(std::string unique_name, size_t nb_components, FieldCollection & collection); public: using collection_t = FieldCollection; //!< for type checks //! Copy constructor FieldBase(const FieldBase &other) = delete; //! Move constructor FieldBase(FieldBase &&other) = delete; //! Destructor virtual ~FieldBase() = default; //! Copy assignment operator FieldBase& operator=(const FieldBase &other) = delete; //! Move assignment operator FieldBase& operator=(FieldBase &&other) = delete; /* ---------------------------------------------------------------------- */ //!Identifying accessors //! return field name inline const std::string & get_name() const; //! return field type //inline const Field_t & get_type() const; //! return my collection (for iterating) inline const FieldCollection & get_collection() const; //! return number of components (e.g., dimensions) of this field inline const size_t & get_nb_components() const; //! return type_id of stored type virtual const std::type_info & get_stored_typeid() const = 0; //! number of pixels in the field virtual size_t size() const = 0; //! add a pad region to the end of the field buffer; required for //! using this as e.g. an FFT workspace virtual void set_pad_size(size_t pad_size_) = 0; //! pad region size virtual size_t get_pad_size() const {return this->pad_size;}; //! initialise field to zero (do more complicated initialisations through //! fully typed maps) virtual void set_zero() = 0; //! give access to collections friend FieldCollection; //! give access to collection's base class using FParent_t = typename FieldCollection::Parent; friend FParent_t; protected: /* ---------------------------------------------------------------------- */ //! allocate memory etc virtual void resize(size_t size) = 0; const std::string name; //!< the field's unique name const size_t nb_components; //!< number of components per entry //! reference to the collection this field belongs to FieldCollection & collection; size_t pad_size; //!< size of padding region at end of buffer private: }; /* ---------------------------------------------------------------------- */ // Implementations /* ---------------------------------------------------------------------- */ template FieldBase::FieldBase(std::string unique_name, size_t nb_components_, FieldCollection & collection_) :name(unique_name), nb_components(nb_components_), collection(collection_), pad_size{0} {} /* ---------------------------------------------------------------------- */ template inline const std::string & FieldBase::get_name() const { return this->name; } /* ---------------------------------------------------------------------- */ template inline const FieldCollection & FieldBase:: get_collection() const { return this->collection; } /* ---------------------------------------------------------------------- */ template inline const size_t & FieldBase:: get_nb_components() const { return this->nb_components; } } // internal } // muSpectre #endif /* FIELD_BASE_H */ diff --git a/src/common/field_collection.hh b/src/common/field_collection.hh index 82132f9..e2b0caf 100644 --- a/src/common/field_collection.hh +++ b/src/common/field_collection.hh @@ -1,35 +1,35 @@ /** * @file field_collection.hh * * @author Till Junge * * @date 07 Sep 2017 * * @brief Provides pixel-iterable containers for scalar and tensorial fields, * addressable by field name * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FIELD_COLLECTION_H #define FIELD_COLLECTION_H #include "common/field_collection_global.hh" #include "common/field_collection_local.hh" #endif /* FIELD_COLLECTION_H */ diff --git a/src/common/field_collection_base.hh b/src/common/field_collection_base.hh index 5861a12..4d7ec2c 100644 --- a/src/common/field_collection_base.hh +++ b/src/common/field_collection_base.hh @@ -1,358 +1,358 @@ /** * @file field_collection_base.hh * * @author Till Junge * * @date 05 Nov 2017 * * @brief Base class for field collections * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FIELD_COLLECTION_BASE_H #define FIELD_COLLECTION_BASE_H #include "common/common.hh" #include "common/field.hh" #include "common/statefield.hh" #include #include namespace muSpectre { /* ---------------------------------------------------------------------- */ /** `FieldCollectionBase` is the base class for collections of fields. All * fields in a field collection have the same number of pixels. The field * collection is templated with @a DimS is the spatial dimension (i.e. * whether the simulation domain is one, two or three-dimensional). * All fields within a field collection have a unique string identifier. * A `FieldCollectionBase` is therefore comparable to a dictionary of fields * that live on the same grid. * `FieldCollectionBase` has the specialisations `GlobalFieldCollection` and * `LocalFieldCollection`. */ template class FieldCollectionBase { public: //! polymorphic base type to store using Field_t = internal::FieldBase; template using TypedField_t = TypedField; using Field_p = std::unique_ptr; //!< stored type using StateField_t = StateFieldBase; template using TypedStateField_t = TypedStateField; using StateField_p = std::unique_ptr; using Ccoord = Ccoord_t; //!< cell coordinates type //! Default constructor FieldCollectionBase(); //! Copy constructor FieldCollectionBase(const FieldCollectionBase &other) = delete; //! Move constructor FieldCollectionBase(FieldCollectionBase &&other) = delete; //! Destructor virtual ~FieldCollectionBase() = default; //! Copy assignment operator FieldCollectionBase& operator=(const FieldCollectionBase &other) = delete; //! Move assignment operator FieldCollectionBase& operator=(FieldCollectionBase &&other) = delete; //! Register a new field (fields need to be in heap, so I want to keep them //! as shared pointers void register_field(Field_p&& field); //! Register a new field (fields need to be in heap, so I want to keep them //! as shared pointers void register_statefield(StateField_p&& field); //! for return values of iterators constexpr inline static Dim_t spatial_dim(); //! for return values of iterators inline Dim_t get_spatial_dim() const; //! return names of all stored fields std::vector get_field_names() const { std::vector names{}; for (auto & tup: this->fields) { names.push_back(std::get<0>(tup)); } return names; } //! return names of all state fields std::vector get_statefield_names() const { std::vector names{}; for (auto & tup: this->statefields) { names.push_back(std::get<0>(tup)); } return names; } //! retrieve field by unique_name inline Field_t& operator[](std::string unique_name); //! retrieve field by unique_name with bounds checking inline Field_t& at(std::string unique_name); //! retrieve typed field by unique_name template inline TypedField_t & get_typed_field(std::string unique_name); //! retrieve state field by unique_prefix with bounds checking template inline TypedStateField_t& get_typed_statefield(std::string unique_prefix); //! retrieve state field by unique_prefix with bounds checking inline StateField_t& get_statefield(std::string unique_prefix) { return *(this->statefields.at(unique_prefix)); } //! retrieve state field by unique_prefix with bounds checking inline const StateField_t& get_statefield(std::string unique_prefix) const { return *(this->statefields.at(unique_prefix)); } /** * retrieve current value of typed state field by unique_prefix with * bounds checking */ template inline TypedField_t& get_current(std::string unique_prefix); /** * retrieve old value of typed state field by unique_prefix with * bounds checking */ template inline const TypedField_t & get_old(std::string unique_prefix, size_t nb_steps_ago = 1) const; //! returns size of collection, this refers to the number of pixels handled //! by the collection, not the number of fields inline size_t size() const {return this->size_;} //! check whether a field is present bool check_field_exists(const std::string & unique_name); //! check whether the collection is initialised bool initialised() const {return this->is_initialised;} protected: std::map fields{}; //!< contains the field ptrs //! contains ptrs to state fields std::map statefields{}; bool is_initialised{false}; //!< to handle double initialisation correctly const Uint id; //!< unique identifier static Uint counter; //!< used to assign unique identifiers size_t size_{0}; //!< holds the number of pixels after initialisation private: }; /* ---------------------------------------------------------------------- */ template Uint FieldCollectionBase::counter{0}; /* ---------------------------------------------------------------------- */ template FieldCollectionBase::FieldCollectionBase() :id(counter++){} /* ---------------------------------------------------------------------- */ template void FieldCollectionBase:: register_field(Field_p &&field) { auto&& search_it = this->fields.find(field->get_name()); auto&& does_exist = search_it != this->fields.end(); if (does_exist) { std::stringstream err_str; err_str << "a field named '" << field->get_name() << "' is already registered in this field collection. " << "Currently registered fields: "; std::string prelude{""}; for (const auto& name_field_pair: this->fields) { err_str << prelude << '\'' << name_field_pair.first << '\''; prelude = ", "; } throw FieldCollectionError(err_str.str()); } if (this->is_initialised) { field->resize(this->size()); } this->fields[field->get_name()] = std::move(field); } /* ---------------------------------------------------------------------- */ template void FieldCollectionBase:: register_statefield(StateField_p&& field) { auto&& search_it = this->statefields.find(field->get_prefix()); auto&& does_exist = search_it != this->statefields.end(); if (does_exist) { std::stringstream err_str; err_str << "a state field named '" << field->get_prefix() << "' is already registered in this field collection. " << "Currently registered fields: "; std::string prelude{""}; for (const auto& name_field_pair: this->statefields) { err_str << prelude << '\'' << name_field_pair.first << '\''; prelude = ", "; } throw FieldCollectionError(err_str.str()); } this->statefields[field->get_prefix()] = std::move(field); } /* ---------------------------------------------------------------------- */ template constexpr Dim_t FieldCollectionBase:: spatial_dim() { return DimS; } /* ---------------------------------------------------------------------- */ template Dim_t FieldCollectionBase:: get_spatial_dim() const { return DimS; } /* ---------------------------------------------------------------------- */ template auto FieldCollectionBase:: operator[](std::string unique_name) -> Field_t & { return *(this->fields[unique_name]); } /* ---------------------------------------------------------------------- */ template auto FieldCollectionBase:: at(std::string unique_name) -> Field_t & { return *(this->fields.at(unique_name)); } /* ---------------------------------------------------------------------- */ template bool FieldCollectionBase:: check_field_exists(const std::string & unique_name) { return this->fields.find(unique_name) != this->fields.end(); } //! retrieve typed field by unique_name template template auto FieldCollectionBase:: get_typed_field(std::string unique_name) -> TypedField_t & { auto & unqualified_field{this->at(unique_name)}; if (unqualified_field.get_stored_typeid().hash_code() != typeid(T).hash_code()) { std::stringstream err{}; err << "Field '" << unique_name << "' is of type " << unqualified_field.get_stored_typeid().name() << ", but should be of type " << typeid(T).name() << std::endl; throw FieldCollectionError(err.str()); } return static_cast &>(unqualified_field); } /* ---------------------------------------------------------------------- */ //! retrieve state field by unique_prefix with bounds checking template template auto FieldCollectionBase:: get_typed_statefield(std::string unique_prefix) -> TypedStateField_t & { auto & unqualified_statefield{this->get_statefield(unique_prefix)}; if (unqualified_statefield.get_stored_typeid().hash_code() != typeid(T).hash_code()) { std::stringstream err{}; err << "Statefield '" << unique_prefix << "' is of type " << unqualified_statefield.get_stored_typeid().name() << ", but should be of type " << typeid(T).name() << std::endl; throw FieldCollectionError(err.str()); } return static_cast &>(unqualified_statefield); } /* ---------------------------------------------------------------------- */ template template auto FieldCollectionBase:: get_current(std::string unique_prefix) -> TypedField_t & { auto & unqualified_statefield = this->get_statefield(unique_prefix); //! check for correct underlying fundamental type if (unqualified_statefield.get_stored_typeid().hash_code() != typeid(T).hash_code()) { std::stringstream err{}; err << "StateField '" << unique_prefix << "' is of type " << unqualified_statefield.get_stored_typeid().name() << ", but should be of type " << typeid(T).name() << std::endl; throw FieldCollectionError(err.str()); } using Typed_t = TypedStateField; auto & typed_field{static_cast(unqualified_statefield)}; return typed_field.get_current_field(); } /* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */ template template auto FieldCollectionBase:: get_old(std::string unique_prefix, size_t nb_steps_ago) const -> const TypedField_t & { auto & unqualified_statefield = this->get_statefield(unique_prefix); //! check for correct underlying fundamental type if (unqualified_statefield.get_stored_typeid().hash_code() != typeid(T).hash_code()) { std::stringstream err{}; err << "StateField '" << unique_prefix << "' is of type " << unqualified_statefield.get_stored_typeid().name() << ", but should be of type " << typeid(T).name() << std::endl; throw FieldCollectionError(err.str()); } using Typed_t = TypedStateField; auto & typed_field{static_cast(unqualified_statefield)}; return typed_field.get_old_field(nb_steps_ago); } } // muSpectre #endif /* FIELD_COLLECTION_BASE_H */ diff --git a/src/common/field_collection_global.hh b/src/common/field_collection_global.hh index 76058c1..da607f1 100644 --- a/src/common/field_collection_global.hh +++ b/src/common/field_collection_global.hh @@ -1,220 +1,220 @@ /** * @file field_collection_global.hh * * @author Till Junge * * @date 05 Nov 2017 * * @brief FieldCollection base-class for global fields * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FIELD_COLLECTION_GLOBAL_H #define FIELD_COLLECTION_GLOBAL_H #include "common/field_collection_base.hh" #include "common/ccoord_operations.hh" namespace muSpectre { /** * forward declaration */ template class LocalFieldCollection; /** `GlobalFieldCollection` derives from `FieldCollectionBase` and stores * global fields that live throughout the whole computational domain, i.e. * are defined for each pixel. */ template class GlobalFieldCollection: public FieldCollectionBase> { public: //! for compile time check constexpr static bool Global{true}; using Parent = FieldCollectionBase >; //!< base class //! helpful for functions that fill global fields from local fields using LocalFieldCollection_t = LocalFieldCollection; //! helpful for functions that fill global fields from local fields using GlobalFieldCollection_t = GlobalFieldCollection; using Ccoord = typename Parent::Ccoord; //!< cell coordinates type using Field_p = typename Parent::Field_p; //!< spatial coordinates type //! iterator over all pixels contained it the collection using iterator = typename CcoordOps::Pixels::iterator; //! Default constructor GlobalFieldCollection(); //! Copy constructor GlobalFieldCollection(const GlobalFieldCollection &other) = delete; //! Move constructor GlobalFieldCollection (GlobalFieldCollection &&other) = default; //! Destructor virtual ~GlobalFieldCollection() = default; //! Copy assignment operator GlobalFieldCollection& operator=(const GlobalFieldCollection &other) = delete; //! Move assignment operator GlobalFieldCollection& operator=(GlobalFieldCollection &&other) = default; /** allocate memory, etc. At this point, the collection is informed aboud the size and shape of the domain (through the sizes parameter). The job of initialise is to make sure that all fields are either of size 0, in which case they need to be allocated, or are of the same size as the product of 'sizes' (if standard strides apply) any field of a different size is wrong. TODO: check whether it makes sense to put a runtime check here **/ inline void initialise(Ccoord sizes, Ccoord locations); //! return subdomain resolutions inline const Ccoord & get_sizes() const; //! return subdomain locations inline const Ccoord & get_locations() const; //! returns the linear index corresponding to cell coordinates template inline size_t get_index(CcoordRef && ccoord) const; //! returns the cell coordinates corresponding to a linear index inline Ccoord get_ccoord(size_t index) const; inline iterator begin() const; //!< returns iterator to first pixel inline iterator end() const; //!< returns iterator past the last pixel //! return spatial dimension (template parameter) static constexpr inline Dim_t spatial_dim() {return DimS;} //! return globalness at compile time static constexpr inline bool is_global() {return Global;} protected: //! number of discretisation cells in each of the DimS spatial directions Ccoord sizes{}; Ccoord locations{}; CcoordOps::Pixels pixels{}; //!< helper to iterate over the grid private: }; /* ---------------------------------------------------------------------- */ template GlobalFieldCollection::GlobalFieldCollection() :Parent() {} /* ---------------------------------------------------------------------- */ template void GlobalFieldCollection:: initialise(Ccoord sizes, Ccoord locations) { if (this->is_initialised) { throw std::runtime_error("double initialisation"); } this->pixels = CcoordOps::Pixels(sizes, locations); this->size_ = CcoordOps::get_size(sizes); this->sizes = sizes; this->locations = locations; std::for_each(std::begin(this->fields), std::end(this->fields), [this](auto && item) { auto && field = *item.second; const auto field_size = field.size(); if (field_size == 0) { field.resize(this->size()); } else if (field_size != this->size()) { std::stringstream err_stream; err_stream << "Field '" << field.get_name() << "' contains " << field_size << " entries, but the field collection " << "has " << this->size() << " pixels"; throw FieldCollectionError(err_stream.str()); } }); this->is_initialised = true; } //----------------------------------------------------------------------------// //! return subdomain resolutions template const typename GlobalFieldCollection::Ccoord & GlobalFieldCollection::get_sizes() const { return this->sizes; } //----------------------------------------------------------------------------// //! return subdomain locations template const typename GlobalFieldCollection::Ccoord & GlobalFieldCollection::get_locations() const { return this->locations; } //----------------------------------------------------------------------------// //! returns the cell coordinates corresponding to a linear index template typename GlobalFieldCollection::Ccoord GlobalFieldCollection::get_ccoord(size_t index) const { return CcoordOps::get_ccoord(this->get_sizes(), this->get_locations(), std::move(index)); } /* ---------------------------------------------------------------------- */ template typename GlobalFieldCollection::iterator GlobalFieldCollection::begin() const { return this->pixels.begin(); } /* ---------------------------------------------------------------------- */ template typename GlobalFieldCollection::iterator GlobalFieldCollection::end() const { return this->pixels.end(); } //----------------------------------------------------------------------------// //! returns the linear index corresponding to cell coordinates template template size_t GlobalFieldCollection::get_index(CcoordRef && ccoord) const { static_assert(std::is_same< Ccoord, std::remove_const_t< std::remove_reference_t>>::value, "can only be called with values or references of Ccoord"); return CcoordOps::get_index(this->get_sizes(), this->get_locations(), std::forward(ccoord)); } } // muSpectre #endif /* FIELD_COLLECTION_GLOBAL_H */ diff --git a/src/common/field_collection_local.hh b/src/common/field_collection_local.hh index 02d0805..7bd7785 100644 --- a/src/common/field_collection_local.hh +++ b/src/common/field_collection_local.hh @@ -1,203 +1,203 @@ /** * @file field_collection_local.hh * * @author Till Junge * * @date 05 Nov 2017 * * @brief FieldCollection base-class for local fields * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FIELD_COLLECTION_LOCAL_H #define FIELD_COLLECTION_LOCAL_H #include "common/field_collection_base.hh" namespace muSpectre { /** * forward declaration */ template class GlobalFieldCollection; /** `LocalFieldCollection` derives from `FieldCollectionBase` and stores * local fields, i.e. fields that are only defined for a subset of all pixels * in the computational domain. The coordinates of these active pixels are * explicitly stored by this field collection. * `LocalFieldCollection::add_pixel` allows to add individual pixels to the * field collection. */ template class LocalFieldCollection: public FieldCollectionBase> { public: //! for compile time check constexpr static bool Global{false}; //! base class using Parent = FieldCollectionBase>; //! helpful for functions that fill local fields from global fields using GlobalFieldCollection_t = GlobalFieldCollection; //! helpful for functions that fill local fields from global fields using LocalFieldCollection_t = LocalFieldCollection; using Ccoord = typename Parent::Ccoord; //!< cell coordinates type using Field_p = typename Parent::Field_p; //!< field pointer using ccoords_container = std::vector; //!< list of pixels //! iterator over managed pixels using iterator = typename ccoords_container::iterator; //! const iterator over managed pixels using const_iterator = typename ccoords_container::const_iterator; //! Default constructor LocalFieldCollection(); //! Copy constructor LocalFieldCollection(const LocalFieldCollection &other) = delete; //! Move constructor LocalFieldCollection(LocalFieldCollection &&other) = delete; //! Destructor virtual ~LocalFieldCollection() = default; //! Copy assignment operator LocalFieldCollection& operator=(const LocalFieldCollection &other) = delete; //! Move assignment operator LocalFieldCollection& operator=(LocalFieldCollection &&other) = delete; //! add a pixel/voxel to the field collection inline void add_pixel(const Ccoord & local_ccoord); /** allocate memory, etc. at this point, the field collection knows how many entries it should have from the size of the coords containes (which grows by one every time add_pixel is called. The job of initialise is to make sure that all fields are either of size 0, in which case they need to be allocated, or are of the same size as the product of 'sizes' any field of a different size is wrong TODO: check whether it makes sense to put a runtime check here **/ inline void initialise(); //! returns the linear index corresponding to cell coordinates template inline size_t get_index(CcoordRef && ccoord) const; //! returns the cell coordinates corresponding to a linear index inline Ccoord get_ccoord(size_t index) const; //! iterator to first pixel inline iterator begin() {return this->ccoords.begin();} //! iterator past last pixel inline iterator end() {return this->ccoords.end();} //! const iterator to first pixel inline const_iterator begin() const {return this->ccoords.cbegin();} //! const iterator past last pixel inline const_iterator end() const {return this->ccoords.cend();} //! return globalness at compile time static constexpr inline bool is_global() {return Global;} protected: //! container of pixel coords for non-global collections ccoords_container ccoords{}; //! container of indices for non-global collections (slow!) std::map indices{}; private: }; /* ---------------------------------------------------------------------- */ template LocalFieldCollection::LocalFieldCollection() :Parent(){} /* ---------------------------------------------------------------------- */ template void LocalFieldCollection:: add_pixel(const Ccoord & local_ccoord) { if (this->is_initialised) { throw FieldCollectionError ("once a field collection has been initialised, you can't add new " "pixels."); } this->indices[local_ccoord] = this->ccoords.size(); this->ccoords.push_back(local_ccoord); this->size_++; } /* ---------------------------------------------------------------------- */ template void LocalFieldCollection:: initialise() { if (this->is_initialised) { throw std::runtime_error("double initialisation"); } std::for_each(std::begin(this->fields), std::end(this->fields), [this](auto && item) { auto && field = *item.second; const auto field_size = field.size(); if (field_size == 0) { field.resize(this->size()); } else if (field_size != this->size()) { std::stringstream err_stream; err_stream << "Field '" << field.get_name() << "' contains " << field_size << " entries, but the field collection " << "has " << this->size() << " pixels"; throw FieldCollectionError(err_stream.str()); } }); this->is_initialised = true; } //----------------------------------------------------------------------------// //! returns the linear index corresponding to cell coordinates template template size_t LocalFieldCollection::get_index(CcoordRef && ccoord) const { static_assert(std::is_same< Ccoord, std::remove_const_t< std::remove_reference_t>>::value, "can only be called with values or references of Ccoord"); return this->indices.at(std::forward(ccoord)); } //----------------------------------------------------------------------------// //! returns the cell coordinates corresponding to a linear index template typename LocalFieldCollection::Ccoord LocalFieldCollection::get_ccoord(size_t index) const { return this->ccoords[std::move(index)]; } } // muSpectre #endif /* FIELD_COLLECTION_LOCAL_H */ diff --git a/src/common/field_helpers.hh b/src/common/field_helpers.hh index 75da783..2fe0b73 100644 --- a/src/common/field_helpers.hh +++ b/src/common/field_helpers.hh @@ -1,56 +1,56 @@ /** * file field_helpers.hh * * @author Till Junge * * @date 30 Aug 2018 * * @brief helper functions that needed to be sequestered to avoid circular * inclusions * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FIELD_HELPERS_H #define FIELD_HELPERS_H #include namespace muSpectre { /** * Factory function, guarantees that only fields get created that * are properly registered and linked to a collection. */ template inline FieldType & make_field(std::string unique_name, FieldCollection & collection, Args&&... args) { std::unique_ptr ptr{ new FieldType(unique_name, collection, args...)}; auto& retref{*ptr}; collection.register_field(std::move(ptr)); return retref; } } // muSpectre #endif /* FIELD_HELPERS_H */ diff --git a/src/common/field_map.hh b/src/common/field_map.hh index 006bbdd..b0db761 100644 --- a/src/common/field_map.hh +++ b/src/common/field_map.hh @@ -1,271 +1,271 @@ /** * @file field_map.hh * * @author Till Junge * * @date 26 Sep 2017 * * @brief just and indirection to include all iterables defined for fields * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/field_map_tensor.hh" #include "common/field_map_matrixlike.hh" #include "common/field_map_scalar.hh" #include #include #include #ifndef FIELD_MAP_H #define FIELD_MAP_H namespace muSpectre { /** * allows to iterate over raw data as if it were a FieldMap. This is * particularly useful when interacting with external solvers, such * as scipy and Eigen * @param EigenMap needs to be statically sized a Eigen::Map * * @warning This type is not safe for re-use. I.e., after there has * been an assignment to the underlying eigen array, the * `RawFieldMap` might be invalidated! */ template class RawFieldMap { public: /** * determining the constness of the mapped array required in order * to formulate the constructors const-correctly */ constexpr static bool IsConst{ std::is_const< std::remove_pointer_t>::value}; //! short-hand for the basic scalar type using T = typename EigenMap::Scalar; //! raw pointer type to store using T_ptr = std::conditional_t; //! input array (~field) type to be mapped using FieldVec_t = std::conditional_t; //! Plain mapped Eigen type using EigenPlain = typename EigenMap::PlainObject; //! Default constructor RawFieldMap() = delete; //! constructor from a *contiguous* array RawFieldMap(Eigen::Map vec, Dim_t nb_rows=EigenMap::RowsAtCompileTime, Dim_t nb_cols=EigenMap::ColsAtCompileTime): data{vec.data()}, nb_rows{nb_rows}, nb_cols{nb_cols}, nb_components{nb_rows * nb_cols}, nb_pixels(vec.size()/nb_components) { if ((nb_rows == Eigen::Dynamic) or (nb_cols == Eigen::Dynamic)) { throw FieldError ("You have to specify the number of rows and columns if you map a " "dynamically sized Eigen Map type."); } if ((nb_rows < 1) or (nb_cols < 1)) { throw FieldError("Only positive numbers of rows and columns make " "sense"); } if (vec.size() % this->nb_components != 0) { std::stringstream err{}; err << "The vector size of " << vec.size() << " is not an integer multiple of the size of value_type, which " << "is " << this->nb_components << "."; throw std::runtime_error(err.str()); } } //! constructor from a *contiguous* array RawFieldMap(Eigen::Ref vec, Dim_t nb_rows=EigenMap::RowsAtCompileTime, Dim_t nb_cols=EigenMap::ColsAtCompileTime): data{vec.data()}, nb_rows{nb_rows}, nb_cols{nb_cols}, nb_components{nb_rows * nb_cols}, nb_pixels(vec.size()/nb_components) { if (vec.size() % this->nb_components != 0) { std::stringstream err{}; err << "The vector size of " << vec.size() << " is not an integer multiple of the size of value_type, which " << "is " << this->nb_components << "."; throw std::runtime_error(err.str()); } } //! Copy constructor RawFieldMap(const RawFieldMap &other) = delete; //! Move constructor RawFieldMap(RawFieldMap &&other) = default; //! Destructor virtual ~RawFieldMap() = default; //! Copy assignment operator RawFieldMap& operator=(const RawFieldMap &other) = delete; //! Move assignment operator RawFieldMap& operator=(RawFieldMap &&other) = delete; //! returns number of EigenMaps stored within the array size_t size() const {return this->nb_pixels;} //! forward declaration of iterator type template class iterator_t; using iterator = iterator_t; using const_iterator = iterator_t; //! returns an iterator to the first element iterator begin() { return iterator{*this, 0};} const_iterator begin() const { return const_iterator{*this, 0};} //! returns an iterator past the last element iterator end() {return iterator{*this, this->size()};} const_iterator end() const { return const_iterator{*this, this->size()};} //! evaluates the average of the field EigenPlain mean () const { using T_t = EigenPlain; T_t mean(T_t::Zero(this->nb_rows, this->nb_cols)); for (auto && val: *this) { mean += val; } mean /= this->size(); return mean; } protected: inline T_ptr get_data() {return data;} inline const T_ptr get_data() const {return data;} //! raw data pointer (ugly, I know) T_ptr data; const Dim_t nb_rows; const Dim_t nb_cols; const Dim_t nb_components; //! number of EigenMaps stored within the array size_t nb_pixels; private: }; /** * Small iterator class to be used with the RawFieldMap */ template template class RawFieldMap::iterator_t { public: //! short hand for the raw field map's type using Parent = RawFieldMap; //! the map needs to be friend in order to access the protected constructor friend Parent; //! stl compliance using value_type = std::conditional_t , EigenMap>; using T_ptr = std::conditional_t; //! stl compliance using iterator_category = std::forward_iterator_tag; //! Default constructor iterator_t() = delete; //! Copy constructor iterator_t(const iterator_t &other) = default; //! Move constructor iterator_t(iterator_t &&other) = default; //! Destructor virtual ~iterator_t() = default; //! Copy assignment operator iterator_t& operator=(const iterator_t &other) = default; //! Move assignment operator iterator_t& operator=(iterator_t &&other) = default; //! pre-increment inline iterator_t & operator++() { ++this->index; return *this; } //! dereference inline value_type operator *() { return value_type(raw_ptr + this->map.nb_components*index, this->map.nb_rows, this->map.nb_cols); } //! inequality inline bool operator != (const iterator_t & other) const { return this->index != other.index; } //! equality inline bool operator == (const iterator_t & other) const { return this->index == other.index; } protected: //! protected constructor iterator_t (const Parent& map, size_t start): raw_ptr{map.get_data()}, map{map}, index{start} { } template iterator_t (std::enable_if_t map, size_t start): raw_ptr{map.data}, map{map}, index{start} { static_assert(dummy_non_const == not IsConst, "SFINAE");} //! raw data T_ptr raw_ptr; //! ref to underlying map const Parent & map; //! currently pointed-to element size_t index; private: }; } // muSpectre #endif /* FIELD_MAP_H */ diff --git a/src/common/field_map_base.hh b/src/common/field_map_base.hh index 7ba970d..275b30c 100644 --- a/src/common/field_map_base.hh +++ b/src/common/field_map_base.hh @@ -1,870 +1,870 @@ /** * @file field_map.hh * * @author Till Junge * * @date 12 Sep 2017 * * @brief Defined a strongly defines proxy that iterates efficiently over a field * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FIELD_MAP_BASE_H #define FIELD_MAP_BASE_H #include "common/field.hh" #include "field_collection_base.hh" #include "common/common.hh" #include #include #include #include namespace muSpectre { namespace internal { /** * Forward-declaration */ template class TypedSizedFieldBase; //! little helper to automate creation of const maps without duplication template struct const_corrector { //! non-const type using type = typename T::reference; }; //! specialisation for constant case template struct const_corrector { //! const type using type = typename T::const_reference; }; //! convenience alias template using const_corrector_t = typename const_corrector::type; //----------------------------------------------------------------------------// /** * `FieldMap` provides two central mechanisms: * - Map a field (that knows only about the size of the underlying object, * onto the mathematical object (reprensented by the respective Eigen class) * that provides linear algebra functionality. * - Provide an iterator that allows to iterate over all pixels. * A field is represented by `FieldBase` or a derived class. * `FieldMap` has the specialisations `MatrixLikeFieldMap`, * `ScalarFieldMap` and `TensorFieldMap`. */ template class FieldMap { static_assert((NbComponents != 0), "Fields with now components make no sense."); /* * Eigen::Dynamic is equal to -1, and is a legal value, hence * the following peculiar check */ static_assert((NbComponents > -2), "Fields with a negative number of components make no sense."); public: //! Fundamental type stored using Scalar = T; //! number of scalars per entry constexpr static auto nb_components{NbComponents}; //! non-constant version of field using TypedField_nc = std::conditional_t<(NbComponents >= 1), TypedSizedFieldBase, TypedField>; //! field type as seen from iterator using TypedField_t = std::conditional_t; using Field = typename TypedField_nc::Base; //!< iterated field type //! const-correct field type using Field_c = std::conditional_t; using size_type = std::size_t; //!< stl conformance using pointer = std::conditional_t; //!< stl conformance //! Default constructor FieldMap() = delete; //! constructor FieldMap(Field_c & field); //! constructor with run-time cost (for python and debugging) template FieldMap(TypedSizedFieldBase & field); //! Copy constructor FieldMap(const FieldMap &other) = default; //! Move constructor FieldMap(FieldMap &&other) = default; //! Destructor virtual ~FieldMap() = default; //! Copy assignment operator FieldMap& operator=(const FieldMap &other) = delete; //! Move assignment operator FieldMap& operator=(FieldMap &&other) = delete; //! give human-readable field map type virtual std::string info_string() const = 0; //! return field name inline const std::string & get_name() const; //! return my collection (for iterating) inline const FieldCollection & get_collection() const; //! member access needs to be implemented by inheriting classes //inline value_type operator[](size_t index); //inline value_type operator[](Ccoord ccord); //! check compatibility (must be called by all inheriting classes at the //! end of their constructors inline void check_compatibility(); //! convenience call to collection's size method inline size_t size() const; //! compile-time compatibility check template struct is_compatible; /** * iterates over all pixels in the `muSpectre::FieldCollection` * and dereferences to an Eigen map to the currently used field. */ template class iterator; /** * Simple iterable proxy wrapper object around a FieldMap. When * iterated over, rather than dereferencing to the reference * type of iterator, it dereferences to a tuple of the pixel, * and the reference type of iterator */ template class enumerator; TypedField_t & get_field() {return this->field;} protected: //! raw pointer to entry (for Eigen Map) inline pointer get_ptr_to_entry(size_t index); //! raw pointer to entry (for Eigen Map) inline const T* get_ptr_to_entry(size_t index) const; const FieldCollection & collection; //!< collection holding Field TypedField_t & field; //!< mapped Field private: }; /** * iterates over all pixels in the `muSpectre::FieldCollection` * and dereferences to an Eigen map to the currently used field. */ template template class FieldMap::iterator { static_assert(!((ConstIter==false) && (ConstField==true)), "You can't have a non-const iterator over a const " "field"); public: //! for use by enumerator using FullyTypedFieldMap_t = FullyTypedFieldMap; //! stl conformance using value_type = const_corrector_t; //! stl conformance using const_value_type = const_corrector_t; //! stl conformance using pointer = typename FullyTypedFieldMap::pointer; //! stl conformance using difference_type = std::ptrdiff_t; //! stl conformance using iterator_category = std::random_access_iterator_tag; //! cell coordinates type using Ccoord = typename FieldCollection::Ccoord; //! stl conformance using reference = typename FullyTypedFieldMap::reference; //! fully typed reference as seen by the iterator using TypedRef = std::conditional_t &; //! Default constructor iterator() = delete; //! constructor inline iterator(TypedRef fieldmap, bool begin=true); //! constructor for random access inline iterator(TypedRef fieldmap, size_t index); //! Move constructor iterator(iterator &&other) = default; //! Destructor virtual ~iterator() = default; //! Copy assignment operator iterator& operator=(const iterator &other) = default; //! Move assignment operator iterator& operator=(iterator &&other) = default; //! pre-increment inline iterator & operator++(); //! post-increment inline iterator operator++(int); //! dereference inline value_type operator*(); //! dereference inline const_value_type operator*() const; //! member of pointer inline pointer operator->(); //! pre-decrement inline iterator & operator--(); //! post-decrement inline iterator operator--(int); //! access subscripting inline value_type operator[](difference_type diff); //! access subscripting inline const_value_type operator[](const difference_type diff) const; //! equality inline bool operator==(const iterator & other) const; //! inequality inline bool operator!=(const iterator & other) const; //! div. comparisons inline bool operator<(const iterator & other) const; //! div. comparisons inline bool operator<=(const iterator & other) const; //! div. comparisons inline bool operator>(const iterator & other) const; //! div. comparisons inline bool operator>=(const iterator & other) const; //! additions, subtractions and corresponding assignments inline iterator operator+(difference_type diff) const; //! additions, subtractions and corresponding assignments inline iterator operator-(difference_type diff) const; //! additions, subtractions and corresponding assignments inline iterator& operator+=(difference_type diff); //! additions, subtractions and corresponding assignments inline iterator& operator-=(difference_type diff); //! get pixel coordinates inline Ccoord get_ccoord() const; //! ostream operator (mainly for debugging) friend std::ostream & operator<<(std::ostream & os, const iterator& it) { if (ConstIter) { os << "const "; } os << "iterator on field '" << it.fieldmap.get_name() << "', entry " << it.index; return os; } protected: //! Copy constructor iterator(const iterator &other) = default; const FieldCollection & collection; //!< collection of the field TypedRef fieldmap; //!< ref to the field itself size_t index; //!< index of currently pointed-to pixel private: }; /* ---------------------------------------------------------------------- */ template template class FieldMap::enumerator { public: //! fully typed reference as seen by the iterator using TypedRef =typename Iterator::TypedRef; //! Default constructor enumerator() = delete; //! constructor with field mapped enumerator(TypedRef& field_map): field_map{field_map} {} /** * similar to iterators of the field map, but dereferences to a * tuple containing the cell coordinates and teh corresponding * entry */ class iterator; iterator begin() {return iterator(this->field_map);} iterator end() {return iterator(this->field_map, false);} protected: TypedRef & field_map; }; /* ---------------------------------------------------------------------- */ template template class FieldMap:: enumerator::iterator { public: //! cell coordinates type using Ccoord = typename FieldCollection::Ccoord; //! stl conformance using value_type = std::tuple; //! stl conformance using const_value_type = std::tuple; //! stl conformance using difference_type = std::ptrdiff_t; //! stl conformance using iterator_category = std::random_access_iterator_tag; //! stl conformance using reference = std::tuple< Ccoord, typename SimpleIterator::FullyTypedFieldMap_t::reference>; //! Default constructor iterator() = delete; //! constructor for begin/end iterator(TypedRef fieldmap, bool begin=true): it{fieldmap, begin} {} //! constructor for random access iterator(TypedRef fieldmap, size_t index): it{fieldmap, index} {} //! constructor from iterator iterator(const SimpleIterator & it): it{it} {} //! Copy constructor iterator(const iterator &other) = default; //! Move constructor iterator(iterator &&other) = default; //! Destructor virtual ~iterator() = default; //! Copy assignment operator iterator& operator=(const iterator &other) = default; //! Move assignment operator iterator& operator=(iterator &&other) = default; //! pre-increment iterator & operator++() { ++(this->it); return *this; } //! post-increment iterator operator++(int) { iterator current = *this; ++(this->it); return current; } //! dereference value_type operator*() { return value_type{it.get_ccoord(), *this->it}; } //! dereference const_value_type operator*() const { return const_value_type{it.get_ccoord(), *this->it}; }; //! pre-decrement iterator & operator--() { --(this->it); return *this; } //! post-decrement iterator operator--(int) { iterator current = *this; --(this->it); return current; } //! access subscripting value_type operator[](difference_type diff) { SimpleIterator accessed{this->it + diff}; return *accessed; } //! access subscripting const_value_type operator[](const difference_type diff) const { SimpleIterator accessed{this->it + diff}; return *accessed; } //! equality bool operator==(const iterator & other) const { return this->it == other.it; } //! inequality bool operator!=(const iterator & other) const { return this->it != other.it; } //! div. comparisons bool operator<(const iterator & other) const { return this->it < other.it; } //! div. comparisons bool operator<=(const iterator & other) const { return this->it <= other.it; } //! div. comparisons bool operator>(const iterator & other) const { return this->it > other.it; } //! div. comparisons bool operator>=(const iterator & other) const { return this->it >= other.it; } //! additions, subtractions and corresponding assignments iterator operator+(difference_type diff) const { return iterator{this->it + diff}; } //! additions, subtractions and corresponding assignments iterator operator-(difference_type diff) const { return iterator{this->it - diff}; } //! additions, subtractions and corresponding assignments iterator& operator+=(difference_type diff) { this->it += diff; } //! additions, subtractions and corresponding assignments iterator& operator-=(difference_type diff) { this->it -= diff; } protected: SimpleIterator it; private: }; } // internal namespace internal { /* ---------------------------------------------------------------------- */ template FieldMap:: FieldMap(Field_c& field) :collection(field.get_collection()), field(static_cast(field)) { static_assert((NbComponents > 0) or (NbComponents == Eigen::Dynamic), "Only fields with more than 0 components allowed"); } /* ---------------------------------------------------------------------- */ template template FieldMap:: FieldMap(TypedSizedFieldBase & field) :collection(field.get_collection()), field(static_cast(field)) { static_assert(std::is_same::value, "The field does not have the expected FieldCollection type"); static_assert(std::is_same::value, "The field does not have the expected Scalar type"); static_assert((NbC == NbComponents), "The field does not have the expected number of components"); } /* ---------------------------------------------------------------------- */ template void FieldMap:: check_compatibility() { if (typeid(T).hash_code() != this->field.get_stored_typeid().hash_code()) { std::string err{"Cannot create a Map of type '" + this->info_string() + "' for field '" + this->field.get_name() + "' of type '" + this->field.get_stored_typeid().name() + "'"}; throw FieldInterpretationError (err); } //check size compatibility if ((NbComponents != Dim_t(this->field.get_nb_components())) and (NbComponents != Eigen::Dynamic)) { throw FieldInterpretationError ("Cannot create a Map of type '" + this->info_string() + "' for field '" + this->field.get_name() + "' with " + std::to_string(this->field.get_nb_components()) + " components"); } } /* ---------------------------------------------------------------------- */ template size_t FieldMap:: size() const { return this->collection.size(); } /* ---------------------------------------------------------------------- */ template template struct FieldMap::is_compatible { //! creates a more readable compile error constexpr static bool explain() { static_assert (std::is_same::value, "The field does not have the expected FieldCollection type"); static_assert (std::is_same::value, "The // field does not have the expected Scalar type"); static_assert((TypedField_t::nb_components == NbComponents), "The field does not have the expected number of components"); //The static asserts wouldn't pass in the incompatible case, so this is it return true; } //! evaluated compatibility constexpr static bool value{std::is_base_of::value}; }; /* ---------------------------------------------------------------------- */ template const std::string & FieldMap:: get_name() const { return this->field.get_name(); } /* ---------------------------------------------------------------------- */ template const FieldCollection & FieldMap:: get_collection() const { return this->collection; } /* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */ // Iterator implementations //! constructor template template FieldMap::iterator :: iterator(TypedRef fieldmap, bool begin) :collection(fieldmap.get_collection()), fieldmap(fieldmap), index(begin ? 0 : fieldmap.field.size()) {} /* ---------------------------------------------------------------------- */ //! constructor for random access template template FieldMap::iterator:: iterator(TypedRef fieldmap, size_t index) :collection(fieldmap.collection), fieldmap(fieldmap), index(index) {} /* ---------------------------------------------------------------------- */ //! pre-increment template template typename FieldMap::template iterator & FieldMap::iterator:: operator++() { this->index++; return *this; } /* ---------------------------------------------------------------------- */ //! post-increment template template typename FieldMap::template iterator FieldMap::iterator:: operator++(int) { iterator current = *this; this->index++; return current; } /* ---------------------------------------------------------------------- */ //! dereference template template typename FieldMap:: template iterator::value_type FieldMap:: iterator:: operator*() { return this->fieldmap.operator[](this->index); } /* ---------------------------------------------------------------------- */ //! dereference template template typename FieldMap:: template iterator::const_value_type FieldMap:: iterator:: operator*() const { return this->fieldmap.operator[](this->index); } /* ---------------------------------------------------------------------- */ //! member of pointer template template typename FullyTypedFieldMap::pointer FieldMap:: iterator:: operator->() { return this->fieldmap.ptr_to_val_t(this->index); } /* ---------------------------------------------------------------------- */ //! pre-decrement template template typename FieldMap::template iterator & FieldMap:: iterator:: operator--() { this->index--; return *this; } /* ---------------------------------------------------------------------- */ //! post-decrement template template typename FieldMap::template iterator FieldMap:: iterator:: operator--(int) { iterator current = *this; this->index--; return current; } /* ---------------------------------------------------------------------- */ //! Access subscripting template template typename FieldMap:: template iterator::value_type FieldMap:: iterator:: operator[](difference_type diff) { return this->fieldmap[this->index+diff]; } /* ---------------------------------------------------------------------- */ //! Access subscripting template template typename FieldMap::template iterator::const_value_type FieldMap:: iterator:: operator[](const difference_type diff) const { return this->fieldmap[this->index+diff]; } /* ---------------------------------------------------------------------- */ //! equality template template bool FieldMap:: iterator:: operator==(const iterator & other) const { return (this->index == other.index); } /* ---------------------------------------------------------------------- */ //! inquality template template bool FieldMap:: iterator:: operator!=(const iterator & other) const { return !(*this == other); } /* ---------------------------------------------------------------------- */ //! div. comparisons template template bool FieldMap:: iterator:: operator<(const iterator & other) const { return (this->index < other.index); } template template bool FieldMap:: iterator:: operator<=(const iterator & other) const { return (this->index <= other.index); } template template bool FieldMap:: iterator:: operator>(const iterator & other) const { return (this->index > other.index); } template template bool FieldMap:: iterator:: operator>=(const iterator & other) const { return (this->index >= other.index); } /* ---------------------------------------------------------------------- */ //! additions, subtractions and corresponding assignments template template typename FieldMap::template iterator FieldMap:: iterator:: operator+(difference_type diff) const { return iterator(this->fieldmap, this->index + diff); } template template typename FieldMap::template iterator FieldMap:: iterator:: operator-(difference_type diff) const { return iterator(this->fieldmap, this->index - diff); } template template typename FieldMap::template iterator & FieldMap:: iterator:: operator+=(difference_type diff) { this->index += diff; return *this; } template template typename FieldMap::template iterator & FieldMap:: iterator:: operator-=(difference_type diff) { this->index -= diff; return *this; } /* ---------------------------------------------------------------------- */ //! get pixel coordinates template template typename FieldCollection::Ccoord FieldMap:: iterator:: get_ccoord() const { return this->collection.get_ccoord(this->index); } ////----------------------------------------------------------------------------// //template //std::ostream & operator << //(std::ostream &os, // const typename FieldMap:: // template iterator & it) { // os << "iterator on field '" // << it.field.get_name() // << "', entry " << it.index; // return os; //} /* ---------------------------------------------------------------------- */ template typename FieldMap::pointer FieldMap:: get_ptr_to_entry(size_t index) { return this->field.get_ptr_to_entry(std::move(index)); } /* ---------------------------------------------------------------------- */ template const T* FieldMap:: get_ptr_to_entry(size_t index) const { return this->field.get_ptr_to_entry(std::move(index)); } } // internal } // muSpectre #endif /* FIELD_MAP_BASE_H */ diff --git a/src/common/field_map_dynamic.hh b/src/common/field_map_dynamic.hh index a875519..97495fc 100644 --- a/src/common/field_map_dynamic.hh +++ b/src/common/field_map_dynamic.hh @@ -1,217 +1,217 @@ /** * @file field_map_dynamic.hh * * @author Till Junge * * @date 24 Jul 2018 * * @brief Field map for dynamically sized maps. for use in non-critical * applications (i.e., i/o, postprocessing, etc, but *not* in a hot * loop * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FIELD_MAP_DYNAMIC_H #define FIELD_MAP_DYNAMIC_H #include "common/field_map_base.hh" namespace muSpectre { /** * Maps onto any `muSpectre::TypedField` and lets you iterate over * it in the form of `Eigen::Map`. This is significantly slower than the statically sized field * maps and should only be used in non-critical contexts. */ template class TypedFieldMap: public internal::FieldMap { public: //! base class using Parent = internal::FieldMap; //! sister class with all params equal, but ConstField guaranteed true using ConstMap = TypedFieldMap; //! cell coordinates type using Ccoord = Ccoord_t; //! plain Eigen type using Arr_t = Eigen::Array; using value_type = Eigen::Map; //!< stl conformance using const_reference = Eigen::Map; //!< stl conformance //! stl conformance using reference = std::conditional_t; // since it's a resource handle using size_type = typename Parent::size_type; //!< stl conformance using pointer = std::unique_ptr; //!< stl conformance //! polymorphic base field type (for debug and python) using Field = typename Parent::Field; //! polymorphic base field type (for debug and python) using Field_c = typename Parent::Field_c; //! stl conformance using const_iterator = typename Parent::template iterator; //! stl conformance using iterator = std::conditional_t< ConstField, const_iterator, typename Parent::template iterator>; //! stl conformance using reverse_iterator = std::reverse_iterator; //! stl conformance using const_reverse_iterator = std::reverse_iterator; //! enumerator over a constant scalar field using const_enumerator = typename Parent::template enumerator; //! enumerator over a scalar field using enumerator = std::conditional_t< ConstField, const_enumerator, typename Parent::template enumerator>; //! give access to the protected fields friend iterator; //! Default constructor TypedFieldMap() = delete; //! Constructor TypedFieldMap(Field_c & field); //! Copy constructor TypedFieldMap(const TypedFieldMap & other) = delete; //! Move constructor TypedFieldMap(TypedFieldMap &&other) = default; //! Destructor virtual ~TypedFieldMap() = default; //! Copy assignment operator TypedFieldMap& operator=(const TypedFieldMap &other) = delete; //! Assign a matrixlike value to every entry template inline TypedFieldMap & operator=(const Eigen::EigenBase & val); //! Move assignment operator TypedFieldMap& operator=(TypedFieldMap &&other) = default; //! give human-readable field map type inline std::string info_string() const override final; //! member access inline reference operator[](size_type index); //! member access inline reference operator[](const Ccoord & ccoord); //! member access inline const_reference operator[](size_type index) const; //! member access inline const_reference operator[](const Ccoord& ccoord) const; //! return an iterator to first entry of field inline iterator begin(){return iterator(*this);} //! return an iterator to first entry of field inline const_iterator cbegin() const {return const_iterator(*this);} //! return an iterator to first entry of field inline const_iterator begin() const {return this->cbegin();} //! return an iterator past the last entry of field inline iterator end(){return iterator(*this, false);} //! return an iterator past the last entry of field inline const_iterator cend() const {return const_iterator(*this, false);} //! return an iterator past the last entry of field inline const_iterator end() const {return this->cend();} /** * return an iterable proxy to this field that can be iterated * in Ccoord-value tuples */ enumerator enumerate() {return enumerator(*this);} /** * return an iterable proxy to this field that can be iterated * in Ccoord-value tuples */ const_enumerator enumerate() const {return const_enumerator(*this);} //! evaluate the average of the field inline Arr_t mean() const; protected: //! for sad, legacy iterator use inline pointer ptr_to_val_t(size_type index); private: }; //----------------------------------------------------------------------------// template TypedFieldMap:: TypedFieldMap(Field_c & field): Parent(field) { this->check_compatibility(); } //----------------------------------------------------------------------------// template std::string TypedFieldMap:: info_string() const { std::stringstream info; info << "Dynamic(" << typeid(T).name() << ", " << this->field.get_nb_components() << ")"; return info.str(); } //----------------------------------------------------------------------------// template auto TypedFieldMap:: operator[](size_type index) -> reference { return reference{this->get_ptr_to_entry(index), Dim_t(this->field.get_nb_components())}; } //----------------------------------------------------------------------------// template auto TypedFieldMap:: operator[](const Ccoord & ccoord) -> reference { size_t index{this->collection.get_index(ccoord)}; return (*this)[index]; } //----------------------------------------------------------------------------// template auto TypedFieldMap:: operator[](size_type index) const -> const_reference { return const_reference{this->get_ptr_to_entry(index), Dim_t(this->field.get_nb_components())}; } //----------------------------------------------------------------------------// template auto TypedFieldMap:: operator[](const Ccoord & ccoord) const -> const_reference { size_t index{this->collection.get_index(ccoord)}; return (*this)[index]; } } // muSpectre #endif /* FIELD_MAP_DYNAMIC_H */ diff --git a/src/common/field_map_matrixlike.hh b/src/common/field_map_matrixlike.hh index 7f730d4..028919b 100644 --- a/src/common/field_map_matrixlike.hh +++ b/src/common/field_map_matrixlike.hh @@ -1,392 +1,392 @@ /** * @file field_map_matrixlike.hh * * @author Till Junge * * @date 26 Sep 2017 * * @brief Eigen-Matrix and -Array maps over strongly typed fields * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FIELD_MAP_MATRIXLIKE_H #define FIELD_MAP_MATRIXLIKE_H #include "common/field_map_base.hh" #include "common/T4_map_proxy.hh" #include #include namespace muSpectre { namespace internal { /* ---------------------------------------------------------------------- */ /** * lists all matrix-like types consideres by * `muSpectre::internal::MatrixLikeFieldMap` */ enum class Map_t{ Matrix, //!< for wrapping `Eigen::Matrix` Array, //!< for wrapping `Eigen::Array` T4Matrix //!< for wrapping `Eigen::T4Matrix` }; /** * traits structure to define the name shown when a * `muSpectre::MatrixLikeFieldMap` output into an ostream */ template struct NameWrapper { }; /// specialisation for `muSpectre::ArrayFieldMap` template<> struct NameWrapper { //! string to use for printing static std::string field_info_root() {return "Array";} }; /// specialisation for `muSpectre::MatrixFieldMap` template<> struct NameWrapper { //! string to use for printing static std::string field_info_root() {return "Matrix";} }; /// specialisation for `muSpectre::T4MatrixFieldMap` template<> struct NameWrapper { //! string to use for printing static std::string field_info_root() {return "T4Matrix";} }; /* ---------------------------------------------------------------------- */ /*! * A `MatrixLikeFieldMap` is the base class for maps of matrices, arrays and * fourth-order tensors mapped onto matrices. * * It should never be necessary to call directly any of the * constructors if this class, but rather use the template aliases: * - `muSpectre::ArrayFieldMap`: iterate in the form of `Eigen::Array<...>`. * - `muSpectre::MatrixFieldMap`: iterate in the form of * `Eigen::Matrix<...>`. * - `muSpectre::T4MatrixFieldMap`: iterate in the form of `muSpectre::T4MatMap`. */ template class MatrixLikeFieldMap: public FieldMap { public: //! base class using Parent = FieldMap; //! sister class with all params equal, but ConstField guaranteed true using ConstMap = MatrixLikeFieldMap; using T_t = EigenPlain; //!< plain Eigen type to map //! cell coordinates type using Ccoord = Ccoord_t; using value_type = EigenArray; //!< stl conformance using const_reference = EigenConstArray; //!< stl conformance //! stl conformance using reference = std::conditional_t; // since it's a resource handle using size_type = typename Parent::size_type; //!< stl conformance using pointer = std::unique_ptr; //!< stl conformance using Field = typename Parent::Field; //!< stl conformance using Field_c = typename Parent::Field_c; //!< stl conformance //! stl conformance using const_iterator= typename Parent::template iterator; //! stl conformance using iterator = std::conditional_t< ConstField, const_iterator, typename Parent::template iterator>; using reverse_iterator = std::reverse_iterator; //!< stl conformance //! stl conformance using const_reverse_iterator = std::reverse_iterator; //! enumerator over a constant scalar field using const_enumerator = typename Parent::template enumerator; //! enumerator over a scalar field using enumerator = std::conditional_t< ConstField, const_enumerator, typename Parent::template enumerator>; //! give access to the protected fields friend iterator; //! Default constructor MatrixLikeFieldMap() = delete; /** * Constructor using a (non-typed) field. Compatibility is enforced at * runtime. This should not be a performance concern, as this constructor * will not be called in anny inner loops (if used as intended). */ MatrixLikeFieldMap(Field_c & field); /** * Constructor using a typed field. Compatibility is enforced * statically. It is not always possible to call this constructor, as the * type of the field might not be known at compile time. */ template MatrixLikeFieldMap(TypedSizedFieldBase & field); //! Copy constructor MatrixLikeFieldMap(const MatrixLikeFieldMap &other) = delete; //! Move constructorxo MatrixLikeFieldMap(MatrixLikeFieldMap &&other) = default; //! Destructor virtual ~MatrixLikeFieldMap() = default; //! Copy assignment operator MatrixLikeFieldMap& operator=(const MatrixLikeFieldMap &other) = delete; //! Move assignment operator MatrixLikeFieldMap& operator=(MatrixLikeFieldMap &&other) = delete; //! Assign a matrixlike value to every entry template inline MatrixLikeFieldMap & operator=(const Eigen::EigenBase & val); //! give human-readable field map type inline std::string info_string() const override final; //! member access inline reference operator[](size_type index); //! member access inline reference operator[](const Ccoord& ccoord); //! member access inline const_reference operator[](size_type index) const; //! member access inline const_reference operator[](const Ccoord& ccoord) const; //! return an iterator to head of field for ranges inline iterator begin(){return std::move(iterator(*this));} //! return an iterator to head of field for ranges inline const_iterator cbegin() const {return const_iterator(*this);} //! return an iterator to head of field for ranges inline const_iterator begin() const {return this->cbegin();} //! return an iterator to tail of field for ranges inline iterator end(){return iterator(*this, false);}; //! return an iterator to tail of field for ranges inline const_iterator cend() const {return const_iterator(*this, false);} //! return an iterator to tail of field for ranges inline const_iterator end() const {return this->cend();} /** * return an iterable proxy to this field that can be iterated * in Ccoord-value tuples */ enumerator enumerate() {return enumerator(*this);} /** * return an iterable proxy to this field that can be iterated * in Ccoord-value tuples */ const_enumerator enumerate() const {return const_enumerator(*this);} //! evaluate the average of the field inline T_t mean() const; protected: //! for sad, legacy iterator use inline pointer ptr_to_val_t(size_type index); const static std::string field_info_root() { return NameWrapper::field_info_root();} //!< for printing and debug private: }; /* ---------------------------------------------------------------------- */ template MatrixLikeFieldMap:: MatrixLikeFieldMap(Field_c & field) :Parent(field) { this->check_compatibility(); } /* ---------------------------------------------------------------------- */ template template MatrixLikeFieldMap:: MatrixLikeFieldMap(TypedSizedFieldBase & field) :Parent(field) { } /* ---------------------------------------------------------------------- */ //! human-readable field map type template std::string MatrixLikeFieldMap:: info_string() const { std::stringstream info; info << this->field_info_root() << "(" << typeid(typename EigenArray::value_type).name() << ", " << EigenArray::RowsAtCompileTime << "x" << EigenArray::ColsAtCompileTime << ")"; return info.str(); } /* ---------------------------------------------------------------------- */ //! member access template typename MatrixLikeFieldMap::reference MatrixLikeFieldMap:: operator[](size_type index) { return reference(this->get_ptr_to_entry(index)); } template typename MatrixLikeFieldMap::reference MatrixLikeFieldMap:: operator[](const Ccoord & ccoord) { size_t && index{this->collection.get_index(ccoord)}; return reference(this->get_ptr_to_entry(index)); } /* ---------------------------------------------------------------------- */ //! member access template typename MatrixLikeFieldMap::const_reference MatrixLikeFieldMap:: operator[](size_type index) const { return const_reference(this->get_ptr_to_entry(index)); } template typename MatrixLikeFieldMap::const_reference MatrixLikeFieldMap:: operator[](const Ccoord & ccoord) const{ size_t && index{this->collection.get_index(ccoord)}; return const_reference(this->get_ptr_to_entry(index)); } //----------------------------------------------------------------------------// template template MatrixLikeFieldMap & MatrixLikeFieldMap:: operator=(const Eigen::EigenBase & val) { for (auto && entry: *this) { entry = val; } return *this; } /* ---------------------------------------------------------------------- */ template typename MatrixLikeFieldMap::T_t MatrixLikeFieldMap:: mean() const { T_t mean{T_t::Zero()}; for (auto && val: *this) { mean += val; } mean *= 1./Real(this->size()); return mean; } /* ---------------------------------------------------------------------- */ template typename MatrixLikeFieldMap::pointer MatrixLikeFieldMap:: ptr_to_val_t(size_type index) { return std::make_unique (this->get_ptr_to_entry(std::move(index))); } } // internal /* ---------------------------------------------------------------------- */ //! short-hand for an Eigen matrix map as iterate template using MatrixFieldMap = internal::MatrixLikeFieldMap >, Eigen::Map>, Eigen::Matrix, internal::Map_t::Matrix, ConstField>; /* ---------------------------------------------------------------------- */ //! short-hand for an Eigen matrix map as iterate template using T4MatrixFieldMap = internal::MatrixLikeFieldMap , T4MatMap, T4Mat, internal::Map_t::T4Matrix, MapConst>; /* ---------------------------------------------------------------------- */ //! short-hand for an Eigen array map as iterate template using ArrayFieldMap = internal::MatrixLikeFieldMap >, Eigen::Map>, Eigen::Array, internal::Map_t::Array, ConstField>; } // muSpectre #endif /* FIELD_MAP_MATRIXLIKE_H */ diff --git a/src/common/field_map_scalar.hh b/src/common/field_map_scalar.hh index 70baffa..4f81b58 100644 --- a/src/common/field_map_scalar.hh +++ b/src/common/field_map_scalar.hh @@ -1,235 +1,235 @@ /** * @file field_map_scalar.hh * * @author Till Junge * * @date 26 Sep 2017 * * @brief maps over scalar fields * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FIELD_MAP_SCALAR_H #define FIELD_MAP_SCALAR_H #include "common/field_map_base.hh" namespace muSpectre { /** * Implements maps on scalar fields (i.e. material properties, * temperatures, etc). Maps onto a `muSpectre::internal::TypedSizedFieldBase` * and lets you iterate over it in the form of the bare type of the field. */ template class ScalarFieldMap : public internal::FieldMap { public: //! base class using Parent = internal::FieldMap; //! sister class with all params equal, but ConstField guaranteed true using ConstMap = ScalarFieldMap; //! cell coordinates type using Ccoord = Ccoord_t; using value_type = T; //!< stl conformance using const_reference = const value_type &; //!< stl conformance //! stl conformance using reference = std::conditional_t; using size_type = typename Parent::size_type; //!< stl conformance using pointer = T*; //!< stl conformance using Field = typename Parent::Field; //!< stl conformance using Field_c = typename Parent::Field_c; //!< stl conformance //! stl conformance using const_iterator= typename Parent::template iterator; //! iterator over a scalar field using iterator = std::conditional_t >; using reverse_iterator = std::reverse_iterator; //!< stl conformance //! stl conformance using const_reverse_iterator = std::reverse_iterator; //! enumerator over a constant scalar field using const_enumerator = typename Parent::template enumerator; //! enumerator over a scalar field using enumerator = std::conditional_t< ConstField, const_enumerator, typename Parent::template enumerator>; //! give access to the protected fields friend iterator; //! Default constructor ScalarFieldMap() = delete; //! constructor ScalarFieldMap(Field_c & field); //! Copy constructor ScalarFieldMap(const ScalarFieldMap &other) = default; //! Move constructor ScalarFieldMap(ScalarFieldMap &&other) = default; //! Destructor virtual ~ScalarFieldMap() = default; //! Copy assignment operator ScalarFieldMap& operator=(const ScalarFieldMap &other) = delete; //! Move assignment operator ScalarFieldMap& operator=(ScalarFieldMap &&other) = delete; //! Assign a value to every entry ScalarFieldMap& operator=(T val); //! give human-readable field map type inline std::string info_string() const override final; //! member access inline reference operator[](size_type index); inline reference operator[](const Ccoord& ccoord); inline const_reference operator[] (size_type index) const; inline const_reference operator[] (const Ccoord& ccoord) const; //! return an iterator to the first pixel of the field iterator begin(){return iterator(*this);} //! return an iterator to the first pixel of the field const_iterator cbegin() const {return const_iterator(*this);} //! return an iterator to the first pixel of the field const_iterator begin() const {return this->cbegin();} //! return an iterator to tail of field for ranges iterator end(){return iterator(*this, false);} //! return an iterator to tail of field for ranges const_iterator cend() const {return const_iterator(*this, false);} //! return an iterator to tail of field for ranges const_iterator end() const {return this->cend();} /** * return an iterable proxy to this field that can be iterated * in Ccoord-value tuples */ enumerator enumerate() {return enumerator(*this);} /** * return an iterable proxy to this field that can be iterated * in Ccoord-value tuples */ const_enumerator enumerate() const {return const_enumerator(*this);} //! evaluate the average of the field inline T mean() const; protected: //! for sad, legacy iterator use inline pointer ptr_to_val_t(size_type index); //! type identifier for printing and debugging const static std::string field_info_root; private: }; /* ---------------------------------------------------------------------- */ template ScalarFieldMap:: ScalarFieldMap(Field_c & field) :Parent(field) { this->check_compatibility(); } /* ---------------------------------------------------------------------- */ //! human-readable field map type template std::string ScalarFieldMap::info_string() const { std::stringstream info; info << "Scalar(" << typeid(T).name() << ")"; return info.str(); } /* ---------------------------------------------------------------------- */ template const std::string ScalarFieldMap::field_info_root{ "Scalar"}; /* ---------------------------------------------------------------------- */ //! member access template typename ScalarFieldMap::reference ScalarFieldMap::operator[](size_type index) { return this->get_ptr_to_entry(std::move(index))[0]; } /* ---------------------------------------------------------------------- */ //! member access template typename ScalarFieldMap::reference ScalarFieldMap::operator[](const Ccoord& ccoord) { auto && index = this->collection.get_index(std::move(ccoord)); return this->get_ptr_to_entry(std::move(index))[0]; } /* ---------------------------------------------------------------------- */ //! member access template typename ScalarFieldMap::const_reference ScalarFieldMap:: operator[](size_type index) const { return this->get_ptr_to_entry(std::move(index))[0]; } /* ---------------------------------------------------------------------- */ //! member access template typename ScalarFieldMap::const_reference ScalarFieldMap:: operator[](const Ccoord& ccoord) const { auto && index = this->collection.get_index(std::move(ccoord)); return this->get_ptr_to_entry(std::move(index))[0]; } /* ---------------------------------------------------------------------- */ //! Assign a value to every entry template ScalarFieldMap & ScalarFieldMap::operator=(T val) { for (auto & scalar:*this) { scalar = val; } return *this; } /* ---------------------------------------------------------------------- */ template T ScalarFieldMap:: mean() const { T mean{0}; for (auto && val: *this) { mean += val; } mean /= Real(this->size()); return mean; } } // muSpectre #endif /* FIELD_MAP_SCALAR_H */ diff --git a/src/common/field_map_tensor.hh b/src/common/field_map_tensor.hh index b823444..6996ba0 100644 --- a/src/common/field_map_tensor.hh +++ b/src/common/field_map_tensor.hh @@ -1,287 +1,287 @@ /** * @file field_map_tensor.hh * * @author Till Junge * * @date 26 Sep 2017 * * @brief Defines an Eigen-Tensor map over strongly typed fields * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FIELD_MAP_TENSOR_H #define FIELD_MAP_TENSOR_H #include "common/eigen_tools.hh" #include "common/field_map_base.hh" #include #include namespace muSpectre { /* ---------------------------------------------------------------------- */ /** * Maps onto a `muSpectre::internal::TypedSizedFieldBase` and lets * you iterate over it in the form of `Eigen::TensorMap>` */ template class TensorFieldMap: public internal::FieldMap::Sizes::total_size, ConstField> { public: //! base class using Parent = internal::FieldMap; //! sister class with all params equal, but ConstField guaranteed true using ConstMap = TensorFieldMap; //! cell coordinates type using Ccoord = Ccoord_t; //! static tensor size using Sizes = typename SizesByOrder::Sizes; //! plain Eigen type using T_t = Eigen::TensorFixedSize; using value_type = Eigen::TensorMap; //!< stl conformance using const_reference = Eigen::TensorMap; //!< stl conformance //! stl conformance using reference = std::conditional_t; // since it's a resource handle using size_type = typename Parent::size_type; //!< stl conformance using pointer = std::unique_ptr; //!< stl conformance //! polymorphic base field type (for debug and python) using Field = typename Parent::Field; //! polymorphic base field type (for debug and python) using Field_c = typename Parent::Field_c; //! stl conformance using const_iterator = typename Parent::template iterator; //! stl conformance using iterator = std::conditional_t< ConstField, const_iterator, typename Parent::template iterator>; //! stl conformance using reverse_iterator = std::reverse_iterator; //! stl conformance using const_reverse_iterator = std::reverse_iterator; //! enumerator over a constant scalar field using const_enumerator = typename Parent::template enumerator; //! enumerator over a scalar field using enumerator = std::conditional_t< ConstField, const_enumerator, typename Parent::template enumerator>; //! give access to the protected fields friend iterator; //! Default constructor TensorFieldMap() = delete; //! constructor TensorFieldMap(Field_c & field); //! Copy constructor TensorFieldMap(const TensorFieldMap &other) = delete; //! Move constructor TensorFieldMap(TensorFieldMap &&other) = default; //! Destructor virtual ~TensorFieldMap() = default; //! Copy assignment operator TensorFieldMap& operator=(const TensorFieldMap &other) = delete; //! Assign a matrixlike value to every entry inline TensorFieldMap & operator=(const T_t & val); //! Move assignment operator TensorFieldMap& operator=(TensorFieldMap &&other) = delete; //! give human-readable field map type inline std::string info_string() const override final; //! member access inline reference operator[](size_type index); //! member access inline reference operator[](const Ccoord & ccoord); //! member access inline const_reference operator[](size_type index) const; //! member access inline const_reference operator[](const Ccoord& ccoord) const; //! return an iterator to first entry of field inline iterator begin(){return iterator(*this);} //! return an iterator to first entry of field inline const_iterator cbegin() const {return const_iterator(*this);} //! return an iterator to first entry of field inline const_iterator begin() const {return this->cbegin();} //! return an iterator past the last entry of field inline iterator end(){return iterator(*this, false);} //! return an iterator past the last entry of field inline const_iterator cend() const {return const_iterator(*this, false);} //! return an iterator past the last entry of field inline const_iterator end() const {return this->cend();} /** * return an iterable proxy to this field that can be iterated * in Ccoord-value tuples */ enumerator enumerate() {return enumerator(*this);} /** * return an iterable proxy to this field that can be iterated * in Ccoord-value tuples */ const_enumerator enumerate() const {return const_enumerator(*this);} //! evaluate the average of the field inline T_t mean() const; protected: //! for sad, legacy iterator use inline pointer ptr_to_val_t(size_type index); private: }; /* ---------------------------------------------------------------------- */ template TensorFieldMap:: TensorFieldMap(Field_c & field) :Parent(field) { this->check_compatibility(); } /* ---------------------------------------------------------------------- */ //! human-readable field map type template std::string TensorFieldMap::info_string() const { std::stringstream info; info << "Tensor(" << typeid(T).name() << ", " << order << "_o, " << dim << "_d)"; return info.str(); } /* ---------------------------------------------------------------------- */ //! member access template typename TensorFieldMap::reference TensorFieldMap:: operator[](size_type index) { auto && lambda = [this, &index](auto&&...tens_sizes) { return reference(this->get_ptr_to_entry(index), tens_sizes...); }; return call_sizes(lambda); } template typename TensorFieldMap::reference TensorFieldMap:: operator[](const Ccoord & ccoord) { auto && index = this->collection.get_index(ccoord); auto && lambda = [this, &index](auto&&...sizes) { return reference(this->get_ptr_to_entry(index), sizes...); }; return call_sizes(lambda); } template typename TensorFieldMap:: const_reference TensorFieldMap:: operator[](size_type index) const { // Warning: due to a inconsistency in Eigen's API, tensor maps // cannot be constructed from a const ptr, hence this nasty const // cast :( auto && lambda = [this, &index](auto&&...tens_sizes) { return const_reference(const_cast(this->get_ptr_to_entry(index)), tens_sizes...); }; return call_sizes(lambda); } template typename TensorFieldMap:: const_reference TensorFieldMap:: operator[](const Ccoord & ccoord) const { auto && index = this->collection.get_index(ccoord); auto && lambda = [this, &index](auto&&...sizes) { return const_reference(const_cast(this->get_ptr_to_entry(index)), sizes...); }; return call_sizes(lambda); } /* ---------------------------------------------------------------------- */ template TensorFieldMap & TensorFieldMap:: operator=(const T_t & val) { for (auto && tens: *this) { tens = val; } return *this; } /* ---------------------------------------------------------------------- */ template typename TensorFieldMap::T_t TensorFieldMap:: mean() const { T_t mean{T_t::Zero()}; for (auto && val: *this) { mean += val; } mean *= 1./Real(this->size()); return mean; } /* ---------------------------------------------------------------------- */ //! for sad, legacy iterator use. Don't use unless you have to. template typename TensorFieldMap::pointer TensorFieldMap:: ptr_to_val_t(size_type index) { auto && lambda = [this, &index](auto&&... tens_sizes) { return std::make_unique(this->get_ptr_to_entry(index), tens_sizes...); }; return call_sizes(lambda); } } // muSpectre #endif /* FIELD_MAP_TENSOR_H */ diff --git a/src/common/field_typed.hh b/src/common/field_typed.hh index 35f75be..122c6ac 100644 --- a/src/common/field_typed.hh +++ b/src/common/field_typed.hh @@ -1,539 +1,539 @@ /** * file field_typed.hh * * @author Till Junge * * @date 10 Apr 2018 * * @brief Typed Field for dynamically sized fields and base class for fields * of tensors, matrices, etc * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FIELD_TYPED_H #define FIELD_TYPED_H #include "common/field_base.hh" #include "common/field_helpers.hh" #include namespace muSpectre { /** * forward-declaration */ template class TypedFieldMap; namespace internal { /* ---------------------------------------------------------------------- */ //! declaraton for friending template class FieldMap; } // internal /** * Dummy intermediate class to provide a run-time polymorphic * typed field. Mainly for binding Python. TypedField specifies methods * that return typed Eigen maps and vectors in addition to pointers to the * raw data. */ template class TypedField: public internal::FieldBase { friend class internal::FieldMap; friend class internal::FieldMap; static constexpr bool Global{FieldCollection::is_global()}; public: using Parent = internal::FieldBase; //!< base class //! for type checks when mapping this field using collection_t = typename Parent::collection_t; //! for filling global fields from local fields and vice-versa using LocalField_t = std::conditional_t, TypedField>; //! for filling global fields from local fields and vice-versa using GlobalField_t = std::conditional_t>; using Scalar = T; //!< for type checks using Base = Parent; //!< for uniformity of interface //! Plain Eigen type to map using EigenRep_t = Eigen::Array; using EigenVecRep_t = Eigen::Matrix; //! map returned when accessing entire field using EigenMap_t = Eigen::Map; //! map returned when accessing entire const field using EigenMapConst_t = Eigen::Map; //! Plain eigen vector to map using EigenVec_t = Eigen::Map; //! vector map returned when accessing entire field using EigenVecConst_t = Eigen::Map; //! associated non-const field map using FieldMap_t = TypedFieldMap; //! associated const field map using ConstFieldMap_t = TypedFieldMap; /** * type stored (unfortunately, we can't statically size the second * dimension due to an Eigen bug, i.e., creating a row vector * reference to a column vector does not raise an error :( */ using Stored_t = Eigen::Array; //! storage container using Storage_t = std::vector>; //! Default constructor TypedField() = delete; //! constructor TypedField(std::string unique_name, FieldCollection& collection, size_t nb_components); /** * constructor for field proxies which piggy-back on existing * memory. These cannot be registered in field collections and * should only be used for transient temporaries */ TypedField(std::string unique_name, FieldCollection& collection, Eigen::Ref> vec, size_t nb_components); //! Copy constructor TypedField(const TypedField &other) = delete; //! Move constructor TypedField(TypedField &&other) = default; //! Destructor virtual ~TypedField() = default; //! Copy assignment operator TypedField& operator=(const TypedField &other) = delete; //! Move assignment operator TypedField& operator=(TypedField &&other) = delete; //! return type_id of stored type virtual const std::type_info & get_stored_typeid() const override final; //! safe reference cast static TypedField & check_ref(Base & other); //! safe reference cast static const TypedField & check_ref(const Base & other); virtual size_t size() const override final; //! add a pad region to the end of the field buffer; required for //! using this as e.g. an FFT workspace void set_pad_size(size_t pad_size_) override final; //! initialise field to zero (do more complicated initialisations through //! fully typed maps) virtual void set_zero() override final; //! add a new value at the end of the field template inline void push_back(const Eigen::DenseBase & value); //! raw pointer to content (e.g., for Eigen maps) virtual T* data() {return this->get_ptr_to_entry(0);} //! raw pointer to content (e.g., for Eigen maps) virtual const T* data() const {return this->get_ptr_to_entry(0);} //! return a map representing the entire field as a single `Eigen::Array` EigenMap_t eigen(); //! return a map representing the entire field as a single `Eigen::Array` EigenMapConst_t eigen() const ; //! return a map representing the entire field as a single Eigen vector EigenVec_t eigenvec(); //! return a map representing the entire field as a single Eigen vector EigenVecConst_t eigenvec() const; //! return a map representing the entire field as a single Eigen vector EigenVecConst_t const_eigenvec() const; /** * Convenience function to return a map onto this field. A map * allows iteration over all pixels. The map's iterator returns a * dynamically sized `Eigen::Map` the data associated with a * pixel. */ inline FieldMap_t get_map(); /** * Convenience function to return a map onto this field. A map * allows iteration over all pixels. The map's iterator returns a * dynamically sized `Eigen::Map` the data associated with a * pixel. */ inline ConstFieldMap_t get_map() const; /** * Convenience function to return a map onto this field. A map * allows iteration over all pixels. The map's iterator returns a * dynamically sized `Eigen::Map` the data associated with a * pixel. */ inline ConstFieldMap_t get_const_map() const; /** * creates a `TypedField` same size and type as this, but all * entries are zero. Convenience function */ inline TypedField & get_zeros_like(std::string unique_name) const; /** * Fill the content of the local field into the global field * (obviously only for pixels that actually are present in the * local field) */ template inline std::enable_if_t fill_from_local(const LocalField_t & local); /** * For pixels that are present in the local field, fill them with * the content of the global field at those pixels */ template inline std::enable_if_t fill_from_global(const GlobalField_t & global); protected: //! returns a raw pointer to the entry, for `Eigen::Map` inline T* get_ptr_to_entry(const size_t&& index); //! returns a raw pointer to the entry, for `Eigen::Map` inline const T* get_ptr_to_entry(const size_t&& index) const; //! set the storage size of this field inline virtual void resize(size_t size) override final; //! The actual storage container Storage_t values{}; /** * an unregistered typed field can be mapped onto an array of * existing values */ optional>> alt_values{}; /** * maintains a tally of the current size, as it cannot be reliably * determined from either `values` or `alt_values` alone. */ size_t current_size; /** * in order to accomodate both registered fields (who own and * manage their data) and unregistered temporary field proxies * (piggy-backing on a chunk of existing memory as e.g., a numpy * array) *efficiently*, the `get_ptr_to_entry` methods need to be * branchless. this means that we cannot decide on the fly whether * to return pointers pointing into values or into alt_values, we * need to maintain an (shudder) raw data pointer that is set * either at construction (for unregistered fields) or at any * resize event (which may invalidate existing pointers). For the * coder, this means that they need to be absolutely vigilant that * *any* operation on the values vector that invalidates iterators * needs to be followed by an update of data_ptr, or we will get * super annoying memory bugs. */ T* data_ptr{}; private: }; } // muSpectre #include "common/field_map_dynamic.hh" namespace muSpectre { /* ---------------------------------------------------------------------- */ /* Implementations */ /* ---------------------------------------------------------------------- */ template TypedField:: TypedField(std::string unique_name, FieldCollection & collection, size_t nb_components): Parent(unique_name, nb_components, collection), current_size{0} {} /* ---------------------------------------------------------------------- */ template TypedField:: TypedField(std::string unique_name, FieldCollection & collection, Eigen::Ref> vec, size_t nb_components): Parent(unique_name, nb_components, collection), alt_values{vec}, current_size{vec.size()/nb_components}, data_ptr{vec.data()} { if (vec.size()%nb_components) { std::stringstream err{}; err << "The vector you supplied has a size of " << vec.size() << ", which is not a multiple of the number of components (" << nb_components << ")"; throw FieldError(err.str()); } if (current_size != collection.size()) { std::stringstream err{}; err << "The vector you supplied has the size for " << current_size << " pixels with " << nb_components << "components each, but the " << "field collection has " << collection.size() << " pixels."; throw FieldError(err.str()); } } /* ---------------------------------------------------------------------- */ //! return type_id of stored type template const std::type_info & TypedField:: get_stored_typeid() const { return typeid(T); } /* ---------------------------------------------------------------------- */ template auto TypedField::eigen() -> EigenMap_t { return EigenMap_t(this->data(), this->get_nb_components(), this->size()); } /* ---------------------------------------------------------------------- */ template auto TypedField::eigen() const -> EigenMapConst_t { return EigenMapConst_t(this->data(), this->get_nb_components(), this->size()); } /* ---------------------------------------------------------------------- */ template auto TypedField::eigenvec() -> EigenVec_t { return EigenVec_t(this->data(), this->get_nb_components() * this->size(), 1); } /* ---------------------------------------------------------------------- */ template auto TypedField:: eigenvec() const -> EigenVecConst_t { return EigenVecConst_t(this->data(), this->get_nb_components() * this->size(), 1); } /* ---------------------------------------------------------------------- */ template auto TypedField:: const_eigenvec() const -> EigenVecConst_t { return EigenVecConst_t(this->data(), this->get_nb_components() * this->size()); } /* ---------------------------------------------------------------------- */ template auto TypedField::get_map() -> FieldMap_t { return FieldMap_t(*this); } /* ---------------------------------------------------------------------- */ template auto TypedField::get_map() const -> ConstFieldMap_t { return ConstFieldMap_t(*this); } /* ---------------------------------------------------------------------- */ template auto TypedField::get_const_map() const -> ConstFieldMap_t { return ConstFieldMap_t(*this); } /* ---------------------------------------------------------------------- */ template auto TypedField:: get_zeros_like(std::string unique_name) const -> TypedField& { return make_field(unique_name, this->collection, this->nb_components); } /* ---------------------------------------------------------------------- */ template template std::enable_if_t TypedField:: fill_from_local(const LocalField_t & local) { static_assert(IsGlobal == Global, "SFINAE parameter, do not touch"); if (not (local.get_nb_components() == this->get_nb_components())) { std::stringstream err_str{}; err_str << "Fields not compatible: You are trying to write a local " << local.get_nb_components() << "-component field into a global " << this->get_nb_components() << "-component field."; throw std::runtime_error(err_str.str()); } auto this_map{this->get_map()}; for (const auto && key_val: local.get_map().enumerate()) { const auto & key{std::get<0>(key_val)}; const auto & value{std::get<1>(key_val)}; this_map[key] = value; } } /* ---------------------------------------------------------------------- */ template template std::enable_if_t TypedField:: fill_from_global(const GlobalField_t & global) { static_assert(IsLocal == not Global, "SFINAE parameter, do not touch"); if (not (global.get_nb_components() == this->get_nb_components())) { std::stringstream err_str{}; err_str << "Fields not compatible: You are trying to write a global " << global.get_nb_components() << "-component field into a local " << this->get_nb_components() << "-component field."; throw std::runtime_error(err_str.str()); } auto global_map{global.get_map()}; for (auto && key_val: this->get_map().enumerate()) { const auto & key{std::get<0>(key_val)}; auto & value{std::get<1>(key_val)}; value = global_map[key]; } } /* ---------------------------------------------------------------------- */ template void TypedField::resize(size_t size) { if (this->alt_values) { throw FieldError("Field proxies can't resize."); } this->current_size = size; this->values.resize(size*this->get_nb_components() + this->pad_size); this->data_ptr = &this->values.front(); } /* ---------------------------------------------------------------------- */ template void TypedField::set_zero() { std::fill(this->values.begin(), this->values.end(), T{}); } /* ---------------------------------------------------------------------- */ template auto TypedField::check_ref(Base & other) -> TypedField & { if (typeid(T).hash_code() != other.get_stored_typeid().hash_code()) { std::string err ="Cannot create a Reference of requested type " +( "for field '" + other.get_name() + "' of type '" + other.get_stored_typeid().name() + "'"); throw std::runtime_error (err); } return static_cast(other); } /* ---------------------------------------------------------------------- */ template auto TypedField:: check_ref(const Base & other) -> const TypedField & { if (typeid(T).hash_code() != other.get_stored_typeid().hash_code()) { std::string err ="Cannot create a Reference of requested type " +( "for field '" + other.get_name() + "' of type '" + other.get_stored_typeid().name() + "'"); throw std::runtime_error (err); } return static_cast(other); } /* ---------------------------------------------------------------------- */ template size_t TypedField:: size() const { return this->current_size; } /* ---------------------------------------------------------------------- */ template void TypedField:: set_pad_size(size_t pad_size) { if (this->alt_values) { throw FieldError("You can't set the pad size of a field proxy."); } this->pad_size = pad_size; this->resize(this->size()); this->data_ptr = &this->values.front(); } /* ---------------------------------------------------------------------- */ template T* TypedField:: get_ptr_to_entry(const size_t&& index) { return this->data_ptr + this->get_nb_components()*std::move(index); } /* ---------------------------------------------------------------------- */ template const T* TypedField:: get_ptr_to_entry(const size_t&& index) const { return this->data_ptr+this->get_nb_components()*std::move(index); } /* ---------------------------------------------------------------------- */ template template void TypedField:: push_back(const Eigen::DenseBase & value) { static_assert (not FieldCollection::Global, "You can only push_back data into local field collections"); if (value.cols() != 1) { std::stringstream err{}; err << "Expected a column vector, but received and array with " << value.cols() <<" colums."; throw FieldError(err.str()); } if (value.rows() != static_cast(this->get_nb_components())) { std::stringstream err{}; err << "Expected a column vector of length " << this->get_nb_components() << ", but received one of length " << value.rows() <<"."; throw FieldError(err.str()); } for (size_t i = 0; i < this->get_nb_components(); ++i) { this->values.push_back(value(i)); } ++this->current_size; this->data_ptr = &this->values.front(); } } // muSpectre #endif /* FIELD_TYPED_H */ diff --git a/src/common/statefield.hh b/src/common/statefield.hh index 9d2101b..27fc62f 100644 --- a/src/common/statefield.hh +++ b/src/common/statefield.hh @@ -1,669 +1,669 @@ /** * file statefield.hh * * @author Till Junge * * @date 28 Feb 2018 * * @brief A state field is an abstraction of a field that can hold * current, as well as a chosen number of previous values. This is * useful for instance for internal state variables in plastic laws, * where a current, new, or trial state is computed based on its * previous state, and at convergence, this new state gets cycled into * the old, the old into the old-1 etc. The state field abstraction * helps doing this safely (i.e. only const references to the old * states are available, while the current state can be assigned * to/modified), and efficiently (i.e., no need to copy values from * new to old, we just cycle the labels). This file implements the * state field as well as state maps using the Field, FieldCollection * and FieldMap abstractions of µSpectre * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef STATEFIELD_H #define STATEFIELD_H #include "common/field_helpers.hh" #include "common/field.hh" #include "common/utilities.hh" #include #include #include namespace muSpectre { /** * Forward-declaration */ template class TypedField; /** * Base class for state fields, useful for storing polymorphic references */ template class StateFieldBase { public: //! get naming prefix const std::string & get_prefix() const {return this->prefix;} //! get a ref to the `StateField` 's field collection const FieldCollection & get_collection() const { return this->collection;} virtual ~StateFieldBase() = default; /** * returns number of old states that are stored */ size_t get_nb_memory() const {return this->nb_memory;} //! return type_id of stored type virtual const std::type_info & get_stored_typeid() const = 0; /** * cycle the fields (current becomes old, old becomes older, * oldest becomes current) */ virtual void cycle() = 0; protected: //! constructor StateFieldBase(std::string unique_prefix, const FieldCollection & collection, size_t nb_memory=1): prefix{unique_prefix}, nb_memory{nb_memory}, collection{collection} {} /** * the unique prefix is used as the first part of the unique name * of the subfields belonging to this state field */ std::string prefix; /** * number of old states to store, defaults to 1 */ const size_t nb_memory; //! reference to the collection this statefield belongs to const FieldCollection & collection; }; /* ---------------------------------------------------------------------- */ template class TypedStateField: public StateFieldBase { public: //! Parent class using Parent = StateFieldBase; //! Typed field using TypedField_t = TypedField; //! returns a TypedField ref to the current value of this state field virtual TypedField_t & get_current_field() = 0; //! returns a const TypedField ref to an old value of this state field virtual const TypedField_t & get_old_field(size_t nb_steps_ago=1) const = 0; //! return type_id of stored type const std::type_info & get_stored_typeid() const override final { return typeid(T); }; virtual ~TypedStateField() = default; protected: //! constructor TypedStateField(const std::string & unique_prefix, const FieldCollection & collection, size_t nb_memory): Parent{unique_prefix, collection, nb_memory} {} }; /* ---------------------------------------------------------------------- */ template class TypedSizedStateField: public TypedStateField { public: //! Parent class using Parent = TypedStateField; //! the current (historically accurate) ordering of the fields using index_t = std::array; //! get the current ordering of the fields inline const index_t & get_indices() const {return this->indices;} //! destructor virtual ~TypedSizedStateField() = default; protected: //! constructor TypedSizedStateField(std::string unique_prefix, const FieldCollection& collection, index_t indices): Parent{unique_prefix, collection, nb_memory}, indices{indices}{}; index_t indices; ///< these are cycled through }; //! early declaration template class StateFieldMap; namespace internal { template inline decltype(auto) build_fields_helper(std::string prefix, typename Field::Base::collection_t & collection, std::index_sequence) { auto get_field{[&prefix, &collection](size_t i) -> Field& { std::stringstream name_stream{}; name_stream << prefix << ", sub_field index " << i; return make_field(name_stream.str(), collection); }}; return std::tie(get_field(I)...); } /* ---------------------------------------------------------------------- */ template inline decltype(auto) build_indices(std::index_sequence) { return std::array{(size-I)%size...}; } } // internal /** * A statefield is an abstraction around a Field that can hold a * current and `nb_memory` previous values. There are useful for * history variables, for instance. */ template class StateField: public TypedSizedStateField { public: //! the underlying field's collection type using FieldCollection_t = typename Field_t::Base::collection_t; //! base type for fields using Scalar = typename Field_t::Scalar; //! Base class for all state fields of same memory using Base = TypedSizedStateField; /** * storage of field refs (can't be a `std::array`, because arrays * of refs are explicitely forbidden */ using Fields_t = tuple_array; //! Typed field using TypedField_t = TypedField; //! Default constructor StateField() = delete; //! Copy constructor StateField(const StateField &other) = delete; //! Move constructor StateField(StateField &&other) = delete; //! Destructor virtual ~StateField() = default; //! Copy assignment operator StateField& operator=(const StateField &other) = delete; //! Move assignment operator StateField& operator=(StateField &&other) = delete; //! get (modifiable) current field inline Field_t& current() { return this->fields[this->indices[0]]; } //! get (constant) previous field template inline const Field_t& old() { static_assert(nb_steps_ago <= nb_memory, "you can't go that far inte the past"); static_assert(nb_steps_ago > 0, "Did you mean to call current()?"); return this->fields[this->indices.at(nb_steps_ago)]; } //! returns a TypedField ref to the current value of this state field TypedField_t & get_current_field() override final { return this->current(); } //! returns a const TypedField ref to an old value of this state field const TypedField_t & get_old_field(size_t nb_steps_ago=1) const override final { return this->fields[this->indices.at(nb_steps_ago)]; } //! factory function template friend StateFieldType& make_statefield(const std::string & unique_prefix, CollectionType & collection); //! returns a `StateField` reference if `other is a compatible state field inline static StateField& check_ref(Base& other) { // the following triggers and exception if the fields are incompatible Field_t::check_ref(other.fields[0]); return static_cast (other); } //! returns a const `StateField` reference if `other` is a compatible state field inline static const StateField& check_ref(const Base& other) { // the following triggers and exception if the fields are incompatible Field_t::check_ref(other.fields[0]); return static_cast (other); } //! get a ref to the `StateField` 's fields Fields_t & get_fields() { return this->fields; } /** * Pure convenience functions to get a MatrixFieldMap of * appropriate dimensions mapped to this field. You can also * create other types of maps, as long as they have the right * fundamental type (T), the correct size (nbComponents), and * memory (nb_memory). */ inline decltype(auto) get_map() { using FieldMap = decltype(std::get<0>(this->fields).get_map()); return StateFieldMap(*this); } /** * Pure convenience functions to get a MatrixFieldMap of * appropriate dimensions mapped to this field. You can also * create other types of maps, as long as they have the right * fundamental type (T), the correct size (nbComponents), and * memory (nb_memory). */ inline decltype(auto) get_const_map() { using FieldMap = decltype(std::get<0>(this->fields).get_const_map()); return StateFieldMap(*this); } /** * cycle the fields (current becomes old, old becomes older, * oldest becomes current) */ inline void cycle() override final { for (auto & val: this->indices) { val = (val+1)%(nb_memory+1); } } protected: /** * Constructor. @param unique_prefix is used to create the names * of the fields that this abstraction creates in the background * @param collection is the field collection in which the * subfields will be stored */ inline StateField(const std::string & unique_prefix, FieldCollection_t & collection) : Base{unique_prefix, collection, internal::build_indices (std::make_index_sequence{})}, fields{internal::build_fields_helper (unique_prefix, collection, std::make_index_sequence{})} {} Fields_t fields; //!< container for the states private: }; namespace internal { template inline decltype(auto) build_maps_helper(Fields & fields, std::index_sequence) { return std::array{FieldMap(std::get(fields))...}; } } // internal /* ---------------------------------------------------------------------- */ template inline StateFieldType & make_statefield(const std::string & unique_prefix, CollectionType & collection) { std::unique_ptr ptr { new StateFieldType(unique_prefix, collection)}; auto & retref{*ptr}; collection.register_statefield(std::move(ptr)); return retref; } /** * extends the StateField <-> Field equivalence to StateFieldMap <-> FieldMap */ template class StateFieldMap { public: /** * iterates over all pixels in the `muSpectre::FieldCollection` and * dereferences to a proxy giving access to the appropriate iterates * of the underlying `FieldMap` type. */ class iterator; //! stl conformance using reference = typename iterator::reference; //! stl conformance using value_type = typename iterator::value_type; //! stl conformance using size_type = typename iterator::size_type; //! field collection type where this state field can be stored using FieldCollection_t= typename FieldMap::Field::collection_t; //! Fundamental type stored using Scalar = typename FieldMap::Scalar; //! base class (must be at least sized) using TypedSizedStateField_t = TypedSizedStateField; //! for traits access using FieldMap_t = FieldMap; //! for traits access using ConstFieldMap_t = typename FieldMap::ConstMap; //! Default constructor StateFieldMap() = delete; //! constructor using a StateField template StateFieldMap(StateField & statefield) :collection{statefield.get_collection()}, statefield{statefield}, maps{internal::build_maps_helper (statefield.get_fields(), std::make_index_sequence{})}, const_maps{internal::build_maps_helper (statefield.get_fields(), std::make_index_sequence{})} { static_assert(std::is_base_of::value, "Not the right type of StateField ref"); } //! Copy constructor StateFieldMap(const StateFieldMap &other) = delete; //! Move constructor StateFieldMap(StateFieldMap &&other) = default; //! Destructor virtual ~StateFieldMap() = default; //! Copy assignment operator StateFieldMap& operator=(const StateFieldMap &other) = delete; //! Move assignment operator StateFieldMap& operator=(StateFieldMap &&other) = delete; //! access the wrapper to a given pixel directly value_type operator[](size_type index) { return *iterator(*this, index); } /** * return a ref to the current field map. useful for instance for * initialisations of `StateField` instances */ FieldMap& current() { return this->maps[this->statefield.get_indices()[0]]; } //! stl conformance iterator begin() { return iterator(*this, 0);} //! stl conformance iterator end() { return iterator(*this, this->collection.size());} protected: const FieldCollection_t & collection; //!< collection holding the field TypedSizedStateField_t & statefield; //!< ref to the field itself std::array maps;//!< refs to the addressable maps; //! const refs to the addressable maps; std::array const_maps; private: }; /** * Iterator class used by the `StateFieldMap` */ template class StateFieldMap::iterator { public: class StateWrapper; using Ccoord = typename FieldMap::Ccoord; //!< cell coordinates type using value_type = StateWrapper; //!< stl conformance using const_value_type = value_type; //!< stl conformance using pointer_type = value_type*; //!< stl conformance using difference_type = std::ptrdiff_t; //!< stl conformance using size_type = size_t; //!< stl conformance using iterator_category = std::random_access_iterator_tag; //!< stl conformance using reference = StateWrapper; //!< stl conformance //! Default constructor iterator() = delete; //! constructor iterator(StateFieldMap& map, size_t index = 0) :index{index}, map{map} {}; //! Copy constructor iterator(const iterator &other) = default; //! Move constructor iterator(iterator &&other) = default; //! Destructor virtual ~iterator() = default; //! Copy assignment operator iterator& operator=(const iterator &other) = default; //! Move assignment operator iterator& operator=(iterator &&other) = default; //! pre-increment inline iterator & operator++() { this->index++; return *this;} //! post-increment inline iterator operator++(int) { iterator curr{*this}; this->index++; return curr;} //! dereference inline value_type operator*() { return value_type(*this);} //! pre-decrement inline iterator & operator--() { this->index--; return *this;} //! post-decrement inline iterator operator--(int) { iterator curr{*this}; this->index--; return curr;} //! access subscripting inline value_type operator[](difference_type diff) { return value_type{iterator{this->map, this->index+diff}};} //! equality inline bool operator==(const iterator & other) const { return this->index == other.index; } //! inequality inline bool operator!=(const iterator & other) const { return this->index != other.index;} //! div. comparisons inline bool operator<(const iterator & other) const { return this->index < other.index; } //! div. comparisons inline bool operator<=(const iterator & other) const { return this->index <= other.index; } //! div. comparisons inline bool operator>(const iterator & other) const { return this->index > other.index; } //! div. comparisons inline bool operator>=(const iterator & other) const { return this->index >= other.index; } //! additions, subtractions and corresponding assignments inline iterator operator+(difference_type diff) const { return iterator{this->map, this-index + diff}; } //! additions, subtractions and corresponding assignments inline iterator operator-(difference_type diff) const { return iterator{this->map, this-index - diff};} //! additions, subtractions and corresponding assignments inline iterator& operator+=(difference_type diff) { this->index += diff; return *this;} //! additions, subtractions and corresponding assignments inline iterator& operator-=(difference_type diff) { this->index -= diff; return *this; } //! get pixel coordinates inline Ccoord get_ccoord() const { return this->map.collection.get_ccoord(this->index); } //! access the index inline const size_t & get_index() const {return this->index;} protected: size_t index; //!< current pixel this iterator refers to StateFieldMap& map; //!< map over with `this` iterates private: }; namespace internal { //! FieldMap is an `Eigen::Map` or `Eigen::TensorMap` here template inline decltype(auto) build_old_vals_helper(iterator& it, maps_t & maps, indices_t & indices, std::index_sequence) { return tuple_array(std::forward_as_tuple(maps[indices[I+1]][it.get_index()]...)); } template inline decltype(auto) build_old_vals(iterator& it, maps_t & maps, indices_t & indices) { return tuple_array{build_old_vals_helper (it, maps, indices, std::make_index_sequence{})}; } } // internal /** * Light-weight resource-handle representing the current and old * values of a field at a given pixel identified by an iterator * pointing to it */ template class StateFieldMap::iterator::StateWrapper { public: //! short-hand using iterator = typename StateFieldMap::iterator; //! short-hand using Ccoord = typename iterator::Ccoord; //! short-hand using Map = typename FieldMap::reference; //! short-hand using ConstMap = typename FieldMap::const_reference; //! Default constructor StateWrapper() = delete; //! Copy constructor StateWrapper(const StateWrapper &other) = default; //! Move constructor StateWrapper(StateWrapper &&other) = default; //! construct with `StateFieldMap::iterator` StateWrapper(iterator & it) :it{it}, current_val{it.map.maps[it.map.statefield.get_indices()[0]][it.index]}, old_vals(internal::build_old_vals (it, it.map.const_maps, it.map.statefield.get_indices())) { } //! Destructor virtual ~StateWrapper() = default; //! Copy assignment operator StateWrapper& operator=(const StateWrapper &other) = default; //! Move assignment operator StateWrapper& operator=(StateWrapper &&other) = default; //! returns reference to the currectly mapped value inline Map& current() { return this->current_val; } //! recurnts reference the the value that was current `nb_steps_ago` ago template inline const ConstMap & old() const{ static_assert (nb_steps_ago <= nb_memory, "You have not stored that time step"); static_assert (nb_steps_ago > 0, "Did you mean to access the current value? If so, use " "current()"); return std::get(this->old_vals); } //! read the coordinates of the current pixel inline Ccoord get_ccoord() const { return this->it.get_ccoord(); } protected: iterator& it; //!< ref to the iterator that dereferences to `this` Map current_val; //!< current value tuple_array old_vals; //!< all stored old values private: }; } // muSpectre #endif /* STATEFIELD_H */ diff --git a/src/common/tensor_algebra.hh b/src/common/tensor_algebra.hh index 397922b..b960e11 100644 --- a/src/common/tensor_algebra.hh +++ b/src/common/tensor_algebra.hh @@ -1,287 +1,287 @@ /** * @file tensor_algebra.hh * * @author Till Junge * * @date 05 Nov 2017 * * @brief collection of compile-time quantities and algrebraic functions for * tensor operations * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef TENSOR_ALGEBRA_H #define TENSOR_ALGEBRA_H #include "common/T4_map_proxy.hh" #include "common/common.hh" #include "common/eigen_tools.hh" #include #include #include namespace muSpectre { namespace Tensors { //! second-order tensor representation template using Tens2_t = Eigen::TensorFixedSize>; //! fourth-order tensor representation template using Tens4_t = Eigen::TensorFixedSize>; //----------------------------------------------------------------------------// //! compile-time second-order identity template constexpr inline Tens2_t I2() { Tens2_t T; using Mat_t = Eigen::Matrix; Eigen::Map(&T(0, 0)) = Mat_t::Identity(); return T; } /* ---------------------------------------------------------------------- */ //! Check whether a given expression represents a Tensor specified order template struct is_tensor { //! evaluated test constexpr static bool value = (std::is_convertible >::value || std::is_convertible >::value || std::is_convertible >::value); }; /* ---------------------------------------------------------------------- */ /** compile-time outer tensor product as defined by Curnier * R_ijkl = A_ij.B_klxx * 0123 01 23 */ template constexpr inline decltype(auto) outer(T1 && A, T2 && B) { // Just make sure that the right type of parameters have been given constexpr Dim_t order{2}; static_assert(is_tensor::value, "T1 needs to be convertible to a second order Tensor"); static_assert(is_tensor::value, "T2 needs to be convertible to a second order Tensor"); // actual function std::array, 0> dims{}; return A.contract(B, dims); } /* ---------------------------------------------------------------------- */ /** compile-time underlined outer tensor product as defined by Curnier * R_ijkl = A_ik.B_jlxx * 0123 02 13 * 0213 01 23 <- this defines the shuffle order */ template constexpr inline decltype(auto) outer_under(T1 && A, T2 && B) { constexpr size_t order{4}; return outer(A, B).shuffle(std::array{{0, 2, 1, 3}}); } /* ---------------------------------------------------------------------- */ /** compile-time overlined outer tensor product as defined by Curnier * R_ijkl = A_il.B_jkxx * 0123 03 12 * 0231 01 23 <- this defines the shuffle order */ template constexpr inline decltype(auto) outer_over(T1 && A, T2 && B) { constexpr size_t order{4}; return outer(A, B).shuffle(std::array{{0, 2, 3, 1}}); } //! compile-time fourth-order symmetrising identity template constexpr inline Tens4_t I4S() { auto I = I2(); return 0.5*(outer_under(I, I) + outer_over(I, I)); } } // Tensors namespace Matrices { //! second-order tensor representation template using Tens2_t = Eigen::Matrix; //! fourth-order tensor representation template using Tens4_t = T4Mat; //----------------------------------------------------------------------------// //! compile-time second-order identity template constexpr inline Tens2_t I2() { return Tens2_t::Identity(); } /* ---------------------------------------------------------------------- */ /** compile-time outer tensor product as defined by Curnier * R_ijkl = A_ij.B_klxx * 0123 01 23 */ template constexpr inline decltype(auto) outer(T1 && A, T2 && B) { // Just make sure that the right type of parameters have been given constexpr Dim_t dim{EigenCheck::tensor_dim::value}; static_assert((dim == EigenCheck::tensor_dim::value), "A and B do not have the same dimension"); Tens4_t product; for (Dim_t i = 0; i < dim; ++i) { for (Dim_t j = 0; j < dim; ++j) { for (Dim_t k = 0; k < dim; ++k) { for (Dim_t l = 0; l < dim; ++l) { get(product, i, j, k, l) = A(i, j) * B(k, l); } } } } return product; } /* ---------------------------------------------------------------------- */ /** compile-time underlined outer tensor product as defined by Curnier * R_ijkl = A_ik.B_jlxx * 0123 02 13 * 0213 01 23 <- this defines the shuffle order */ template constexpr inline decltype(auto) outer_under(T1 && A, T2 && B) { // Just make sure that the right type of parameters have been given constexpr Dim_t dim{EigenCheck::tensor_dim::value}; static_assert((dim == EigenCheck::tensor_dim::value), "A and B do not have the same dimension"); Tens4_t product; for (Dim_t i = 0; i < dim; ++i) { for (Dim_t j = 0; j < dim; ++j) { for (Dim_t k = 0; k < dim; ++k) { for (Dim_t l = 0; l < dim; ++l) { get(product, i, j, k, l) = A(i, k) * B(j, l); } } } } return product; } /* ---------------------------------------------------------------------- */ /** compile-time overlined outer tensor product as defined by Curnier * R_ijkl = A_il.B_jkxx * 0123 03 12 * 0231 01 23 <- this defines the shuffle order */ template constexpr inline decltype(auto) outer_over(T1 && A, T2 && B) { // Just make sure that the right type of parameters have been given constexpr Dim_t dim{EigenCheck::tensor_dim::value}; static_assert((dim == EigenCheck::tensor_dim::value), "A and B do not have the same dimension"); Tens4_t product; for (Dim_t i = 0; i < dim; ++i) { for (Dim_t j = 0; j < dim; ++j) { for (Dim_t k = 0; k < dim; ++k) { for (Dim_t l = 0; l < dim; ++l) { get(product, i, j, k, l) = A(i, l) * B(j, k); } } } } return product; } /** * Standart tensor multiplication */ template constexpr inline decltype(auto) tensmult(const Eigen::MatrixBase & A, const Eigen::MatrixBase & B) { constexpr Dim_t dim{T2::RowsAtCompileTime}; static_assert (dim == T2::ColsAtCompileTime, "B is not square"); static_assert (dim != Eigen::Dynamic, "B not statically sized"); static_assert(dim*dim == T4::RowsAtCompileTime, "A and B not compatible"); static_assert(T4::RowsAtCompileTime == T4::ColsAtCompileTime, "A is not square"); Tens2_t result; result.setZero(); for (Dim_t i = 0; i < dim; ++i) { for (Dim_t j = 0; j < dim; ++j) { for (Dim_t k = 0; k < dim; ++k) { for (Dim_t l = 0; l < dim; ++l) { result(i,j) +=get(A, i, j, k, l) * B(k, l); } } } } return result; } //! compile-time fourth-order tracer template constexpr inline Tens4_t Itrac() { auto I = I2(); return outer(I,I); } //! compile-time fourth-order identity template constexpr inline Tens4_t Iiden() { auto I = I2(); return outer_under(I,I); } //! compile-time fourth-order transposer template constexpr inline Tens4_t Itrns() { auto I = I2(); return outer_over(I,I); } //! compile-time fourth-order symmetriser template constexpr inline Tens4_t Isymm() { auto I = I2(); return 0.5*(outer_under(I, I) + outer_over(I, I)); } } // Matrices } // muSpectre #endif /* TENSOR_ALGEBRA_H */ diff --git a/src/common/utilities.hh b/src/common/utilities.hh index 898305c..7e1a1c4 100644 --- a/src/common/utilities.hh +++ b/src/common/utilities.hh @@ -1,301 +1,301 @@ /** * @file utilities.hh * * @author Till Junge * * @date 17 Nov 2017 * * @brief additions to the standard name space to anticipate C++17 features * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef UTILITIES_H #define UTILITIES_H #include #include #ifdef NO_EXPERIMENTAL # include #else # include #endif namespace std_replacement { namespace detail { template struct is_reference_wrapper : std::false_type {}; template struct is_reference_wrapper> : std::true_type {}; //! from cppreference template auto INVOKE(T Base::*pmf, Derived&& ref, Args&&... args) noexcept(noexcept((std::forward(ref).*pmf)(std::forward(args)...))) -> std::enable_if_t::value && std::is_base_of>::value, decltype((std::forward(ref).*pmf)(std::forward(args)...))> { return (std::forward(ref).*pmf)(std::forward(args)...); } //! from cppreference template auto INVOKE(T Base::*pmf, RefWrap&& ref, Args&&... args) noexcept(noexcept((ref.get().*pmf)(std::forward(args)...))) -> std::enable_if_t::value && is_reference_wrapper>::value, decltype((ref.get().*pmf)(std::forward(args)...))> { return (ref.get().*pmf)(std::forward(args)...); } //! from cppreference template auto INVOKE(T Base::*pmf, Pointer&& ptr, Args&&... args) noexcept(noexcept(((*std::forward(ptr)).*pmf)(std::forward(args)...))) -> std::enable_if_t::value && !is_reference_wrapper>::value && !std::is_base_of>::value, decltype(((*std::forward(ptr)).*pmf)(std::forward(args)...))> { return ((*std::forward(ptr)).*pmf)(std::forward(args)...); } //! from cppreference template auto INVOKE(T Base::*pmd, Derived&& ref) noexcept(noexcept(std::forward(ref).*pmd)) -> std::enable_if_t::value && std::is_base_of>::value, decltype(std::forward(ref).*pmd)> { return std::forward(ref).*pmd; } //! from cppreference template auto INVOKE(T Base::*pmd, RefWrap&& ref) noexcept(noexcept(ref.get().*pmd)) -> std::enable_if_t::value && is_reference_wrapper>::value, decltype(ref.get().*pmd)> { return ref.get().*pmd; } //! from cppreference template auto INVOKE(T Base::*pmd, Pointer&& ptr) noexcept(noexcept((*std::forward(ptr)).*pmd)) -> std::enable_if_t::value && !is_reference_wrapper>::value && !std::is_base_of>::value, decltype((*std::forward(ptr)).*pmd)> { return (*std::forward(ptr)).*pmd; } //! from cppreference template auto INVOKE(F&& f, Args&&... args) noexcept(noexcept(std::forward(f)(std::forward(args)...))) -> std::enable_if_t>::value, decltype(std::forward(f)(std::forward(args)...))> { return std::forward(f)(std::forward(args)...); } } // namespace detail //! from cppreference template< class F, class... ArgTypes > auto invoke(F&& f, ArgTypes&&... args) // exception specification for QoI noexcept(noexcept(detail::INVOKE(std::forward(f), std::forward(args)...))) -> decltype(detail::INVOKE(std::forward(f), std::forward(args)...)) { return detail::INVOKE(std::forward(f), std::forward(args)...); } namespace detail { //! from cppreference template constexpr decltype(auto) apply_impl(F &&f, Tuple &&t, std::index_sequence) { return std_replacement::invoke(std::forward(f), std::get(std::forward(t))...); } } // namespace detail //! from cppreference template constexpr decltype(auto) apply(F &&f, Tuple &&t) { return detail::apply_impl (std::forward(f), std::forward(t), std::make_index_sequence>::value>{}); } } //namespace std_replacement namespace muSpectre { namespace internal { /** * helper struct template to compute the type of a tuple with a * given number of entries of the same type */ template struct tuple_array_helper { //! underlying tuple using type = typename tuple_array_helper::type; }; /** * helper struct template to compute the type of a tuple with a * given number of entries of the same type */ template< typename T, typename... tail> struct tuple_array_helper<0, T, tail...> { //! underlying tuple using type = std::tuple; }; /** * helper struct for runtime index access to * tuples. RecursionLevel indicates how much more we can recurse * down */ template struct Accessor { using Stored_t = typename TupArr::Stored_t; inline static Stored_t get(const size_t & index, TupArr & container) { if (index == Index) { return std::get(container); } else { return Accessor::get(index, container); } } inline static const Stored_t get(const size_t & index, const TupArr & container) { if (index == Index) { return std::get(container); } else { return Accessor::get(index, container); } } }; /** * specialisation for recursion end */ template struct Accessor { using Stored_t = typename TupArr::Stored_t; inline static Stored_t get(const size_t & index, TupArr & container) { if (index == Index) { return std::get(container); } else { std::stringstream err{}; err << "Index " << index << "is out of range."; throw std::runtime_error(err.str()); } } inline static const Stored_t get(const size_t & index, const TupArr & container) { if (index == Index) { return std::get(container); } else { std::stringstream err{}; err << "Index " << index << "is out of range."; throw std::runtime_error(err.str()); } } }; /** * helper struct that provides the tuple_array. */ template struct tuple_array_provider { //! tuple type that can be used (almost) like an `std::array` class type: public tuple_array_helper::type { public: //! short-hand using Parent = typename tuple_array_helper::type; using Stored_t = T; constexpr static size_t Size{size}; //! constructor inline type(Parent && parent):Parent{parent}{}; //! element access T operator[] (const size_t & index) { return Accessor::get(index, *this); } //! element access const T operator[](const size_t & index) const { return Accessor::get(index, *this); } protected: }; }; } // internal /** * This is a convenience structure to create a tuple of `nb_elem` * entries of type `T`. It is named tuple_array, because it is * somewhat similar to an `std::array`. The reason for * this structure is that the `std::array` is not allowed by the * standard to store references (8.3.2 References, paragraph 5: * "There shall be no references to references, no arrays of * references, and no pointers to references.") use this, if you * want to have a statically known number of references to store, * and you wish to do so efficiently. */ template using tuple_array = typename internal::tuple_array_provider::type; using std_replacement::apply; /** * emulation `std::optional` (a C++17 feature) */ template #ifdef NO_EXPERIMENTAL using optional = typename boost::optional; #else using optional = typename std::experimental::optional; #endif } // muSpectre #endif /* UTILITIES_H */ diff --git a/src/common/voigt_conversion.hh b/src/common/voigt_conversion.hh index 0b225e9..c41a42a 100644 --- a/src/common/voigt_conversion.hh +++ b/src/common/voigt_conversion.hh @@ -1,216 +1,216 @@ /** * @file voigt_conversion.hh * * @author Till Junge * * @date 02 May 2017 * * @brief utilities to transform vector notation arrays into voigt notation * arrays and vice-versa * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef VOIGT_CONVERSION_H #define VOIGT_CONVERSION_H #include "common/common.hh" #include #include #include namespace muSpectre { /** * implements a bunch of static functions to convert between full * and Voigt notation of tensors */ template class VoigtConversion { public: VoigtConversion(); virtual ~VoigtConversion(); //! obtain a fourth order voigt matrix from a tensor template inline static void fourth_to_voigt(const Tens4 & t, Voigt & v); //! return a fourth order voigt matrix from a tensor template inline static Eigen::Matrix(dim), vsize(dim)> fourth_to_voigt(const Tens4 & t); //! return a fourth order non-symmetric voigt matrix from a tensor template inline static Eigen::Matrix(dim), vsize(dim)> fourth_to_2d(const Tens4 & t) { return fourth_to_voigt(t); } //! probably obsolete template inline static void second_to_voigt(const Tens2 & t, Voigt & v); //! probably obsolete template inline static void gradient_to_voigt_strain(const Tens2 & F, Voigt & v); //! probably obsolete template inline static void gradient_to_voigt_GreenLagrange_strain(const Tens2 & F, Voigt & v); //! probably obsolete template inline static void stress_from_voigt(const Voigt & v, Tens2 & sigma); public: //! matrix of vector index I as function of tensor indices i,j const static Eigen::Matrix mat; //! matrix of vector index I as function of tensor indices i,j const static Eigen::Matrix sym_mat; //! array of matrix indices ij as function of vector index I const static Eigen::Matrixvec; //! factors to multiply the strain by for voigt notation const static Eigen::Matrix factors; }; //! voigt vector indices for non-symmetric tensors template<> const Eigen::Matrix VoigtConversion<1>::mat = (Eigen::Matrix()<< 0).finished(); //! voigt vector indices for non-symmetric tensors template<> const Eigen::Matrix VoigtConversion<2>::mat = (Eigen::Matrix()<< 0, 2, 3, 1).finished(); //! voigt vector indices for non-symmetric tensors template<> const Eigen::Matrix VoigtConversion<3>::mat = (Eigen::Matrix()<< 0, 5, 4, 8, 1, 3, 7, 6, 2).finished(); //! voigt vector indices template<> const Eigen::Matrix VoigtConversion<1>::sym_mat = (Eigen::Matrix()<< 0).finished(); //! voigt vector indices template<> const Eigen::Matrix VoigtConversion<2>::sym_mat = (Eigen::Matrix()<< 0, 2, 2, 1).finished(); //! voigt vector indices template<> const Eigen::Matrix VoigtConversion<3>::sym_mat = (Eigen::Matrix()<< 0, 5, 4, 5, 1, 3, 4, 3, 2).finished(); //! matrix indices from voigt vectors template<> const Eigen::Matrix VoigtConversion<1>::vec = (Eigen::Matrix() << 0, 0).finished(); //! matrix indices from voigt vectors template<> const Eigen::Matrix VoigtConversion<2>::vec = (Eigen::Matrix() << 0, 0, 1, 1, 0, 1, 1, 0).finished(); //! matrix indices from voigt vectors template<> const Eigen::Matrix VoigtConversion<3>::vec = (Eigen::Matrix() << 0, 0, 1, 1, 2, 2, 1, 2, 0, 2, 0, 1, 2, 1, 2, 0, 1, 0).finished(); //! factors for shear components in voigt notation template<> const Eigen::Matrix VoigtConversion<1>::factors = (Eigen::Matrix() << 1).finished(); //! factors for shear components in voigt notation template<> const Eigen::Matrix VoigtConversion<2>::factors = (Eigen::Matrix() << 1, 1, 2).finished(); //! factors for shear components in voigt notation template<> const Eigen::Matrix VoigtConversion<3>::factors = (Eigen::Matrix() << 1, 1, 1, 2, 2, 2).finished(); //----------------------------------------------------------------------------// template template inline void VoigtConversion::fourth_to_voigt(const Tens4 & t, Voigt & v) { // upper case indices for Voigt notation, lower case for standard tensorial for (Dim_t I = 0; I < vsize(dim); ++I) { auto && i = vec(I, 0); auto && j = vec(I, 1); for (Dim_t J = 0; J < vsize(dim); ++J) { auto && k = vec(J, 0); auto && l = vec(J, 1); v(I,J) = t(i,j, k, l); } } } //----------------------------------------------------------------------------// template template inline Eigen::Matrix(dim), vsize(dim)> VoigtConversion::fourth_to_voigt(const Tens4 & t){ using V_t = Eigen::Matrix(dim), vsize(dim)>; V_t temp; fourth_to_voigt(t, temp); return temp; } //----------------------------------------------------------------------------// template template inline void VoigtConversion::second_to_voigt(const Tens2 & F, Voigt & v) { for (Dim_t I = 0; I < vsize(dim); ++I) { auto&& i = vec(I, 0); auto&& j = vec(I, 1); v(I) = F(i, j); } } //----------------------------------------------------------------------------// template template inline void VoigtConversion::gradient_to_voigt_strain(const Tens2 & F, Voigt & v) { for (Dim_t I = 0; I < vsize(dim); ++I) { auto&& i = vec(I, 0); auto&& j = vec(I, 1); v(I) = (F(i, j) + F(j, i))/2 * factors(I); } } //----------------------------------------------------------------------------// template template inline void VoigtConversion:: gradient_to_voigt_GreenLagrange_strain(const Tens2 & F, Voigt & v) { using mat = Eigen::Matrix; mat E = 0.5*(F.transpose()*F - mat::Identity()); for (Dim_t I = 0; I < vsize(dim); ++I) { auto&& i = vec(I, 0); auto&& j = vec(I, 1); v(I) = E(i,j) * factors(I); } } } // muSpectre #endif /* VOIGT_CONVERSION_H */ diff --git a/src/fft/CMakeLists.txt b/src/fft/CMakeLists.txt index 7d97190..d24e359 100644 --- a/src/fft/CMakeLists.txt +++ b/src/fft/CMakeLists.txt @@ -1,106 +1,106 @@ # ============================================================================= # file CMakeLists.txt # # @author Till Junge # # @date 08 Jan 2018 # # @brief configuration for fft-related files # # @section LICENSE # # Copyright © 2018 Till Junge # # µSpectre is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3, or (at # your option) any later version. # # µSpectre is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License -# along with GNU Emacs; see the file COPYING. If not, write to the +# along with µSpectre; see the file COPYING. If not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # ============================================================================= ################################################################################ if (${MPI_PARALLEL}) set(USE_FFTWMPI "ON" CACHE BOOL "If on, the mpi-parallel FFTW engine is built") set(USE_PFFT "OFF" CACHE BOOL "If on, the mpi-parallel PFFT engine is built") ############################################################################## if (${USE_FFTWMPI}) find_package(FFTWMPI) if (NOT ${FFTWMPI_FOUND}) message (SEND_ERROR "You chose FFTWMPI but CMake cannot find it") endif (NOT ${FFTWMPI_FOUND}) list(APPEND PRIVATE_MUSPECTRE_LIBS ${FFTWMPI_LIBRARIES}) target_include_directories(muSpectre PRIVATE ${FFTWMPI_INCLUDES}) endif (${USE_FFTWMPI}) ############################################################################## if (${USE_PFFT}) find_package(PFFT) if (NOT ${PFFT_FOUND}) message (SEND_ERROR "You chose PFFT but CMake cannot find it") endif (NOT ${PFFT_FOUND}) list(APPEND PRIVATE_MUSPECTRE_LIBS ${PFFT_LIBRARIES}) target_include_directories(muSpectre PUBLIC ${PFFT_INCLUDES}) endif (${USE_PFFT}) ############################################################################## if (NOT ${USE_FFTWMPI} AND NOT ${USE_PFFT}) message (SEND_ERROR "You activated MPI but turned on none of the MPI-parallel FFT engines") endif (NOT ${USE_FFTWMPI} AND NOT ${USE_PFFT}) endif(${MPI_PARALLEL}) set(PRIVATE_MUSPECTRE_LIBS ${PRIVATE_MUSPECTRE_LIBS} PARENT_SCOPE) if (${USE_FFTWMPI}) add_definitions(-DWITH_FFTWMPI) endif(${USE_FFTWMPI}) if (${USE_PFFT}) add_definitions(-DWITH_PFFT) endif(${USE_PFFT}) set (fft_engine_SRC ${CMAKE_CURRENT_SOURCE_DIR}/fft_utils.cc ${CMAKE_CURRENT_SOURCE_DIR}/fft_engine_base.cc ${CMAKE_CURRENT_SOURCE_DIR}/fftw_engine.cc ${CMAKE_CURRENT_SOURCE_DIR}/projection_base.cc ${CMAKE_CURRENT_SOURCE_DIR}/projection_default.cc ${CMAKE_CURRENT_SOURCE_DIR}/projection_finite_strain.cc ${CMAKE_CURRENT_SOURCE_DIR}/projection_small_strain.cc ${CMAKE_CURRENT_SOURCE_DIR}/projection_finite_strain_fast.cc ) if(${USE_FFTWMPI}) set(fft_engine_SRC ${fft_engine_SRC} ${CMAKE_CURRENT_SOURCE_DIR}/fftwmpi_engine.cc ) endif(${USE_FFTWMPI}) if (${USE_PFFT}) set(fft_engine_SRC ${fft_engine_SRC} ${CMAKE_CURRENT_SOURCE_DIR}/pfft_engine.cc ) endif(${USE_PFFT}) target_sources(muSpectre PRIVATE ${fft_engine_SRC}) diff --git a/src/fft/fft_engine_base.cc b/src/fft/fft_engine_base.cc index b603837..587d173 100644 --- a/src/fft/fft_engine_base.cc +++ b/src/fft/fft_engine_base.cc @@ -1,67 +1,67 @@ /** * @file fft_engine_base.cc * * @author Till Junge * * @date 03 Dec 2017 * * @brief implementation for FFT engine base class * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "fft/fft_engine_base.hh" namespace muSpectre { /* ---------------------------------------------------------------------- */ template FFTEngineBase::FFTEngineBase(Ccoord resolutions, Dim_t nb_components, Communicator comm) :comm{comm}, subdomain_resolutions{resolutions}, subdomain_locations{}, fourier_resolutions{CcoordOps::get_hermitian_sizes(resolutions)}, fourier_locations{}, domain_resolutions{resolutions}, work{make_field ("work space", work_space_container, nb_components)}, norm_factor{1./CcoordOps::get_size(domain_resolutions)}, nb_components{nb_components} {} /* ---------------------------------------------------------------------- */ template void FFTEngineBase::initialise(FFT_PlanFlags /*plan_flags*/) { this->work_space_container.initialise(); } /* ---------------------------------------------------------------------- */ template size_t FFTEngineBase::size() const { return CcoordOps::get_size(this->subdomain_resolutions); } /* ---------------------------------------------------------------------- */ template size_t FFTEngineBase::workspace_size() const { return this->work_space_container.size(); } template class FFTEngineBase; template class FFTEngineBase; } // muSpectre diff --git a/src/fft/fft_engine_base.hh b/src/fft/fft_engine_base.hh index ecefa5e..96af1c4 100644 --- a/src/fft/fft_engine_base.hh +++ b/src/fft/fft_engine_base.hh @@ -1,163 +1,163 @@ /** * @file fft_engine_base.hh * * @author Till Junge * * @date 01 Dec 2017 * * @brief Interface for FFT engines * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FFT_ENGINE_BASE_H #define FFT_ENGINE_BASE_H #include "common/common.hh" #include "common/communicator.hh" #include "common/field_collection.hh" namespace muSpectre { /** * Virtual base class for FFT engines. To be implemented by all * FFT_engine implementations. */ template class FFTEngineBase { public: constexpr static Dim_t sdim{DimS}; //!< spatial dimension of the cell //! cell coordinates type using Ccoord = Ccoord_t; //! global FieldCollection using GFieldCollection_t = GlobalFieldCollection; //! local FieldCollection (for Fourier-space pixels) using LFieldCollection_t = LocalFieldCollection; //! Field type on which to apply the projection using Field_t = TypedField; /** * Field type holding a Fourier-space representation of a * real-valued second-order tensor field */ using Workspace_t = TypedField; /** * iterator over Fourier-space discretisation point */ using iterator = typename LFieldCollection_t::iterator; //! Default constructor FFTEngineBase() = delete; //! Constructor with cell resolutions FFTEngineBase(Ccoord resolutions, Dim_t nb_components, Communicator comm=Communicator()); //! Copy constructor FFTEngineBase(const FFTEngineBase &other) = delete; //! Move constructor FFTEngineBase(FFTEngineBase &&other) = default; //! Destructor virtual ~FFTEngineBase() = default; //! Copy assignment operator FFTEngineBase& operator=(const FFTEngineBase &other) = delete; //! Move assignment operator FFTEngineBase& operator=(FFTEngineBase &&other) = default; //! compute the plan, etc virtual void initialise(FFT_PlanFlags /*plan_flags*/); //! forward transform (dummy for interface) virtual Workspace_t & fft(Field_t & /*field*/) = 0; //! inverse transform (dummy for interface) virtual void ifft(Field_t & /*field*/) const = 0; /** * iterators over only those pixels that exist in frequency space * (i.e. about half of all pixels, see rfft) */ //! returns an iterator to the first pixel in Fourier space inline iterator begin() {return this->work_space_container.begin();} //! returns an iterator past to the last pixel in Fourier space inline iterator end() {return this->work_space_container.end();} //! nb of pixels (mostly for debugging) size_t size() const; //! nb of pixels in Fourier space size_t workspace_size() const; //! return the communicator object const Communicator & get_communicator() const {return this->comm;} //! returns the process-local resolutions of the cell const Ccoord & get_subdomain_resolutions() const { return this->subdomain_resolutions;} //! returns the process-local locations of the cell const Ccoord & get_subdomain_locations() const { return this->subdomain_locations;} //! returns the process-local resolutions of the cell in Fourier space const Ccoord & get_fourier_resolutions() const {return this->fourier_resolutions;} //! returns the process-local locations of the cell in Fourier space const Ccoord & get_fourier_locations() const {return this->fourier_locations;} //! returns the resolutions of the cell const Ccoord & get_domain_resolutions() const {return this->domain_resolutions;} //! only required for testing and debugging LFieldCollection_t & get_field_collection() { return this->work_space_container;} //! only required for testing and debugging Workspace_t& get_work_space() {return this->work;} //! factor by which to multiply projection before inverse transform (this is //! typically 1/nb_pixels for so-called unnormalized transforms (see, //! e.g. http://www.fftw.org/fftw3_doc/Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data //! or https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.fft.html //! . Rather than scaling the inverse transform (which would cost one more //! loop), FFT engines provide this value so it can be used in the //! projection operator (where no additional loop is required) inline Real normalisation() const {return norm_factor;}; //! return the number of components per pixel Dim_t get_nb_components() const {return nb_components;} protected: /** * Field collection in which to store fields associated with * Fourier-space points */ Communicator comm; //!< communicator LFieldCollection_t work_space_container{}; Ccoord subdomain_resolutions; //!< resolutions of the process-local (subdomain) portion of the cell Ccoord subdomain_locations; // !< location of the process-local (subdomain) portion of the cell Ccoord fourier_resolutions; //!< resolutions of the process-local (subdomain) portion of the Fourier transformed data Ccoord fourier_locations; // !< location of the process-local (subdomain) portion of the Fourier transformed data const Ccoord domain_resolutions; //!< resolutions of the full domain of the cell Workspace_t & work; //!< field to store the Fourier transform of P const Real norm_factor; //!< normalisation coefficient of fourier transform Dim_t nb_components; private: }; } // muSpectre #endif /* FFT_ENGINE_BASE_H */ diff --git a/src/fft/fft_utils.cc b/src/fft/fft_utils.cc index 4e1a243..70fe16b 100644 --- a/src/fft/fft_utils.cc +++ b/src/fft/fft_utils.cc @@ -1,52 +1,52 @@ /** * @file fft_utils.cc * * @author Till Junge * * @date 11 Dec 2017 * * @brief implementation of fft utilities * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "fft/fft_utils.hh" namespace muSpectre { /* ---------------------------------------------------------------------- */ std::valarray fft_freqs(size_t nb_samples) { std::valarray retval(nb_samples); Int N = (nb_samples-1)/2 + 1; // needs to be signed int for neg freqs for (Int i = 0; i < N; ++i) { retval[i] = i; } for (Int i = N; i < Int(nb_samples); ++i) { retval[i] = -Int(nb_samples)/2+i-N; } return retval; } /* ---------------------------------------------------------------------- */ std::valarray fft_freqs(size_t nb_samples, Real length) { return fft_freqs(nb_samples)/length; } } // muSpectre diff --git a/src/fft/fft_utils.hh b/src/fft/fft_utils.hh index 666b98c..d55ac40 100644 --- a/src/fft/fft_utils.hh +++ b/src/fft/fft_utils.hh @@ -1,125 +1,125 @@ /** * @file fft_utils.hh * * @author Till Junge * * @date 06 Dec 2017 * * @brief collection of functions used in the context of spectral operations * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FFT_UTILS_H #define FFT_UTILS_H #include "common/common.hh" #include #include #include namespace muSpectre { /** * compute fft frequencies (in time (or length) units of of sampling * periods), see numpy's fftfreq function for reference */ std::valarray fft_freqs(size_t nb_samples); /** * compute fft frequencies in correct length or time units. Here, * length refers to the total size of the domain over which the fft * is taken (for instance the length of an edge of an RVE) */ std::valarray fft_freqs(size_t nb_samples, Real length); /** * Get fft_freqs for a grid */ template inline std::array, dim> fft_freqs(Ccoord_t sizes, std::array lengths) { std::array, dim> retval{}; for (size_t i = 0; i < dim; ++i) { retval[i] = std::move(fft_freqs(sizes[i], lengths[i])); } return retval; } /** * simple class encapsulating the creation, and retrieval of * wave vectors */ template class FFT_freqs { public: //! return type for wave vectors using Vector = Eigen::Matrix; //! Default constructor FFT_freqs() = delete; //! constructor with problem sizes FFT_freqs(Ccoord_t sizes, std::array lengths) : freqs{fft_freqs(sizes, lengths)} {} //! Copy constructor FFT_freqs(const FFT_freqs &other) = delete; //! Move constructor FFT_freqs(FFT_freqs &&other) = default; //! Destructor virtual ~FFT_freqs() = default; //! Copy assignment operator FFT_freqs& operator=(const FFT_freqs &other) = delete; //! Move assignment operator FFT_freqs& operator=(FFT_freqs &&other) = default; //! get unnormalised wave vector (in sampling units) inline Vector get_xi(const Ccoord_t ccoord) const; //! get normalised wave vector inline Vector get_unit_xi(const Ccoord_t ccoord) const{ auto && xi = this->get_xi(std::move(ccoord)); return xi/xi.norm(); } protected: //! container for frequencies ordered by spatial dimension const std::array, dim> freqs; private: }; template typename FFT_freqs::Vector FFT_freqs::get_xi(const Ccoord_t ccoord) const { Vector retval{}; for (Dim_t i = 0; i < dim; ++i) { retval(i) = this->freqs[i][ccoord[i]]; } return retval; } } // muSpectre #endif /* FFT_UTILS_H */ diff --git a/src/fft/fftw_engine.cc b/src/fft/fftw_engine.cc index 40fd5f5..86b83ac 100644 --- a/src/fft/fftw_engine.cc +++ b/src/fft/fftw_engine.cc @@ -1,155 +1,155 @@ /** * @file fftw_engine.cc * * @author Till Junge * * @date 03 Dec 2017 * * @brief implements the fftw engine * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/ccoord_operations.hh" #include "fft/fftw_engine.hh" namespace muSpectre { template FFTWEngine::FFTWEngine(Ccoord resolutions, Dim_t nb_components, Communicator comm) :Parent{resolutions, nb_components, comm} { for (auto && pixel: CcoordOps::Pixels(this->fourier_resolutions)) { this->work_space_container.add_pixel(pixel); } } /* ---------------------------------------------------------------------- */ template void FFTWEngine::initialise(FFT_PlanFlags plan_flags) { if (this->initialised) { throw std::runtime_error("double initialisation, will leak memory"); } Parent::initialise(plan_flags); const int & rank = Dim; std::array narr; const int * const n = &narr[0]; std::copy(this->subdomain_resolutions.begin(), this->subdomain_resolutions.end(), narr.begin()); int howmany = this->nb_components; //temporary buffer for plan size_t alloc_size = (CcoordOps::get_size(this->subdomain_resolutions)* howmany); Real * r_work_space = fftw_alloc_real(alloc_size); Real * in = r_work_space; const int * const inembed = nullptr;//nembed are tricky: they refer to physical layout int istride = howmany; int idist = 1; fftw_complex * out = reinterpret_cast(this->work.data()); const int * const onembed = nullptr; int ostride = howmany; int odist = idist; unsigned int flags; switch (plan_flags) { case FFT_PlanFlags::estimate: { flags = FFTW_ESTIMATE; break; } case FFT_PlanFlags::measure: { flags = FFTW_MEASURE; break; } case FFT_PlanFlags::patient: { flags = FFTW_PATIENT; break; } default: throw std::runtime_error("unknown planner flag type"); break; } this->plan_fft = fftw_plan_many_dft_r2c(rank, n, howmany, in, inembed, istride, idist, out, onembed, ostride, odist, FFTW_PRESERVE_INPUT | flags); if (this->plan_fft == nullptr) { throw std::runtime_error("Plan failed"); } fftw_complex * i_in = reinterpret_cast(this->work.data()); Real * i_out = r_work_space; this->plan_ifft = fftw_plan_many_dft_c2r(rank, n, howmany, i_in, inembed, istride, idist, i_out, onembed, ostride, odist, flags); if (this->plan_ifft == nullptr) { throw std::runtime_error("Plan failed"); } fftw_free(r_work_space); this->initialised = true; } /* ---------------------------------------------------------------------- */ template FFTWEngine::~FFTWEngine() noexcept { fftw_destroy_plan(this->plan_fft); fftw_destroy_plan(this->plan_ifft); // TODO: We cannot run fftw_cleanup since subsequent FFTW calls will fail // but multiple FFT engines can be active at the same time. //fftw_cleanup(); } /* ---------------------------------------------------------------------- */ template typename FFTWEngine::Workspace_t & FFTWEngine::fft (Field_t & field) { if (this->plan_fft == nullptr) { throw std::runtime_error("fft plan not initialised"); } if (field.size() != CcoordOps::get_size(this->subdomain_resolutions)) { throw std::runtime_error("size mismatch"); } fftw_execute_dft_r2c(this->plan_fft, field.data(), reinterpret_cast(this->work.data())); return this->work; } /* ---------------------------------------------------------------------- */ template void FFTWEngine::ifft (Field_t & field) const { if (this->plan_ifft == nullptr) { throw std::runtime_error("ifft plan not initialised"); } if (field.size() != CcoordOps::get_size(this->subdomain_resolutions)) { throw std::runtime_error("size mismatch"); } fftw_execute_dft_c2r(this->plan_ifft, reinterpret_cast(this->work.data()), field.data()); } template class FFTWEngine; template class FFTWEngine; } // muSpectre diff --git a/src/fft/fftw_engine.hh b/src/fft/fftw_engine.hh index 8e099bd..6d166e8 100644 --- a/src/fft/fftw_engine.hh +++ b/src/fft/fftw_engine.hh @@ -1,91 +1,91 @@ /** * @file fftw_engine.hh * * @author Till Junge * * @date 03 Dec 2017 * * @brief FFT engine using FFTW * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FFTW_ENGINE_H #define FFTW_ENGINE_H #include "fft/fft_engine_base.hh" #include namespace muSpectre { /** * implements the `muSpectre::FftEngine_Base` interface using the * FFTW library */ template class FFTWEngine: public FFTEngineBase { public: using Parent = FFTEngineBase; //!< base class using Ccoord = typename Parent::Ccoord; //!< cell coordinates type //! field for Fourier transform of second-order tensor using Workspace_t = typename Parent::Workspace_t; //! real-valued second-order tensor using Field_t = typename Parent::Field_t; //! Default constructor FFTWEngine() = delete; //! Constructor with cell resolutions FFTWEngine(Ccoord resolutions, Dim_t nb_components, Communicator comm=Communicator()); //! Copy constructor FFTWEngine(const FFTWEngine &other) = delete; //! Move constructor FFTWEngine(FFTWEngine &&other) = default; //! Destructor virtual ~FFTWEngine() noexcept; //! Copy assignment operator FFTWEngine& operator=(const FFTWEngine &other) = delete; //! Move assignment operator FFTWEngine& operator=(FFTWEngine &&other) = default; // compute the plan, etc virtual void initialise(FFT_PlanFlags plan_flags) override; //! forward transform virtual Workspace_t & fft(Field_t & field) override; //! inverse transform virtual void ifft(Field_t & field) const override; protected: fftw_plan plan_fft{}; //!< holds the plan for forward fourier transform fftw_plan plan_ifft{}; //!< holds the plan for inverse fourier transform bool initialised{false}; //!< to prevent double initialisation private: }; } // muSpectre #endif /* FFTW_ENGINE_H */ diff --git a/src/fft/fftwmpi_engine.cc b/src/fft/fftwmpi_engine.cc index 1085f3d..adf9200 100644 --- a/src/fft/fftwmpi_engine.cc +++ b/src/fft/fftwmpi_engine.cc @@ -1,235 +1,235 @@ /** * @file fftwmpi_engine.cc * * @author Lars Pastewka * * @date 06 Mar 2017 * * @brief implements the MPI-parallel fftw engine * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/ccoord_operations.hh" #include "fft/fftwmpi_engine.hh" namespace muSpectre { template int FFTWMPIEngine::nb_engines{0}; template FFTWMPIEngine::FFTWMPIEngine(Ccoord resolutions, Dim_t nb_components, Communicator comm) :Parent{resolutions, nb_components, comm} { if (!this->nb_engines) fftw_mpi_init(); this->nb_engines++; std::array narr; std::copy(this->domain_resolutions.begin(), this->domain_resolutions.end(), narr.begin()); narr[Dim-1] = this->domain_resolutions[Dim-1]/2+1; ptrdiff_t res_x, loc_x, res_y, loc_y; this->workspace_size = fftw_mpi_local_size_many_transposed(Dim, narr.data(), this->nb_components, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, this->comm.get_mpi_comm(), &res_x, &loc_x, &res_y, &loc_y); this->fourier_resolutions[1] = this->fourier_resolutions[0]; this->fourier_locations[1] = this->fourier_locations[0]; this->subdomain_resolutions[0] = res_x; this->subdomain_locations[0] = loc_x; this->fourier_resolutions[0] = res_y; this->fourier_locations[0] = loc_y; for (auto & n: this->subdomain_resolutions) { if (n == 0) { throw std::runtime_error("FFTW MPI planning returned zero resolution. " "You may need to run on fewer processes."); } } for (auto & n: this->fourier_resolutions) { if (n == 0) { throw std::runtime_error("FFTW MPI planning returned zero Fourier " "resolution. You may need to run on fewer " "processes."); } } for (auto && pixel: std::conditional_t< Dim==2, CcoordOps::Pixels, CcoordOps::Pixels >(this->fourier_resolutions, this->fourier_locations)) { this->work_space_container.add_pixel(pixel); } } /* ---------------------------------------------------------------------- */ template void FFTWMPIEngine::initialise(FFT_PlanFlags plan_flags) { if (this->initialised) { throw std::runtime_error("double initialisation, will leak memory"); } // Initialize parent after local resolutions have been determined and // work space has been initialized Parent::initialise(plan_flags); this->real_workspace = fftw_alloc_real(2*this->workspace_size); // We need to check whether the workspace provided by our field is large // enough. MPI parallel FFTW may request a workspace size larger than the // nominal size of the complex buffer. if (long(this->work.size()*this->nb_components) < this->workspace_size) { this->work.set_pad_size(this->workspace_size - this->nb_components*this->work.size()); } unsigned int flags; switch (plan_flags) { case FFT_PlanFlags::estimate: { flags = FFTW_ESTIMATE; break; } case FFT_PlanFlags::measure: { flags = FFTW_MEASURE; break; } case FFT_PlanFlags::patient: { flags = FFTW_PATIENT; break; } default: throw std::runtime_error("unknown planner flag type"); break; } std::array narr; std::copy(this->domain_resolutions.begin(), this->domain_resolutions.end(), narr.begin()); Real * in{this->real_workspace}; fftw_complex * out{reinterpret_cast(this->work.data())}; this->plan_fft = fftw_mpi_plan_many_dft_r2c( Dim, narr.data(), this->nb_components, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, in, out, this->comm.get_mpi_comm(), FFTW_MPI_TRANSPOSED_OUT | flags); if (this->plan_fft == nullptr) { throw std::runtime_error("r2c plan failed"); } fftw_complex * i_in = reinterpret_cast(this->work.data()); Real * i_out = this->real_workspace; this->plan_ifft = fftw_mpi_plan_many_dft_c2r( Dim, narr.data(), this->nb_components, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, i_in, i_out, this->comm.get_mpi_comm(), FFTW_MPI_TRANSPOSED_IN | flags); if (this->plan_ifft == nullptr) { throw std::runtime_error("c2r plan failed"); } this->initialised = true; } /* ---------------------------------------------------------------------- */ template FFTWMPIEngine::~FFTWMPIEngine() noexcept { if (this->real_workspace != nullptr) fftw_free(this->real_workspace); if (this->plan_fft != nullptr) fftw_destroy_plan(this->plan_fft); if (this->plan_ifft != nullptr) fftw_destroy_plan(this->plan_ifft); // TODO: We cannot run fftw_mpi_cleanup since also calls fftw_cleanup // and any running FFTWEngine will fail afterwards. //this->nb_engines--; //if (!this->nb_engines) fftw_mpi_cleanup(); } /* ---------------------------------------------------------------------- */ template typename FFTWMPIEngine::Workspace_t & FFTWMPIEngine::fft (Field_t & field) { if (this->plan_fft == nullptr) { throw std::runtime_error("fft plan not initialised"); } if (field.size() != CcoordOps::get_size(this->subdomain_resolutions)) { throw std::runtime_error("size mismatch"); } // Copy non-padded field to padded real_workspace. // Transposed output of M x N x L transform for >= 3 dimensions is padded // M x N x 2*(L/2+1). ptrdiff_t fstride = (this->nb_components* this->subdomain_resolutions[Dim-1]); ptrdiff_t wstride = (this->nb_components*2* (this->subdomain_resolutions[Dim-1]/2+1)); ptrdiff_t n = field.size()/this->subdomain_resolutions[Dim-1]; auto fdata = field.data(); auto wdata = this->real_workspace; for (int i = 0; i < n; i++) { std::copy(fdata, fdata+fstride, wdata); fdata += fstride; wdata += wstride; } // Compute FFT fftw_mpi_execute_dft_r2c( this->plan_fft, this->real_workspace, reinterpret_cast(this->work.data())); return this->work; } /* ---------------------------------------------------------------------- */ template void FFTWMPIEngine::ifft (Field_t & field) const { if (this->plan_ifft == nullptr) { throw std::runtime_error("ifft plan not initialised"); } if (field.size() != CcoordOps::get_size(this->subdomain_resolutions)) { throw std::runtime_error("size mismatch"); } // Compute inverse FFT fftw_mpi_execute_dft_c2r( this->plan_ifft, reinterpret_cast(this->work.data()), this->real_workspace); // Copy non-padded field to padded real_workspace. // Transposed output of M x N x L transform for >= 3 dimensions is padded // M x N x 2*(L/2+1). ptrdiff_t fstride{ this->nb_components*this->subdomain_resolutions[Dim-1] }; ptrdiff_t wstride{ this->nb_components*2*(this->subdomain_resolutions[Dim-1]/2+1) }; ptrdiff_t n(field.size()/this->subdomain_resolutions[Dim-1]); auto fdata{field.data()}; auto wdata{this->real_workspace}; for (int i = 0; i < n; i++) { std::copy(wdata, wdata+fstride, fdata); fdata += fstride; wdata += wstride; } } template class FFTWMPIEngine; template class FFTWMPIEngine; } // muSpectre diff --git a/src/fft/fftwmpi_engine.hh b/src/fft/fftwmpi_engine.hh index 0a8a3a1..4a050f7 100644 --- a/src/fft/fftwmpi_engine.hh +++ b/src/fft/fftwmpi_engine.hh @@ -1,94 +1,94 @@ /** * @file fftwmpi_engine.hh * * @author Lars Pastewka * * @date 06 Mar 2017 * * @brief FFT engine using MPI-parallel FFTW * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef FFTWMPI_ENGINE_H #define FFTWMPI_ENGINE_H #include "fft/fft_engine_base.hh" #include namespace muSpectre { /** * implements the `muSpectre::FFTEngineBase` interface using the * FFTW library */ template class FFTWMPIEngine: public FFTEngineBase { public: using Parent = FFTEngineBase; //!< base class using Ccoord = typename Parent::Ccoord; //!< cell coordinates type //! field for Fourier transform of second-order tensor using Workspace_t = typename Parent::Workspace_t; //! real-valued second-order tensor using Field_t = typename Parent::Field_t; //! Default constructor FFTWMPIEngine() = delete; //! Constructor with system resolutions FFTWMPIEngine(Ccoord resolutions, Dim_t nb_components, Communicator comm=Communicator()); //! Copy constructor FFTWMPIEngine(const FFTWMPIEngine &other) = delete; //! Move constructor FFTWMPIEngine(FFTWMPIEngine &&other) = default; //! Destructor virtual ~FFTWMPIEngine() noexcept; //! Copy assignment operator FFTWMPIEngine& operator=(const FFTWMPIEngine &other) = delete; //! Move assignment operator FFTWMPIEngine& operator=(FFTWMPIEngine &&other) = default; // compute the plan, etc virtual void initialise(FFT_PlanFlags plan_flags) override; //! forward transform virtual Workspace_t & fft(Field_t & field) override; //! inverse transform virtual void ifft(Field_t & field) const override; protected: static int nb_engines; //!< number of times this engine has been instatiated fftw_plan plan_fft{}; //!< holds the plan for forward fourier transform fftw_plan plan_ifft{}; //!< holds the plan for inverse fourier transform ptrdiff_t workspace_size{}; //!< size of workspace buffer returned by planner Real *real_workspace{}; //!< temporary real workspace that is correctly padded bool initialised{false}; //!< to prevent double initialisation private: }; } // muSpectre #endif /* FFTWMPI_ENGINE_H */ diff --git a/src/fft/pfft_engine.cc b/src/fft/pfft_engine.cc index e1e2c41..66f6e42 100644 --- a/src/fft/pfft_engine.cc +++ b/src/fft/pfft_engine.cc @@ -1,248 +1,248 @@ /** * @file pfft_engine.cc * * @author Lars Pastewka * * @date 06 Mar 2017 * * @brief implements the MPI-parallel pfft engine * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/ccoord_operations.hh" #include "fft/pfft_engine.hh" namespace muSpectre { template int PFFTEngine::nb_engines{0}; template PFFTEngine::PFFTEngine(Ccoord resolutions, Dim_t nb_components, Communicator comm) :Parent{resolutions, nb_components, comm}, mpi_comm{comm.get_mpi_comm()} { if (!this->nb_engines) pfft_init(); this->nb_engines++; int size{comm.size()}; int dim_x{size}; int dim_y{1}; // Note: All TODOs below don't affect the function of the PFFT engine. It // presently uses slab decompositions, the TODOs are what needs to be done // to get stripe decomposition to work - but it does not work yet. Slab // vs stripe decomposition may have an impact on how the code scales. // TODO: Enable this to enable 2d process mesh. This does not pass tests. //if (DimS > 2) { if (false) { dim_y = int(sqrt(size)); while ((size/dim_y)*dim_y != size) dim_y--; dim_x = size/dim_y; } // TODO: Enable this to enable 2d process mesh. This does not pass tests. //if (DimS > 2) { if (false) { if (pfft_create_procmesh_2d(this->comm.get_mpi_comm(), dim_x, dim_y, &this->mpi_comm)) { throw std::runtime_error("Failed to create 2d PFFT process mesh."); } } std::array narr; std::copy(this->domain_resolutions.begin(), this->domain_resolutions.end(), narr.begin()); ptrdiff_t res[DimS], loc[DimS], fres[DimS], floc[DimS]; this->workspace_size = pfft_local_size_many_dft_r2c(DimS, narr.data(), narr.data(), narr.data(), this->nb_components, PFFT_DEFAULT_BLOCKS, PFFT_DEFAULT_BLOCKS, this->mpi_comm, PFFT_TRANSPOSED_OUT, res, loc, fres, floc); std::copy(res, res+DimS, this->subdomain_resolutions.begin()); std::copy(loc, loc+DimS, this->subdomain_locations.begin()); std::copy(fres, fres+DimS, this->fourier_resolutions.begin()); std::copy(floc, floc+DimS, this->fourier_locations.begin()); // TODO: Enable this to enable 2d process mesh. This does not pass tests. //for (int i = 0; i < DimS-1; ++i) { for (int i = 0; i < 1; ++i) { std::swap(this->fourier_resolutions[i], this->fourier_resolutions[i+1]); std::swap(this->fourier_locations[i], this->fourier_locations[i+1]); } for (auto & n: this->subdomain_resolutions) { if (n == 0) { throw std::runtime_error("PFFT planning returned zero resolution. " "You may need to run on fewer processes."); } } for (auto & n: this->fourier_resolutions) { if (n == 0) { throw std::runtime_error("PFFT planning returned zero Fourier " "resolution. You may need to run on fewer " "processes."); } } for (auto && pixel: std::conditional_t< DimS==2, CcoordOps::Pixels, // TODO: This should be the correct order of dimension for a 2d // process mesh, but tests don't pass. //CcoordOps::Pixels CcoordOps::Pixels >(this->fourier_resolutions, this->fourier_locations)) { this->work_space_container.add_pixel(pixel); } } /* ---------------------------------------------------------------------- */ template void PFFTEngine::initialise(FFT_PlanFlags plan_flags) { if (this->initialised) { throw std::runtime_error("double initialisation, will leak memory"); } // Initialize parent after local resolutions have been determined and // work space has been initialized Parent::initialise(plan_flags); this->real_workspace = pfft_alloc_real(2*this->workspace_size); // We need to check whether the workspace provided by our field is large // enough. PFFT may request a workspace size larger than the nominal size // of the complex buffer. if (long(this->work.size()*this->nb_components) < this->workspace_size) { this->work.set_pad_size(this->workspace_size - this->nb_components*this->work.size()); } unsigned int flags; switch (plan_flags) { case FFT_PlanFlags::estimate: { flags = PFFT_ESTIMATE; break; } case FFT_PlanFlags::measure: { flags = PFFT_MEASURE; break; } case FFT_PlanFlags::patient: { flags = PFFT_PATIENT; break; } default: throw std::runtime_error("unknown planner flag type"); break; } std::array narr; std::copy(this->domain_resolutions.begin(), this->domain_resolutions.end(), narr.begin()); Real * in{this->real_workspace}; pfft_complex * out{reinterpret_cast(this->work.data())}; this->plan_fft = pfft_plan_many_dft_r2c(DimS, narr.data(), narr.data(), narr.data(), this->nb_components, PFFT_DEFAULT_BLOCKS, PFFT_DEFAULT_BLOCKS, in, out, this->mpi_comm, PFFT_FORWARD, PFFT_TRANSPOSED_OUT | flags); if (this->plan_fft == nullptr) { throw std::runtime_error("r2c plan failed"); } pfft_complex * i_in{reinterpret_cast(this->work.data())}; Real * i_out{this->real_workspace}; this->plan_ifft = pfft_plan_many_dft_c2r(DimS, narr.data(), narr.data(), narr.data(), this->nb_components, PFFT_DEFAULT_BLOCKS, PFFT_DEFAULT_BLOCKS, i_in, i_out, this->mpi_comm, PFFT_BACKWARD, PFFT_TRANSPOSED_IN | flags); if (this->plan_ifft == nullptr) { throw std::runtime_error("c2r plan failed"); } this->initialised = true; } /* ---------------------------------------------------------------------- */ template PFFTEngine::~PFFTEngine() noexcept { if (this->real_workspace != nullptr) pfft_free(this->real_workspace); if (this->plan_fft != nullptr) pfft_destroy_plan(this->plan_fft); if (this->plan_ifft != nullptr) pfft_destroy_plan(this->plan_ifft); if (this->mpi_comm != this->comm.get_mpi_comm()) { MPI_Comm_free(&this->mpi_comm); } // TODO: We cannot run fftw_mpi_cleanup since also calls fftw_cleanup // and any running FFTWEngine will fail afterwards. //this->nb_engines--; //if (!this->nb_engines) pfft_cleanup(); } /* ---------------------------------------------------------------------- */ template typename PFFTEngine::Workspace_t & PFFTEngine::fft (Field_t & field) { if (!this->plan_fft) { throw std::runtime_error("fft plan not allocated"); } if (field.size() != CcoordOps::get_size(this->subdomain_resolutions)) { throw std::runtime_error("size mismatch"); } // Copy field data to workspace buffer. This is necessary because workspace // buffer is larger than field buffer. std::copy(field.data(), field.data()+this->nb_components*field.size(), this->real_workspace); pfft_execute_dft_r2c( this->plan_fft, this->real_workspace, reinterpret_cast(this->work.data())); return this->work; } /* ---------------------------------------------------------------------- */ template void PFFTEngine::ifft (Field_t & field) const { if (!this->plan_ifft) { throw std::runtime_error("ifft plan not allocated"); } if (field.size() != CcoordOps::get_size(this->subdomain_resolutions)) { throw std::runtime_error("size mismatch"); } pfft_execute_dft_c2r( this->plan_ifft, reinterpret_cast(this->work.data()), this->real_workspace); std::copy(this->real_workspace, this->real_workspace+this->nb_components*field.size(), field.data()); } template class PFFTEngine; template class PFFTEngine; } // muSpectre diff --git a/src/fft/pfft_engine.hh b/src/fft/pfft_engine.hh index caee9b6..2e9146c 100644 --- a/src/fft/pfft_engine.hh +++ b/src/fft/pfft_engine.hh @@ -1,97 +1,97 @@ /** * @file pfft_engine.hh * * @author Lars Pastewka * * @date 06 Mar 2017 * * @brief FFT engine using MPI-parallel PFFT * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef PFFT_ENGINE_H #define PFFT_ENGINE_H #include "common/communicator.hh" #include "fft/fft_engine_base.hh" #include namespace muSpectre { /** * implements the `muSpectre::FFTEngineBase` interface using the * FFTW library */ template class PFFTEngine: public FFTEngineBase { public: using Parent = FFTEngineBase; //!< base class using Ccoord = typename Parent::Ccoord; //!< cell coordinates type //! field for Fourier transform of second-order tensor using Workspace_t = typename Parent::Workspace_t; //! real-valued second-order tensor using Field_t = typename Parent::Field_t; //! Default constructor PFFTEngine() = delete; //! Constructor with system resolutions PFFTEngine(Ccoord resolutions, Dim_t nb_components, Communicator comm=Communicator()); //! Copy constructor PFFTEngine(const PFFTEngine &other) = delete; //! Move constructor PFFTEngine(PFFTEngine &&other) = default; //! Destructor virtual ~PFFTEngine() noexcept; //! Copy assignment operator PFFTEngine& operator=(const PFFTEngine &other) = delete; //! Move assignment operator PFFTEngine& operator=(PFFTEngine &&other) = default; // compute the plan, etc virtual void initialise(FFT_PlanFlags plan_flags) override; //! forward transform virtual Workspace_t & fft(Field_t & field) override; //! inverse transform virtual void ifft(Field_t & field) const override; protected: MPI_Comm mpi_comm; //! < MPI communicator static int nb_engines; //!< number of times this engine has been instatiated pfft_plan plan_fft{}; //!< holds the plan for forward fourier transform pfft_plan plan_ifft{}; //!< holds the plan for inverse fourier transform ptrdiff_t workspace_size{}; //!< size of workspace buffer returned by planner Real *real_workspace{}; //!< temporary real workspace that is correctly padded bool initialised{false}; //!< to prevent double initialisation private: }; } // muSpectre #endif /* PFFT_ENGINE_H */ diff --git a/src/fft/projection_base.cc b/src/fft/projection_base.cc index ec5455b..1f1742c 100644 --- a/src/fft/projection_base.cc +++ b/src/fft/projection_base.cc @@ -1,58 +1,58 @@ /** * @file projection_base.cc * * @author Till Junge * * @date 06 Dec 2017 * * @brief implementation of base class for projections * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "fft/projection_base.hh" namespace muSpectre { /* ---------------------------------------------------------------------- */ template ProjectionBase::ProjectionBase(FFTEngine_ptr engine, Rcoord domain_lengths, Formulation form) : fft_engine{std::move(engine)}, domain_lengths{domain_lengths}, form{form}, projection_container{this->fft_engine->get_field_collection()} { static_assert((DimS == FFTEngine::sdim), "spatial dimensions are incompatible"); if (this->get_nb_components() != fft_engine->get_nb_components()) { throw ProjectionError("Incompatible number of components per pixel"); } } /* ---------------------------------------------------------------------- */ template void ProjectionBase:: initialise(FFT_PlanFlags flags) { fft_engine->initialise(flags); } template class ProjectionBase; template class ProjectionBase; template class ProjectionBase; } // muSpectre diff --git a/src/fft/projection_base.hh b/src/fft/projection_base.hh index 658b32c..be44d40 100644 --- a/src/fft/projection_base.hh +++ b/src/fft/projection_base.hh @@ -1,184 +1,184 @@ /** * @file projection_base.hh * * @author Till Junge * * @date 03 Dec 2017 * * @brief Base class for Projection operators * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef PROJECTION_BASE_H #define PROJECTION_BASE_H #include "common/common.hh" #include "common/field_collection.hh" #include "common/field.hh" #include "fft/fft_engine_base.hh" #include namespace muSpectre { /** * base class for projection related exceptions */ class ProjectionError: public std::runtime_error { public: //! constructor explicit ProjectionError(const std::string& what) :std::runtime_error(what){} //! constructor explicit ProjectionError(const char * what) :std::runtime_error(what){} }; template struct Projection_traits { }; /** * defines the interface which must be implemented by projection operators */ template class ProjectionBase { public: //! Eigen type to replace fields using Vector_t = Eigen::Matrix; //! type of fft_engine used using FFTEngine = FFTEngineBase; //! reference to fft engine is safely managed through a `std::unique_ptr` using FFTEngine_ptr = std::unique_ptr; //! cell coordinates type using Ccoord = typename FFTEngine::Ccoord; //! spatial coordinates type using Rcoord = Rcoord_t; //! global FieldCollection using GFieldCollection_t = typename FFTEngine::GFieldCollection_t; //! local FieldCollection (for Fourier-space pixels) using LFieldCollection_t = typename FFTEngine::LFieldCollection_t; //! Field type on which to apply the projection using Field_t = TypedField; /** * iterator over all pixels. This is taken from the FFT engine, * because depending on the real-to-complex FFT employed, only * roughly half of the pixels are present in Fourier space * (because of the hermitian nature of the transform) */ using iterator = typename FFTEngine::iterator; //! Default constructor ProjectionBase() = delete; //! Constructor with cell sizes ProjectionBase(FFTEngine_ptr engine, Rcoord domain_lengths, Formulation form); //! Copy constructor ProjectionBase(const ProjectionBase &other) = delete; //! Move constructor ProjectionBase(ProjectionBase &&other) = default; //! Destructor virtual ~ProjectionBase() = default; //! Copy assignment operator ProjectionBase& operator=(const ProjectionBase &other) = delete; //! Move assignment operator ProjectionBase& operator=(ProjectionBase &&other) = default; //! initialises the fft engine (plan the transform) virtual void initialise(FFT_PlanFlags flags = FFT_PlanFlags::estimate); //! apply the projection operator to a field virtual void apply_projection(Field_t & field) = 0; //! returns the process-local resolutions of the cell const Ccoord & get_subdomain_resolutions() const { return this->fft_engine->get_subdomain_resolutions();} //! returns the process-local locations of the cell const Ccoord & get_subdomain_locations() const { return this->fft_engine->get_subdomain_locations();} //! returns the resolutions of the cell const Ccoord & get_domain_resolutions() const { return this->fft_engine->get_domain_resolutions();} //! returns the physical sizes of the cell const Rcoord & get_domain_lengths() const {return this->domain_lengths;} /** * return the `muSpectre::Formulation` that is used in solving * this cell. This allows tho check whether a projection is * compatible with the chosen formulation */ const Formulation & get_formulation() const {return this->form;} //! return the raw projection operator. This is mainly intended //! for maintenance and debugging and should never be required in //! regular use virtual Eigen::Map get_operator() = 0; //! return the communicator object const Communicator & get_communicator() const { return this->fft_engine->get_communicator(); } /** * returns the number of rows and cols for the strain matrix type * (for full storage, the strain is stored in material_dim × * material_dim matrices, but in symmetriy storage, it is a column * vector) */ virtual std::array get_strain_shape() const = 0; //! get number of components to project per pixel virtual Dim_t get_nb_components() const { return DimM*DimM;} protected: //! handle on the fft_engine used FFTEngine_ptr fft_engine; const Rcoord domain_lengths; //!< physical sizes of the cell /** * formulation this projection can be applied to (determines * whether the projection enforces gradients, small strain tensor * or symmetric smal strain tensor */ const Formulation form; /** * A local `muSpectre::FieldCollection` to store the projection * operator per k-space point. This is a local rather than a * global collection, since the pixels considered depend on the * FFT implementation. See * http://www.fftw.org/fftw3_doc/Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data * for an example */ LFieldCollection_t & projection_container{}; private: }; } // muSpectre #endif /* PROJECTION_BASE_H */ diff --git a/src/fft/projection_default.cc b/src/fft/projection_default.cc index ca294f6..14bf271 100644 --- a/src/fft/projection_default.cc +++ b/src/fft/projection_default.cc @@ -1,73 +1,73 @@ /** * @file projection_default.cc * * @author Till Junge * * @date 14 Jan 2018 * * @brief Implementation default projection implementation * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "fft/projection_default.hh" #include "fft/fft_engine_base.hh" namespace muSpectre { /* ---------------------------------------------------------------------- */ template ProjectionDefault::ProjectionDefault(FFTEngine_ptr engine, Rcoord lengths, Formulation form) :Parent{std::move(engine), lengths, form}, Gfield{make_field("Projection Operator", this->projection_container)}, Ghat{Gfield} {} /* ---------------------------------------------------------------------- */ template void ProjectionDefault::apply_projection(Field_t & field) { Vector_map field_map{this->fft_engine->fft(field)}; Real factor = this->fft_engine->normalisation(); for (auto && tup: akantu::zip(this->Ghat, field_map)) { auto & G{std::get<0>(tup)}; auto & f{std::get<1>(tup)}; f = factor * (G*f).eval(); } this->fft_engine->ifft(field); } /* ---------------------------------------------------------------------- */ template Eigen::Map ProjectionDefault::get_operator() { return this->Gfield.dyn_eigen(); } /* ---------------------------------------------------------------------- */ template std::array ProjectionDefault::get_strain_shape() const { return std::array{DimM, DimM}; } /* ---------------------------------------------------------------------- */ template class ProjectionDefault; template class ProjectionDefault; } // muSpectre diff --git a/src/fft/projection_default.hh b/src/fft/projection_default.hh index 4a5248e..59cede4 100644 --- a/src/fft/projection_default.hh +++ b/src/fft/projection_default.hh @@ -1,109 +1,109 @@ /** * @file projection_default.hh * * @author Till Junge * * @date 14 Jan 2018 * * @brief virtual base class for default projection implementation, where the * projection operator is stored as a full fourth-order tensor per * k-space point (as opposed to 'smart' faster implementations, such as * ProjectionFiniteStrainFast * * Copyright (C) 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef PROJECTION_DEFAULT_H #define PROJECTION_DEFAULT_H #include "fft/projection_base.hh" namespace muSpectre { /** * base class to inherit from if one implements a projection * operator that is stored in form of a fourth-order tensor of real * values per k-grid point */ template class ProjectionDefault: public ProjectionBase { public: using Parent = ProjectionBase; //!< base class using Vector_t = typename Parent::Vector_t; //!< to represent fields //! polymorphic FFT pointer type using FFTEngine_ptr = typename Parent::FFTEngine_ptr; using Ccoord = typename Parent::Ccoord; //!< cell coordinates type using Rcoord = typename Parent::Rcoord; //!< spatial coordinates type //! global field collection using GFieldCollection_t = GlobalFieldCollection; //! local field collection for Fourier-space fields using LFieldCollection_t = LocalFieldCollection; //! Real space second order tensor fields (to be projected) using Field_t = TypedField; //! Fourier-space field containing the projection operator itself using Proj_t = TensorField; //! iterable form of the operator using Proj_map = T4MatrixFieldMap; //! vectorized version of the Fourier-space second-order tensor field using Vector_map = MatrixFieldMap; //! Default constructor ProjectionDefault() = delete; //! Constructor with cell sizes and formulation ProjectionDefault(FFTEngine_ptr engine, Rcoord lengths, Formulation form); //! Copy constructor ProjectionDefault(const ProjectionDefault &other) = delete; //! Move constructor ProjectionDefault(ProjectionDefault &&other) = default; //! Destructor virtual ~ProjectionDefault() = default; //! Copy assignment operator ProjectionDefault& operator=(const ProjectionDefault &other) = delete; //! Move assignment operator ProjectionDefault& operator=(ProjectionDefault &&other) = delete; //! apply the projection operator to a field void apply_projection(Field_t & field) override final; Eigen::Map get_operator() override final; /** * returns the number of rows and cols for the strain matrix type * (for full storage, the strain is stored in material_dim × * material_dim matrices, but in symmetriy storage, it is a column * vector) */ std::array get_strain_shape() const override final; constexpr static Dim_t NbComponents() {return ipow(DimM, 2);} protected: Proj_t & Gfield; //!< field holding the operator Proj_map Ghat; //!< iterable version of operator private: }; } // muSpectre #endif /* PROJECTION_DEFAULT_H */ diff --git a/src/fft/projection_finite_strain.cc b/src/fft/projection_finite_strain.cc index 55695ef..6289279 100644 --- a/src/fft/projection_finite_strain.cc +++ b/src/fft/projection_finite_strain.cc @@ -1,92 +1,92 @@ /** * @file projection_finite_strain.cc * * @author Till Junge * * @date 05 Dec 2017 * * @brief implementation of standard finite strain projection operator * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "fft/projection_finite_strain.hh" #include "fft/fftw_engine.hh" #include "fft/fft_utils.hh" #include "common/field_map.hh" #include "common/tensor_algebra.hh" #include "common/iterators.hh" #include "Eigen/Dense" namespace muSpectre { /* ---------------------------------------------------------------------- */ template ProjectionFiniteStrain:: ProjectionFiniteStrain(FFTEngine_ptr engine, Rcoord lengths) :Parent{std::move(engine), lengths, Formulation::finite_strain} { for (auto res: this->fft_engine->get_domain_resolutions()) { if (res % 2 == 0) { throw ProjectionError ("Only an odd number of gridpoints in each direction is supported"); } } } /* ---------------------------------------------------------------------- */ template void ProjectionFiniteStrain:: initialise(FFT_PlanFlags flags) { Parent::initialise(flags); FFT_freqs fft_freqs(this->fft_engine->get_domain_resolutions(), this->domain_lengths); for (auto && tup: akantu::zip(*this->fft_engine, this->Ghat)) { const auto & ccoord = std::get<0> (tup); auto & G = std::get<1>(tup); auto xi = fft_freqs.get_unit_xi(ccoord); //! this is simplifiable using Curnier's Méthodes numériques, 6.69(c) G = Matrices::outer_under(Matrices::I2(), xi*xi.transpose()); // The commented block below corresponds to the original // definition of the operator in de Geus et // al. (https://doi.org/10.1016/j.cma.2016.12.032). However, // they use a bizarre definition of the double contraction // between fourth-order and second-order tensors that has a // built-in transpose operation (i.e., C = A:B <-> AᵢⱼₖₗBₗₖ = // Cᵢⱼ , note the inverted ₗₖ instead of ₖₗ), here, we define // the double contraction without the transposition. As a // result, the Projection operator produces the transpose of de // Geus's // for (Dim_t im = 0; im < DimS; ++im) { // for (Dim_t j = 0; j < DimS; ++j) { // for (Dim_t l = 0; l < DimS; ++l) { // get(G, im, j, l, im) = xi(j)*xi(l); // } // } // } } if (this->get_subdomain_locations() == Ccoord{}) { this->Ghat[0].setZero(); } } template class ProjectionFiniteStrain; template class ProjectionFiniteStrain; } // muSpectre diff --git a/src/fft/projection_finite_strain.hh b/src/fft/projection_finite_strain.hh index fcefe46..d9e1c08 100644 --- a/src/fft/projection_finite_strain.hh +++ b/src/fft/projection_finite_strain.hh @@ -1,91 +1,91 @@ /** * @file projection_finite_strain.hh * * @author Till Junge * * @date 05 Dec 2017 * * @brief Class for standard finite-strain gradient projections see de Geus et * al. (https://doi.org/10.1016/j.cma.2016.12.032) for derivation * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef PROJECTION_FINITE_STRAIN_H #define PROJECTION_FINITE_STRAIN_H #include "fft/projection_default.hh" #include "common/common.hh" #include "common/field_collection.hh" #include "common/field_map.hh" namespace muSpectre { /** * Implements the finite strain gradient projection operator as * defined in de Geus et * al. (https://doi.org/10.1016/j.cma.2016.12.032) for derivation */ template class ProjectionFiniteStrain: public ProjectionDefault { public: using Parent = ProjectionDefault; //!< base class //! polymorphic pointer to FFT engines using FFTEngine_ptr = typename Parent::FFTEngine_ptr; using Ccoord = typename Parent::Ccoord; //!< cell coordinates type using Rcoord = typename Parent::Rcoord; //!< spatial coordinates type //! local field collection (for Fourier-space representations) using LFieldCollection_t = LocalFieldCollection; //! iterable operator using Proj_map = T4MatrixFieldMap; //! iterable vectorised version of the Fourier-space tensor field using Vector_map = MatrixFieldMap; //! Default constructor ProjectionFiniteStrain() = delete; //! Constructor with fft_engine ProjectionFiniteStrain(FFTEngine_ptr engine, Rcoord lengths); //! Copy constructor ProjectionFiniteStrain(const ProjectionFiniteStrain &other) = delete; //! Move constructor ProjectionFiniteStrain(ProjectionFiniteStrain &&other) = default; //! Destructor virtual ~ProjectionFiniteStrain() = default; //! Copy assignment operator ProjectionFiniteStrain& operator=(const ProjectionFiniteStrain &other) = delete; //! Move assignment operator ProjectionFiniteStrain& operator=(ProjectionFiniteStrain &&other) = default; //! initialises the fft engine (plan the transform) virtual void initialise(FFT_PlanFlags flags = FFT_PlanFlags::estimate) override final; protected: private: }; } // muSpectre #endif /* PROJECTION_FINITE_STRAIN_H */ diff --git a/src/fft/projection_finite_strain_fast.cc b/src/fft/projection_finite_strain_fast.cc index 60040f0..88a0d0e 100644 --- a/src/fft/projection_finite_strain_fast.cc +++ b/src/fft/projection_finite_strain_fast.cc @@ -1,100 +1,100 @@ /** * @file projection_finite_strain_fast.cc * * @author Till Junge * * @date 12 Dec 2017 * * @brief implementation for fast projection in finite strain * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "fft/projection_finite_strain_fast.hh" #include "fft/fft_utils.hh" #include "common/tensor_algebra.hh" #include "common/iterators.hh" namespace muSpectre { /* ---------------------------------------------------------------------- */ template ProjectionFiniteStrainFast:: ProjectionFiniteStrainFast(FFTEngine_ptr engine, Rcoord lengths) :Parent{std::move(engine), lengths, Formulation::finite_strain}, xiField{make_field("Projection Operator", this->projection_container)}, xis(xiField) { for (auto res: this->fft_engine->get_domain_resolutions()) { if (res % 2 == 0) { throw ProjectionError ("Only an odd number of gridpoints in each direction is supported"); } } } /* ---------------------------------------------------------------------- */ template void ProjectionFiniteStrainFast:: initialise(FFT_PlanFlags flags) { Parent::initialise(flags); FFT_freqs fft_freqs(this->fft_engine->get_domain_resolutions(), this->domain_lengths); for (auto && tup: akantu::zip(*this->fft_engine, this->xis)) { const auto & ccoord = std::get<0> (tup); auto & xi = std::get<1>(tup); xi = fft_freqs.get_unit_xi(ccoord); } if (this->get_subdomain_locations() == Ccoord{}) { this->xis[0].setZero(); } } /* ---------------------------------------------------------------------- */ template void ProjectionFiniteStrainFast::apply_projection(Field_t & field) { Grad_map field_map{this->fft_engine->fft(field)}; Real factor = this->fft_engine->normalisation(); for (auto && tup: akantu::zip(this->xis, field_map)) { auto & xi{std::get<0>(tup)}; auto & f{std::get<1>(tup)}; f = factor * ((f*xi).eval()*xi.transpose()); } this->fft_engine->ifft(field); } /* ---------------------------------------------------------------------- */ template Eigen::Map ProjectionFiniteStrainFast:: get_operator() { return this->xiField.dyn_eigen(); } /* ---------------------------------------------------------------------- */ template std::array ProjectionFiniteStrainFast:: get_strain_shape() const { return std::array{DimM, DimM}; } /* ---------------------------------------------------------------------- */ template class ProjectionFiniteStrainFast; template class ProjectionFiniteStrainFast; } // muSpectre diff --git a/src/fft/projection_finite_strain_fast.hh b/src/fft/projection_finite_strain_fast.hh index 861ef85..70bf490 100644 --- a/src/fft/projection_finite_strain_fast.hh +++ b/src/fft/projection_finite_strain_fast.hh @@ -1,115 +1,115 @@ /** * @file projection_finite_strain_fast.hh * * @author Till Junge * * @date 12 Dec 2017 * * @brief Faster alternative to ProjectionFinitestrain * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef PROJECTION_FINITE_STRAIN_FAST_H #define PROJECTION_FINITE_STRAIN_FAST_H #include "fft/projection_base.hh" #include "common/common.hh" #include "common/field_collection.hh" #include "common/field_map.hh" namespace muSpectre { /** * replaces `muSpectre::ProjectionFiniteStrain` with a faster and * less memory-hungry alternative formulation. Use this if you don't * have a very good reason not to (and tell me (author) about it, * I'd be interested to hear it). */ template class ProjectionFiniteStrainFast: public ProjectionBase { public: using Parent = ProjectionBase; //!< base class //! polymorphic pointer to FFT engines using FFTEngine_ptr = typename Parent::FFTEngine_ptr; using Ccoord = typename Parent::Ccoord; //!< cell coordinates type using Rcoord = typename Parent::Rcoord; //!< spatial coordinates type //! global field collection (for real-space representations) using GFieldCollection_t = GlobalFieldCollection; //! local field collection (for Fourier-space representations) using LFieldCollection_t = LocalFieldCollection; //! Real space second order tensor fields (to be projected) using Field_t = TypedField; //! Fourier-space field containing the projection operator itself using Proj_t = TensorField; //! iterable form of the operator using Proj_map = MatrixFieldMap; //! iterable Fourier-space second-order tensor field using Grad_map = MatrixFieldMap; //! Default constructor ProjectionFiniteStrainFast() = delete; //! Constructor with fft_engine ProjectionFiniteStrainFast(FFTEngine_ptr engine, Rcoord lengths); //! Copy constructor ProjectionFiniteStrainFast(const ProjectionFiniteStrainFast &other) = delete; //! Move constructor ProjectionFiniteStrainFast(ProjectionFiniteStrainFast &&other) = default; //! Destructor virtual ~ProjectionFiniteStrainFast() = default; //! Copy assignment operator ProjectionFiniteStrainFast& operator=(const ProjectionFiniteStrainFast &other) = delete; //! Move assignment operator ProjectionFiniteStrainFast& operator=(ProjectionFiniteStrainFast &&other) = default; //! initialises the fft engine (plan the transform) virtual void initialise(FFT_PlanFlags flags = FFT_PlanFlags::estimate) override final; //! apply the projection operator to a field void apply_projection(Field_t & field) override final; Eigen::Map get_operator() override final; /** * returns the number of rows and cols for the strain matrix type * (for full storage, the strain is stored in material_dim × * material_dim matrices, but in symmetriy storage, it is a column * vector) */ std::array get_strain_shape() const override final; constexpr static Dim_t NbComponents(){return ipow(DimM, 2);} protected: Proj_t & xiField; //!< field of normalised wave vectors Proj_map xis; //!< iterable normalised wave vectors private: }; } // muSpectre #endif /* PROJECTION_FINITE_STRAIN_FAST_H */ diff --git a/src/fft/projection_small_strain.cc b/src/fft/projection_small_strain.cc index 9d86625..478158d 100644 --- a/src/fft/projection_small_strain.cc +++ b/src/fft/projection_small_strain.cc @@ -1,83 +1,83 @@ /** * @file projection_small_strain.cc * * @author Till Junge * * @date 14 Jan 2018 * * @brief Implementation for ProjectionSmallStrain * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "fft/projection_small_strain.hh" #include "fft/fft_utils.hh" namespace muSpectre { /* ---------------------------------------------------------------------- */ template ProjectionSmallStrain:: ProjectionSmallStrain(FFTEngine_ptr engine, Rcoord lengths) : Parent{std::move(engine), lengths, Formulation::small_strain} { for (auto res: this->fft_engine->get_domain_resolutions()) { if (res % 2 == 0) { throw ProjectionError ("Only an odd number of gridpoints in each direction is supported"); } } } /* ---------------------------------------------------------------------- */ template void ProjectionSmallStrain::initialise(FFT_PlanFlags flags) { Parent::initialise(flags); FFT_freqs fft_freqs(this->fft_engine->get_domain_resolutions(), this->domain_lengths); for (auto && tup: akantu::zip(*this->fft_engine, this->Ghat)) { const auto & ccoord = std::get<0> (tup); auto & G = std::get<1>(tup); auto xi = fft_freqs.get_unit_xi(ccoord); auto kron = [](const Dim_t i, const Dim_t j) -> Real{ return (i==j) ? 1. : 0.; }; for (Dim_t i{0}; i < DimS; ++i) { for (Dim_t j{0}; j < DimS; ++j) { for (Dim_t l{0}; l < DimS; ++l) { for (Dim_t m{0}; m < DimS; ++m ) { Real & g = get(G, i, j, l, m); g = 0.5* (xi(i) * kron(j, l) * xi(m) + xi(i) * kron(j, m) * xi(l) + xi(j) * kron(i, l) * xi(m) + xi(j) * kron(i, m) * xi(l)) - xi(i)*xi(j)*xi(l)*xi(m); } } } } } if (this->get_subdomain_locations() == Ccoord{}) { this->Ghat[0].setZero(); } } template class ProjectionSmallStrain; template class ProjectionSmallStrain; } // muSpectre diff --git a/src/fft/projection_small_strain.hh b/src/fft/projection_small_strain.hh index ba4e5f5..d000ffc 100644 --- a/src/fft/projection_small_strain.hh +++ b/src/fft/projection_small_strain.hh @@ -1,94 +1,94 @@ /** * @file projection_small_strain.cc * * @author Till Junge * * @date 14 Jan 2018 * * @brief Small strain projection operator as defined in Appendix A1 of * DOI: 10.1002/nme.5481 ("A finite element perspective on nonlinear * FFT-based micromechanical simulations", Int. J. Numer. Meth. Engng * 2017; 111 :903–926) * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef PROJECTION_SMALL_STRAIN_H #define PROJECTION_SMALL_STRAIN_H #include "fft/projection_default.hh" namespace muSpectre { /** * Implements the small strain projection operator as defined in * Appendix A1 of DOI: 10.1002/nme.5481 ("A finite element * perspective on nonlinear FFT-based micromechanical * simulations", Int. J. Numer. Meth. Engng 2017; 111 * :903–926) */ template class ProjectionSmallStrain: public ProjectionDefault { public: using Parent = ProjectionDefault; //!< base class //! polymorphic pointer to FFT engines using FFTEngine_ptr = typename Parent::FFTEngine_ptr; using Ccoord = typename Parent::Ccoord; //!< cell coordinates type using Rcoord = typename Parent::Rcoord; //!< spatial coordinates type //! local field collection (for Fourier-space representations) using LFieldCollection_t = LocalFieldCollection; //! Fourier-space field containing the projection operator itself using Proj_t = TensorField; //! iterable operator using Proj_map = T4MatrixFieldMap; //! iterable vectorised version of the Fourier-space tensor field using Vector_map = MatrixFieldMap; //! Default constructor ProjectionSmallStrain() = delete; //! Constructor with fft_engine ProjectionSmallStrain(FFTEngine_ptr engine, Rcoord lengths); //! Copy constructor ProjectionSmallStrain(const ProjectionSmallStrain &other) = delete; //! Move constructor ProjectionSmallStrain(ProjectionSmallStrain &&other) = default; //! Destructor virtual ~ProjectionSmallStrain() = default; //! Copy assignment operator ProjectionSmallStrain& operator=(const ProjectionSmallStrain &other) = delete; //! Move assignment operator ProjectionSmallStrain& operator=(ProjectionSmallStrain &&other) = delete; //! initialises the fft engine (plan the transform) virtual void initialise(FFT_PlanFlags flags = FFT_PlanFlags::estimate) override final; protected: private: }; } // muSpectre #endif /* PROJECTION_SMALL_STRAIN_H */ diff --git a/src/materials/CMakeLists.txt b/src/materials/CMakeLists.txt index a703496..b14e842 100644 --- a/src/materials/CMakeLists.txt +++ b/src/materials/CMakeLists.txt @@ -1,42 +1,42 @@ # ============================================================================= # file CMakeLists.txt # # @author Till Junge # # @date 08 Jan 2018 # # @brief configuration for material laws # # @section LICENSE # # Copyright © 2018 Till Junge # # µSpectre is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3, or (at # your option) any later version. # # µSpectre is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License -# along with GNU Emacs; see the file COPYING. If not, write to the +# along with µSpectre; see the file COPYING. If not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # ============================================================================= set (materials_SRC ${CMAKE_CURRENT_SOURCE_DIR}/material_base.cc ${CMAKE_CURRENT_SOURCE_DIR}/material_linear_elastic1.cc ${CMAKE_CURRENT_SOURCE_DIR}/material_linear_elastic2.cc ${CMAKE_CURRENT_SOURCE_DIR}/material_linear_elastic3.cc ${CMAKE_CURRENT_SOURCE_DIR}/material_linear_elastic4.cc ${CMAKE_CURRENT_SOURCE_DIR}/material_linear_elastic_generic.cc ${CMAKE_CURRENT_SOURCE_DIR}/material_hyper_elasto_plastic1.cc ) target_sources(muSpectre PRIVATE ${materials_SRC}) diff --git a/src/materials/material_base.cc b/src/materials/material_base.cc index 6287595..85d37e2 100644 --- a/src/materials/material_base.cc +++ b/src/materials/material_base.cc @@ -1,79 +1,79 @@ /** * @file material_base.cc * * @author Till Junge * * @date 01 Nov 2017 * * @brief implementation of materi * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "materials/material_base.hh" namespace muSpectre { //----------------------------------------------------------------------------// template MaterialBase::MaterialBase(std::string name) :name(name) { static_assert((DimM == oneD)|| (DimM == twoD)|| (DimM == threeD), "only 1, 2, or threeD supported"); } /* ---------------------------------------------------------------------- */ template const std::string & MaterialBase::get_name() const { return this->name; } /* ---------------------------------------------------------------------- */ template void MaterialBase::add_pixel(const Ccoord &ccoord) { this->internal_fields.add_pixel(ccoord); } /* ---------------------------------------------------------------------- */ template void MaterialBase::compute_stresses(const Field_t & F, Field_t & P, Formulation form) { this->compute_stresses(StrainField_t::check_ref(F), StressField_t::check_ref(P), form); } /* ---------------------------------------------------------------------- */ template void MaterialBase::compute_stresses_tangent(const Field_t & F, Field_t & P, Field_t & K, Formulation form) { this->compute_stresses_tangent(StrainField_t::check_ref(F), StressField_t::check_ref(P), TangentField_t::check_ref(K), form); } template class MaterialBase<2, 2>; template class MaterialBase<2, 3>; template class MaterialBase<3, 3>; } // muSpectre diff --git a/src/materials/material_base.hh b/src/materials/material_base.hh index b05865f..a4ebc83 100644 --- a/src/materials/material_base.hh +++ b/src/materials/material_base.hh @@ -1,164 +1,164 @@ /** * @file material_base.hh * * @author Till Junge * * @date 25 Oct 2017 * * @brief Base class for materials (constitutive models) * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef MATERIAL_BASE_H #define MATERIAL_BASE_H #include "common/common.hh" #include "common/field.hh" #include "common/field_collection.hh" #include namespace muSpectre { //! DimS spatial dimension (dimension of problem //! DimM material_dimension (dimension of constitutive law) and /** * @a DimM is the material dimension (i.e., the dimension of constitutive * law; even for e.g. two-dimensional problems the constitutive law could * live in three-dimensional space for e.g. plane strain or stress problems) */ template class MaterialBase { public: //! typedefs for data handled by this interface //! global field collection for cell-wide fields, like stress, strain, etc using GFieldCollection_t = GlobalFieldCollection; //! field collection for internal variables, such as eigen-strains, //! plastic strains, damage variables, etc, but also for managing which //! pixels the material is responsible for using MFieldCollection_t = LocalFieldCollection; using iterator = typename MFieldCollection_t::iterator; //!< pixel iterator //! polymorphic base class for fields only to be used for debugging using Field_t = internal::FieldBase; //! Full type for stress fields using StressField_t = TensorField; //! Full type for strain fields using StrainField_t = StressField_t; //! Full type for tangent stiffness fields fields using TangentField_t = TensorField; using Ccoord = Ccoord_t; //!< cell coordinates type //! Default constructor MaterialBase() = delete; //! Construct by name MaterialBase(std::string name); //! Copy constructor MaterialBase(const MaterialBase &other) = delete; //! Move constructor MaterialBase(MaterialBase &&other) = delete; //! Destructor virtual ~MaterialBase() = default; //! Copy assignment operator MaterialBase& operator=(const MaterialBase &other) = delete; //! Move assignment operator MaterialBase& operator=(MaterialBase &&other) = delete; /** * take responsibility for a pixel identified by its cell coordinates * WARNING: this won't work for materials with additional info per pixel * (as, e.g. for eigenstrain), we need to pass more parameters. Materials * of this tye need to overload add_pixel */ virtual void add_pixel(const Ccoord & ccooord); //! allocate memory, etc, but also: wipe history variables! virtual void initialise() = 0; /** * for materials with state variables, these typically need to be * saved/updated an the end of each load increment, the virtual * base implementation does nothing, but materials with history * variables need to implement this */ virtual void save_history_variables() {}; //! return the material's name const std::string & get_name() const; //! spatial dimension for static inheritance constexpr static Dim_t sdim() {return DimS;} //! material dimension for static inheritance constexpr static Dim_t mdim() {return DimM;} //! computes stress virtual void compute_stresses(const StrainField_t & F, StressField_t & P, Formulation form) = 0; /** * Convenience function to compute stresses, mostly for debugging and * testing. Has runtime-cost associated with compatibility-checking and * conversion of the Field_t arguments that can be avoided by using the * version with strongly typed field references */ void compute_stresses(const Field_t & F, Field_t & P, Formulation form); //! computes stress and tangent moduli virtual void compute_stresses_tangent(const StrainField_t & F, StressField_t & P, TangentField_t & K, Formulation form) = 0; /** * Convenience function to compute stresses and tangent moduli, mostly for * debugging and testing. Has runtime-cost associated with * compatibility-checking and conversion of the Field_t arguments that can * be avoided by using the version with strongly typed field references */ void compute_stresses_tangent(const Field_t & F, Field_t & P, Field_t & K, Formulation form); //! iterator to first pixel handled by this material inline iterator begin() {return this->internal_fields.begin();} //! iterator past the last pixel handled by this material inline iterator end() {return this->internal_fields.end();} //! number of pixels assigned to this material inline size_t size() const {return this->internal_fields.size();} //! gives access to internal fields inline MFieldCollection_t& get_collection() {return this->internal_fields;} protected: const std::string name; //!< material's name (for output and debugging) MFieldCollection_t internal_fields{};//!< storage for internal variables private: }; } // muSpectre #endif /* MATERIAL_BASE_H */ diff --git a/src/materials/material_hyper_elasto_plastic1.cc b/src/materials/material_hyper_elasto_plastic1.cc index 0a7ec51..f1d0f16 100644 --- a/src/materials/material_hyper_elasto_plastic1.cc +++ b/src/materials/material_hyper_elasto_plastic1.cc @@ -1,82 +1,82 @@ /** * @file material_hyper_elasto_plastic1.cc * * @author Till Junge * * @date 21 Feb 2018 * * @brief implementation for MaterialHyperElastoPlastic1 * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "materials/material_hyper_elasto_plastic1.hh" namespace muSpectre { //----------------------------------------------------------------------------// template MaterialHyperElastoPlastic1:: MaterialHyperElastoPlastic1(std::string name, Real young, Real poisson, Real tau_y0, Real H) : Parent{name}, plast_flow_field{make_statefield>> ("cumulated plastic flow εₚ", this->internal_fields)}, F_prev_field{make_statefield>> ("Previous placement gradient Fᵗ", this->internal_fields)}, be_prev_field{make_statefield>> ("Previous left Cauchy-Green deformation bₑᵗ", this->internal_fields)}, young{young}, poisson{poisson}, lambda{Hooke::compute_lambda(young, poisson)}, mu{Hooke::compute_mu(young, poisson)}, K{Hooke::compute_K(young, poisson)}, tau_y0{tau_y0}, H{H}, // the factor .5 comes from equation (18) in Geers 2003 // (https://doi.org/10.1016/j.cma.2003.07.014) C{0.5*Hooke::compute_C_T4(lambda, mu)}, internal_variables{F_prev_field.get_map(), be_prev_field.get_map(), plast_flow_field.get_map()} {} /* ---------------------------------------------------------------------- */ template void MaterialHyperElastoPlastic1::save_history_variables() { this->plast_flow_field.cycle(); this->F_prev_field.cycle(); this->be_prev_field.cycle(); } /* ---------------------------------------------------------------------- */ template void MaterialHyperElastoPlastic1::initialise() { Parent::initialise(); this->F_prev_field.get_map().current() = Eigen::Matrix::Identity(); this->be_prev_field.get_map().current() = Eigen::Matrix::Identity(); this->save_history_variables(); } template class MaterialHyperElastoPlastic1< twoD, twoD>; template class MaterialHyperElastoPlastic1< twoD, threeD>; template class MaterialHyperElastoPlastic1; } // muSpectre diff --git a/src/materials/material_hyper_elasto_plastic1.hh b/src/materials/material_hyper_elasto_plastic1.hh index 8a6ce26..3778e0f 100644 --- a/src/materials/material_hyper_elasto_plastic1.hh +++ b/src/materials/material_hyper_elasto_plastic1.hh @@ -1,308 +1,308 @@ /** * @file material_hyper_elasto_plastic1.hh * * @author Till Junge * * @date 20 Feb 2018 * * @brief Material for logarithmic hyperelasto-plasticity, as defined in de * Geus 2017 (https://doi.org/10.1016/j.cma.2016.12.032) and further * explained in Geers 2003 (https://doi.org/10.1016/j.cma.2003.07.014) * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef MATERIAL_HYPER_ELASTO_PLASTIC1_H #define MATERIAL_HYPER_ELASTO_PLASTIC1_H #include "materials/material_muSpectre_base.hh" #include "materials/materials_toolbox.hh" #include "common/eigen_tools.hh" #include "common/statefield.hh" #include namespace muSpectre { template class MaterialHyperElastoPlastic1; /** * traits for hyper-elastoplastic material */ template struct MaterialMuSpectre_traits> { //! global field collection using GFieldCollection_t = typename MaterialBase::GFieldCollection_t; //! expected map type for strain fields using StrainMap_t = MatrixFieldMap; //! expected map type for stress fields using StressMap_t = MatrixFieldMap; //! expected map type for tangent stiffness fields using TangentMap_t = T4MatrixFieldMap; //! declare what type of strain measure your law takes as input constexpr static auto strain_measure{StrainMeasure::Gradient}; //! declare what type of stress measure your law yields as output constexpr static auto stress_measure{StressMeasure::Kirchhoff}; //! local field collection used for internals using LFieldColl_t = LocalFieldCollection; //! storage type for plastic flow measure (εₚ in the papers) using LScalarMap_t = StateFieldMap>; /** * storage type for for previous gradient Fᵗ and elastic left * Cauchy-Green deformation tensor bₑᵗ */ using LStrainMap_t = StateFieldMap< MatrixFieldMap>; /** * format in which to receive internals (previous gradient Fᵗ, * previous elastic lef Cauchy-Green deformation tensor bₑᵗ, and * the plastic flow measure εₚ */ using InternalVariables = std::tuple; }; /** * Material implementation for hyper-elastoplastic constitutive law */ template class MaterialHyperElastoPlastic1: public MaterialMuSpectre, DimS, DimM> { public: //! base class using Parent = MaterialMuSpectre , DimS, DimM>; /** * type used to determine whether the * `muSpectre::MaterialMuSpectre::iterable_proxy` evaluate only * stresses or also tangent stiffnesses */ using NeedTangent = typename Parent::NeedTangent; //! shortcut to traits using traits = MaterialMuSpectre_traits; //! Hooke's law implementation using Hooke = typename MatTB::Hooke; //! type in which the previous strain state is referenced using StrainStRef_t = typename traits::LStrainMap_t::reference; //! type in which the previous plastic flow is referenced using FlowStRef_t = typename traits::LScalarMap_t::reference; //! Default constructor MaterialHyperElastoPlastic1() = delete; //! Constructor with name and material properties MaterialHyperElastoPlastic1(std::string name, Real young, Real poisson, Real tau_y0, Real H); //! Copy constructor MaterialHyperElastoPlastic1(const MaterialHyperElastoPlastic1 &other) = delete; //! Move constructor MaterialHyperElastoPlastic1(MaterialHyperElastoPlastic1 &&other) = delete; //! Destructor virtual ~MaterialHyperElastoPlastic1() = default; //! Copy assignment operator MaterialHyperElastoPlastic1& operator=(const MaterialHyperElastoPlastic1 &other) = delete; //! Move assignment operator MaterialHyperElastoPlastic1& operator=(MaterialHyperElastoPlastic1 &&other) = delete; /** * evaluates Kirchhoff stress given the current placement gradient * Fₜ, the previous Gradient Fₜ₋₁ and the cumulated plastic flow * εₚ */ template inline decltype(auto) evaluate_stress(grad_t && F, StrainStRef_t F_prev, StrainStRef_t be_prev, FlowStRef_t plast_flow); /** * evaluates Kirchhoff stress and stiffness given the current placement gradient * Fₜ, the previous Gradient Fₜ₋₁ and the cumulated plastic flow * εₚ */ template inline decltype(auto) evaluate_stress_tangent(grad_t && F, StrainStRef_t F_prev, StrainStRef_t be_prev, FlowStRef_t plast_flow); /** * The statefields need to be cycled at the end of each load increment */ virtual void save_history_variables() override; /** * set the previous gradients to identity */ virtual void initialise() override final; /** * return the internals tuple */ typename traits::InternalVariables & get_internals() { return this->internal_variables;}; protected: /** * worker function computing stresses and internal variables */ template inline decltype(auto) stress_n_internals_worker(grad_t && F, StrainStRef_t& F_prev, StrainStRef_t& be_prev, FlowStRef_t& plast_flow); //! Local FieldCollection type for field storage using LColl_t = LocalFieldCollection; //! storage for cumulated plastic flow εₚ StateField> & plast_flow_field; //! storage for previous gradient Fᵗ StateField> & F_prev_field; //! storage for elastic left Cauchy-Green deformation tensor bₑᵗ StateField> & be_prev_field; // material properties const Real young; //!< Young's modulus const Real poisson; //!< Poisson's ratio const Real lambda; //!< first Lamé constant const Real mu; //!< second Lamé constant (shear modulus) const Real K; //!< Bulk modulus const Real tau_y0; //!< initial yield stress const Real H; //!< hardening modulus const T4Mat C; //!< stiffness tensor //! Field maps and state field maps over internal fields typename traits::InternalVariables internal_variables; private: }; //----------------------------------------------------------------------------// template template auto MaterialHyperElastoPlastic1:: stress_n_internals_worker(grad_t && F, StrainStRef_t& F_prev, StrainStRef_t& be_prev, FlowStRef_t& eps_p) -> decltype(auto) { // the notation in this function follows Geers 2003 // (https://doi.org/10.1016/j.cma.2003.07.014). // computation of trial state using Mat_t = Eigen::Matrix; auto && f{F*F_prev.old().inverse()}; Mat_t be_star{f*be_prev.old()*f.transpose()}; Mat_t ln_be_star{logm(std::move(be_star))}; Mat_t tau_star{.5*Hooke::evaluate_stress(this->lambda, this->mu, ln_be_star)}; // deviatoric part of Kirchhoff stress Mat_t tau_d_star{tau_star - tau_star.trace()/DimM*tau_star.Identity()}; auto && tau_eq_star{std::sqrt(3*.5*(tau_d_star.array()* tau_d_star.transpose().array()).sum())}; Mat_t N_star{3*.5*tau_d_star/tau_eq_star}; // this is eq (27), and the std::min enforces the Kuhn-Tucker relation (16) Real phi_star{std::max(tau_eq_star - this->tau_y0 - this->H * eps_p.old(), 0.)}; // return mapping Real Del_gamma{phi_star/(this->H + 3 * this->mu)}; auto && tau{tau_star - 2*Del_gamma*this->mu*N_star}; /////auto && tau_eq{tau_eq_star - 3*this->mu*Del_gamma}; // update the previous values to the new ones F_prev.current() = F; ln_be_star -= 2*Del_gamma*N_star; be_prev.current() = expm(std::move(ln_be_star)); eps_p.current() += Del_gamma; // transmit info whether this is a plastic step or not bool is_plastic{phi_star > 0}; return std::tuple (std::move(tau), std::move(tau_eq_star), std::move(Del_gamma), std::move(N_star), std::move(is_plastic)); } //----------------------------------------------------------------------------// template template auto MaterialHyperElastoPlastic1:: evaluate_stress(grad_t && F, StrainStRef_t F_prev, StrainStRef_t be_prev, FlowStRef_t eps_p) -> decltype(auto) { auto retval(std::move(std::get<0>(this->stress_n_internals_worker (std::forward(F), F_prev, be_prev, eps_p)))); return retval; } //----------------------------------------------------------------------------// template template auto MaterialHyperElastoPlastic1:: evaluate_stress_tangent(grad_t && F, StrainStRef_t F_prev, StrainStRef_t be_prev, FlowStRef_t eps_p) -> decltype(auto) { //! after the stress computation, all internals are up to date auto && vals{this->stress_n_internals_worker (std::forward(F), F_prev, be_prev, eps_p)}; auto && tau {std::get<0>(vals)}; auto && tau_eq_star{std::get<1>(vals)}; auto && Del_gamma {std::get<2>(vals)}; auto && N_star {std::get<3>(vals)}; auto && is_plastic {std::get<4>(vals)}; if (is_plastic) { auto && a0 = Del_gamma*this->mu/tau_eq_star; auto && a1 = this->mu/(this->H + 3*this->mu); return std::make_tuple(std::move(tau), T4Mat{ ((this->K/2. - this->mu/3 + a0*this->mu)*Matrices::Itrac() + (1 - 3*a0) * this->mu*Matrices::Isymm() + 2*this->mu * (a0 - a1)*Matrices::outer(N_star, N_star))}); } else { return std::make_tuple(std::move(tau), T4Mat{this->C}); } } } // muSpectre #endif /* MATERIAL_HYPER_ELASTO_PLASTIC1_H */ diff --git a/src/materials/material_linear_elastic1.cc b/src/materials/material_linear_elastic1.cc index 5011be1..947e9e5 100644 --- a/src/materials/material_linear_elastic1.cc +++ b/src/materials/material_linear_elastic1.cc @@ -1,47 +1,47 @@ /** * @file material_linear_elastic1.cc * * @author Till Junge * * @date 14 Nov 2017 * * @brief Implementation for materiallinearelastic1 * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "materials/material_linear_elastic1.hh" namespace muSpectre { /* ---------------------------------------------------------------------- */ template MaterialLinearElastic1::MaterialLinearElastic1(std::string name, Real young, Real poisson) :Parent(name), young{young}, poisson{poisson}, lambda{Hooke::compute_lambda(young, poisson)}, mu{Hooke::compute_mu(young, poisson)}, C{Hooke::compute_C(lambda, mu)} {} template class MaterialLinearElastic1; template class MaterialLinearElastic1; template class MaterialLinearElastic1; } // muSpectre diff --git a/src/materials/material_linear_elastic1.hh b/src/materials/material_linear_elastic1.hh index c5d822c..49d2bb4 100644 --- a/src/materials/material_linear_elastic1.hh +++ b/src/materials/material_linear_elastic1.hh @@ -1,191 +1,191 @@ /** * @file material_linear_elastic1.hh * * @author Till Junge * * @date 13 Nov 2017 * * @brief Implementation for linear elastic reference material like in de Geus * 2017. This follows the simplest and likely not most efficient * implementation (with exception of the Python law) * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef MATERIAL_LINEAR_ELASTIC1_H #define MATERIAL_LINEAR_ELASTIC1_H #include "common/common.hh" #include "materials/material_muSpectre_base.hh" #include "materials/materials_toolbox.hh" namespace muSpectre { template class MaterialLinearElastic1; /** * traits for objective linear elasticity */ template struct MaterialMuSpectre_traits> { using Parent = MaterialMuSpectre_traits;//!< base for elasticity //! global field collection using GFieldCollection_t = typename MaterialBase::GFieldCollection_t; //! expected map type for strain fields using StrainMap_t = MatrixFieldMap; //! expected map type for stress fields using StressMap_t = MatrixFieldMap; //! expected map type for tangent stiffness fields using TangentMap_t = T4MatrixFieldMap; //! declare what type of strain measure your law takes as input constexpr static auto strain_measure{StrainMeasure::GreenLagrange}; //! declare what type of stress measure your law yields as output constexpr static auto stress_measure{StressMeasure::PK2}; //! elasticity without internal variables using InternalVariables = std::tuple<>; }; //! DimS spatial dimension (dimension of problem //! DimM material_dimension (dimension of constitutive law) /** * implements objective linear elasticity */ template class MaterialLinearElastic1: public MaterialMuSpectre, DimS, DimM> { public: //! base class using Parent = MaterialMuSpectre; /** * type used to determine whether the * `muSpectre::MaterialMuSpectre::iterable_proxy` evaluate only * stresses or also tangent stiffnesses */ using NeedTangent = typename Parent::NeedTangent; //! global field collection using Stiffness_t = Eigen::TensorFixedSize >; //! traits of this material using traits = MaterialMuSpectre_traits; //! this law does not have any internal variables using InternalVariables = typename traits::InternalVariables; //! Hooke's law implementation using Hooke = typename MatTB::Hooke; //! Default constructor MaterialLinearElastic1() = delete; //! Copy constructor MaterialLinearElastic1(const MaterialLinearElastic1 &other) = delete; //! Construct by name, Young's modulus and Poisson's ratio MaterialLinearElastic1(std::string name, Real young, Real poisson); //! Move constructor MaterialLinearElastic1(MaterialLinearElastic1 &&other) = delete; //! Destructor virtual ~MaterialLinearElastic1() = default; //! Copy assignment operator MaterialLinearElastic1& operator=(const MaterialLinearElastic1 &other) = delete; //! Move assignment operator MaterialLinearElastic1& operator=(MaterialLinearElastic1 &&other) = delete; /** * evaluates second Piola-Kirchhoff stress given the Green-Lagrange * strain (or Cauchy stress if called with a small strain tensor) */ template inline decltype(auto) evaluate_stress(s_t && E); /** * evaluates both second Piola-Kirchhoff stress and stiffness given * the Green-Lagrange strain (or Cauchy stress and stiffness if * called with a small strain tensor) */ template inline decltype(auto) evaluate_stress_tangent(s_t && E); /** * return the empty internals tuple */ InternalVariables & get_internals() { return this->internal_variables;}; protected: const Real young; //!< Young's modulus const Real poisson;//!< Poisson's ratio const Real lambda; //!< first Lamé constant const Real mu; //!< second Lamé constant (shear modulus) const Stiffness_t C; //!< stiffness tensor //! empty tuple InternalVariables internal_variables{}; private: }; /* ---------------------------------------------------------------------- */ template template auto MaterialLinearElastic1::evaluate_stress(s_t && E) -> decltype(auto) { return Hooke::evaluate_stress(this->lambda, this->mu, std::move(E)); } /* ---------------------------------------------------------------------- */ template template auto MaterialLinearElastic1::evaluate_stress_tangent(s_t && E) -> decltype(auto) { using Tangent_t = typename traits::TangentMap_t::reference; // using mat = Eigen::Matrix; // mat ecopy{E}; // std::cout << "E" << std::endl << ecopy << std::endl; // std::cout << "P1" << std::endl << mat{ // std::get<0>(Hooke::evaluate_stress(this->lambda, this->mu, // Tangent_t(const_cast(this->C.data())), // std::move(E)))} << std::endl; return Hooke::evaluate_stress(this->lambda, this->mu, Tangent_t(const_cast(this->C.data())), std::move(E)); } } // muSpectre #endif /* MATERIAL_LINEAR_ELASTIC1_H */ diff --git a/src/materials/material_linear_elastic2.cc b/src/materials/material_linear_elastic2.cc index 4a4add0..87fe633 100644 --- a/src/materials/material_linear_elastic2.cc +++ b/src/materials/material_linear_elastic2.cc @@ -1,63 +1,63 @@ /** * @file material_linear_elastic2.cc * * @author Till Junge * * @date 04 Feb 2018 * * @brief implementation for linear elastic material with eigenstrain * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "materials/material_linear_elastic2.hh" namespace muSpectre { /* ---------------------------------------------------------------------- */ template MaterialLinearElastic2:: MaterialLinearElastic2(std::string name, Real young, Real poisson) :Parent{name}, material{name, young, poisson}, eigen_field{make_field("Eigenstrain", this->internal_fields)}, internal_variables(eigen_field.get_const_map()) {} /* ---------------------------------------------------------------------- */ template void MaterialLinearElastic2:: add_pixel(const Ccoord_t & /*pixel*/) { throw std::runtime_error ("this material needs pixels with and eigenstrain"); } /* ---------------------------------------------------------------------- */ template void MaterialLinearElastic2:: add_pixel(const Ccoord_t & pixel, const StrainTensor & E_eig) { this->internal_fields.add_pixel(pixel); Eigen::Map> strain_array(E_eig.data()); this->eigen_field.push_back(strain_array); } template class MaterialLinearElastic2; template class MaterialLinearElastic2; template class MaterialLinearElastic2; } // muSpectre diff --git a/src/materials/material_linear_elastic2.hh b/src/materials/material_linear_elastic2.hh index f90c405..bd84a78 100644 --- a/src/materials/material_linear_elastic2.hh +++ b/src/materials/material_linear_elastic2.hh @@ -1,199 +1,199 @@ /** * @file material_linear_elastic2.hh * * @author Till Junge * * @date 03 Feb 2018 * * @brief linear elastic material with imposed eigenstrain and its * type traits. Uses the MaterialMuSpectre facilities to keep it * simple * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef MATERIAL_LINEAR_ELASTIC_EIGENSTRAIN_H #define MATERIAL_LINEAR_ELASTIC_EIGENSTRAIN_H #include "materials/material_linear_elastic1.hh" #include "common/field.hh" #include namespace muSpectre { template class MaterialLinearElastic2; /** * traits for objective linear elasticity with eigenstrain */ template struct MaterialMuSpectre_traits> { //! global field collection using GFieldCollection_t = typename MaterialBase::GFieldCollection_t; //! expected map type for strain fields using StrainMap_t = MatrixFieldMap; //! expected map type for stress fields using StressMap_t = MatrixFieldMap; //! expected map type for tangent stiffness fields using TangentMap_t = T4MatrixFieldMap; //! declare what type of strain measure your law takes as input constexpr static auto strain_measure{StrainMeasure::GreenLagrange}; //! declare what type of stress measure your law yields as output constexpr static auto stress_measure{StressMeasure::PK2}; //! local field_collections used for internals using LFieldColl_t = LocalFieldCollection; //! local strain type using LStrainMap_t = MatrixFieldMap; //! elasticity with eigenstrain using InternalVariables = std::tuple; }; /** * implements objective linear elasticity with an eigenstrain per pixel */ template class MaterialLinearElastic2: public MaterialMuSpectre, DimS, DimM> { public: //! base class using Parent = MaterialMuSpectre; //! type for stiffness tensor construction using Stiffness_t = Eigen::TensorFixedSize >; //! traits of this material using traits = MaterialMuSpectre_traits; //! Type of container used for storing eigenstrain using InternalVariables = typename traits::InternalVariables; //! Hooke's law implementation using Hooke = typename MatTB::Hooke; //! reference to any type that casts to a matrix using StrainTensor = Eigen::Ref>; //! Default constructor MaterialLinearElastic2() = delete; //! Construct by name, Young's modulus and Poisson's ratio MaterialLinearElastic2(std::string name, Real young, Real poisson); //! Copy constructor MaterialLinearElastic2(const MaterialLinearElastic2 &other) = delete; //! Move constructor MaterialLinearElastic2(MaterialLinearElastic2 &&other) = delete; //! Destructor virtual ~MaterialLinearElastic2() = default; //! Copy assignment operator MaterialLinearElastic2& operator=(const MaterialLinearElastic2 &other) = delete; //! Move assignment operator MaterialLinearElastic2& operator=(MaterialLinearElastic2 &&other) = delete; /** * evaluates second Piola-Kirchhoff stress given the Green-Lagrange * strain (or Cauchy stress if called with a small strain tensor) */ template inline decltype(auto) evaluate_stress(s_t && E, eigen_s_t && E_eig); /** * evaluates both second Piola-Kirchhoff stress and stiffness given * the Green-Lagrange strain (or Cauchy stress and stiffness if * called with a small strain tensor) */ template inline decltype(auto) evaluate_stress_tangent(s_t && E, eigen_s_t && E_eig); /** * return the internals tuple */ InternalVariables & get_internals() { return this->internal_variables;}; /** * overload add_pixel to write into eigenstrain */ void add_pixel(const Ccoord_t & pixel) override final; /** * overload add_pixel to write into eigenstrain */ void add_pixel(const Ccoord_t & pixel, const StrainTensor & E_eig); protected: //! linear material without eigenstrain used to compute response MaterialLinearElastic1 material; //! storage for eigenstrain using Field_t = TensorField, Real, secondOrder, DimM>; Field_t & eigen_field; //!< field holding the eigen strain per pixel //! tuple for iterable eigen_field InternalVariables internal_variables; private: }; /* ---------------------------------------------------------------------- */ template template auto MaterialLinearElastic2:: evaluate_stress(s_t && E, eigen_s_t && E_eig) -> decltype(auto) { return this->material.evaluate_stress(E-E_eig); } /* ---------------------------------------------------------------------- */ template template auto MaterialLinearElastic2:: evaluate_stress_tangent(s_t && E, eigen_s_t && E_eig) -> decltype(auto) { // using mat = Eigen::Matrix; // mat ecopy{E}; // mat eig_copy{E_eig}; // mat ediff{ecopy-eig_copy}; // std::cout << "eidff - (E-E_eig)" << std::endl << ediff-(E-E_eig) << std::endl; // std::cout << "P1 " << std::endl << mat{std::get<0>(this->material.evaluate_stress_tangent(E-E_eig))} << "" << std::endl; // std::cout << "P2" << std::endl << mat{std::get<0>(this->material.evaluate_stress_tangent(std::move(ediff)))} << std::endl; return this->material.evaluate_stress_tangent(E-E_eig); } } // muSpectre #endif /* MATERIAL_LINEAR_ELASTIC_EIGENSTRAIN_H */ diff --git a/src/materials/material_linear_elastic3.cc b/src/materials/material_linear_elastic3.cc index 66c57af..25d734b 100644 --- a/src/materials/material_linear_elastic3.cc +++ b/src/materials/material_linear_elastic3.cc @@ -1,67 +1,67 @@ /** * @file material_linear_elastic3.cc * * @author Richard Leute MaterialLinearElastic3:: MaterialLinearElastic3(std::string name) :Parent{name}, C_field{make_field("local stiffness tensor", this->internal_fields)}, internal_variables(C_field.get_const_map()) {} /* ---------------------------------------------------------------------- */ template void MaterialLinearElastic3:: add_pixel(const Ccoord_t & /*pixel*/) { throw std::runtime_error ("this material needs pixels with Youngs modulus and Poisson ratio."); } /* ---------------------------------------------------------------------- */ template void MaterialLinearElastic3:: add_pixel(const Ccoord_t & pixel, const Real & Young, const Real & Poisson) { this->internal_fields.add_pixel(pixel); Real lambda = Hooke::compute_lambda(Young, Poisson); Real mu = Hooke::compute_mu(Young, Poisson); auto C_tensor = Hooke::compute_C(lambda, mu); Eigen::Map> C(C_tensor.data()); this->C_field.push_back(C); } template class MaterialLinearElastic3; template class MaterialLinearElastic3; template class MaterialLinearElastic3; } // muSpectre diff --git a/src/materials/material_linear_elastic3.hh b/src/materials/material_linear_elastic3.hh index c724058..c6e3aa0 100644 --- a/src/materials/material_linear_elastic3.hh +++ b/src/materials/material_linear_elastic3.hh @@ -1,196 +1,196 @@ /** * @file material_linear_elastic3.hh * * @author Richard Leute * * @date 20 Feb 2018 * * @brief linear elastic material with distribution of stiffness properties. * Uses the MaterialMuSpectre facilities to keep it simple. * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef MATERIAL_LINEAR_ELASTIC_RANDOM_STIFFNESS_H #define MATERIAL_LINEAR_ELASTIC_RANDOM_STIFFNESS_H #include "materials/material_linear_elastic1.hh" #include "common/field.hh" #include "common/tensor_algebra.hh" #include namespace muSpectre { template class MaterialLinearElastic3; /** * traits for objective linear elasticity with eigenstrain */ template struct MaterialMuSpectre_traits> { //! global field collection using GFieldCollection_t = typename MaterialBase::GFieldCollection_t; //! expected map type for strain fields using StrainMap_t = MatrixFieldMap; //! expected map type for stress fields using StressMap_t = MatrixFieldMap; //! expected map type for tangent stiffness fields using TangentMap_t = T4MatrixFieldMap; //! declare what type of strain measure your law takes as input constexpr static auto strain_measure{StrainMeasure::GreenLagrange}; //! declare what type of stress measure your law yields as output constexpr static auto stress_measure{StressMeasure::PK2}; //! local field_collections used for internals using LFieldColl_t = LocalFieldCollection; //! local stiffness tensor type using LStiffnessMap_t = T4MatrixFieldMap; //! elasticity without internal variables using InternalVariables = std::tuple; }; /** * implements objective linear elasticity with an eigenstrain per pixel */ template class MaterialLinearElastic3: public MaterialMuSpectre, DimS, DimM> { public: //! base class using Parent = MaterialMuSpectre; /** * type used to determine whether the * `muSpectre::MaterialMuSpectre::iterable_proxy` evaluate only * stresses or also tangent stiffnesses */ using NeedTangent = typename Parent::NeedTangent; //! global field collection using Stiffness_t = Eigen::TensorFixedSize >; //! traits of this material using traits = MaterialMuSpectre_traits; //! Type of container used for storing eigenstrain using InternalVariables = typename traits::InternalVariables; //! Hooke's law implementation using Hooke = typename MatTB::Hooke; //! Default constructor MaterialLinearElastic3() = delete; //! Construct by name MaterialLinearElastic3(std::string name); //! Copy constructor MaterialLinearElastic3(const MaterialLinearElastic3 &other) = delete; //! Move constructor MaterialLinearElastic3(MaterialLinearElastic3 &&other) = delete; //! Destructor virtual ~MaterialLinearElastic3() = default; //! Copy assignment operator MaterialLinearElastic3& operator=(const MaterialLinearElastic3 &other) = delete; //! Move assignment operator MaterialLinearElastic3& operator=(MaterialLinearElastic3 &&other) = delete; /** * evaluates second Piola-Kirchhoff stress given the Green-Lagrange * strain (or Cauchy stress if called with a small strain tensor) * and the local stiffness tensor. */ template inline decltype(auto) evaluate_stress(s_t && E, stiffness_t && C); /** * evaluates both second Piola-Kirchhoff stress and stiffness given * the Green-Lagrange strain (or Cauchy stress and stiffness if * called with a small strain tensor) and the local stiffness tensor. */ template inline decltype(auto) evaluate_stress_tangent(s_t && E, stiffness_t && C); /** * return the empty internals tuple */ InternalVariables & get_internals() { return this->internal_variables;}; /** * overload add_pixel to write into loacal stiffness tensor */ void add_pixel(const Ccoord_t & pixel) override final; /** * overload add_pixel to write into local stiffness tensor */ void add_pixel(const Ccoord_t & pixel, const Real & Young, const Real & PoissonRatio); protected: //! storage for stiffness tensor using Field_t = TensorField, Real, fourthOrder, DimM>; Field_t & C_field; //!< field of stiffness tensors //! tuple for iterable eigen_field InternalVariables internal_variables; private: }; /* ---------------------------------------------------------------------- */ template template auto MaterialLinearElastic3:: evaluate_stress(s_t && E, stiffness_t && C) -> decltype(auto) { return Matrices::tensmult(C, E); } /* ---------------------------------------------------------------------- */ template template auto MaterialLinearElastic3:: evaluate_stress_tangent(s_t && E, stiffness_t && C) -> decltype(auto) { return std::make_tuple (evaluate_stress(E, C), C); } } // muSpectre #endif /* MATERIAL_LINEAR_ELASTIC_RANDOM_STIFFNESS_H */ diff --git a/src/materials/material_linear_elastic4.cc b/src/materials/material_linear_elastic4.cc index 13b5e4b..02769d8 100644 --- a/src/materials/material_linear_elastic4.cc +++ b/src/materials/material_linear_elastic4.cc @@ -1,72 +1,72 @@ /** * @file material_linear_elastic4.cc * * @author Richard Leute MaterialLinearElastic4:: MaterialLinearElastic4(std::string name) :Parent{name}, lambda_field{make_field("local first Lame constant", this->internal_fields)}, mu_field{make_field("local second Lame constant(shear modulus)", this->internal_fields)}, internal_variables{lambda_field.get_const_map(), mu_field.get_const_map()} {} /* ---------------------------------------------------------------------- */ template void MaterialLinearElastic4:: add_pixel(const Ccoord_t & /*pixel*/) { throw std::runtime_error ("this material needs pixels with Youngs modulus and Poisson ratio."); } /* ---------------------------------------------------------------------- */ template void MaterialLinearElastic4:: add_pixel(const Ccoord_t & pixel, const Real & Young_modulus, const Real & Poisson_ratio) { this->internal_fields.add_pixel(pixel); // store the first(lambda) and second(mu) Lame constant in the field Real lambda = Hooke::compute_lambda(Young_modulus, Poisson_ratio); Real mu = Hooke::compute_mu(Young_modulus, Poisson_ratio); this->lambda_field.push_back(lambda); this->mu_field.push_back(mu); } template class MaterialLinearElastic4; template class MaterialLinearElastic4; template class MaterialLinearElastic4; } // muSpectre diff --git a/src/materials/material_linear_elastic4.hh b/src/materials/material_linear_elastic4.hh index a5aee8b..b4ee68a 100644 --- a/src/materials/material_linear_elastic4.hh +++ b/src/materials/material_linear_elastic4.hh @@ -1,208 +1,208 @@ /** * @file material_linear_elastic4.hh * * @author Richard Leute * * @date 15 March 2018 * * @brief linear elastic material with distribution of stiffness properties. * In difference to material_linear_elastic3 two Lame constants are * stored per pixel instead of the whole elastic matrix C. * Uses the MaterialMuSpectre facilities to keep it simple. * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef MATERIAL_LINEAR_ELASTIC_RANDOM_STIFFNESS_2_H #define MATERIAL_LINEAR_ELASTIC_RANDOM_STIFFNESS_2_H #include "materials/material_linear_elastic1.hh" #include "common/field.hh" #include "common/tensor_algebra.hh" #include namespace muSpectre { template class MaterialLinearElastic4; /** * traits for objective linear elasticity with eigenstrain */ template struct MaterialMuSpectre_traits> { //! global field collection using GFieldCollection_t = typename MaterialBase::GFieldCollection_t; //! expected map type for strain fields using StrainMap_t = MatrixFieldMap; //! expected map type for stress fields using StressMap_t = MatrixFieldMap; //! expected map type for tangent stiffness fields using TangentMap_t = T4MatrixFieldMap; //! declare what type of strain measure your law takes as input constexpr static auto strain_measure{StrainMeasure::GreenLagrange}; //! declare what type of stress measure your law yields as output constexpr static auto stress_measure{StressMeasure::PK2}; //! local field_collections used for internals using LFieldColl_t = LocalFieldCollection; //! local Lame constant type using LLameConstantMap_t = ScalarFieldMap; //! elasticity without internal variables using InternalVariables = std::tuple; }; /** * implements objective linear elasticity with an eigenstrain per pixel */ template class MaterialLinearElastic4: public MaterialMuSpectre, DimS, DimM> { public: //! base class using Parent = MaterialMuSpectre; /** * type used to determine whether the * `muSpectre::MaterialMuSpectre::iterable_proxy` evaluate only * stresses or also tangent stiffnesses */ using NeedTangent = typename Parent::NeedTangent; //! global field collection using Stiffness_t = Eigen::TensorFixedSize >; //! traits of this material using traits = MaterialMuSpectre_traits; //! Type of container used for storing eigenstrain using InternalVariables = typename traits::InternalVariables; //! Hooke's law implementation using Hooke = typename MatTB::Hooke; //! Default constructor MaterialLinearElastic4() = delete; //! Construct by name MaterialLinearElastic4(std::string name); //! Copy constructor MaterialLinearElastic4(const MaterialLinearElastic4 &other) = delete; //! Move constructor MaterialLinearElastic4(MaterialLinearElastic4 &&other) = delete; //! Destructor virtual ~MaterialLinearElastic4() = default; //! Copy assignment operator MaterialLinearElastic4& operator=(const MaterialLinearElastic4 &other) = delete; //! Move assignment operator MaterialLinearElastic4& operator=(MaterialLinearElastic4 &&other) = delete; /** * evaluates second Piola-Kirchhoff stress given the Green-Lagrange * strain (or Cauchy stress if called with a small strain tensor), the first * Lame constant (lambda) and the second Lame constant (shear modulus/mu). */ template inline decltype(auto) evaluate_stress(s_t && E, const Real & lambda, const Real & mu); /** * evaluates both second Piola-Kirchhoff stress and stiffness given * the Green-Lagrange strain (or Cauchy stress and stiffness if * called with a small strain tensor), the first Lame constant (lambda) and * the second Lame constant (shear modulus/mu). */ template inline decltype(auto) evaluate_stress_tangent(s_t && E, const Real & lambda, const Real & mu); /** * return the empty internals tuple */ InternalVariables & get_internals() { return this->internal_variables;}; /** * overload add_pixel to write into loacal stiffness tensor */ void add_pixel(const Ccoord_t & pixel) override final; /** * overload add_pixel to write into local stiffness tensor */ void add_pixel(const Ccoord_t & pixel, const Real & Poisson_ratio, const Real & Youngs_modulus); protected: //! storage for first Lame constant 'lambda' //! and second Lame constant(shear modulus) 'mu' using Field_t = MatrixField, Real, oneD, oneD>; Field_t & lambda_field; Field_t & mu_field; //! tuple for iterable eigen_field InternalVariables internal_variables; private: }; /* ---------------------------------------------------------------------- */ template template auto MaterialLinearElastic4:: evaluate_stress(s_t && E, const Real & lambda, const Real & mu) -> decltype(auto) { auto C = Hooke::compute_C_T4(lambda, mu); return Matrices::tensmult(C, E); } /* ---------------------------------------------------------------------- */ template template auto MaterialLinearElastic4:: evaluate_stress_tangent(s_t && E, const Real & lambda, const Real & mu) -> decltype(auto) { auto C = Hooke::compute_C_T4(lambda, mu); return std::make_tuple(Matrices::tensmult(C, E), C); } } // muSpectre #endif /* MATERIAL_LINEAR_ELASTIC_RANDOM_STIFFNESS_2_H */ diff --git a/src/materials/material_linear_elastic_generic.cc b/src/materials/material_linear_elastic_generic.cc index 85df8a5..f75b3c4 100644 --- a/src/materials/material_linear_elastic_generic.cc +++ b/src/materials/material_linear_elastic_generic.cc @@ -1,67 +1,67 @@ /** * @file material_linear_elastic_generic.cc * * @author Till Junge * * @date 21 Sep 2018 * * @brief implementation for MaterialLinearElasticGeneric * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "materials/material_linear_elastic_generic.hh" #include "common/voigt_conversion.hh" namespace muSpectre { /* ---------------------------------------------------------------------- */ template MaterialLinearElasticGeneric:: MaterialLinearElasticGeneric(const std::string & name, const CInput_t& C_voigt): Parent{name} { using VC_t = VoigtConversion; constexpr Dim_t VSize{vsize(DimM)}; if (not (C_voigt.rows() == VSize) or not (C_voigt.cols() == VSize)) { std::stringstream err_str{}; err_str << "The stiffness tensor should be input as a " << VSize << " × " << VSize << " Matrix in Voigt notation. You supplied" << " a " << C_voigt.rows() << " × " << C_voigt.cols() << " matrix"; } for (int i{0}; i < DimM; ++i) { for (int j{0}; j < DimM; ++j) { for (int k{0}; k < DimM; ++k) { for (int l{0}; l < DimM; ++l) { get(this->C, i,j,k,l) = C_voigt(VC_t::sym_mat(i,j), VC_t::sym_mat(k,l)); } } } } } template class MaterialLinearElasticGeneric; template class MaterialLinearElasticGeneric; template class MaterialLinearElasticGeneric; } // muSpectre diff --git a/src/materials/material_linear_elastic_generic.hh b/src/materials/material_linear_elastic_generic.hh index 3e18ef0..bdc8077 100644 --- a/src/materials/material_linear_elastic_generic.hh +++ b/src/materials/material_linear_elastic_generic.hh @@ -1,184 +1,184 @@ /** * @file material_linear_elastic_generic.hh * * @author Till Junge * * @date 21 Sep 2018 * * @brief Implementation fo a generic linear elastic material that * stores the full elastic stiffness tensor. Convenient but not the * most efficient * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef MATERIAL_LINEAR_ELASTIC_GENERIC_H #define MATERIAL_LINEAR_ELASTIC_GENERIC_H #include "common/common.hh" #include "common/T4_map_proxy.hh" #include "materials/material_muSpectre_base.hh" #include "common/tensor_algebra.hh" namespace muSpectre { /** * forward declaration */ template class MaterialLinearElasticGeneric; /** * traits for use by MaterialMuSpectre for crtp */ template struct MaterialMuSpectre_traits> { //! global field collection using GFieldCollection_t = typename MaterialBase::GFieldCollection_t; //! expected map type for strain fields using StrainMap_t = MatrixFieldMap; //! expected map type for stress fields using StressMap_t = MatrixFieldMap; //! expected map type for tangent stiffness fields using TangentMap_t = T4MatrixFieldMap; //! declare what type of strain measure your law takes as input constexpr static auto strain_measure{StrainMeasure::GreenLagrange}; //! declare what type of stress measure your law yields as output constexpr static auto stress_measure{StressMeasure::PK2}; //! elasticity without internal variables using InternalVariables = std::tuple<>; }; /** * Linear elastic law defined by a full stiffness tensor. Very * generic, but not most efficient */ template class MaterialLinearElasticGeneric: public MaterialMuSpectre< MaterialLinearElasticGeneric, DimS, DimM> { public: //! parent type using Parent = MaterialMuSpectre< MaterialLinearElasticGeneric, DimS, DimM>; //! generic input tolerant to python input using CInput_t = Eigen::Ref , 0, Eigen::Stride>; //! Default constructor MaterialLinearElasticGeneric() = delete; /** * Constructor by name and stiffness tensor. * * @param name unique material name * @param C_voigt elastic tensor in Voigt notation */ MaterialLinearElasticGeneric(const std::string & name, const CInput_t& C_voigt); //! Copy constructor MaterialLinearElasticGeneric(const MaterialLinearElasticGeneric &other) = delete; //! Move constructor MaterialLinearElasticGeneric(MaterialLinearElasticGeneric &&other) = delete; //! Destructor virtual ~MaterialLinearElasticGeneric() = default; //! Copy assignment operator MaterialLinearElasticGeneric& operator=(const MaterialLinearElasticGeneric &other) = delete; //! Move assignment operator MaterialLinearElasticGeneric& operator=(MaterialLinearElasticGeneric &&other) = delete; //! see http://eigen.tuxfamily.org/dox/group__TopicStructHavingEigenMembers.html EIGEN_MAKE_ALIGNED_OPERATOR_NEW; /** * evaluates second Piola-Kirchhoff stress given the Green-Lagrange * strain (or Cauchy stress if called with a small strain tensor) */ template inline decltype(auto) evaluate_stress(const Eigen::MatrixBase & E); /** * evaluates both second Piola-Kirchhoff stress and stiffness given * the Green-Lagrange strain (or Cauchy stress and stiffness if * called with a small strain tensor) */ template inline decltype(auto) evaluate_stress_tangent(s_t && E); /** * return the empty internals tuple */ std::tuple<> & get_internals() { return this->internal_variables;}; /** * return a reference to teh stiffness tensor */ const T4Mat& get_C() const {return this->C;} protected: T4Mat C{}; //! empty tuple std::tuple<> internal_variables{}; private: }; /* ---------------------------------------------------------------------- */ template template auto MaterialLinearElasticGeneric:: evaluate_stress(const Eigen::MatrixBase & E) -> decltype(auto) { static_assert(Derived::ColsAtCompileTime == DimM, "wrong input size"); static_assert(Derived::RowsAtCompileTime == DimM, "wrong input size"); return Matrices::tensmult(this->C, E); } /* ---------------------------------------------------------------------- */ template template auto MaterialLinearElasticGeneric::evaluate_stress_tangent(s_t && E) -> decltype(auto) { using Stress_t = decltype(this->evaluate_stress(std::forward(E))); using Stiffness_t = Eigen::Map>; using Ret_t = std::tuple; return Ret_t{this->evaluate_stress(std::forward(E)), Stiffness_t(this->C.data())}; } } // muSpectre #endif /* MATERIAL_LINEAR_ELASTIC_GENERIC_H */ diff --git a/src/materials/material_muSpectre_base.hh b/src/materials/material_muSpectre_base.hh index 9fb5bea..99e29f0 100644 --- a/src/materials/material_muSpectre_base.hh +++ b/src/materials/material_muSpectre_base.hh @@ -1,718 +1,718 @@ /** * @file material_muSpectre_base.hh * * @author Till Junge * * @date 25 Oct 2017 * * @brief Base class for materials written for µSpectre specifically. These * can take full advantage of the configuration-change utilities of * µSpectre. The user can inherit from them to define new constitutive * laws and is merely required to provide the methods for computing the * second Piola-Kirchhoff stress and Tangent. This class uses the * "curiously recurring template parameter" to avoid virtual calls. * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef MATERIAL_MUSPECTRE_BASE_H #define MATERIAL_MUSPECTRE_BASE_H #include "common/common.hh" #include "materials/material_base.hh" #include "materials/materials_toolbox.hh" #include "common/field_collection.hh" #include "common/field.hh" #include "common//utilities.hh" #include #include #include #include namespace muSpectre { // Forward declaration for factory function template class CellBase; /** * material traits are used by `muSpectre::MaterialMuSpectre` to * break the circular dependence created by the curiously recurring * template parameter. These traits must define * - these `muSpectre::FieldMap`s: * - `StrainMap_t`: typically a `muSpectre::MatrixFieldMap` for a * constant second-order `muSpectre::TensorField` * - `StressMap_t`: typically a `muSpectre::MatrixFieldMap` for a * writable secord-order `muSpectre::TensorField` * - `TangentMap_t`: typically a `muSpectre::T4MatrixFieldMap` for a * writable fourth-order `muSpectre::TensorField` * - `strain_measure`: the expected strain type (will be replaced by the * small-strain tensor ε * `muspectre::StrainMeasure::Infinitesimal` in small * strain computations) * - `stress_measure`: the measure of the returned stress. Is used by * `muspectre::MaterialMuSpectre` to transform it into * Cauchy stress (`muspectre::StressMeasure::Cauchy`) in * small-strain computations and into first * Piola-Kirchhoff stress `muspectre::StressMeasure::PK1` * in finite-strain computations * - `InternalVariables`: a tuple of `muSpectre::FieldMap`s containing * internal variables */ template struct MaterialMuSpectre_traits { }; template class MaterialMuSpectre; /** * Base class for most convenient implementation of materials */ template class MaterialMuSpectre: public MaterialBase { public: /** * type used to determine whether the * `muSpectre::MaterialMuSpectre::iterable_proxy` evaluate only * stresses or also tangent stiffnesses */ using NeedTangent = MatTB::NeedTangent; using Parent = MaterialBase; //!< base class //! global field collection using GFieldCollection_t = typename Parent::GFieldCollection_t; //! expected type for stress fields using StressField_t = typename Parent::StressField_t; //! expected type for strain fields using StrainField_t = typename Parent::StrainField_t; //! expected type for tangent stiffness fields using TangentField_t = typename Parent::TangentField_t; //! traits for the CRTP subclass using traits = MaterialMuSpectre_traits; //! Default constructor MaterialMuSpectre() = delete; //! Construct by name MaterialMuSpectre(std::string name); //! Copy constructor MaterialMuSpectre(const MaterialMuSpectre &other) = delete; //! Move constructor MaterialMuSpectre(MaterialMuSpectre &&other) = delete; //! Destructor virtual ~MaterialMuSpectre() = default; //! Factory template static Material & make(CellBase & cell, ConstructorArgs &&... args); //! Copy assignment operator MaterialMuSpectre& operator=(const MaterialMuSpectre &other) = delete; //! Move assignment operator MaterialMuSpectre& operator=(MaterialMuSpectre &&other) = delete; //! allocate memory, etc virtual void initialise() override; using Parent::compute_stresses; using Parent::compute_stresses_tangent; //! computes stress virtual void compute_stresses(const StrainField_t & F, StressField_t & P, Formulation form) override final; //! computes stress and tangent modulus virtual void compute_stresses_tangent(const StrainField_t & F, StressField_t & P, TangentField_t & K, Formulation form) override final; protected: //! computes stress with the formulation available at compile time //! __attribute__ required by g++-6 and g++-7 because of this bug: //! https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80947 template inline void compute_stresses_worker(const StrainField_t & F, StressField_t & P) __attribute__ ((visibility ("default"))); //! computes stress with the formulation available at compile time //! __attribute__ required by g++-6 and g++-7 because of this bug: //! https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80947 template inline void compute_stresses_worker(const StrainField_t & F, StressField_t & P, TangentField_t & K) __attribute__ ((visibility ("default"))); //! this iterable class is a default for simple laws that just take a strain //! the iterable is just a templated wrapper to provide a range to iterate over //! that does or does not include tangent moduli template class iterable_proxy; /** * inheriting classes with internal variables need to overload this function */ typename traits::InternalVariables& get_internals() { return static_cast(*this).get_internals();} bool is_initialised{false}; //!< to handle double initialisation right private: }; /* ---------------------------------------------------------------------- */ template MaterialMuSpectre:: MaterialMuSpectre(std::string name) :Parent(name) { using stress_compatible = typename traits::StressMap_t:: template is_compatible; using strain_compatible = typename traits::StrainMap_t:: template is_compatible; using tangent_compatible = typename traits::TangentMap_t:: template is_compatible; static_assert((stress_compatible::value && stress_compatible::explain()), "The material's declared stress map is not compatible " "with the stress field. More info in previously shown " "assert."); static_assert((strain_compatible::value && strain_compatible::explain()), "The material's declared strain map is not compatible " "with the strain field. More info in previously shown " "assert."); static_assert((tangent_compatible::value && tangent_compatible::explain()), "The material's declared tangent map is not compatible " "with the tangent field. More info in previously shown " "assert."); } /* ---------------------------------------------------------------------- */ template template Material & MaterialMuSpectre:: make(CellBase & cell, ConstructorArgs && ... args) { auto mat = std::make_unique(args...); auto & mat_ref = *mat; cell.add_material(std::move(mat)); return mat_ref; } /* ---------------------------------------------------------------------- */ template void MaterialMuSpectre:: initialise() { if (!this->is_initialised) { this->internal_fields.initialise(); this->is_initialised = true; } } /* ---------------------------------------------------------------------- */ template void MaterialMuSpectre:: compute_stresses(const StrainField_t &F, StressField_t &P, Formulation form) { switch (form) { case Formulation::finite_strain: { this->template compute_stresses_worker(F, P); break; } case Formulation::small_strain: { this->template compute_stresses_worker(F, P); break; } default: throw std::runtime_error("Unknown formulation"); break; } } /* ---------------------------------------------------------------------- */ template void MaterialMuSpectre:: compute_stresses_tangent(const StrainField_t & F, StressField_t & P, TangentField_t & K, Formulation form) { switch (form) { case Formulation::finite_strain: { this->template compute_stresses_worker(F, P, K); break; } case Formulation::small_strain: { this->template compute_stresses_worker(F, P, K); break; } default: throw std::runtime_error("Unknown formulation"); break; } } /* ---------------------------------------------------------------------- */ template template void MaterialMuSpectre:: compute_stresses_worker(const StrainField_t & F, StressField_t & P, TangentField_t & K){ /* These lambdas are executed for every integration point. F contains the transformation gradient for finite strain calculations and the infinitesimal strain tensor in small strain problems The internal_variables tuple contains whatever internal variables Material declared (e.g., eigenstrain, strain rate, etc.) */ using Strains_t = std::tuple; using Stresses_t = std::tuple; auto constitutive_law_small_strain = [this] (Strains_t Strains, Stresses_t Stresses, auto && internal_variables) { constexpr StrainMeasure stored_strain_m{get_stored_strain_type(Form)}; constexpr StrainMeasure expected_strain_m{ get_formulation_strain_type(Form, traits::strain_measure)}; auto & this_mat = static_cast(*this); // Transformation gradient is first in the strains tuple auto & F = std::get<0>(Strains); auto && strain = MatTB::convert_strain(F); // return value contains a tuple of rvalue_refs to both stress and tangent moduli Stresses = apply([&strain, &this_mat] (auto && ... internals) { return this_mat.evaluate_stress_tangent(std::move(strain), internals...);}, internal_variables); }; auto constitutive_law_finite_strain = [this] (Strains_t Strains, Stresses_t Stresses, auto && internal_variables) { constexpr StrainMeasure stored_strain_m{get_stored_strain_type(Form)}; constexpr StrainMeasure expected_strain_m{ get_formulation_strain_type(Form, traits::strain_measure)}; auto & this_mat = static_cast(*this); // Transformation gradient is first in the strains tuple auto & grad = std::get<0>(Strains); auto && strain = MatTB::convert_strain(grad); // TODO: Figure this out: I can't std::move(internals...), // because if there are no internals, compilation fails with "no // matching function for call to ‘move()’'. These are tuples of // lvalue references, so it shouldn't be too bad, but still // irksome. // return value contains a tuple of rvalue_refs to both stress // and tangent moduli auto stress_tgt = apply([&strain, &this_mat] (auto && ... internals) { return this_mat.evaluate_stress_tangent(std::move(strain), internals...);}, internal_variables); auto & stress = std::get<0>(stress_tgt); auto & tangent = std::get<1>(stress_tgt); Stresses = MatTB::PK1_stress (std::move(grad), std::move(stress), std::move(tangent)); }; iterable_proxy fields{*this, F, P, K}; for (auto && arglist: fields) { /** * arglist is a tuple of three tuples containing only Lvalue * references (see value_tye in the class definition of * iterable_proxy::iterator). Tuples contain strains, stresses * and internal variables, respectively, */ //auto && stress_tgt = std::get<0>(tuples); //auto && inputs = std::get<1>(tuples);TODO:clean this static_assert(std::is_same(std::get<0>(arglist)))>>::value, "Type mismatch for strain reference, check iterator " "value_type"); static_assert(std::is_same(std::get<1>(arglist)))>>::value, "Type mismatch for stress reference, check iterator" "value_type"); static_assert(std::is_same(std::get<1>(arglist)))>>::value, "Type mismatch for tangent reference, check iterator" "value_type"); switch (Form) { case Formulation::small_strain: { apply(constitutive_law_small_strain, std::move(arglist)); break; } case Formulation::finite_strain: { apply(constitutive_law_finite_strain, std::move(arglist)); break; } } } } /* ---------------------------------------------------------------------- */ template template void MaterialMuSpectre:: compute_stresses_worker(const StrainField_t & F, StressField_t & P){ /* These lambdas are executed for every integration point. F contains the transformation gradient for finite strain calculations and the infinitesimal strain tensor in small strain problems The internal_variables tuple contains whatever internal variables Material declared (e.g., eigenstrain, strain rate, etc.) */ using Strains_t = std::tuple; using Stresses_t = std::tuple; auto constitutive_law_small_strain = [this] (Strains_t Strains, Stresses_t Stresses, auto && internal_variables) { constexpr StrainMeasure stored_strain_m{get_stored_strain_type(Form)}; constexpr StrainMeasure expected_strain_m{ get_formulation_strain_type(Form, traits::strain_measure)}; auto & this_mat = static_cast(*this); // Transformation gradient is first in the strains tuple auto & F = std::get<0>(Strains); auto && strain = MatTB::convert_strain(F); // return value contains a tuple of rvalue_refs to both stress and tangent moduli auto & sigma = std::get<0>(Stresses); sigma = apply([&strain, &this_mat] (auto && ... internals) { return this_mat.evaluate_stress(std::move(strain), internals...);}, internal_variables); }; auto constitutive_law_finite_strain = [this] (Strains_t Strains, Stresses_t && Stresses, auto && internal_variables) { constexpr StrainMeasure stored_strain_m{get_stored_strain_type(Form)}; constexpr StrainMeasure expected_strain_m{ get_formulation_strain_type(Form, traits::strain_measure)}; auto & this_mat = static_cast(*this); // Transformation gradient is first in the strains tuple auto & F = std::get<0>(Strains); auto && strain = MatTB::convert_strain(F); // TODO: Figure this out: I can't std::move(internals...), // because if there are no internals, compilation fails with "no // matching function for call to ‘move()’'. These are tuples of // lvalue references, so it shouldn't be too bad, but still // irksome. // return value contains a tuple of rvalue_refs to both stress // and tangent moduli auto && stress = apply([&strain, &this_mat] (auto && ... internals) { return this_mat.evaluate_stress(std::move(strain), internals...);}, internal_variables); auto & P = get<0>(Stresses); P = MatTB::PK1_stress (F, stress); }; iterable_proxy fields{*this, F, P}; for (auto && arglist: fields) { /** * arglist is a tuple of three tuples containing only Lvalue * references (see value_tye in the class definition of * iterable_proxy::iterator). Tuples contain strains, stresses * and internal variables, respectively, */ //auto && stress_tgt = std::get<0>(tuples); //auto && inputs = std::get<1>(tuples);TODO:clean this static_assert(std::is_same(std::get<0>(arglist)))>>::value, "Type mismatch for strain reference, check iterator " "value_type"); static_assert(std::is_same(std::get<1>(arglist)))>>::value, "Type mismatch for stress reference, check iterator" "value_type"); switch (Form) { case Formulation::small_strain: { apply(constitutive_law_small_strain, std::move(arglist)); break; } case Formulation::finite_strain: { apply(constitutive_law_finite_strain, std::move(arglist)); break; } } } } /* ---------------------------------------------------------------------- */ //! this iterator class is a default for simple laws that just take a strain template template class MaterialMuSpectre::iterable_proxy { public: //! Default constructor iterable_proxy() = delete; /** * type used to determine whether the * `muSpectre::MaterialMuSpectre::iterable_proxy` evaluate only * stresses or also tangent stiffnesses */ using NeedTangent = typename MaterialMuSpectre::NeedTangent; /** Iterator uses the material's internal variables field collection to iterate selectively over the global fields (such as the transformation gradient F and first Piola-Kirchhoff stress P. **/ template iterable_proxy(MaterialMuSpectre & mat, const StrainField_t & F, StressField_t & P, std::enable_if_t & K) :material{mat}, strain_field{F}, stress_tup{P,K}, internals{material.get_internals()}{}; /** Iterator uses the material's internal variables field collection to iterate selectively over the global fields (such as the transformation gradient F and first Piola-Kirchhoff stress P. **/ template iterable_proxy(MaterialMuSpectre & mat, const StrainField_t & F, std::enable_if_t & P) :material{mat}, strain_field{F}, stress_tup{P}, internals{material.get_internals()}{}; //! Expected type for strain fields using StrainMap_t = typename traits::StrainMap_t; //! Expected type for stress fields using StressMap_t = typename traits::StressMap_t; //! Expected type for tangent stiffness fields using TangentMap_t = typename traits::TangentMap_t; //! expected type for strain values using Strain_t = typename traits::StrainMap_t::reference; //! expected type for stress values using Stress_t = typename traits::StressMap_t::reference; //! expected type for tangent stiffness values using Tangent_t = typename traits::TangentMap_t::reference; //! tuple of intervnal variables, depends on the material using InternalVariables = typename traits::InternalVariables; //! tuple containing a stress and possibly a tangent stiffness field using StressFieldTup = std::conditional_t <(NeedTgt == NeedTangent::yes), std::tuple, std::tuple>; //! tuple containing a stress and possibly a tangent stiffness field map using StressMapTup = std::conditional_t <(NeedTgt == NeedTangent::yes), std::tuple, std::tuple>; //! tuple containing a stress and possibly a tangent stiffness value ref using Stress_tTup = std::conditional_t<(NeedTgt == NeedTangent::yes), std::tuple, std::tuple>; //! Copy constructor iterable_proxy(const iterable_proxy &other) = default; //! Move constructor iterable_proxy(iterable_proxy &&other) = default; //! Destructor virtual ~iterable_proxy() = default; //! Copy assignment operator iterable_proxy& operator=(const iterable_proxy &other) = default; //! Move assignment operator iterable_proxy& operator=(iterable_proxy &&other) = default; /** * dereferences into a tuple containing strains, and internal * variables, as well as maps to the stress and potentially * stiffness maps where to write the response of a pixel */ class iterator { public: //! type to refer to internal variables owned by a CRTP material using InternalReferences = MatTB::ReferenceTuple_t; //! return type to be unpacked per pixel my the constitutive law using value_type = std::tuple, Stress_tTup, InternalReferences>; using iterator_category = std::forward_iterator_tag; //!< stl conformance //! Default constructor iterator() = delete; /** Iterator uses the material's internal variables field collection to iterate selectively over the global fields (such as the transformation gradient F and first Piola-Kirchhoff stress P. **/ iterator(const iterable_proxy & it, bool begin = true) : it{it}, strain_map{it.strain_field}, stress_map {it.stress_tup}, index{begin ? 0:it.material.internal_fields.size()}{} //! Copy constructor iterator(const iterator &other) = default; //! Move constructor iterator(iterator &&other) = default; //! Destructor virtual ~iterator() = default; //! Copy assignment operator iterator& operator=(const iterator &other) = default; //! Move assignment operator iterator& operator=(iterator &&other) = default; //! pre-increment inline iterator & operator++(); //! dereference inline value_type operator*(); //! inequality inline bool operator!=(const iterator & other) const; protected: const iterable_proxy & it; //!< ref to the proxy StrainMap_t strain_map; //!< map onto the global strain field //! map onto the global stress field and possibly tangent stiffness StressMapTup stress_map; size_t index; //!< index or pixel currently referred to private: }; //! returns iterator to first pixel if this material iterator begin() {return std::move(iterator(*this));} //! returns iterator past the last pixel in this material iterator end() {return std::move(iterator(*this, false));} protected: MaterialMuSpectre & material; //!< reference to the proxied material const StrainField_t & strain_field; //!< cell's global strain field //! references to the global stress field and perhaps tangent stiffness StressFieldTup stress_tup; //! references to the internal variables InternalVariables & internals; private: }; /* ---------------------------------------------------------------------- */ template template bool MaterialMuSpectre::iterable_proxy::iterator:: operator!=(const iterator & other) const { return (this->index != other.index); } /* ---------------------------------------------------------------------- */ template template typename MaterialMuSpectre:: template iterable_proxy:: iterator & MaterialMuSpectre::iterable_proxy::iterator:: operator++() { this->index++; return *this; } /* ---------------------------------------------------------------------- */ template template typename MaterialMuSpectre:: template iterable_proxy::iterator:: value_type MaterialMuSpectre::iterable_proxy::iterator:: operator*() { const Ccoord_t pixel{ this->it.material.internal_fields.get_ccoord(this->index)}; auto && strain = std::make_tuple(this->strain_map[pixel]); auto && stresses = apply([&pixel] (auto && ... stress_tgt) { return std::make_tuple(stress_tgt[pixel]...);}, this->stress_map); auto && internal = this->it.material.get_internals(); const auto id{this->index}; auto && internals = apply([id] (auto && ... internals_) { return InternalReferences{internals_[id]...};}, internal); return std::make_tuple(std::move(strain), std::move(stresses), std::move(internals)); } } // muSpectre #endif /* MATERIAL_MUSPECTRE_BASE_H */ diff --git a/src/materials/materials_toolbox.hh b/src/materials/materials_toolbox.hh index 3e2bd83..56f614d 100644 --- a/src/materials/materials_toolbox.hh +++ b/src/materials/materials_toolbox.hh @@ -1,680 +1,680 @@ /** * @file materials_toolbox.hh * * @author Till Junge * * @date 02 Nov 2017 * * @brief collection of common continuum mechanics tools * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef MATERIALS_TOOLBOX_H #define MATERIALS_TOOLBOX_H #include "common/common.hh" #include "common/tensor_algebra.hh" #include "common/eigen_tools.hh" #include "common/T4_map_proxy.hh" #include #include #include #include #include #include #include namespace muSpectre { namespace MatTB { /** * thrown when generic materials-related runtime errors occur * (mostly continuum mechanics problems) */ class MaterialsToolboxError:public std::runtime_error{ public: //! constructor explicit MaterialsToolboxError(const std::string& what) :std::runtime_error(what){} //! constructor explicit MaterialsToolboxError(const char * what) :std::runtime_error(what){} }; /* ---------------------------------------------------------------------- */ /** * Flag used to designate whether the material should compute both stress * and tangent moduli or only stress */ enum class NeedTangent { yes, //!< compute both stress and tangent moduli no //!< compute only stress }; /** * struct used to determine the exact type of a tuple of references obtained * when a bunch of iterators over fiel_maps are dereferenced and their * results are concatenated into a tuple */ template struct ReferenceTuple { //! use this type using type = std::tuple; }; /** * specialisation for tuples */ //template <> template struct ReferenceTuple> { //! use this type using type = typename ReferenceTuple::type; }; /** * helper type for ReferenceTuple */ template using ReferenceTuple_t = typename ReferenceTuple::type; /* ---------------------------------------------------------------------- */ namespace internal { /** Structure for functions returning one strain measure as a * function of another **/ template struct ConvertStrain { static_assert((In == StrainMeasure::Gradient) || (In == StrainMeasure::Infinitesimal), "This situation makes me suspect that you are not using " "MatTb as intended. Disable this assert only if you are " "sure about what you are doing."); //! returns the converted strain template inline static decltype(auto) compute(Strain_t&& input) { // transparent case, in which no conversion is required: // just a perfect forwarding static_assert ((In == Out), "This particular strain conversion is not implemented"); return std::forward(input); } }; /* ---------------------------------------------------------------------- */ /** Specialisation for getting Green-Lagrange strain from the transformation gradient E = ¹/₂ (C - I) = ¹/₂ (Fᵀ·F - I) **/ template <> struct ConvertStrain { //! returns the converted strain template inline static decltype(auto) compute(Strain_t&& F) { return .5*(F.transpose()*F - Strain_t::PlainObject::Identity()); } }; /* ---------------------------------------------------------------------- */ /** Specialisation for getting Left Cauchy-Green strain from the transformation gradient B = F·Fᵀ = V² **/ template <> struct ConvertStrain { //! returns the converted strain template inline static decltype(auto) compute(Strain_t&& F) { return F*F.transpose(); } }; /* ---------------------------------------------------------------------- */ /** Specialisation for getting Right Cauchy-Green strain from the transformation gradient C = Fᵀ·F = U² **/ template <> struct ConvertStrain { //! returns the converted strain template inline static decltype(auto) compute(Strain_t&& F) { return F.transpose()*F; } }; /* ---------------------------------------------------------------------- */ /** Specialisation for getting logarithmic (Hencky) strain from the transformation gradient E₀ = ¹/₂ ln C = ¹/₂ ln (Fᵀ·F) **/ template <> struct ConvertStrain { //! returns the converted strain template inline static decltype(auto) compute(Strain_t&& F) { constexpr Dim_t dim{EigenCheck::tensor_dim::value}; return (.5*logm(Eigen::Matrix{F.transpose()*F})).eval(); } }; } // internal /* ---------------------------------------------------------------------- */ //! set of functions returning one strain measure as a function of //! another template decltype(auto) convert_strain(Strain_t && strain) { return internal::ConvertStrain::compute(std::move(strain)); }; /* ---------------------------------------------------------------------- */ namespace internal { /** Structure for functions returning PK1 stress from other stress measures **/ template struct PK1_stress { //! returns the converted stress template inline static decltype(auto) compute(Strain_t && /*strain*/, Stress_t && /*stress*/) { // the following test always fails to generate a compile-time error static_assert((StressM == StressMeasure::Cauchy) && (StressM == StressMeasure::PK1), "The requested Stress conversion is not implemented. " "You either made a programming mistake or need to " "implement it as a specialisation of this function. " "See PK2stress for an example."); } //! returns the converted stress and stiffness template inline static decltype(auto) compute(Strain_t && /*strain*/, Stress_t && /*stress*/, Tangent_t && /*stiffness*/) { // the following test always fails to generate a compile-time error static_assert((StressM == StressMeasure::Cauchy) && (StressM == StressMeasure::PK1), "The requested Stress conversion is not implemented. " "You either made a programming mistake or need to " "implement it as a specialisation of this function. " "See PK2stress for an example."); } }; /* ---------------------------------------------------------------------- */ /** Specialisation for the transparent case, where we already have PK1 stress **/ template struct PK1_stress: public PK1_stress { //! returns the converted stress template inline static decltype(auto) compute(Strain_t && /*dummy*/, Stress_t && P) { return std::forward(P); } }; /* ---------------------------------------------------------------------- */ /** Specialisation for the transparent case, where we already have PK1 stress *and* stiffness is given with respect to the transformation gradient **/ template struct PK1_stress: public PK1_stress { //! base class using Parent = PK1_stress; using Parent::compute; //! returns the converted stress and stiffness template inline static decltype(auto) compute(Strain_t && /*dummy*/, Stress_t && P, Tangent_t && K) { return std::make_tuple(std::forward(P), std::forward(K)); } }; /* ---------------------------------------------------------------------- */ /** * Specialisation for the case where we get material stress (PK2) */ template struct PK1_stress: public PK1_stress { //! returns the converted stress template inline static decltype(auto) compute(Strain_t && F, Stress_t && S) { return F*S; } }; /* ---------------------------------------------------------------------- */ /** * Specialisation for the case where we get material stress (PK2) derived * with respect to Green-Lagrange strain */ template struct PK1_stress: public PK1_stress { //! base class using Parent = PK1_stress; using Parent::compute; //! returns the converted stress and stiffness template inline static decltype(auto) compute(Strain_t && F, Stress_t && S, Tangent_t && C) { using T4 = typename std::remove_reference_t::PlainObject; using Tmap = T4MatMap; T4 K; Tmap Kmap{K.data()}; K.setZero(); for (int i = 0; i < Dim; ++i) { for (int m = 0; m < Dim; ++m) { for (int n = 0; n < Dim; ++n) { get(Kmap,i,m,i,n) += S(m,n); for (int j = 0; j < Dim; ++j) { for (int r = 0; r < Dim; ++r) { for (int s = 0; s < Dim; ++s) { get(Kmap,i,m,j,n) += F(i,r)*get(C,r,m,n,s)*(F(j,s)); } } } } } } auto && P = compute(std::forward(F), std::forward(S)); return std::make_tuple(std::move(P), std::move(K)); } }; /* ---------------------------------------------------------------------- */ /** * Specialisation for the case where we get Kirchhoff stress (τ) */ template struct PK1_stress: public PK1_stress { //! returns the converted stress template inline static decltype(auto) compute(Strain_t && F, Stress_t && tau) { return tau*F.inverse().transpose(); } }; /* ---------------------------------------------------------------------- */ /** * Specialisation for the case where we get Kirchhoff stress (τ) derived * with respect to Gradient */ template struct PK1_stress: public PK1_stress { //! short-hand using Parent = PK1_stress; using Parent::compute; //! returns the converted stress and stiffness template inline static decltype(auto) compute(Strain_t && F, Stress_t && tau, Tangent_t && C) { using T4 = typename std::remove_reference_t::PlainObject; using Tmap = T4MatMap; T4 K; Tmap Kmap{K.data()}; K.setZero(); auto && F_inv{F.inverse()}; for (int i = 0; i < Dim; ++i) { for (int m = 0; m < Dim; ++m) { for (int n = 0; n < Dim; ++n) { for (int j = 0; j < Dim; ++j) { for (int r = 0; r < Dim; ++r) { for (int s = 0; s < Dim; ++s) { get(Kmap,i,m,j,n) += F_inv(i,r)*get(C,r,m,n,s); } } } } } } auto && P = tau * F_inv.transpose(); return std::make_tuple(std::move(P), std::move(K)); } }; } // internal /* ---------------------------------------------------------------------- */ //! set of functions returning an expression for PK2 stress based on template decltype(auto) PK1_stress(Strain_t && strain, Stress_t && stress) { constexpr Dim_t dim{EigenCheck::tensor_dim::value}; static_assert((dim == EigenCheck::tensor_dim::value), "Stress and strain tensors have differing dimensions"); return internal::PK1_stress::compute (std::forward(strain), std::forward(stress)); }; /* ---------------------------------------------------------------------- */ //! set of functions returning an expression for PK2 stress based on template decltype(auto) PK1_stress(Strain_t && strain, Stress_t && stress, Tangent_t && tangent) { constexpr Dim_t dim{EigenCheck::tensor_dim::value}; static_assert((dim == EigenCheck::tensor_dim::value), "Stress and strain tensors have differing dimensions"); static_assert((dim == EigenCheck::tensor_4_dim::value), "Stress and tangent tensors have differing dimensions"); return internal::PK1_stress::compute (std::forward(strain), std::forward(stress), std::forward(tangent)); }; namespace internal { //! Base template for elastic modulus conversion template struct Converter { //! wrapped function (raison d'être) inline constexpr static Real compute(const Real& /*in1*/, const Real& /*in2*/) { // if no return has happened until now, the conversion is not // implemented yet static_assert((In1 == In2), "This conversion has not been implemented yet, please add " "it here below as a specialisation of this function " "template. Check " "https://en.wikipedia.org/wiki/Lam%C3%A9_parameters for " "// TODO: he formula."); return 0; } }; /** * Spectialisation for when the output is the first input */ template struct Converter { //! wrapped function (raison d'être) inline constexpr static Real compute(const Real & A, const Real & /*B*/) { return A; } }; /** * Spectialisation for when the output is the second input */ template struct Converter { //! wrapped function (raison d'être) inline constexpr static Real compute(const Real & /*A*/, const Real & B) { return B; } }; /** * Specialisation μ(E, ν) */ template <> struct Converter { //! wrapped function (raison d'être) inline constexpr static Real compute(const Real & E, const Real & nu) { return E/(2*(1+nu)); } }; /** * Specialisation λ(E, ν) */ template <> struct Converter { //! wrapped function (raison d'être) inline constexpr static Real compute(const Real & E, const Real & nu) { return E*nu/((1+nu)*(1-2*nu)); } }; /** * Specialisation K(E, ν) */ template <> struct Converter { //! wrapped function (raison d'être) inline constexpr static Real compute(const Real & E, const Real & nu) { return E/(3*(1-2*nu)); } }; /** * Specialisation E(K, µ) */ template <> struct Converter { //! wrapped function (raison d'être) inline constexpr static Real compute(const Real & K, const Real & G) { return 9*K*G/(3*K+G); } }; /** * Specialisation ν(K, µ) */ template <> struct Converter { //! wrapped function (raison d'être) inline constexpr static Real compute(const Real & K, const Real & G) { return (3*K - 2*G) /(2*(3*K + G)); } }; /** * Specialisation E(λ, µ) */ template <> struct Converter { //! wrapped function (raison d'être) inline constexpr static Real compute(const Real & lambda, const Real & G) { return G * (3*lambda + 2*G)/(lambda + G); } }; } // internal /** * allows the conversion from any two distinct input moduli to a * chosen output modulus */ template inline constexpr Real convert_elastic_modulus(const Real& in1, const Real& in2) { // enforcing sanity static_assert((In1 != In2), "The input modulus types cannot be identical"); // enforcing independence from order in which moduli are supplied constexpr bool inverted{In1 > In2}; using Converter = std::conditional_t, internal::Converter>; if (inverted) { return Converter::compute(std::move(in2), std::move(in1)); } else { return Converter::compute(std::move(in1), std::move(in2)); } } //! static inline implementation of Hooke's law template struct Hooke { /** * compute Lamé's first constant * @param young: Young's modulus * @param poisson: Poisson's ratio */ inline static constexpr Real compute_lambda(const Real & young, const Real & poisson) { return convert_elastic_modulus(young, poisson); } /** * compute Lamé's second constant (i.e., shear modulus) * @param young: Young's modulus * @param poisson: Poisson's ratio */ inline static constexpr Real compute_mu(const Real & young, const Real & poisson) { return convert_elastic_modulus(young, poisson); } /** * compute the bulk modulus * @param young: Young's modulus * @param poisson: Poisson's ratio */ inline static constexpr Real compute_K(const Real & young, const Real & poisson) { return convert_elastic_modulus(young, poisson); } /** * compute the stiffness tensor * @param lambda: Lamé's first constant * @param mu: Lamé's second constant (i.e., shear modulus) */ inline static Eigen::TensorFixedSize> compute_C(const Real & lambda, const Real & mu) { return lambda*Tensors::outer(Tensors::I2(),Tensors::I2()) + 2*mu*Tensors::I4S(); } /** * compute the stiffness tensor * @param lambda: Lamé's first constant * @param mu: Lamé's second constant (i.e., shear modulus) */ inline static T4Mat compute_C_T4(const Real & lambda, const Real & mu) { return lambda*Matrices::Itrac() + 2*mu*Matrices::Isymm(); } /** * return stress * @param lambda: First Lamé's constant * @param mu: Second Lamé's constant (i.e. shear modulus) * @param E: Green-Lagrange or small strain tensor */ template inline static decltype(auto) evaluate_stress(const Real & lambda, const Real & mu, s_t && E) { return E.trace()*lambda * Strain_t::Identity() + 2*mu*E; } /** * return stress and tangent stiffness * @param lambda: First Lamé's constant * @param mu: Second Lamé's constant (i.e. shear modulus) * @param E: Green-Lagrange or small strain tensor * @param C: stiffness tensor (Piola-Kirchhoff 2 (or σ) w.r.t to `E`) */ template inline static decltype(auto) evaluate_stress(const Real & lambda, const Real & mu, Tangent_t && C, s_t && E) { return std::make_tuple (std::move(evaluate_stress(lambda, mu, std::move(E))), std::move(C)); } }; } // MatTB } // muSpectre #endif /* MATERIALS_TOOLBOX_H */ diff --git a/src/solver/CMakeLists.txt b/src/solver/CMakeLists.txt index 040d5f5..ff94325 100644 --- a/src/solver/CMakeLists.txt +++ b/src/solver/CMakeLists.txt @@ -1,42 +1,42 @@ # ============================================================================= # file CMakeLists.txt # # @author Till Junge # # @date 08 Jan 2018 # # @brief configuration for solvers # # @section LICENSE # # Copyright © 2018 Till Junge # # µSpectre is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3, or (at # your option) any later version. # # µSpectre is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License -# along with GNU Emacs; see the file COPYING. If not, write to the +# along with µSpectre; see the file COPYING. If not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # ============================================================================= set (solvers_SRC ${CMAKE_CURRENT_SOURCE_DIR}/solver_common.cc ${CMAKE_CURRENT_SOURCE_DIR}/deprecated_solver_base.cc ${CMAKE_CURRENT_SOURCE_DIR}/deprecated_solver_cg.cc ${CMAKE_CURRENT_SOURCE_DIR}/deprecated_solver_cg_eigen.cc ${CMAKE_CURRENT_SOURCE_DIR}/deprecated_solvers.cc ${CMAKE_CURRENT_SOURCE_DIR}/solver_base.cc ${CMAKE_CURRENT_SOURCE_DIR}/solvers.cc ${CMAKE_CURRENT_SOURCE_DIR}/solver_cg.cc ${CMAKE_CURRENT_SOURCE_DIR}/solver_eigen.cc ) target_sources(muSpectre PRIVATE ${solvers_SRC}) diff --git a/src/solver/deprecated_solver_base.cc b/src/solver/deprecated_solver_base.cc index bd7df31..ef9e33d 100644 --- a/src/solver/deprecated_solver_base.cc +++ b/src/solver/deprecated_solver_base.cc @@ -1,63 +1,63 @@ /** * @file deprecated_solver_base.cc * * @author Till Junge * * @date 18 Dec 2017 * * @brief definitions for solvers * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "solver/deprecated_solver_base.hh" #include "solver/deprecated_solver_cg.hh" #include "common/field.hh" #include "common/iterators.hh" #include #include namespace muSpectre { //----------------------------------------------------------------------------// template DeprecatedSolverBase::DeprecatedSolverBase(Cell_t & cell, Real tol, Uint maxiter, bool verbose ) : cell{cell}, tol{tol}, maxiter{maxiter}, verbose{verbose} {} /* ---------------------------------------------------------------------- */ template void DeprecatedSolverBase::reset_counter() { this->counter = 0; } /* ---------------------------------------------------------------------- */ template Uint DeprecatedSolverBase::get_counter() const { return this->counter; } template class DeprecatedSolverBase; //template class DeprecatedSolverBase; template class DeprecatedSolverBase; } // muSpectre diff --git a/src/solver/deprecated_solver_base.hh b/src/solver/deprecated_solver_base.hh index 94e3939..ecf841a 100644 --- a/src/solver/deprecated_solver_base.hh +++ b/src/solver/deprecated_solver_base.hh @@ -1,148 +1,148 @@ /** * @file deprecated_solver_base.hh * * @author Till Junge * * @date 18 Dec 2017 * * @brief Base class for solvers * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef DEPRECATED_SOLVER_BASE_H #define DEPRECATED_SOLVER_BASE_H #include "solver/solver_common.hh" #include "common/common.hh" #include "cell/cell_base.hh" #include "common/tensor_algebra.hh" #include #include namespace muSpectre { /* ---------------------------------------------------------------------- */ /** * Virtual base class for solvers. Any implementation of this interface can be used with the solver functions prototyped in solvers.hh */ template class DeprecatedSolverBase { public: /** * Enum to describe in what kind the solver relies tangent stiffnesses */ enum class TangentRequirement{NoNeed, NeedEffect, NeedTangents}; using Cell_t = CellBase; //!< Cell type using Ccoord = Ccoord_t; //!< cell coordinates type //! Field collection to store temporary fields in using Collection_t = GlobalFieldCollection; //! Input vector for solvers using SolvVectorIn = Eigen::Ref; //! Input vector for solvers using SolvVectorInC = Eigen::Ref; //! Output vector for solvers using SolvVectorOut = Eigen::VectorXd; //! Default constructor DeprecatedSolverBase() = delete; //! Constructor with domain resolutions DeprecatedSolverBase(Cell_t & cell, Real tol, Uint maxiter=0, bool verbose =false); //! Copy constructor DeprecatedSolverBase(const DeprecatedSolverBase &other) = delete; //! Move constructor DeprecatedSolverBase(DeprecatedSolverBase &&other) = default; //! Destructor virtual ~DeprecatedSolverBase() = default; //! Copy assignment operator DeprecatedSolverBase& operator=(const DeprecatedSolverBase &other) = delete; //! Move assignment operator DeprecatedSolverBase& operator=(DeprecatedSolverBase &&other) = default; //! Allocate fields used during the solution virtual void initialise() { this->collection.initialise(this->cell.get_subdomain_resolutions(), this->cell.get_subdomain_locations()); } //! determine whether this solver requires full tangent stiffnesses bool need_tangents() const { return (this->get_tangent_req() == TangentRequirement::NeedTangents);} //! determine whether this solver requires evaluation of directional tangent bool need_effect() const { return (this->get_tangent_req() == TangentRequirement::NeedEffect);} //! determine whether this solver has no need for tangents bool no_need_tangent() const { return (this->get_tangent_req() == TangentRequirement::NoNeed);} //! returns whether the solver has converged virtual bool has_converged() const = 0; //! reset the iteration counter to zero void reset_counter(); //! get the count of how many solve steps have been executed since //! construction of most recent counter reset Uint get_counter() const; //! executes the solver virtual SolvVectorOut solve(const SolvVectorInC rhs, SolvVectorIn x_0) = 0; //! return a reference to the cell Cell_t & get_cell() {return cell;} //! read the current maximum number of iterations setting Uint get_maxiter() const {return this->maxiter;} //! set the maximum number of iterations void set_maxiter(Uint val) {this->maxiter = val;} //! read the current tolerance setting Real get_tol() const {return this->tol;} //! set the torelance setting void set_tol(Real val) {this->tol = val;} //! returns the name of the solver virtual std::string name() const = 0; protected: //! returns the tangent requirements of this solver virtual TangentRequirement get_tangent_req() const = 0; Cell_t & cell; //!< reference to the cell Real tol; //!< convergence tolerance Uint maxiter;//!< maximum number of iterations bool verbose;//!< whether or not to write information to the std output Uint counter{0}; //!< iteration counter //! storage for internal fields to avoid reallocations between calls Collection_t collection{}; private: }; } // muSpectre #endif /* DEPRECATED_SOLVER_BASE_H */ diff --git a/src/solver/deprecated_solver_cg.cc b/src/solver/deprecated_solver_cg.cc index e71f4e6..f0fe536 100644 --- a/src/solver/deprecated_solver_cg.cc +++ b/src/solver/deprecated_solver_cg.cc @@ -1,129 +1,129 @@ /** * @file deprecated_solver_cg.cc * * @author Till Junge * * @date 20 Dec 2017 * * @brief Implementation of cg solver * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "solver/deprecated_solver_cg.hh" #include "solver/solver_common.hh" #include #include #include namespace muSpectre { /* ---------------------------------------------------------------------- */ template DeprecatedSolverCG::DeprecatedSolverCG(Cell_t& cell, Real tol, Uint maxiter, bool verbose) :Parent(cell, tol, maxiter, verbose), r_k{make_field("residual r_k", this->collection)}, p_k{make_field("search direction r_k", this->collection)}, Ap_k{make_field("Effect of tangent A*p_k", this->collection)} {} /* ---------------------------------------------------------------------- */ template void DeprecatedSolverCG::solve(const Field_t & rhs, Field_t & x_f) { x_f.eigenvec() = this->solve(rhs.eigenvec(), x_f.eigenvec()); }; //----------------------------------------------------------------------------// template typename DeprecatedSolverCG::SolvVectorOut DeprecatedSolverCG::solve(const SolvVectorInC rhs, SolvVectorIn x_0) { const Communicator & comm = this->cell.get_communicator(); // Following implementation of algorithm 5.2 in Nocedal's Numerical Optimization (p. 112) auto r = this->r_k.eigen(); auto p = this->p_k.eigen(); auto Ap = this->Ap_k.eigen(); typename Field_t::EigenMap_t x(x_0.data(), r.rows(), r.cols()); // initialisation of algo r = this->cell.directional_stiffness_with_copy(x); r -= typename Field_t::ConstEigenMap_t(rhs.data(), r.rows(), r.cols()); p = -r; this->converged = false; Real rdr = comm.sum((r*r).sum()); Real rhs_norm2 = comm.sum(rhs.squaredNorm()); Real tol2 = ipow(this->tol,2)*rhs_norm2; size_t count_width{}; // for output formatting in verbose case if (this->verbose) { count_width = size_t(std::log10(this->maxiter))+1; } for (Uint i = 0; i < this->maxiter && (rdr > tol2 || i == 0); ++i, ++this->counter) { Ap = this->cell.directional_stiffness_with_copy(p); Real alpha = rdr/comm.sum((p*Ap).sum()); x += alpha * p; r += alpha * Ap; Real new_rdr = comm.sum((r*r).sum()); Real beta = new_rdr/rdr; rdr = new_rdr; if (this->verbose && comm.rank() == 0) { std::cout << " at CG step " << std::setw(count_width) << i << ": |r|/|b| = " << std::setw(15) << std::sqrt(rdr/rhs_norm2) << ", cg_tol = " << this->tol << std::endl; } p = -r+beta*p; } if (rdr < tol2) { this->converged=true; } else { std::stringstream err {}; err << " After " << this->counter << " steps, the solver " << " FAILED with |r|/|b| = " << std::setw(15) << std::sqrt(rdr/rhs_norm2) << ", cg_tol = " << this->tol << std::endl; throw ConvergenceError("Conjugate gradient has not converged." + err.str()); } return x_0; } /* ---------------------------------------------------------------------- */ template typename DeprecatedSolverCG::Tg_req_t DeprecatedSolverCG::get_tangent_req() const { return tangent_requirement; } template class DeprecatedSolverCG; //template class DeprecatedSolverCG; template class DeprecatedSolverCG; } // muSpectre diff --git a/src/solver/deprecated_solver_cg.hh b/src/solver/deprecated_solver_cg.hh index 173f41b..cd184eb 100644 --- a/src/solver/deprecated_solver_cg.hh +++ b/src/solver/deprecated_solver_cg.hh @@ -1,114 +1,114 @@ /** * @file deprecated_solver_cg.hh * * @author Till Junge * * @date 20 Dec 2017 * * @brief class for a simple implementation of a conjugate gradient * solver. This follows algorithm 5.2 in Nocedal's Numerical * Optimization (p 112) * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef DEPRECATED_SOLVER_CG_H #define DEPRECATED_SOLVER_CG_H #include "solver/deprecated_solver_base.hh" #include "common/communicator.hh" #include "common/field.hh" #include namespace muSpectre { /** * implements the `muSpectre::DeprecatedSolverBase` interface using a * conjugate gradient solver. This particular class is useful for * trouble shooting, as it can be made very verbose, but for * production runs, it is probably better to use * `muSpectre::DeprecatedSolverCGEigen`. */ template class DeprecatedSolverCG: public DeprecatedSolverBase { public: using Parent = DeprecatedSolverBase; //!< base class //! Input vector for solvers using SolvVectorIn = typename Parent::SolvVectorIn; //! Input vector for solvers using SolvVectorInC = typename Parent::SolvVectorInC; //! Output vector for solvers using SolvVectorOut = typename Parent::SolvVectorOut; using Cell_t = typename Parent::Cell_t; //!< cell type using Ccoord = typename Parent::Ccoord; //!< cell coordinates type //! kind of tangent that is required using Tg_req_t = typename Parent::TangentRequirement; //! cg only needs to handle fields that look like strain and stress using Field_t = TensorField< typename Parent::Collection_t, Real, secondOrder, DimM>; //! conjugate gradient needs directional stiffness constexpr static Tg_req_t tangent_requirement{Tg_req_t::NeedEffect}; //! Default constructor DeprecatedSolverCG() = delete; //! Constructor with domain resolutions, etc, DeprecatedSolverCG(Cell_t& cell, Real tol, Uint maxiter=0, bool verbose=false); //! Copy constructor DeprecatedSolverCG(const DeprecatedSolverCG &other) = delete; //! Move constructor DeprecatedSolverCG(DeprecatedSolverCG &&other) = default; //! Destructor virtual ~DeprecatedSolverCG() = default; //! Copy assignment operator DeprecatedSolverCG& operator=(const DeprecatedSolverCG &other) = delete; //! Move assignment operator DeprecatedSolverCG& operator=(DeprecatedSolverCG &&other) = default; bool has_converged() const override final {return this->converged;} //! actual solver void solve(const Field_t & rhs, Field_t & x); // this simplistic implementation has no initialisation phase so the default is ok SolvVectorOut solve(const SolvVectorInC rhs, SolvVectorIn x_0) override final; std::string name() const override final {return "CG";} protected: //! returns `muSpectre::Tg_req_t::NeedEffect` Tg_req_t get_tangent_req() const override final; Field_t & r_k; //!< residual Field_t & p_k; //!< search direction Field_t & Ap_k; //!< effect of tangent on search direction bool converged{false}; //!< whether the solver has converged private: }; } // muSpectre #endif /* DEPRECATED_SOLVER_CG_H */ diff --git a/src/solver/deprecated_solver_cg_eigen.cc b/src/solver/deprecated_solver_cg_eigen.cc index 2d73b29..8d43643 100644 --- a/src/solver/deprecated_solver_cg_eigen.cc +++ b/src/solver/deprecated_solver_cg_eigen.cc @@ -1,110 +1,110 @@ /** * @file deprecated_solver_cg_eigen.cc * * @author Till Junge * * @date 19 Jan 2018 * * @brief implementation for binding to Eigen's conjugate gradient solver * * Copyright (C) 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "deprecated_solver_cg_eigen.hh" #include #include namespace muSpectre { //----------------------------------------------------------------------------// template DeprecatedSolverEigen::DeprecatedSolverEigen(Cell_t& cell, Real tol, Uint maxiter, bool verbose) :Parent(cell, tol, maxiter, verbose), adaptor{cell.get_adaptor()}, solver{} {} //----------------------------------------------------------------------------// template void DeprecatedSolverEigen::initialise() { this->solver.setTolerance(this->tol); this->solver.setMaxIterations(this->maxiter); this->solver.compute(this->adaptor); } //----------------------------------------------------------------------------// template typename DeprecatedSolverEigen::SolvVectorOut DeprecatedSolverEigen::solve(const SolvVectorInC rhs, SolvVectorIn x_0) { auto & this_solver = static_cast (*this); SolvVectorOut retval = this->solver.solveWithGuess(rhs, x_0); this->counter += this->solver.iterations(); if (this->solver.info() != Eigen::Success) { std::stringstream err {}; err << this_solver.name() << " has not converged," << " After " << this->solver.iterations() << " steps, the solver " << " FAILED with |r|/|b| = " << std::setw(15) << this->solver.error() << ", cg_tol = " << this->tol << std::endl; throw ConvergenceError(err.str()); } if (this->verbose) { std::cout << " After " << this->solver.iterations() << " " << this_solver.name() << " steps, |r|/|b| = " << std::setw(15) << this->solver.error() << ", cg_tol = " << this->tol << std::endl; } return retval; } /* ---------------------------------------------------------------------- */ template typename DeprecatedSolverEigen::Tg_req_t DeprecatedSolverEigen::get_tangent_req() const { return tangent_requirement; } template class DeprecatedSolverEigen, twoD, twoD>; template class DeprecatedSolverEigen, threeD, threeD>; template class DeprecatedSolverCGEigen; template class DeprecatedSolverCGEigen; template class DeprecatedSolverEigen, twoD, twoD>; template class DeprecatedSolverEigen, threeD, threeD>; template class DeprecatedSolverGMRESEigen; template class DeprecatedSolverGMRESEigen; template class DeprecatedSolverEigen, twoD, twoD>; template class DeprecatedSolverEigen, threeD, threeD>; template class DeprecatedSolverBiCGSTABEigen; template class DeprecatedSolverBiCGSTABEigen; template class DeprecatedSolverEigen, twoD, twoD>; template class DeprecatedSolverEigen, threeD, threeD>; template class DeprecatedSolverDGMRESEigen; template class DeprecatedSolverDGMRESEigen; template class DeprecatedSolverEigen, twoD, twoD>; template class DeprecatedSolverEigen, threeD, threeD>; template class DeprecatedSolverMINRESEigen; template class DeprecatedSolverMINRESEigen; } // muSpectre diff --git a/src/solver/deprecated_solver_cg_eigen.hh b/src/solver/deprecated_solver_cg_eigen.hh index fb4374b..bc42edb 100644 --- a/src/solver/deprecated_solver_cg_eigen.hh +++ b/src/solver/deprecated_solver_cg_eigen.hh @@ -1,242 +1,242 @@ /** * @file deprecated_solver_cg_eigen.hh * * @author Till Junge * * @date 19 Jan 2018 * * @brief binding to Eigen's conjugate gradient solver * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef DEPRECATED_SOLVER_EIGEN_H #define DEPRECATED_SOLVER_EIGEN_H #include "solver/deprecated_solver_base.hh" #include #include #include namespace muSpectre { template class DeprecatedSolverEigen; template class DeprecatedSolverCGEigen; template class DeprecatedSolverGMRESEigen; template class DeprecatedSolverBiCGSTABEigen; template class DeprecatedSolverDGMRESEigen; template class DeprecatedSolverMINRESEigen; namespace internal { template struct DeprecatedSolver_traits { }; //! traits for the Eigen conjugate gradient solver template struct DeprecatedSolver_traits> { //! Eigen Iterative DeprecatedSolver using DeprecatedSolver = Eigen::ConjugateGradient, DimS, DimM>::Adaptor, Eigen::Lower|Eigen::Upper, Eigen::IdentityPreconditioner>; }; //! traits for the Eigen GMRES solver template struct DeprecatedSolver_traits> { //! Eigen Iterative DeprecatedSolver using DeprecatedSolver = Eigen::GMRES, DimS, DimM>::Adaptor, Eigen::IdentityPreconditioner>; }; //! traits for the Eigen BiCGSTAB solver template struct DeprecatedSolver_traits> { //! Eigen Iterative DeprecatedSolver using DeprecatedSolver = Eigen::BiCGSTAB, DimS, DimM>::Adaptor, Eigen::IdentityPreconditioner>; }; //! traits for the Eigen DGMRES solver template struct DeprecatedSolver_traits> { //! Eigen Iterative DeprecatedSolver using DeprecatedSolver = Eigen::DGMRES, DimS, DimM>::Adaptor, Eigen::IdentityPreconditioner>; }; //! traits for the Eigen MINRES solver template struct DeprecatedSolver_traits> { //! Eigen Iterative DeprecatedSolver using DeprecatedSolver = Eigen::MINRES, DimS, DimM>::Adaptor, Eigen::Lower|Eigen::Upper, Eigen::IdentityPreconditioner>; }; } // internal /** * base class for iterative solvers from Eigen */ template class DeprecatedSolverEigen: public DeprecatedSolverBase { public: using Parent = DeprecatedSolverBase; //!< base class //! Input vector for solvers using SolvVectorIn = typename Parent::SolvVectorIn; //! Input vector for solvers using SolvVectorInC = typename Parent::SolvVectorInC; //! Output vector for solvers using SolvVectorOut = typename Parent::SolvVectorOut; using Cell_t = typename Parent::Cell_t; //!< cell type using Ccoord = typename Parent::Ccoord; //!< cell coordinates type //! kind of tangent that is required using Tg_req_t = typename Parent::TangentRequirement; //! handle for the cell to fit Eigen's sparse matrix interface using Adaptor = typename Cell_t::Adaptor; //! traits obtained from CRTP using DeprecatedSolver = typename internal::DeprecatedSolver_traits::DeprecatedSolver; //! All Eigen solvers need directional stiffness constexpr static Tg_req_t tangent_requirement{Tg_req_t::NeedEffect}; //! Default constructor DeprecatedSolverEigen() = delete; //! Constructor with domain resolutions, etc, DeprecatedSolverEigen(Cell_t& cell, Real tol, Uint maxiter=0, bool verbose =false); //! Copy constructor DeprecatedSolverEigen(const DeprecatedSolverEigen &other) = delete; //! Move constructor DeprecatedSolverEigen(DeprecatedSolverEigen &&other) = default; //! Destructor virtual ~DeprecatedSolverEigen() = default; //! Copy assignment operator DeprecatedSolverEigen& operator=(const DeprecatedSolverEigen &other) = delete; //! Move assignment operator DeprecatedSolverEigen& operator=(DeprecatedSolverEigen &&other) = default; //! returns whether the solver has converged bool has_converged() const override final {return this->solver.info() == Eigen::Success;} //! Allocate fields used during the solution void initialise() override final; //! executes the solver SolvVectorOut solve(const SolvVectorInC rhs, SolvVectorIn x_0) override final; protected: //! returns `muSpectre::Tg_req_t::NeedEffect` Tg_req_t get_tangent_req() const override final; Adaptor adaptor; //!< cell handle DeprecatedSolver solver; //!< Eigen's Iterative solver }; /** * Binding to Eigen's conjugate gradient solver */ template class DeprecatedSolverCGEigen: public DeprecatedSolverEigen, DimS, DimM> { public: using DeprecatedSolverEigen, DimS, DimM>::DeprecatedSolverEigen; std::string name() const override final {return "CG";} }; /** * Binding to Eigen's GMRES solver */ template class DeprecatedSolverGMRESEigen: public DeprecatedSolverEigen, DimS, DimM> { public: using DeprecatedSolverEigen, DimS, DimM>::DeprecatedSolverEigen; std::string name() const override final {return "GMRES";} }; /** * Binding to Eigen's BiCGSTAB solver */ template class DeprecatedSolverBiCGSTABEigen: public DeprecatedSolverEigen, DimS, DimM> { public: using DeprecatedSolverEigen, DimS, DimM>::DeprecatedSolverEigen; //! DeprecatedSolver's name std::string name() const override final {return "BiCGSTAB";} }; /** * Binding to Eigen's DGMRES solver */ template class DeprecatedSolverDGMRESEigen: public DeprecatedSolverEigen, DimS, DimM> { public: using DeprecatedSolverEigen, DimS, DimM>::DeprecatedSolverEigen; //! DeprecatedSolver's name std::string name() const override final {return "DGMRES";} }; /** * Binding to Eigen's MINRES solver */ template class DeprecatedSolverMINRESEigen: public DeprecatedSolverEigen, DimS, DimM> { public: using DeprecatedSolverEigen, DimS, DimM>::DeprecatedSolverEigen; //! DeprecatedSolver's name std::string name() const override final {return "MINRES";} }; } // muSpectre #endif /* DEPRECATED_SOLVER_EIGEN_H */ diff --git a/src/solver/deprecated_solvers.cc b/src/solver/deprecated_solvers.cc index 447a2a4..88e6559 100644 --- a/src/solver/deprecated_solvers.cc +++ b/src/solver/deprecated_solvers.cc @@ -1,416 +1,416 @@ /** * @file solvers.cc * * @author Till Junge * * @date 20 Dec 2017 * * @brief implementation of solver functions * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "solver/deprecated_solvers.hh" #include "solver/deprecated_solver_cg.hh" #include "common/iterators.hh" #include #include #include namespace muSpectre { template std::vector deprecated_de_geus (CellBase & cell, const GradIncrements & delFs, DeprecatedSolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose) { using Field_t = typename MaterialBase::StrainField_t; const Communicator & comm = cell.get_communicator(); auto solver_fields{std::make_unique>()}; solver_fields->initialise(cell.get_subdomain_resolutions(), cell.get_subdomain_locations()); // Corresponds to symbol δF or δε auto & incrF{make_field("δF", *solver_fields)}; // Corresponds to symbol ΔF or Δε auto & DeltaF{make_field("ΔF", *solver_fields)}; // field to store the rhs for cg calculations auto & rhs{make_field("rhs", *solver_fields)}; solver.initialise(); if (solver.get_maxiter() == 0) { solver.set_maxiter(cell.size()*DimM*DimM*10); } size_t count_width{}; const auto form{cell.get_formulation()}; std::string strain_symb{}; if (verbose > 0 && comm.rank() == 0) { //setup of algorithm 5.2 in Nocedal, Numerical Optimization (p. 111) std::cout << "de Geus-" << solver.name() << " for "; switch (form) { case Formulation::small_strain: { strain_symb = "ε"; std::cout << "small"; break; } case Formulation::finite_strain: { strain_symb = "F"; std::cout << "finite"; break; } default: throw SolverError("unknown formulation"); break; } std::cout << " strain with" << std::endl << "newton_tol = " << newton_tol << ", cg_tol = " << solver.get_tol() << " maxiter = " << solver.get_maxiter() << " and Δ" << strain_symb << " =" <(tup)}; auto && grad{std::get<1>(tup)}; std::cout << "Step " << counter + 1 << ":" << std::endl << grad << std::endl; } count_width = size_t(std::log10(solver.get_maxiter()))+1; } // initialise F = I or ε = 0 auto & F{cell.get_strain()}; switch (form) { case Formulation::finite_strain: { F.get_map() = Matrices::I2(); break; } case Formulation::small_strain: { F.get_map() = Matrices::I2().Zero(); for (const auto & delF: delFs) { if (!check_symmetry(delF)) { throw SolverError("all Δε must be symmetric!"); } } break; } default: throw SolverError("Unknown formulation"); break; } // initialise return value std::vector ret_val{}; Grad_t previous_grad{Grad_t::Zero()}; for (const auto & delF: delFs) { //incremental loop std::string message{"Has not converged"}; Real incrNorm{2*newton_tol}, gradNorm{1}; Real stressNorm{2*equil_tol}; bool has_converged{false}; auto convergence_test = [&incrNorm, &gradNorm, &newton_tol, &stressNorm, &equil_tol, &message, &has_converged] () { bool incr_test = incrNorm/gradNorm <= newton_tol; bool stress_test = stressNorm < equil_tol; if (incr_test) { message = "Residual tolerance reached"; } else if (stress_test) { message = "Reached stress divergence tolerance"; } has_converged = incr_test || stress_test; return has_converged; }; Uint newt_iter{0}; for (; (newt_iter < solver.get_maxiter()) && (!has_converged || (newt_iter==1)); ++newt_iter) { // obtain material response auto res_tup{cell.evaluate_stress_tangent(F)}; auto & P{std::get<0>(res_tup)}; auto & K{std::get<1>(res_tup)}; auto tangent_effect = [&cell, &K] (const Field_t & dF, Field_t & dP) { cell.directional_stiffness(K, dF, dP); }; if (newt_iter == 0) { DeltaF.get_map() = -(delF-previous_grad); // neg sign because rhs tangent_effect(DeltaF, rhs); stressNorm = std::sqrt(comm.sum(rhs.eigen().matrix().squaredNorm())); if (convergence_test()) { break; } incrF.eigenvec() = solver.solve(rhs.eigenvec(), incrF.eigenvec()); F.eigen() -= DeltaF.eigen(); } else { rhs.eigen() = -P.eigen(); cell.project(rhs); stressNorm = std::sqrt(comm.sum(rhs.eigen().matrix().squaredNorm())); if (convergence_test()) { break; } incrF.eigen() = 0; incrF.eigenvec() = solver.solve(rhs.eigenvec(), incrF.eigenvec()); } F.eigen() += incrF.eigen(); incrNorm = std::sqrt(comm.sum(incrF.eigen().matrix().squaredNorm())); gradNorm = std::sqrt(comm.sum(F.eigen().matrix().squaredNorm())); if (verbose > 0 && comm.rank() == 0) { std::cout << "at Newton step " << std::setw(count_width) << newt_iter << ", |δ" << strain_symb << "|/|Δ" << strain_symb << "| = " << std::setw(17) << incrNorm/gradNorm << ", tol = " << newton_tol << std::endl; if (verbose-1>1) { std::cout << "<" << strain_symb << "> =" << std::endl << F.get_map().mean() << std::endl; } } convergence_test(); } // update previous gradient previous_grad = delF; ret_val.push_back(OptimizeResult{F.eigen(), cell.get_stress().eigen(), has_converged, Int(has_converged), message, newt_iter, solver.get_counter()}); // store history variables here cell.save_history_variables(); } return ret_val; } //! instantiation for two-dimensional cells template std::vector deprecated_de_geus (CellBase & cell, const GradIncrements& delF0, DeprecatedSolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose); //! instantiation for three-dimensional cells template std::vector deprecated_de_geus (CellBase & cell, const GradIncrements& delF0, DeprecatedSolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose); /* ---------------------------------------------------------------------- */ template std::vector deprecated_newton_cg (CellBase & cell, const GradIncrements & delFs, DeprecatedSolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose) { using Field_t = typename MaterialBase::StrainField_t; const Communicator & comm = cell.get_communicator(); auto solver_fields{std::make_unique>()}; solver_fields->initialise(cell.get_subdomain_resolutions(), cell.get_subdomain_locations()); // Corresponds to symbol δF or δε auto & incrF{make_field("δF", *solver_fields)}; // field to store the rhs for cg calculations auto & rhs{make_field("rhs", *solver_fields)}; solver.initialise(); if (solver.get_maxiter() == 0) { solver.set_maxiter(cell.size()*DimM*DimM*10); } size_t count_width{}; const auto form{cell.get_formulation()}; std::string strain_symb{}; if (verbose > 0 && comm.rank() == 0) { //setup of algorithm 5.2 in Nocedal, Numerical Optimization (p. 111) std::cout << "Newton-" << solver.name() << " for "; switch (form) { case Formulation::small_strain: { strain_symb = "ε"; std::cout << "small"; break; } case Formulation::finite_strain: { strain_symb = "F"; std::cout << "finite"; break; } default: throw SolverError("unknown formulation"); break; } std::cout << " strain with" << std::endl << "newton_tol = " << newton_tol << ", cg_tol = " << solver.get_tol() << " maxiter = " << solver.get_maxiter() << " and Δ" << strain_symb << " =" <(tup)}; auto && grad{std::get<1>(tup)}; std::cout << "Step " << counter + 1 << ":" << std::endl << grad << std::endl; } count_width = size_t(std::log10(solver.get_maxiter()))+1; } // initialise F = I or ε = 0 auto & F{cell.get_strain()}; switch (cell.get_formulation()) { case Formulation::finite_strain: { F.get_map() = Matrices::I2(); break; } case Formulation::small_strain: { F.get_map() = Matrices::I2().Zero(); for (const auto & delF: delFs) { if (!check_symmetry(delF)) { throw SolverError("all Δε must be symmetric!"); } } break; } default: throw SolverError("Unknown formulation"); break; } // initialise return value std::vector ret_val{}; Grad_t previous_grad{Grad_t::Zero()}; for (const auto & delF: delFs) { //incremental loop // apply macroscopic strain increment for (auto && grad: F.get_map()) { grad += delF - previous_grad; } std::string message{"Has not converged"}; Real incrNorm{2*newton_tol}, gradNorm{1}; Real stressNorm{2*equil_tol}; bool has_converged{false}; auto convergence_test = [&incrNorm, &gradNorm, &newton_tol, &stressNorm, &equil_tol, &message, &has_converged] () { bool incr_test = incrNorm/gradNorm <= newton_tol; bool stress_test = stressNorm < equil_tol; if (incr_test) { message = "Residual tolerance reached"; } else if (stress_test) { message = "Reached stress divergence tolerance"; } has_converged = incr_test || stress_test; return has_converged; }; Uint newt_iter{0}; for (; newt_iter < solver.get_maxiter() && !has_converged; ++newt_iter) { // obtain material response auto res_tup{cell.evaluate_stress_tangent(F)}; auto & P{std::get<0>(res_tup)}; rhs.eigen() = -P.eigen(); cell.project(rhs); stressNorm = std::sqrt(comm.sum(rhs.eigen().matrix().squaredNorm())); if (convergence_test()) { break; } incrF.eigen() = 0; incrF.eigenvec() = solver.solve(rhs.eigenvec(), incrF.eigenvec()); F.eigen() += incrF.eigen(); incrNorm = std::sqrt(comm.sum(incrF.eigen().matrix().squaredNorm())); gradNorm = std::sqrt(comm.sum(F.eigen().matrix().squaredNorm())); if (verbose > 0 && comm.rank() == 0) { std::cout << "at Newton step " << std::setw(count_width) << newt_iter << ", |δ" << strain_symb << "|/|Δ" << strain_symb << "| = " << std::setw(17) << incrNorm/gradNorm << ", tol = " << newton_tol << std::endl; if (verbose-1>1) { std::cout << "<" << strain_symb << "> =" << std::endl << F.get_map().mean() << std::endl; } } convergence_test(); } // update previous gradient previous_grad = delF; ret_val.push_back(OptimizeResult{F.eigen(), cell.get_stress().eigen(), convergence_test(), Int(convergence_test()), message, newt_iter, solver.get_counter()}); //store history variables for next load increment cell.save_history_variables(); } return ret_val; } //! instantiation for two-dimensional cells template std::vector deprecated_newton_cg (CellBase & cell, const GradIncrements& delF0, DeprecatedSolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose); //! instantiation for three-dimensional cells template std::vector deprecated_newton_cg (CellBase & cell, const GradIncrements& delF0, DeprecatedSolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose); } // muSpectre diff --git a/src/solver/deprecated_solvers.hh b/src/solver/deprecated_solvers.hh index 9dd9327..a134739 100644 --- a/src/solver/deprecated_solvers.hh +++ b/src/solver/deprecated_solvers.hh @@ -1,104 +1,104 @@ /** * @file solvers.hh * * @author Till Junge * * @date 20 Dec 2017 * * @brief Free functions for solving * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef DEPRECATED_SOLVERS_H #define DEPRECATED_SOLVERS_H #include "solver/solver_common.hh" #include "solver/deprecated_solver_base.hh" #include #include #include namespace muSpectre { /* ---------------------------------------------------------------------- */ /** * Uses the Newton-conjugate Gradient method to find the static * equilibrium of a cell given a series of mean applied strains */ template std::vector deprecated_newton_cg (CellBase & cell, const GradIncrements & delF0, DeprecatedSolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose = 0); /* ---------------------------------------------------------------------- */ /** * Uses the Newton-conjugate Gradient method to find the static * equilibrium of a cell given a mean applied strain */ template inline OptimizeResult deprecated_newton_cg (CellBase & cell, const Grad_t & delF0, DeprecatedSolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose = 0){ return deprecated_newton_cg(cell, GradIncrements{delF0}, solver, newton_tol, equil_tol, verbose)[0]; } /* ---------------------------------------------------------------------- */ /** * Uses the method proposed by de Geus method to find the static * equilibrium of a cell given a series of mean applied strains */ template std::vector deprecated_de_geus (CellBase & cell, const GradIncrements & delF0, DeprecatedSolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose = 0); /* ---------------------------------------------------------------------- */ /** * Uses the method proposed by de Geus method to find the static * equilibrium of a cell given a mean applied strain */ template OptimizeResult deprecated_de_geus (CellBase & cell, const Grad_t & delF0, DeprecatedSolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose = 0){ return deprecated_de_geus(cell, GradIncrements{delF0}, solver, newton_tol, equil_tol, verbose)[0]; } } // muSpectre #endif /* DEPRECATED_SOLVERS_H */ diff --git a/src/solver/solver_base.cc b/src/solver/solver_base.cc index 7b19cad..c317a5e 100644 --- a/src/solver/solver_base.cc +++ b/src/solver/solver_base.cc @@ -1,63 +1,63 @@ /** * file solver_base.cc * * @author Till Junge * * @date 24 Apr 2018 * * @brief implementation of SolverBase * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "solver/solver_base.hh" namespace muSpectre { /* ---------------------------------------------------------------------- */ SolverBase::SolverBase(Cell & cell, Real tol, Uint maxiter, bool verbose): cell(cell), tol{tol}, maxiter{maxiter}, verbose{verbose} {} /* ---------------------------------------------------------------------- */ bool SolverBase::has_converged() const { return this->converged; } /* ---------------------------------------------------------------------- */ void SolverBase::reset_counter() { this->counter = 0; this->converged = false; } /* ---------------------------------------------------------------------- */ Uint SolverBase::get_counter() const { return this->counter; } /* ---------------------------------------------------------------------- */ Real SolverBase::get_tol() const { return this->tol; } /* ---------------------------------------------------------------------- */ Uint SolverBase::get_maxiter() const { return this->maxiter; } } // muSpectre diff --git a/src/solver/solver_base.hh b/src/solver/solver_base.hh index 49ac024..8320acc 100644 --- a/src/solver/solver_base.hh +++ b/src/solver/solver_base.hh @@ -1,118 +1,118 @@ /** * file solver_base.hh * * @author Till Junge * * @date 24 Apr 2018 * * @brief Base class for iterative solvers for linear systems of equations * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef SOLVER_BASE_H #define SOLVER_BASE_H #include "solver/solver_common.hh" #include "cell/cell_base.hh" #include namespace muSpectre { /** * Virtual base class for solvers. An implementation of this interface * can be used with the solution strategies in solvers.hh */ class SolverBase { public: //! underlying vector type using Vector_t = Eigen::Matrix; //! Input vector for solvers using Vector_ref = Eigen::Ref; //! Input vector for solvers using ConstVector_ref = Eigen::Ref; //! Output vector for solvers using Vector_map = Eigen::Map; //! Default constructor SolverBase() = delete; /** * Constructor takes a Cell, tolerance, max number of iterations * and verbosity flag as input */ SolverBase(Cell & cell, Real tol, Uint maxiter, bool verbose=false); //! Copy constructor SolverBase(const SolverBase &other) = delete; //! Move constructor SolverBase(SolverBase &&other) = default; //! Destructor virtual ~SolverBase() = default; //! Copy assignment operator SolverBase& operator=(const SolverBase &other) = delete; //! Move assignment operator SolverBase& operator=(SolverBase &&other) = default; //! Allocate fields used during the solution virtual void initialise() = 0; //! returns whether the solver has converged bool has_converged() const ; //! reset the iteration counter to zero void reset_counter(); //! get the count of how many solve steps have been executed since //! construction of most recent counter reset Uint get_counter() const; //! returns the max number of iterations Uint get_maxiter() const; //! returns the resolution tolerance Real get_tol() const; //! returns the solver's name (i.e. 'CG', 'GMRES', etc) virtual std::string get_name() const = 0; //! run the solve operation virtual Vector_map solve(const ConstVector_ref rhs) = 0; protected: Cell & cell; //!< reference to the problem's cell Real tol; //!< convergence tolerance Uint maxiter; //!< maximum allowed number of iterations bool verbose; //!< whether to write information to the stdout Uint counter{0}; //!< iteration counter bool converged{false}; //!< whether the solver has converged private: }; } // muSpectre #endif /* SOLVER_BASE_H */ diff --git a/src/solver/solver_cg.cc b/src/solver/solver_cg.cc index e17417b..33046d8 100644 --- a/src/solver/solver_cg.cc +++ b/src/solver/solver_cg.cc @@ -1,107 +1,107 @@ /** * file solver_cg.cc * * @author Till Junge * * @date 24 Apr 2018 * * @brief implements SolverCG * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "solver/solver_cg.hh" #include "common/communicator.hh" #include #include namespace muSpectre { /* ---------------------------------------------------------------------- */ SolverCG::SolverCG(Cell & cell, Real tol, Uint maxiter, bool verbose): Parent(cell, tol, maxiter, verbose), r_k(cell.get_nb_dof()), p_k(cell.get_nb_dof()), Ap_k(cell.get_nb_dof()), x_k(cell.get_nb_dof()) {} /* ---------------------------------------------------------------------- */ auto SolverCG::solve(const ConstVector_ref rhs) -> Vector_map { this->x_k.setZero(); const Communicator & comm = this->cell.get_communicator(); // Following implementation of algorithm 5.2 in Nocedal's // Numerical Optimization (p. 112) //initialisation of algorithm this->r_k = (this->cell.evaluate_projected_directional_stiffness(this->x_k) - rhs); this->p_k = -this->r_k; this->converged = false; Real rdr = comm.sum(this->r_k.dot(this->r_k)); Real rhs_norm2 = comm.sum(rhs.squaredNorm()); Real tol2 = ipow(this->tol, 2) * rhs_norm2; size_t count_width{}; // for output formatting in verbose case if (this->verbose) { count_width = size_t(std::log10(this->maxiter))+1; } for (Uint i = 0; i < this->maxiter && (rdr > tol2 || i == 0); ++i, ++this->counter) { this->Ap_k = this->cell.evaluate_projected_directional_stiffness(this->p_k); Real alpha = rdr/comm.sum(this->p_k.dot(this->Ap_k)); this->x_k += alpha * this->p_k; this->r_k += alpha * this->Ap_k; Real new_rdr = comm.sum(this->r_k.dot(this->r_k)); Real beta = new_rdr/rdr; rdr = new_rdr; if (this->verbose && comm.rank() == 0) { std::cout << " at CG step " << std::setw(count_width) << i << ": |r|/|b| = " << std::setw(15) << std::sqrt(rdr/rhs_norm2) << ", cg_tol = " << this->tol << std::endl; } this->p_k = - this->r_k + beta * this->p_k; } if (rdr < tol2) { this->converged = true; } else { std::stringstream err{}; err << " After " << this->counter << " steps, the solver " << " FAILED with |r|/|b| = " << std::setw(15) << std::sqrt(rdr/rhs_norm2) << ", cg_tol = " << this->tol << std::endl; throw ConvergenceError("Conjugate gradient has not converged." + err.str()); } return Vector_map(this->x_k.data(), this->x_k.size()); } } // muSpectre diff --git a/src/solver/solver_cg.hh b/src/solver/solver_cg.hh index bc1cc18..b41e387 100644 --- a/src/solver/solver_cg.hh +++ b/src/solver/solver_cg.hh @@ -1,103 +1,103 @@ /** * file solver_cg.hh * * @author Till Junge * * @date 24 Apr 2018 * * @brief class fo a simple implementation of a conjugate gradient solver. * This follows algorithm 5.2 in Nocedal's Numerical Optimization * (p 112) * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef SOLVER_CG_H #define SOLVER_CG_H #include "solver/solver_base.hh" namespace muSpectre { /** * implements the `muSpectre::SolverBase` interface using a * conjugate gradient solver. This particular class is useful for * trouble shooting, as it can be made very verbose, but for * production runs, it is probably better to use * `muSpectre::SolverCGEigen`. */ class SolverCG: public SolverBase { public: using Parent = SolverBase; //!< standard short-hand for base class //! for storage of fields using Vector_t = Parent::Vector_t; //! Input vector for solvers using Vector_ref = Parent::Vector_ref; //! Input vector for solvers using ConstVector_ref = Parent::ConstVector_ref; //! Output vector for solvers using Vector_map = Parent::Vector_map; //! Default constructor SolverCG() = delete; //! Copy constructor SolverCG(const SolverCG &other) = delete; /** * Constructor takes a Cell, tolerance, max number of iterations * and verbosity flag as input */ SolverCG(Cell & cell, Real tol, Uint maxiter, bool verbose=false); //! Move constructor SolverCG(SolverCG &&other) = default; //! Destructor virtual ~SolverCG() = default; //! Copy assignment operator SolverCG& operator=(const SolverCG &other) = delete; //! Move assignment operator SolverCG& operator=(SolverCG &&other) = default; //! initialisation does not need to do anything in this case void initialise() override final {}; //! returns the solver's name std::string get_name() const override final {return "CG";} //! the actual solver Vector_map solve(const ConstVector_ref rhs) override final; protected: Vector_t r_k; //!< residual Vector_t p_k; //!< search direction Vector_t Ap_k; //!< directional stiffness Vector_t x_k; //!< current solution private: }; } // muSpectre #endif /* SOLVER_CG_H */ diff --git a/src/solver/solver_common.cc b/src/solver/solver_common.cc index 88372cd..cc01c4d 100644 --- a/src/solver/solver_common.cc +++ b/src/solver/solver_common.cc @@ -1,40 +1,40 @@ /** * file solver_common.cc * * @author Till Junge * * @date 15 May 2018 * * @brief implementation for solver utilities * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "solver/solver_common.hh" namespace muSpectre { /* ---------------------------------------------------------------------- */ bool check_symmetry(const Eigen::Ref& eps, Real rel_tol){ return (rel_tol >= (eps-eps.transpose()).matrix().norm()/eps.matrix().norm() || rel_tol >= eps.matrix().norm()); } } // muSpectre diff --git a/src/solver/solver_common.hh b/src/solver/solver_common.hh index fc7ae61..f8e64a1 100644 --- a/src/solver/solver_common.hh +++ b/src/solver/solver_common.hh @@ -1,97 +1,97 @@ /** * @file solver_common.hh * * @author Till Junge * * @date 28 Dec 2017 * * @brief Errors raised by solvers and other common utilities * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef SOLVER_COMMON_H #define SOLVER_COMMON_H #include "common/common.hh" #include "common/tensor_algebra.hh" #include #include namespace muSpectre { /** * emulates scipy.optimize.OptimizeResult */ struct OptimizeResult { //! Strain ε or Gradient F at solution Eigen::ArrayXXd grad; //! Cauchy stress σ or first Piola-Kirchhoff stress P at solution Eigen::ArrayXXd stress; //! whether or not the solver exited successfully bool success; //! Termination status of the optimizer. Its value depends on the //! underlying solver. Refer to message for details. Int status; //! Description of the cause of the termination. std::string message; //! number of iterations Uint nb_it; //! number of cell evaluations Uint nb_fev; }; /** * Field type that solvers expect gradients to be expressed in */ template using Grad_t = Matrices::Tens2_t; /** * multiple increments can be submitted at once (useful for * path-dependent materials) */ template using GradIncrements = std::vector, Eigen::aligned_allocator>>; /* ---------------------------------------------------------------------- */ class SolverError: public std::runtime_error { using runtime_error::runtime_error; }; /* ---------------------------------------------------------------------- */ class ConvergenceError: public SolverError { using SolverError::SolverError; }; /* ---------------------------------------------------------------------- */ /** * check whether a strain is symmetric, for the purposes of small * strain problems */ bool check_symmetry(const Eigen::Ref& eps, Real rel_tol = 1e-8); } // muSpectre #endif /* SOLVER_COMMON_H */ diff --git a/src/solver/solver_eigen.cc b/src/solver/solver_eigen.cc index 4872dd7..c902c8a 100644 --- a/src/solver/solver_eigen.cc +++ b/src/solver/solver_eigen.cc @@ -1,91 +1,91 @@ /** * file solver_eigen.cc * * @author Till Junge * * @date 15 May 2018 * * @brief Implementations for bindings to Eigen's iterative solvers * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "solver/solver_eigen.hh" #include #include namespace muSpectre { /* ---------------------------------------------------------------------- */ template SolverEigen::SolverEigen(Cell& cell, Real tol, Uint maxiter, bool verbose): Parent(cell, tol, maxiter, verbose), adaptor{cell.get_adaptor()}, solver{}, result{} {} /* ---------------------------------------------------------------------- */ template void SolverEigen::initialise() { this->solver.setTolerance(this->get_tol()); this->solver.setMaxIterations(this->get_maxiter()); this->solver.compute(this->adaptor); } /* ---------------------------------------------------------------------- */ template auto SolverEigen::solve(const ConstVector_ref rhs) -> Vector_map { // for crtp auto & this_solver = static_cast (*this); this->result = this->solver.solve(rhs); this->counter += this->solver.iterations(); if (this->solver.info() != Eigen::Success) { std::stringstream err {}; err << this_solver.get_name() << " has not converged," << " After " << this->solver.iterations() << " steps, the solver " << " FAILED with |r|/|b| = " << std::setw(15) << this->solver.error() << ", cg_tol = " << this->tol << std::endl; throw ConvergenceError(err.str()); } if (this->verbose) { std::cout << " After " << this->solver.iterations() << " " << this_solver.get_name() << " steps, |r|/|b| = " << std::setw(15) << this->solver.error() << ", cg_tol = " << this->tol << std::endl; } return Vector_map(this->result.data(), this->result.size()); } /* ---------------------------------------------------------------------- */ template class SolverEigen; template class SolverEigen; template class SolverEigen; template class SolverEigen; template class SolverEigen; } // muSpectre diff --git a/src/solver/solver_eigen.hh b/src/solver/solver_eigen.hh index ed982a5..20ccf74 100644 --- a/src/solver/solver_eigen.hh +++ b/src/solver/solver_eigen.hh @@ -1,213 +1,213 @@ /** * file solver_eigen.hh * * @author Till Junge * * @date 15 May 2018 * * @brief Bindings to Eigen's iterative solvers * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef SOLVER_EIGEN_H #define SOLVER_EIGEN_H #include "solver/solver_base.hh" #include "cell/cell_base.hh" #include #include namespace muSpectre { template class SolverEigen; class SolverCGEigen; class SolverGMRESEigen; class SolverBiCGSTABEigen; class SolverDGMRESEigen; class SolverMINRESEigen; namespace internal { template struct Solver_traits { }; //! traits for the Eigen conjugate gradient solver template<> struct Solver_traits { //! Eigen Iterative Solver using Solver = Eigen::ConjugateGradient; }; //! traits for the Eigen GMRES solver template<> struct Solver_traits { //! Eigen Iterative Solver using Solver = Eigen::GMRES; }; //! traits for the Eigen BiCGSTAB solver template<> struct Solver_traits { //! Eigen Iterative Solver using Solver = Eigen::BiCGSTAB; }; //! traits for the Eigen DGMRES solver template<> struct Solver_traits { //! Eigen Iterative Solver using Solver = Eigen::DGMRES; }; //! traits for the Eigen MINRES solver template<> struct Solver_traits { //! Eigen Iterative Solver using Solver = Eigen::MINRES; }; } // internal /** * base class for iterative solvers from Eigen */ template class SolverEigen: public SolverBase { public: using Parent = SolverBase; //!< base class //! traits obtained from CRTP using Solver = typename internal::Solver_traits::Solver; //! Input vectors for solver using ConstVector_ref = Parent::ConstVector_ref; //! Output vector for solver using Vector_map = Parent::Vector_map; //! storage for output vector using Vector_t = Parent::Vector_t; //! Default constructor SolverEigen() = delete; //! Constructor with domain resolutions, etc, SolverEigen(Cell& cell, Real tol, Uint maxiter=0, bool verbose =false); //! Copy constructor SolverEigen(const SolverEigen &other) = delete; //! Move constructor SolverEigen(SolverEigen &&other) = default; //! Destructor virtual ~SolverEigen() = default; //! Copy assignment operator SolverEigen& operator=(const SolverEigen &other) = delete; //! Move assignment operator SolverEigen& operator=(SolverEigen &&other) = default; //! Allocate fields used during the solution void initialise() override final; //! executes the solver Vector_map solve(const ConstVector_ref rhs) override final; protected: Cell::Adaptor adaptor; //!< cell handle Solver solver; //!< Eigen's Iterative solver Vector_t result; //!< storage for result }; /** * Binding to Eigen's conjugate gradient solver */ class SolverCGEigen: public SolverEigen { public: using SolverEigen::SolverEigen; std::string get_name() const override final {return "CG";} }; /** * Binding to Eigen's GMRES solver */ class SolverGMRESEigen: public SolverEigen { public: using SolverEigen::SolverEigen; std::string get_name() const override final {return "GMRES";} }; /** * Binding to Eigen's BiCGSTAB solver */ class SolverBiCGSTABEigen: public SolverEigen { public: using SolverEigen::SolverEigen; //! Solver's name std::string get_name() const override final {return "BiCGSTAB";} }; /** * Binding to Eigen's DGMRES solver */ class SolverDGMRESEigen: public SolverEigen { public: using SolverEigen::SolverEigen; //! Solver's name std::string get_name() const override final {return "DGMRES";} }; /** * Binding to Eigen's MINRES solver */ class SolverMINRESEigen: public SolverEigen { public: using SolverEigen::SolverEigen; //! Solver's name std::string get_name() const override final {return "MINRES";} }; } // muSpectre #endif /* SOLVER_EIGEN_H */ diff --git a/src/solver/solvers.cc b/src/solver/solvers.cc index c4e19bc..ab78bd3 100644 --- a/src/solver/solvers.cc +++ b/src/solver/solvers.cc @@ -1,402 +1,402 @@ /** * file solvers.cc * * @author Till Junge * * @date 24 Apr 2018 * * @brief implementation of dynamic newton-cg solver * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "solvers.hh" #include #include namespace muSpectre { //----------------------------------------------------------------------------// std::vector newton_cg(Cell & cell, const LoadSteps_t & load_steps, SolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose) { const Communicator & comm = cell.get_communicator(); using Vector_t = Eigen::Matrix; using Matrix_t = Eigen::Matrix; // Corresponds to symbol δF or δε Vector_t incrF(cell.get_nb_dof()); // field to store the rhs for cg calculations Vector_t rhs(cell.get_nb_dof()); solver.initialise(); size_t count_width{}; const auto form{cell.get_formulation()}; std::string strain_symb{}; if (verbose > 0 && comm.rank() == 0) { //setup of algorithm 5.2 in Nocedal, Numerical Optimization (p. 111) std::cout << "Newton-" << solver.get_name() << " for "; switch (form) { case Formulation::small_strain: { strain_symb = "ε"; std::cout << "small"; break; } case Formulation::finite_strain: { strain_symb = "F"; std::cout << "finite"; break; } default: throw SolverError("unknown formulation"); break; } std::cout << " strain with" << std::endl << "newton_tol = " << newton_tol << ", cg_tol = " << solver.get_tol() << " maxiter = " << solver.get_maxiter() << " and Δ" << strain_symb << " =" <(tup)}; auto && grad{std::get<1>(tup)}; std::cout << "Step " << counter + 1 << ":" << std::endl << grad << std::endl; } count_width = size_t(std::log10(solver.get_maxiter()))+1; } auto shape{cell.get_strain_shape()}; switch (form) { case Formulation::finite_strain: { cell.set_uniform_strain(Matrix_t::Identity(shape[0], shape[1])); for (const auto & delF: load_steps) { if (not ((delF.rows() == shape[0]) and (delF.cols() == shape[1]))) { std::stringstream err{}; err << "Load increments need to be given in " << shape[0] << "×" << shape[1] << " matrices, but I got a " << delF.rows() << "×" << delF.cols() << " matrix:" << std::endl << delF; throw SolverError(err.str()); } } break; } case Formulation::small_strain: { cell.set_uniform_strain(Matrix_t::Zero(shape[0], shape[1])); for (const auto & delF: load_steps) { if (not ((delF.rows() == shape[0]) and (delF.cols() == shape[1]))) { std::stringstream err{}; err << "Load increments need to be given in " << shape[0] << "×" << shape[1] << " matrices, but I got a " << delF.rows() << "×" << delF.cols() << " matrix:" << std::endl << delF; throw SolverError(err.str()); } if (not check_symmetry(delF)) { throw SolverError("all Δε must be symmetric!"); } } break; } default: throw SolverError("Unknown strain measure"); break; } // initialise return value std::vector ret_val{}; // storage for the previous mean strain (to compute ΔF or Δε) Matrix_t previous_macro_strain{load_steps.back().Zero(shape[0], shape[1])}; auto F{cell.get_strain_vector()}; //! incremental loop for (const auto & macro_strain: load_steps) { using StrainMap_t = RawFieldMap>; for (auto && strain: StrainMap_t(F, shape[0], shape[1])) { strain += macro_strain - previous_macro_strain; } std::string message{"Has not converged"}; Real incr_norm{2*newton_tol}, grad_norm{1}; Real stress_norm{2*equil_tol}; bool has_converged{false}; auto convergence_test = [&incr_norm, &grad_norm, &newton_tol, &stress_norm, &equil_tol, &message, &has_converged] () { bool incr_test = incr_norm/grad_norm <= newton_tol; bool stress_test = stress_norm < equil_tol; if (incr_test) { message = "Residual tolerance reached"; } else if (stress_test) { message = "Reached stress divergence tolerance"; } has_converged = incr_test || stress_test; return has_converged; }; Uint newt_iter{0}; for (; newt_iter < solver.get_maxiter() && !has_converged; ++newt_iter) { // obtain material response auto res_tup{cell.evaluate_stress_tangent()}; auto & P{std::get<0>(res_tup)}; rhs = -P; cell.apply_projection(rhs); stress_norm = std::sqrt(comm.sum(rhs.squaredNorm())); if (convergence_test()) { break; } //! this is a potentially avoidable copy TODO: check this out incrF = solver.solve(rhs); F += incrF; incr_norm = std::sqrt(comm.sum(incrF.squaredNorm())); grad_norm = std::sqrt(comm.sum(F.squaredNorm())); if ((verbose > 0) and (comm.rank() == 0)) { std::cout << "at Newton step " << std::setw(count_width) << newt_iter << ", |δ" << strain_symb << "|/|Δ" << strain_symb << "| = " << std::setw(17) << incr_norm/grad_norm << ", tol = " << newton_tol << std::endl; if (verbose-1>1) { std::cout << "<" << strain_symb << "> =" << std::endl << StrainMap_t(F, shape[0], shape[1]).mean() << std::endl; } } convergence_test(); } // update previous macroscopic strain previous_macro_strain = macro_strain; // store results ret_val.emplace_back(OptimizeResult{F, cell.get_stress_vector(), convergence_test(), Int(convergence_test()), message, newt_iter, solver.get_counter()}); // store history variables for next load increment cell.save_history_variables(); } return ret_val; } //----------------------------------------------------------------------------// std::vector de_geus(Cell & cell, const LoadSteps_t & load_steps, SolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose) { const Communicator & comm = cell.get_communicator(); using Vector_t = Eigen::Matrix; using Matrix_t = Eigen::Matrix; // Corresponds to symbol δF or δε Vector_t incrF(cell.get_nb_dof()); // Corresponds to symbol ΔF or Δε Vector_t DeltaF(cell.get_nb_dof()); // field to store the rhs for cg calculations Vector_t rhs(cell.get_nb_dof()); solver.initialise(); size_t count_width{}; const auto form{cell.get_formulation()}; std::string strain_symb{}; if (verbose > 0 && comm.rank() == 0) { //setup of algorithm 5.2 in Nocedal, Numerical Optimization (p. 111) std::cout << "de Geus-" << solver.get_name() << " for "; switch (form) { case Formulation::small_strain: { strain_symb = "ε"; std::cout << "small"; break; } case Formulation::finite_strain: { strain_symb = "F"; std::cout << "finite"; break; } default: throw SolverError("unknown formulation"); break; } std::cout << " strain with" << std::endl << "newton_tol = " << newton_tol << ", cg_tol = " << solver.get_tol() << " maxiter = " << solver.get_maxiter() << " and Δ" << strain_symb << " =" <(tup)}; auto && grad{std::get<1>(tup)}; std::cout << "Step " << counter + 1 << ":" << std::endl << grad << std::endl; } count_width = size_t(std::log10(solver.get_maxiter()))+1; } auto shape{cell.get_strain_shape()}; switch (form) { case Formulation::finite_strain: { cell.set_uniform_strain(Matrix_t::Identity(shape[0], shape[1])); for (const auto & delF: load_steps) { auto rows = delF.rows(); auto cols = delF.cols(); if (not ((rows == shape[0]) and (cols == shape[1]))) { std::stringstream err{}; err << "Load increments need to be given in " << shape[0] << "×" << shape[1] << " matrices, but I got a " << delF.rows() << "×" << delF.cols() << " matrix:" << std::endl << delF; throw SolverError(err.str()); } } break; } case Formulation::small_strain: { cell.set_uniform_strain(Matrix_t::Zero(shape[0], shape[1])); for (const auto & delF: load_steps) { if (not ((delF.rows() == shape[0]) and (delF.cols() == shape[1]))) { std::stringstream err{}; err << "Load increments need to be given in " << shape[0] << "×" << shape[1] << " matrices, but I got a " << delF.rows() << "×" << delF.cols() << " matrix:" << std::endl << delF; throw SolverError(err.str()); } if (not check_symmetry(delF)) { throw SolverError("all Δε must be symmetric!"); } } break; } default: throw SolverError("Unknown strain measure"); break; } // initialise return value std::vector ret_val{}; // storage for the previous mean strain (to compute ΔF or Δε) Matrix_t previous_macro_strain{load_steps.back().Zero(shape[0], shape[1])}; auto F{cell.get_strain_vector()}; //! incremental loop for (const auto & macro_strain: load_steps) { using StrainMap_t = RawFieldMap>; std::string message{"Has not converged"}; Real incr_norm{2*newton_tol}, grad_norm{1}; Real stress_norm{2*equil_tol}; bool has_converged{false}; auto convergence_test = [&incr_norm, &grad_norm, &newton_tol, &stress_norm, &equil_tol, &message, &has_converged] () { bool incr_test = incr_norm/grad_norm <= newton_tol; bool stress_test = stress_norm < equil_tol; if (incr_test) { message = "Residual tolerance reached"; } else if (stress_test) { message = "Reached stress divergence tolerance"; } has_converged = incr_test || stress_test; return has_converged; }; Uint newt_iter{0}; for (; newt_iter < solver.get_maxiter() && !has_converged; ++newt_iter) { // obtain material response auto res_tup{cell.evaluate_stress_tangent()}; auto & P{std::get<0>(res_tup)}; if (newt_iter == 0) { for (auto && strain: StrainMap_t(DeltaF, shape[0], shape[1])) { strain = macro_strain -previous_macro_strain; } rhs = - cell.evaluate_projected_directional_stiffness(DeltaF); stress_norm = std::sqrt(comm.sum(rhs.matrix().squaredNorm())); if (convergence_test()) { break; } incrF = solver.solve(rhs); F += DeltaF; } else { rhs = -P; cell.apply_projection(rhs); stress_norm = std::sqrt(comm.sum(rhs.matrix().squaredNorm())); if (convergence_test()) { break; } incrF = solver.solve(rhs); } F += incrF; incr_norm = std::sqrt(comm.sum(incrF.squaredNorm())); grad_norm = std::sqrt(comm.sum(F.squaredNorm())); if ((verbose > 0) and (comm.rank() == 0)) { std::cout << "at Newton step " << std::setw(count_width) << newt_iter << ", |δ" << strain_symb << "|/|Δ" << strain_symb << "| = " << std::setw(17) << incr_norm/grad_norm << ", tol = " << newton_tol << std::endl; if (verbose-1>1) { std::cout << "<" << strain_symb << "> =" << std::endl << StrainMap_t(F, shape[0], shape[1]).mean() << std::endl; } } convergence_test(); } // update previous macroscopic strain previous_macro_strain = macro_strain; // store results ret_val.emplace_back(OptimizeResult{F, cell.get_stress_vector(), convergence_test(), Int(convergence_test()), message, newt_iter, solver.get_counter()}); // store history variables for next load increment cell.save_history_variables(); } return ret_val; } } // muSpectre diff --git a/src/solver/solvers.hh b/src/solver/solvers.hh index 64345be..d010a47 100644 --- a/src/solver/solvers.hh +++ b/src/solver/solvers.hh @@ -1,98 +1,98 @@ /** * file solvers.hh * * @author Till Junge * * @date 24 Apr 2018 * * @brief Free functions for solving rve problems * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef SOLVERS_H #define SOLVERS_H #include "solver/solver_base.hh" #include #include #include namespace muSpectre { using LoadSteps_t = std::vector; /** * Uses the Newton-conjugate Gradient method to find the static * equilibrium of a cell given a series of mean applied strains */ std::vector newton_cg(Cell & cell, const LoadSteps_t & load_steps, SolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose = 0); /** * Uses the Newton-conjugate Gradient method to find the static * equilibrium of a cell given a mean applied strain */ OptimizeResult newton_cg(Cell & cell, const Eigen::Ref load_step, SolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose = 0) { LoadSteps_t load_steps{load_step}; return newton_cg(cell, load_steps, solver, newton_tol, equil_tol, verbose).front(); } /* ---------------------------------------------------------------------- */ /** * Uses the method proposed by de Geus method to find the static * equilibrium of a cell given a series of mean applied strains */ std::vector de_geus(Cell & cell, const LoadSteps_t & load_steps, SolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose = 0); /* ---------------------------------------------------------------------- */ /** * Uses the method proposed by de Geus method to find the static * equilibrium of a cell given a mean applied strain */ OptimizeResult de_geus(Cell & cell, const Eigen::Ref load_step, SolverBase & solver, Real newton_tol, Real equil_tol, Dim_t verbose = 0){ return de_geus(cell, LoadSteps_t{load_step}, solver, newton_tol, equil_tol, verbose)[0]; } } // muSpectre #endif /* SOLVERS_H */ diff --git a/tests/header_test_ccoord_operations.cc b/tests/header_test_ccoord_operations.cc index 6394647..1cb142b 100644 --- a/tests/header_test_ccoord_operations.cc +++ b/tests/header_test_ccoord_operations.cc @@ -1,153 +1,153 @@ /** * @file test_ccoord_operations.cc * * @author Till Junge * * @date 03 Dec 2017 * * @brief tests for cell coordinate operations * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include "common/common.hh" #include "common/ccoord_operations.hh" #include "tests/test_goodies.hh" #include "tests.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(ccoords_operations); BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_cube, Fix, testGoodies::dimlist, Fix) { constexpr auto dim{Fix::dim}; using Ccoord = Ccoord_t; constexpr Dim_t size{5}; constexpr Ccoord cube = CcoordOps::get_cube(size); Ccoord ref_cube; for (Dim_t i = 0; i < dim; ++i) { ref_cube[i] = size; } BOOST_CHECK_EQUAL_COLLECTIONS(ref_cube.begin(), ref_cube.end(), cube.begin(), cube.end()); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_hermitian, Fix, testGoodies::dimlist, Fix) { constexpr auto dim{Fix::dim}; using Ccoord = Ccoord_t; constexpr Dim_t size{5}; constexpr Ccoord cube = CcoordOps::get_cube(size); constexpr Ccoord herm = CcoordOps::get_hermitian_sizes(cube); Ccoord ref_cube = cube; ref_cube.back() = (cube.back() + 1) / 2; BOOST_CHECK_EQUAL_COLLECTIONS(ref_cube.begin(), ref_cube.end(), herm.begin(), herm.end()); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_size, Fix, testGoodies::dimlist, Fix) { constexpr auto dim{Fix::dim}; using Ccoord = Ccoord_t; constexpr Dim_t size{5}; constexpr Ccoord cube = CcoordOps::get_cube(size); BOOST_CHECK_EQUAL(CcoordOps::get_size(cube), ipow(size, dim)); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_stride_size, Fix, testGoodies::dimlist, Fix) { constexpr auto dim{Fix::dim}; using Ccoord = Ccoord_t; constexpr Dim_t size{5}; constexpr Ccoord cube = CcoordOps::get_cube(size); constexpr Ccoord stride = CcoordOps::get_default_strides(cube); BOOST_CHECK_EQUAL(CcoordOps::get_size_from_strides(cube, stride), ipow(size, dim)); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_index, Fix, testGoodies::dimlist, Fix) { constexpr auto dim{Fix::dim}; using Ccoord = Ccoord_t; testGoodies::RandRange rng; Ccoord sizes{}; for (Dim_t i{0}; i < dim; ++i) { sizes[i] = rng.randval(2, 5); } Ccoord stride = CcoordOps::get_default_strides(sizes); Ccoord locations{}; const size_t nb_pix{CcoordOps::get_size(sizes)}; for (size_t i {0}; i < nb_pix ; ++i) { BOOST_CHECK_EQUAL(i, CcoordOps::get_index_from_strides (stride, CcoordOps::get_ccoord(sizes, locations, i))); } } BOOST_AUTO_TEST_CASE(vector_test) { constexpr Ccoord_t c3{1, 2, 3}; constexpr Ccoord_t c2{c3[0], c3[1]}; constexpr Rcoord_t s3{1.3, 2.8, 5.7}; constexpr Rcoord_t s2{s3[0], s3[1]}; Eigen::Matrix v2; v2 << s3[0], s3[1]; Eigen::Matrix v3; v3 << s3[0], s3[1], s3[2]; auto vec2{CcoordOps::get_vector(c2, v2(1))}; auto vec3{CcoordOps::get_vector(c3, v3(1))}; for (Dim_t i = 0; i < twoD; ++i) { BOOST_CHECK_EQUAL(c2[i]*v2(1), vec2[i]); } for (Dim_t i = 0; i < threeD; ++i) { BOOST_CHECK_EQUAL(c3[i]*v3(1), vec3[i]); } vec2 = CcoordOps::get_vector(c2, v2); vec3 = CcoordOps::get_vector(c3, v3); for (Dim_t i = 0; i < twoD; ++i) { BOOST_CHECK_EQUAL(c2[i]*v2(i), vec2[i]); BOOST_CHECK_EQUAL(vec2[i], CcoordOps::get_vector(c2, s2)[i]); } for (Dim_t i = 0; i < threeD; ++i) { BOOST_CHECK_EQUAL(c3[i]*v3(i), vec3[i]); BOOST_CHECK_EQUAL(vec3[i], CcoordOps::get_vector(c3, s3)[i]); } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/header_test_eigen_tools.cc b/tests/header_test_eigen_tools.cc index 7685fee..8930fee 100644 --- a/tests/header_test_eigen_tools.cc +++ b/tests/header_test_eigen_tools.cc @@ -1,59 +1,59 @@ /** * @file header_test_eigen_tools.cc * * @author Till Junge * * @date 07 Mar 2018 * * @brief test the eigen_tools * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/eigen_tools.hh" #include "tests.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(eigen_tools); BOOST_AUTO_TEST_CASE(exponential_test) { using Mat_t = Eigen::Matrix; Mat_t input{}; input << 0, .25*pi, 0, .25*pi, 0, 0, 0, 0, 1; Mat_t output{}; output << 1.32460909, 0.86867096, 0, 0.86867096, 1.32460909, 0, 0, 0, 2.71828183; auto my_output{expm(input)}; Real error{(my_output-output).norm()}; BOOST_CHECK_LT(error, 1e-8); if (error >= 1e-8) { std::cout << "input:" << std::endl << input << std::endl; std::cout << "output:" << std::endl << output << std::endl; std::cout << "my_output:" << std::endl << my_output << std::endl; } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/header_test_field_collections.cc b/tests/header_test_field_collections.cc index 62e1b5d..e034180 100644 --- a/tests/header_test_field_collections.cc +++ b/tests/header_test_field_collections.cc @@ -1,693 +1,693 @@ /** * @file header_test_field_collections_1.cc * * @author Till Junge * * @date 20 Sep 2017 * * @brief Test the FieldCollection classes which provide fast optimized iterators * over run-time typed fields * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "test_field_collections.hh" #include "common/field_map_dynamic.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(field_collection_tests); BOOST_AUTO_TEST_CASE(simple) { constexpr Dim_t sdim = 2; using FC_t = GlobalFieldCollection; FC_t fc; BOOST_CHECK_EQUAL(FC_t::spatial_dim(), sdim); BOOST_CHECK_EQUAL(fc.get_spatial_dim(), sdim); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(Simple_construction_test, F, test_collections, F) { BOOST_CHECK_EQUAL(F::FC_t::spatial_dim(), F::sdim()); BOOST_CHECK_EQUAL(F::fc.get_spatial_dim(), F::sdim()); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(get_field2_test, F, test_collections, F) { const auto order{2}; using FC_t = typename F::FC_t; using TF_t = TensorField; auto && myfield = make_field("TensorField real 2", F::fc); using TensorMap = TensorFieldMap; using MatrixMap = MatrixFieldMap; using ArrayMap = ArrayFieldMap; TensorMap TFM(myfield); MatrixMap MFM(myfield); ArrayMap AFM(myfield); BOOST_CHECK_EQUAL(TFM.info_string(), "Tensor(d, "+ std::to_string(order) + "_o, " + std::to_string(F::mdim()) + "_d)"); BOOST_CHECK_EQUAL(MFM.info_string(), "Matrix(d, "+ std::to_string(F::mdim()) + "x" + std::to_string(F::mdim()) + ")"); BOOST_CHECK_EQUAL(AFM.info_string(), "Array(d, "+ std::to_string(F::mdim()) + "x" + std::to_string(F::mdim()) + ")"); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(multi_field_test, F, mult_collections, F) { using FC_t = typename F::FC_t; // possible maptypes for Real tensor fields using T_type = Real; using T_TFM1_t = TensorFieldMap; using T_TFM2_t = TensorFieldMap; //! dangerous using T4_Map_t = T4MatrixFieldMap; // impossible maptypes for Real tensor fields using T_SFM_t = ScalarFieldMap; using T_MFM_t = MatrixFieldMap; using T_AFM_t = ArrayFieldMap; using T_MFMw1_t = MatrixFieldMap; using T_MFMw2_t = MatrixFieldMap; using T_MFMw3_t = MatrixFieldMap; const std::string T_name{"Tensorfield Real o4"}; const std::string T_name_w{"TensorField Real o4 wrongname"}; BOOST_CHECK_THROW(T_SFM_t(F::fc.at(T_name)), FieldInterpretationError); BOOST_CHECK_NO_THROW(T_TFM1_t(F::fc.at(T_name))); BOOST_CHECK_NO_THROW(T_TFM2_t(F::fc.at(T_name))); BOOST_CHECK_NO_THROW(T4_Map_t(F::fc.at(T_name))); BOOST_CHECK_THROW(T4_Map_t(F::fc.at(T_name_w)), std::out_of_range); BOOST_CHECK_THROW(T_MFM_t(F::fc.at(T_name)), FieldInterpretationError); BOOST_CHECK_THROW(T_AFM_t(F::fc.at(T_name)), FieldInterpretationError); BOOST_CHECK_THROW(T_MFMw1_t(F::fc.at(T_name)), FieldInterpretationError); BOOST_CHECK_THROW(T_MFMw2_t(F::fc.at(T_name)), FieldInterpretationError); BOOST_CHECK_THROW(T_MFMw2_t(F::fc.at(T_name)), FieldInterpretationError); BOOST_CHECK_THROW(T_MFMw3_t(F::fc.at(T_name)), FieldInterpretationError); BOOST_CHECK_THROW(T_SFM_t(F::fc.at(T_name_w)), std::out_of_range); // possible maptypes for integer scalar fields using S_type = Int; using S_SFM_t = ScalarFieldMap; using S_TFM1_t = TensorFieldMap; using S_TFM2_t = TensorFieldMap; using S_MFM_t = MatrixFieldMap; using S_AFM_t = ArrayFieldMap; using S4_Map_t = T4MatrixFieldMap; // impossible maptypes for integer scalar fields using S_MFMw1_t = MatrixFieldMap; using S_MFMw2_t = MatrixFieldMap; using S_MFMw3_t = MatrixFieldMap; const std::string S_name{"integer Scalar"}; const std::string S_name_w{"integer Scalar wrongname"}; BOOST_CHECK_NO_THROW(S_SFM_t(F::fc.at(S_name))); BOOST_CHECK_NO_THROW(S_TFM1_t(F::fc.at(S_name))); BOOST_CHECK_NO_THROW(S_TFM2_t(F::fc.at(S_name))); BOOST_CHECK_NO_THROW(S_MFM_t(F::fc.at(S_name))); BOOST_CHECK_NO_THROW(S_AFM_t(F::fc.at(S_name))); BOOST_CHECK_NO_THROW(S4_Map_t(F::fc.at(S_name))); BOOST_CHECK_THROW(S_MFMw1_t(F::fc.at(S_name)), FieldInterpretationError); BOOST_CHECK_THROW(T4_Map_t(F::fc.at(S_name)), FieldInterpretationError); BOOST_CHECK_THROW(S_MFMw2_t(F::fc.at(S_name)), FieldInterpretationError); BOOST_CHECK_THROW(S_MFMw2_t(F::fc.at(S_name)), FieldInterpretationError); BOOST_CHECK_THROW(S_MFMw3_t(F::fc.at(S_name)), FieldInterpretationError); BOOST_CHECK_THROW(S_SFM_t(F::fc.at(S_name_w)), std::out_of_range); // possible maptypes for complex matrix fields using M_type = Complex; using M_MFM_t = MatrixFieldMap; using M_AFM_t = ArrayFieldMap; // impossible maptypes for complex matrix fields using M_SFM_t = ScalarFieldMap; using M_MFMw1_t = MatrixFieldMap; using M_MFMw2_t = MatrixFieldMap; using M_MFMw3_t = MatrixFieldMap; const std::string M_name{"Matrixfield Complex sdim x mdim"}; const std::string M_name_w{"Matrixfield Complex sdim x mdim wrongname"}; BOOST_CHECK_THROW(M_SFM_t(F::fc.at(M_name)), FieldInterpretationError); BOOST_CHECK_NO_THROW(M_MFM_t(F::fc.at(M_name))); BOOST_CHECK_NO_THROW(M_AFM_t(F::fc.at(M_name))); BOOST_CHECK_THROW(M_MFMw1_t(F::fc.at(M_name)), FieldInterpretationError); BOOST_CHECK_THROW(M_MFMw2_t(F::fc.at(M_name)), FieldInterpretationError); BOOST_CHECK_THROW(M_MFMw2_t(F::fc.at(M_name)), FieldInterpretationError); BOOST_CHECK_THROW(M_MFMw3_t(F::fc.at(M_name)), FieldInterpretationError); BOOST_CHECK_THROW(M_SFM_t(F::fc.at(M_name_w)), std::out_of_range); } /* ---------------------------------------------------------------------- */ //! Check whether fields can be initialized using mult_collections_t = boost::mpl::list, FC_multi_fixture<2, 3, true>, FC_multi_fixture<3, 3, true>>; using mult_collections_f = boost::mpl::list, FC_multi_fixture<2, 3, false>, FC_multi_fixture<3, 3, false>>; BOOST_FIXTURE_TEST_CASE_TEMPLATE(init_test_glob, F, mult_collections_t, F) { Ccoord_t size; Ccoord_t loc{}; for (auto && s: size) { s = 3; } BOOST_CHECK_NO_THROW(F::fc.initialise(size, loc)); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(init_test_loca, F, mult_collections_f, F) { testGoodies::RandRange rng; for (int i = 0; i < 7; ++i) { Ccoord_t pixel; for (auto && s: pixel) { s = rng.randval(0, 7); } F::fc.add_pixel(pixel); } BOOST_CHECK_NO_THROW(F::fc.initialise()); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(init_test_loca_with_push_back, F, mult_collections_f, F) { constexpr auto mdim{F::mdim()}; constexpr int nb_pix{7}; testGoodies::RandRange rng{}; using ftype = internal::TypedSizedFieldBase< decltype(F::fc), Real, mdim*mdim*mdim*mdim>; using stype = Eigen::Array; auto & field = static_cast(F::fc["Tensorfield Real o4"]); field.push_back(stype()); for (int i = 0; i < nb_pix; ++i) { Ccoord_t pixel; for (auto && s: pixel) { s = rng.randval(0, 7); } F::fc.add_pixel(pixel); } BOOST_CHECK_THROW(F::fc.initialise(), FieldCollectionError); for (int i = 0; i < nb_pix-1; ++i) { field.push_back(stype()); } BOOST_CHECK_NO_THROW(F::fc.initialise()); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(iter_field_test, F, iter_collections, F) { using FC_t = typename F::Parent::FC_t; using Tensor4Map = TensorFieldMap; Tensor4Map T4map{F::fc["Tensorfield Real o4"]}; TypedFieldMap dyn_map{F::fc["Tensorfield Real o4"]}; F::fc["Tensorfield Real o4"].set_zero(); for (auto && tens:T4map) { BOOST_CHECK_EQUAL(Real(Eigen::Tensor(tens.abs().sum().eval())()), 0); } for (auto && tens: T4map) { tens.setRandom(); } for (auto && tup: akantu::zip(T4map, dyn_map) ) { auto & tens = std::get<0>(tup); auto & dyn = std::get<1>(tup); constexpr Dim_t nb_comp{ipow(F::mdim(), order)}; Eigen::Map> tens_arr(tens.data()); Real error{(dyn-tens_arr).matrix().norm()}; BOOST_CHECK_EQUAL(error, 0); } using Tensor2Map = TensorFieldMap; using MSqMap = MatrixFieldMap; using ASqMap = ArrayFieldMap; using A2Map = ArrayFieldMap; using WrongMap = ArrayFieldMap; Tensor2Map T2map{F::fc["Tensorfield Real o2"]}; MSqMap Mmap{F::fc["Tensorfield Real o2"]}; ASqMap Amap{F::fc["Tensorfield Real o2"]}; A2Map DynMap{F::fc["Dynamically sized Field"]}; auto & fc_ref{F::fc}; BOOST_CHECK_THROW(WrongMap{fc_ref["Dynamically sized Field"]}, FieldInterpretationError); auto t2_it = T2map.begin(); auto t2_it_end = T2map.end(); auto m_it = Mmap.begin(); auto a_it = Amap.begin(); for (; t2_it != t2_it_end; ++t2_it, ++m_it, ++a_it) { t2_it->setRandom(); auto && m = *m_it; bool comp = (m == a_it->matrix()); BOOST_CHECK(comp); } size_t counter{0}; for (auto val: DynMap) { ++counter; val += val.Ones()*counter; } counter = 0; for (auto val: DynMap) { ++counter; val -= val.Ones()*counter; auto error {val.matrix().norm()}; BOOST_CHECK_LT(error, tol); } using ScalarMap = ScalarFieldMap; ScalarMap s_map{F::fc["integer Scalar"]}; for (Uint i = 0; i < s_map.size(); ++i) { s_map[i] = i; } counter = 0; for (const auto& val: s_map) { BOOST_CHECK_EQUAL(counter++, val); } } BOOST_FIXTURE_TEST_CASE_TEMPLATE(ccoord_indexing_test, F, glob_iter_colls, F) { using FC_t = typename F::Parent::FC_t; using ScalarMap = ScalarFieldMap; ScalarMap s_map{F::fc["integer Scalar"]}; for (Uint i = 0; i < s_map.size(); ++i) { s_map[i] = i; } for (size_t i = 0; i < CcoordOps::get_size(F::fc.get_sizes()); ++i) { BOOST_CHECK_EQUAL(CcoordOps::get_index(F::fc.get_sizes(), F::fc.get_locations(), CcoordOps::get_ccoord (F::fc.get_sizes(), F::fc.get_locations(), i)), i); } } BOOST_FIXTURE_TEST_CASE_TEMPLATE(iterator_methods_test, F, iter_collections, F) { using FC_t = typename F::Parent::FC_t; using Tensor4Map = TensorFieldMap; Tensor4Map T4map{F::fc["Tensorfield Real o4"]}; using it_t = typename Tensor4Map::iterator; std::ptrdiff_t diff{3}; // arbitrary, as long as it is smaller than the container size // check constructors auto itstart = T4map.begin(); // standard way of obtaining iterator auto itend = T4map.end(); // ditto it_t it1{T4map}; it_t it2{T4map, false}; it_t it3{T4map, size_t(diff)}; BOOST_CHECK(itstart == itstart); BOOST_CHECK(itstart != itend); BOOST_CHECK_EQUAL(itstart, it1); BOOST_CHECK_EQUAL(itend, it2); // check ostream operator std::stringstream response; response << it3; BOOST_CHECK_EQUAL (response.str(), std::string ("iterator on field 'Tensorfield Real o4', entry ") + std::to_string(diff)); // check move and assigment constructor (and operator+) it_t it_repl{T4map}; it_t itmove = std::move(T4map.begin()); it_t it4 = it1+diff; it_t it7 = it4 -diff; //BOOST_CHECK_EQUAL(itcopy, it1); BOOST_CHECK_EQUAL(itmove, it1); BOOST_CHECK_EQUAL(it4, it3); BOOST_CHECK_EQUAL(it7, it1); // check increments/decrements BOOST_CHECK_EQUAL(it1++, it_repl); // post-increment BOOST_CHECK_EQUAL(it1, it_repl+1); BOOST_CHECK_EQUAL(--it1, it_repl); // pre -decrement BOOST_CHECK_EQUAL(++it1, it_repl+1); // pre -increment BOOST_CHECK_EQUAL(it1--, it_repl+1); // post-decrement BOOST_CHECK_EQUAL(it1, it_repl); // dereference and member-of-pointer check Eigen::Tensor Tens = *it1; Eigen::Tensor Tens2 = *itstart; Eigen::Tensor check = (Tens==Tens2).all(); BOOST_CHECK_EQUAL(bool(check()), true); BOOST_CHECK_NO_THROW(itstart->setZero()); //check access subscripting auto T3a = *it3; auto T3b = itstart[diff]; BOOST_CHECK(bool(Eigen::Tensor((T3a==T3b).all())())); // div. comparisons BOOST_CHECK_LT(itstart, itend); BOOST_CHECK(!(itend < itstart)); BOOST_CHECK(!(itstart < itstart)); BOOST_CHECK_LE(itstart, itend); BOOST_CHECK_LE(itstart, itstart); BOOST_CHECK(!(itend <= itstart)); BOOST_CHECK_GT(itend, itstart); BOOST_CHECK(!(itend>itend)); BOOST_CHECK(!(itstart>itend)); BOOST_CHECK_GE(itend, itstart); BOOST_CHECK_GE(itend, itend); BOOST_CHECK(!(itstart >= itend)); // check assignment increment/decrement BOOST_CHECK_EQUAL(it1+=diff, it3); BOOST_CHECK_EQUAL(it1-=diff, itstart); // check cell coordinates using Ccoord = Ccoord_t; Ccoord a{itstart.get_ccoord()}; Ccoord b{0}; // Weirdly, boost::has_left_shift::value is false for Ccoords, even though the operator is implemented :( //BOOST_CHECK_EQUAL(a, b); bool check2 = (a==b); BOOST_CHECK(check2); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(const_tensor_iter_test, F, iter_collections, F) { using FC_t = typename F::Parent::FC_t; using Tensor4Map = TensorFieldMap; Tensor4Map T4map{F::fc["Tensorfield Real o4"]}; using T_t = typename Tensor4Map::T_t; Eigen::TensorMap Tens2(T4map[0].data(), F::Parent::sdim(), F::Parent::sdim(), F::Parent::sdim(), F::Parent::sdim()); for (auto it = T4map.cbegin(); it != T4map.cend(); ++it) { // maps to const tensors can't be initialised with a const pointer this sucks auto&& tens = *it; auto&& ptr = tens.data(); static_assert(std::is_pointer>::value, "should be getting a pointer"); //static_assert(std::is_const>::value, "should be const"); // If Tensor were written well, above static_assert should pass, and the // following check shouldn't. If it get triggered, it means that a newer // version of Eigen now does have const-correct // TensorMap. This means that const-correct field maps // are then also possible for tensors BOOST_CHECK(!std::is_const>::value); } } BOOST_FIXTURE_TEST_CASE_TEMPLATE(const_matrix_iter_test, F, iter_collections, F) { using FC_t = typename F::Parent::FC_t; using MatrixMap = MatrixFieldMap; MatrixMap Mmap{F::fc["Matrixfield Complex sdim x mdim"]}; for (auto it = Mmap.cbegin(); it != Mmap.cend(); ++it) { // maps to const tensors can't be initialised with a const pointer this sucks auto&& mat = *it; auto&& ptr = mat.data(); static_assert(std::is_pointer>::value, "should be getting a pointer"); //static_assert(std::is_const>::value, "should be const"); // If Matrix were written well, above static_assert should pass, and the // following check shouldn't. If it get triggered, it means that a newer // version of Eigen now does have const-correct // MatrixMap. This means that const-correct field maps // are then also possible for matrices BOOST_CHECK(!std::is_const>::value); } } BOOST_FIXTURE_TEST_CASE_TEMPLATE(const_scalar_iter_test, F, iter_collections, F) { using FC_t = typename F::Parent::FC_t; using ScalarMap = ScalarFieldMap; ScalarMap Smap{F::fc["integer Scalar"]}; for (auto it = Smap.cbegin(); it != Smap.cend(); ++it) { auto&& scal = *it; static_assert(std::is_const>::value, "referred type should be const"); static_assert(std::is_lvalue_reference::value, "Should have returned an lvalue ref"); } } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(assignment_test, Fix, iter_collections, Fix) { auto t4map{Fix::t4_field.get_map()}; auto t2map{Fix::t2_field.get_map()}; auto scmap{Fix::sc_field.get_map()}; auto m2map{Fix::m2_field.get_map()}; auto dymap{Fix::dyn_field.get_map()}; auto t4map_c{Fix::t4_field.get_const_map()}; auto t2map_c{Fix::t2_field.get_const_map()}; auto scmap_c{Fix::sc_field.get_const_map()}; auto m2map_c{Fix::m2_field.get_const_map()}; auto dymap_c{Fix::dyn_field.get_const_map()}; const auto t4map_val{Matrices::Isymm()}; t4map = t4map_val; const auto t2map_val{Matrices::I2()}; t2map = t2map_val; const Int scmap_val{1}; scmap = scmap_val; Eigen::Matrix m2map_val; m2map_val.setRandom(); m2map = m2map_val; const size_t nb_pts{Fix::fc.size()}; testGoodies::RandRange rnd{}; BOOST_CHECK_EQUAL((t4map[rnd.randval(0, nb_pts-1)] - t4map_val).norm(), 0.); BOOST_CHECK_EQUAL((t2map[rnd.randval(0, nb_pts-1)] - t2map_val).norm(), 0.); BOOST_CHECK_EQUAL((scmap[rnd.randval(0, nb_pts-1)] - scmap_val), 0.); BOOST_CHECK_EQUAL((m2map[rnd.randval(0, nb_pts-1)] - m2map_val).norm(), 0.); } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(Eigentest, Fix, iter_collections, Fix) { auto t4eigen = Fix::t4_field.eigen(); auto t2eigen = Fix::t2_field.eigen(); BOOST_CHECK_EQUAL(t4eigen.rows(), ipow(Fix::mdim(), 4)); BOOST_CHECK_EQUAL(t4eigen.cols(), Fix::t4_field.size()); using T2_t = typename Eigen::Matrix; T2_t test_mat; test_mat.setRandom(); Eigen::Map> test_map(test_mat.data()); t2eigen.col(0) = test_map; BOOST_CHECK_EQUAL((Fix::t2_field.get_map()[0] - test_mat).norm(), 0.); } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(field_proxy_test, Fix, iter_collections, Fix) { Eigen::VectorXd t4values{Fix::t4_field.eigenvec()}; using FieldProxy_t = TypedField; //! create a field proxy FieldProxy_t proxy("proxy to 'Tensorfield Real o4'", Fix::fc, t4values, Fix::t4_field.get_nb_components()); Eigen::VectorXd wrong_size_not_multiple{ Eigen::VectorXd::Zero(t4values.size()+1)}; BOOST_CHECK_THROW(FieldProxy_t("size not a multiple of nb_components", Fix::fc, wrong_size_not_multiple, Fix::t4_field.get_nb_components()), FieldError); Eigen::VectorXd wrong_size_but_multiple{ Eigen::VectorXd::Zero(t4values.size()+ Fix::t4_field.get_nb_components())}; BOOST_CHECK_THROW(FieldProxy_t("size wrong multiple of nb_components", Fix::fc, wrong_size_but_multiple, Fix::t4_field.get_nb_components()), FieldError); using Tensor4Map = T4MatrixFieldMap; Tensor4Map ref_map{Fix::t4_field}; Tensor4Map proxy_map{proxy}; for (auto tup: akantu::zip(ref_map, proxy_map)) { auto & ref = std::get<0>(tup); auto & prox = std::get<1>(tup); BOOST_CHECK_EQUAL((ref-prox).norm(), 0); } } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(field_proxy_of_existing_field, Fix, iter_collections, Fix ) { Eigen::Ref t4values{Fix::t4_field.eigenvec()}; using FieldProxy_t = TypedField; //! create a field proxy FieldProxy_t proxy("proxy to 'Tensorfield Real o4'", Fix::fc, t4values, Fix::t4_field.get_nb_components()); using Tensor4Map = T4MatrixFieldMap; Tensor4Map ref_map{Fix::t4_field}; Tensor4Map proxy_map{proxy}; for (auto tup: akantu::zip(ref_map, proxy_map)) { auto & ref = std::get<0>(tup); auto & prox = std::get<1>(tup); prox += prox.Identity(); BOOST_CHECK_EQUAL((ref-prox).norm(), 0); } } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(typed_field_getter, Fix, mult_collections, Fix) { constexpr auto mdim{Fix::mdim()}; auto & fc{Fix::fc}; auto & field = fc.template get_typed_field("Tensorfield Real o4"); BOOST_CHECK_EQUAL(field.get_nb_components(), ipow(mdim, fourthOrder)); } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(enumeration, Fix, iter_collections, Fix) { auto t4map{Fix::t4_field.get_map()}; auto t2map{Fix::t2_field.get_map()}; auto scmap{Fix::sc_field.get_map()}; auto m2map{Fix::m2_field.get_map()}; auto dymap{Fix::dyn_field.get_map()}; for (auto && tup: akantu::zip(scmap.get_collection(), scmap, scmap.enumerate())) { const auto & ccoord_ref = std::get<0>(tup); const auto & val_ref = std::get<1>(tup); const auto & key_val = std::get<2>(tup); const auto & ccoord = std::get<0>(key_val); const auto & val = std::get<1>(key_val); for (auto && ccoords: akantu::zip(ccoord_ref, ccoord)) { const auto & ref{std::get<0>(ccoords)}; const auto & val{std::get<1>(ccoords)}; BOOST_CHECK_EQUAL(ref, val); } const auto error{std::abs(val-val_ref)}; BOOST_CHECK_EQUAL(error, 0); } for (auto && tup: akantu::zip(t4map.get_collection(), t4map, t4map.enumerate())) { const auto & ccoord_ref = std::get<0>(tup); const auto & val_ref = std::get<1>(tup); const auto & key_val = std::get<2>(tup); const auto & ccoord = std::get<0>(key_val); const auto & val = std::get<1>(key_val); for (auto && ccoords: akantu::zip(ccoord_ref, ccoord)) { const auto & ref{std::get<0>(ccoords)}; const auto & val{std::get<1>(ccoords)}; BOOST_CHECK_EQUAL(ref, val); } const auto error{(val-val_ref).norm()}; BOOST_CHECK_EQUAL(error, 0); } for (auto && tup: akantu::zip(t2map.get_collection(), t2map, t2map.enumerate())) { const auto & ccoord_ref = std::get<0>(tup); const auto & val_ref = std::get<1>(tup); const auto & key_val = std::get<2>(tup); const auto & ccoord = std::get<0>(key_val); const auto & val = std::get<1>(key_val); for (auto && ccoords: akantu::zip(ccoord_ref, ccoord)) { const auto & ref{std::get<0>(ccoords)}; const auto & val{std::get<1>(ccoords)}; BOOST_CHECK_EQUAL(ref, val); } const auto error{(val-val_ref).norm()}; BOOST_CHECK_EQUAL(error, 0); } for (auto && tup: akantu::zip(m2map.get_collection(), m2map, m2map.enumerate())) { const auto & ccoord_ref = std::get<0>(tup); const auto & val_ref = std::get<1>(tup); const auto & key_val = std::get<2>(tup); const auto & ccoord = std::get<0>(key_val); const auto & val = std::get<1>(key_val); for (auto && ccoords: akantu::zip(ccoord_ref, ccoord)) { const auto & ref{std::get<0>(ccoords)}; const auto & val{std::get<1>(ccoords)}; BOOST_CHECK_EQUAL(ref, val); } const auto error{(val-val_ref).norm()}; BOOST_CHECK_EQUAL(error, 0); } for (auto && tup: akantu::zip(dymap.get_collection(), dymap, dymap.enumerate())) { const auto & ccoord_ref = std::get<0>(tup); const auto & val_ref = std::get<1>(tup); const auto & key_val = std::get<2>(tup); const auto & ccoord = std::get<0>(key_val); const auto & val = std::get<1>(key_val); for (auto && ccoords: akantu::zip(ccoord_ref, ccoord)) { const auto & ref{std::get<0>(ccoords)}; const auto & val{std::get<1>(ccoords)}; BOOST_CHECK_EQUAL(ref, val); } const auto error{(val-val_ref).matrix().norm()}; BOOST_CHECK_EQUAL(error, 0); } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/header_test_fields.cc b/tests/header_test_fields.cc index 2c4d0b4..87be2f7 100644 --- a/tests/header_test_fields.cc +++ b/tests/header_test_fields.cc @@ -1,264 +1,264 @@ /** * @file header_test_fields.cc * * @author Till Junge * * @date 20 Sep 2017 * * @brief Test Fields that are used in FieldCollections * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "tests.hh" #include "common/field_collection.hh" #include "common/field.hh" #include "common/ccoord_operations.hh" #include #include namespace muSpectre { BOOST_AUTO_TEST_SUITE(field_test); template struct FieldFixture { constexpr static bool IsGlobal{Global}; constexpr static Dim_t Order{secondOrder}; constexpr static Dim_t SDim{twoD}; constexpr static Dim_t MDim{threeD}; constexpr static Dim_t NbComponents{ipow(MDim, Order)}; using FieldColl_t = std::conditional_t, LocalFieldCollection>; using TField_t = TensorField; using MField_t = MatrixField; using DField_t = TypedField; FieldFixture() : tensor_field{make_field("TensorField", this->fc)}, matrix_field{make_field("MatrixField", this->fc)}, dynamic_field1{ make_field("Dynamically sized field with correct number of" " components", this->fc, ipow(MDim, Order))}, dynamic_field2{ make_field("Dynamically sized field with incorrect number" " of components", this->fc, NbComponents+1)} {} ~FieldFixture() = default; FieldColl_t fc{}; TField_t & tensor_field; MField_t & matrix_field; DField_t & dynamic_field1; DField_t & dynamic_field2; }; using field_fixtures = boost::mpl::list, FieldFixture>; /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE(size_check_global, FieldFixture) { // check that fields are initialised with empty vector BOOST_CHECK_EQUAL(tensor_field.size(), 0); BOOST_CHECK_EQUAL(dynamic_field1.size(), 0); BOOST_CHECK_EQUAL(dynamic_field2.size(), 0); // check that returned size is correct Dim_t len{2}; auto sizes{CcoordOps::get_cube(len)}; fc.initialise(sizes, {}); auto nb_pixels{CcoordOps::get_size(sizes)}; BOOST_CHECK_EQUAL(tensor_field.size(), nb_pixels); BOOST_CHECK_EQUAL(dynamic_field1.size(), nb_pixels); BOOST_CHECK_EQUAL(dynamic_field2.size(), nb_pixels); constexpr Dim_t pad_size{3}; tensor_field.set_pad_size(pad_size); dynamic_field1.set_pad_size(pad_size); dynamic_field2.set_pad_size(pad_size); // check that setting pad size won't change logical size BOOST_CHECK_EQUAL(tensor_field.size(), nb_pixels); BOOST_CHECK_EQUAL(dynamic_field1.size(), nb_pixels); BOOST_CHECK_EQUAL(dynamic_field2.size(), nb_pixels); } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE(size_check_local, FieldFixture) { // check that fields are initialised with empty vector BOOST_CHECK_EQUAL(tensor_field.size(), 0); BOOST_CHECK_EQUAL(dynamic_field1.size(), 0); BOOST_CHECK_EQUAL(dynamic_field2.size(), 0); // check that returned size is correct Dim_t nb_pixels{3}; Eigen::Array new_elem; Eigen::Array wrong_elem; for (Dim_t i{0}; i; FC_t fc; using TF_t = TensorField; auto & field{make_field("TensorField 1", fc)}; // check that fields are initialised with empty vector BOOST_CHECK_EQUAL(field.size(), 0); Dim_t len{2}; fc.initialise(CcoordOps::get_cube(len), {}); // check that returned size is correct BOOST_CHECK_EQUAL(field.size(), ipow(len, sdim)); // check that setting pad size won't change logical size field.set_pad_size(24); BOOST_CHECK_EQUAL(field.size(), ipow(len, sdim)); } BOOST_AUTO_TEST_CASE(dynamic_field_creation) { constexpr Dim_t sdim{threeD}; Dim_t nb_components{2}; using FC_t = GlobalFieldCollection; FC_t fc{}; make_field>("Dynamic Field", fc, nb_components); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(get_zeros_like, Fix, field_fixtures, Fix) { auto & t_clone{Fix::tensor_field.get_zeros_like("tensor clone")}; static_assert(std::is_same< std::remove_reference_t, typename Fix::TField_t>::value, "wrong overloaded function"); auto & m_clone{Fix::matrix_field.get_zeros_like("matrix clone")}; static_assert(std::is_same< std::remove_reference_t, typename Fix::MField_t>::value, "wrong overloaded function"); using FieldColl_t = typename Fix::FieldColl_t; using T = typename Fix::TField_t::Scalar; TypedField & t_ref{t_clone}; auto & typed_clone{t_ref.get_zeros_like("dynamically sized clone")}; static_assert(std::is_same< std::remove_reference_t, TypedField>::value, "Field type incorrectly deduced"); BOOST_CHECK_EQUAL(typed_clone.get_nb_components(), t_clone.get_nb_components()); auto & dyn_clone{Fix::dynamic_field1.get_zeros_like("dynamic clone")}; static_assert(std::is_same::value, "mismatch"); BOOST_CHECK_EQUAL(typed_clone.get_nb_components(), dyn_clone.get_nb_components()); } /* ---------------------------------------------------------------------- */ BOOST_AUTO_TEST_CASE(fill_global_local) { FieldFixture global; FieldFixture local; constexpr Dim_t len{2}; constexpr auto sizes{CcoordOps::get_cube::SDim>(len)}; global.fc.initialise(sizes,{}); local.fc.add_pixel({1, 1}); local.fc.add_pixel({0, 1}); local.fc.initialise(); // fill the local matrix field and then transfer it to the global field for (auto mat: local.matrix_field.get_map()) { mat.setRandom(); } global.matrix_field.fill_from_local(local.matrix_field); for (const auto & ccoord: local.fc) { const auto & a{local.matrix_field.get_map()[ccoord]}; const auto & b{global.matrix_field.get_map()[ccoord]}; const Real error{(a -b).norm()}; BOOST_CHECK_EQUAL(error, 0.); } // fill the global tensor field and then transfer it to the global field for (auto mat: global.tensor_field.get_map()) { mat.setRandom(); } local.tensor_field.fill_from_global(global.tensor_field); for (const auto & ccoord: local.fc) { const auto & a{local.matrix_field.get_map()[ccoord]}; const auto & b{global.matrix_field.get_map()[ccoord]}; const Real error{(a -b).norm()}; BOOST_CHECK_EQUAL(error, 0.); } BOOST_CHECK_THROW(local.tensor_field.fill_from_global(global.matrix_field), std::runtime_error); BOOST_CHECK_THROW(global.tensor_field.fill_from_local(local.matrix_field), std::runtime_error); } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/header_test_raw_field_map.cc b/tests/header_test_raw_field_map.cc index 6fd75ab..5b44cc0 100644 --- a/tests/header_test_raw_field_map.cc +++ b/tests/header_test_raw_field_map.cc @@ -1,93 +1,93 @@ /** * file header_test_raw_field_map.cc * * @author Till Junge * * @date 17 Apr 2018 * * @brief tests for the raw field map type * * @section LICENSE * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "test_field_collections.hh" #include "common/field_map.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(raw_field_map_tests); BOOST_FIXTURE_TEST_CASE_TEMPLATE(iter_field_test, F, iter_collections, F) { using FC_t = typename F::Parent::FC_t; using MSqMap = MatrixFieldMap; MSqMap Mmap{F::fc["Tensorfield Real o2"]}; auto m_it = Mmap.begin(); auto m_it_end = Mmap.end(); RawFieldMap>> raw_map{Mmap.get_field().eigenvec()}; for (auto && mat: Mmap) { mat.setRandom(); } for (auto tup: akantu::zip(Mmap, raw_map)) { auto & mat_A = std::get<0>(tup); auto & mat_B = std::get<1>(tup); BOOST_CHECK_EQUAL((mat_A-mat_B).norm(), 0.); } Mmap.get_field().eigenvec().setZero(); for (auto && mat: raw_map) { mat.setIdentity(); } for (auto && mat: Mmap) { BOOST_CHECK_EQUAL((mat-mat.Identity()).norm(), 0.); } } BOOST_AUTO_TEST_CASE(Const_correctness_test) { Eigen::VectorXd vec1(12); vec1.setRandom(); RawFieldMap> map1{vec1}; static_assert(not map1.IsConst, "should not have been const"); RawFieldMap> cmap1{vec1}; static_assert(cmap1.IsConst, "should have been const"); const Eigen::VectorXd vec2{vec1}; RawFieldMap> cmap2{vec2}; } BOOST_AUTO_TEST_CASE(incompatible_size_check) { Eigen::VectorXd vec1(11); using RawFieldMap_t = RawFieldMap>; BOOST_CHECK_THROW(RawFieldMap_t {vec1}, std::runtime_error); } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/header_test_statefields.cc b/tests/header_test_statefields.cc index 5963427..ce34f42 100644 --- a/tests/header_test_statefields.cc +++ b/tests/header_test_statefields.cc @@ -1,298 +1,298 @@ /** * file header_test_statefields.cc * * @author Till Junge * * @date 01 Mar 2018 * * @brief Test the StateField abstraction and the associated maps * * @section LICENSE * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/field.hh" #include "common/field_collection.hh" #include "common/statefield.hh" #include "common/ccoord_operations.hh" #include "tests.hh" #include #include namespace muSpectre { template struct SF_Fixture { using FC_t = std::conditional_t, LocalFieldCollection>; using Field_t = TensorField; using ScalField_t = ScalarField; constexpr static size_t nb_mem{2}; constexpr static Dim_t sdim{DimS}; constexpr static Dim_t mdim{DimM}; constexpr static bool global{Global}; constexpr static size_t get_nb_mem() {return nb_mem;} constexpr static Dim_t get_sdim () {return sdim;} constexpr static Dim_t get_mdim () {return mdim;} constexpr static bool get_global() {return global;} SF_Fixture() :fc{}, sf{make_statefield>("prefix", fc)}, scalar_f{make_statefield>("scalar", fc)}, self{*this} {} FC_t fc; StateField & sf; StateField & scalar_f; SF_Fixture & self; }; using typelist = boost::mpl::list, SF_Fixture< twoD, threeD, false>, SF_Fixture, SF_Fixture< twoD, twoD, true>, SF_Fixture< twoD, threeD, true>, SF_Fixture>; BOOST_AUTO_TEST_SUITE(statefield); BOOST_AUTO_TEST_CASE(old_values_test) { constexpr Dim_t Dim{twoD}; constexpr size_t NbMem{2}; constexpr bool verbose{false}; using FC_t = LocalFieldCollection; FC_t fc{}; using Field_t = ScalarField; auto & statefield{make_statefield>("name", fc)}; fc.add_pixel({}); fc.initialise(); for (size_t i{0}; i < NbMem+1; ++i) { statefield.current().eigen() = i+1; if (verbose) { std::cout << "current = " << statefield.current().eigen() << std::endl << "old 1 = " << statefield.old().eigen() << std::endl << "old 2 = " << statefield.template old<2>().eigen() << std::endl << "indices = " << statefield.get_indices() << std::endl << std::endl; } statefield.cycle(); } BOOST_CHECK_EQUAL(statefield.current().eigen()(0), 1); BOOST_CHECK_EQUAL(statefield.old().eigen()(0), 3); BOOST_CHECK_EQUAL(statefield.template old<2>().eigen()(0), 2); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(constructor_test, Fix, typelist, Fix) { const std::string ref{"prefix"}; const std::string & fix{Fix::sf.get_prefix()}; BOOST_CHECK_EQUAL(ref, fix); } namespace internal { template struct init{ static void run(Fixture_t & fix) { constexpr Dim_t dim{std::remove_reference_t::sdim}; fix.fc.initialise(CcoordOps::get_cube(3), CcoordOps::get_cube(0)); } }; template struct init{ static void run(Fixture_t & fix) { constexpr Dim_t dim{std::remove_reference_t::sdim}; CcoordOps::Pixels pixels(CcoordOps::get_cube(3), CcoordOps::get_cube(0)); for (auto && pix: pixels) { fix.fc.add_pixel(pix); } fix.fc.initialise(); } }; } // internal BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_iteration, Fix, typelist, Fix) { internal::init::run(Fix::self); constexpr Dim_t mdim{Fix::mdim}; constexpr bool verbose{false}; using StateFMap = StateFieldMap< MatrixFieldMap, Fix::nb_mem>; StateFMap matrix_map(Fix::sf); for (size_t i = 0; i < Fix::nb_mem+1; ++i) { for (auto && wrapper: matrix_map) { wrapper.current() += (i+1)*wrapper.current().Identity(); if (verbose) { std::cout << "pixel " << wrapper.get_ccoord() << ", memory cycle " << i << std::endl; std::cout << wrapper.current() << std::endl; std::cout << wrapper.old() << std::endl; std::cout << wrapper.template old<2>() << std::endl << std::endl; } } Fix::sf.cycle(); } for (auto && wrapper: matrix_map) { auto I{wrapper.current().Identity()}; Real error{(wrapper.current() - I).norm()}; BOOST_CHECK_LT(error, tol); error = (wrapper.old() - 3*I).norm(); BOOST_CHECK_LT(error, tol); error = (wrapper.template old<2>() - 2* I).norm(); BOOST_CHECK_LT(error, tol); } } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_default_map, Fix, typelist, Fix) { internal::init::run(Fix::self); constexpr bool verbose{false}; auto matrix_map{Fix::sf.get_map()}; for (size_t i = 0; i < Fix::nb_mem+1; ++i) { for (auto && wrapper: matrix_map) { wrapper.current() += (i+1)*wrapper.current().Identity(); if (verbose) { std::cout << "pixel " << wrapper.get_ccoord() << ", memory cycle " << i << std::endl; std::cout << wrapper.current() << std::endl; std::cout << wrapper.old() << std::endl; std::cout << wrapper.template old<2>() << std::endl << std::endl; } } Fix::sf.cycle(); } auto matrix_const_map{Fix::sf.get_const_map()}; for (auto && wrapper: matrix_const_map) { auto I{wrapper.current().Identity()}; Real error{(wrapper.current() - I).norm()}; BOOST_CHECK_LT(error, tol); error = (wrapper.old() - 3*I).norm(); BOOST_CHECK_LT(error, tol); error = (wrapper.template old<2>() - 2* I).norm(); BOOST_CHECK_LT(error, tol); } } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_scalar_map, Fix, typelist, Fix) { internal::init::run(Fix::self); constexpr bool verbose{false}; auto scalar_map{Fix::scalar_f.get_map()}; for (size_t i = 0; i < Fix::nb_mem+1; ++i) { for (auto && wrapper: scalar_map) { wrapper.current() += (i+1); if (verbose) { std::cout << "pixel " << wrapper.get_ccoord() << ", memory cycle " << i << std::endl; std::cout << wrapper.current() << std::endl; std::cout << wrapper.old() << std::endl; std::cout << wrapper.template old<2>() << std::endl << std::endl; } } Fix::scalar_f.cycle(); } auto scalar_const_map{Fix::scalar_f.get_const_map()}; BOOST_CHECK_EQUAL(scalar_const_map[0].current(), scalar_const_map[1].current()); for (auto wrapper: scalar_const_map) { Real error{wrapper.current() - 1}; BOOST_CHECK_LT(error, tol); error = wrapper.old() - 3; BOOST_CHECK_LT(error, tol); error = wrapper.template old<2>() - 2; BOOST_CHECK_LT(error, tol); } } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(Polymorphic_access_by_name, Fix, typelist, Fix) { internal::init::run(Fix::self); //constexpr bool verbose{true}; auto & tensor_field = Fix::fc.get_statefield("prefix"); BOOST_CHECK_EQUAL(tensor_field.get_nb_memory(), Fix::get_nb_mem()); auto & field = Fix::fc.template get_current("prefix"); BOOST_CHECK_EQUAL(field.get_nb_components(), ipow(Fix::get_mdim(), secondOrder)); BOOST_CHECK_THROW(Fix::fc.template get_current("prefix"), std::runtime_error); auto & old_field = Fix::fc.template get_old("prefix"); BOOST_CHECK_EQUAL(old_field.get_nb_components(), field.get_nb_components()); BOOST_CHECK_THROW(Fix::fc.template get_old("prefix", Fix::get_nb_mem()+1), std::out_of_range); auto & statefield{Fix::fc.get_statefield("prefix")}; auto & typed_statefield{Fix::fc.template get_typed_statefield("prefix")}; auto map{ArrayFieldMap (typed_statefield.get_current_field())}; for (auto arr: map) { arr.setConstant(1); } Eigen::ArrayXXd field_copy{field.eigen()}; statefield.cycle(); auto & alt_old_field{typed_statefield.get_old_field()}; Real err{(field_copy - alt_old_field.eigen()).matrix().norm()/ field_copy.matrix().norm()}; BOOST_CHECK_LT(err, tol); if (not(err * * @date 20 Nov 2017 * * @brief Test the fourth-order map on second-order tensor implementation * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include #include #include "common/common.hh" #include "tests.hh" #include "common/T4_map_proxy.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(T4map_tests); /** * Test fixture for construction of T4Map for the time being, symmetry is not * exploited */ template struct T4_fixture { T4_fixture():matrix{}, tensor(matrix.data()){} EIGEN_MAKE_ALIGNED_OPERATOR_NEW; using M4 = T4Mat; using T4 = T4MatMap; constexpr static Dim_t dim{Dim}; M4 matrix; T4 tensor; }; using fix_collection = boost::mpl::list, T4_fixture>; BOOST_FIXTURE_TEST_CASE_TEMPLATE(Simple_construction_test, F, fix_collection, F) { BOOST_CHECK_EQUAL(F::tensor.cols(), F::dim*F::dim); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(write_access_test, F, fix_collection, F) { auto & t4 = F::tensor; constexpr Dim_t dim{F::dim}; Eigen::TensorFixedSize> t4c; Eigen::Map t4c_map(t4c.data()); for (Dim_t i = 0; i < F::dim; ++i) { for (Dim_t j = 0; j < F::dim; ++j) { for (Dim_t k = 0; k < F::dim; ++k) { for (Dim_t l = 0; l < F::dim; ++l) { get(t4,i,j,k,l) = 1000*(i+1) + 100*(j+1) + 10*(k+1) + l+1; t4c(i,j,k,l) = 1000*(i+1) + 100*(j+1) + 10*(k+1) + l+1; } } } } for (Dim_t i = 0; i < ipow(dim,4); ++i) { BOOST_CHECK_EQUAL(F::matrix.data()[i], t4c.data()[i]); } } BOOST_FIXTURE_TEST_CASE_TEMPLATE(assign_matrix_test, F, fix_collection, F) { decltype(F::matrix) matrix; matrix.setRandom(); F::tensor = matrix; for (Dim_t i = 0; i < ipow(F::dim,4); ++i) { BOOST_CHECK_EQUAL(F::matrix.data()[i], matrix.data()[i]); } } BOOST_AUTO_TEST_CASE(Return_ref_from_const_test) { constexpr Dim_t dim{2}; using T = int; using M4 = Eigen::Matrix; using M4c = const Eigen::Matrix; using T4 = T4MatMap; using T4c = T4MatMap; M4 mat; mat.setRandom(); M4c cmat{mat}; T4 tensor{mat.data()}; T4c ctensor{mat.data()}; T a = get(tensor,0,0,0,1); T b = get(ctensor,0,0,0,1); BOOST_CHECK_EQUAL(a, b); } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/header_test_tensor_algebra.cc b/tests/header_test_tensor_algebra.cc index d584207..94c912b 100644 --- a/tests/header_test_tensor_algebra.cc +++ b/tests/header_test_tensor_algebra.cc @@ -1,292 +1,292 @@ /** * @file header_test_tensor_algebra.cc * * @author Till Junge * * @date 05 Nov 2017 * * @brief Tests for the tensor algebra functions * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include "common/tensor_algebra.hh" #include "tests.hh" #include "tests/test_goodies.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(tensor_algebra) auto TerrNorm = [](auto && t){ return Eigen::Tensor(t.abs().sum())(); }; /* ---------------------------------------------------------------------- */ BOOST_AUTO_TEST_CASE(tensor_outer_product_test) { constexpr Dim_t dim{2}; Eigen::TensorFixedSize> A, B; // use prime numbers so that every multiple is uniquely identifiable A.setValues({{1, 2}, {3 ,7}}); B.setValues({{11, 13}, {17 ,19}}); Eigen::TensorFixedSize> Res1, Res2, Res3; for (Dim_t i = 0; i < dim; ++i) { for (Dim_t j = 0; j < dim; ++j) { for (Dim_t k = 0; k < dim; ++k) { for (Dim_t l = 0; l < dim; ++l) { Res1(i, j, k, l) = A(i, j)*B(k, l); Res2(i, j, k, l) = A(i, k)*B(j, l); Res3(i, j, k, l) = A(i, l)*B(j, k); } } } } Real error = TerrNorm(Res1 - Tensors::outer(A,B)); BOOST_CHECK_LT(error, tol); error = TerrNorm(Res2 - Tensors::outer_under(A, B)); BOOST_CHECK_LT(error, tol); error = TerrNorm(Res3 - Tensors::outer_over(A, B)); if (error > tol) { std::cout << "reference:" << std::endl << Res3 << std::endl; std::cout << "result:" << std::endl << Tensors::outer_over(A, B) << std::endl; std::cout << "A:" << std::endl << A << std::endl; std::cout << "B" << std::endl << B << std::endl; decltype(Res3) tmp = Tensors::outer_over(A, B); for (Dim_t i = 0; i < dim; ++i) { for (Dim_t j = 0; j < dim; ++j) { for (Dim_t k = 0; k < dim; ++k) { for (Dim_t l = 0; l < dim; ++l) { std::cout << "for (" << i << ", " << j << ", " << k << ", " << l << "), ref: " << std::setw(3)<< Res3(i,j,k,l) << ", res: " << std::setw(3)<< tmp(i,j,k,l) << std::endl; } } } } } BOOST_CHECK_LT(error, tol); error = TerrNorm(Res3 - Tensors::outer(A, B)); BOOST_CHECK_GT(error, tol); }; BOOST_FIXTURE_TEST_CASE_TEMPLATE(outer_products, Fix, testGoodies::dimlist, Fix) { constexpr auto dim{Fix::dim}; using T2 = Tensors::Tens2_t; using M2 = Matrices::Tens2_t; using Map2 = Eigen::Map; using T4 = Tensors::Tens4_t; using M4 = Matrices::Tens4_t; using Map4 = Eigen::Map; T2 A, B; T4 RT; A.setRandom(); B.setRandom(); Map2 Amap(A.data()); Map2 Bmap(B.data()); M2 C, D; M4 RM; C = Amap; D = Bmap; auto error =[](const T4& A, const M4& B) {return (B - Map4(A.data())).norm();}; // Check outer product RT = Tensors::outer(A, B); RM = Matrices::outer(C, D); BOOST_CHECK_LT(error(RT, RM), tol); // Check outer_under product RT = Tensors::outer_under(A, B); RM = Matrices::outer_under(C, D); BOOST_CHECK_LT(error(RT, RM), tol); // Check outer_over product RT = Tensors::outer_over(A, B); RM = Matrices::outer_over(C, D); BOOST_CHECK_LT(error(RT, RM), tol); } BOOST_AUTO_TEST_CASE(tensor_multiplication) { constexpr Dim_t dim{2}; using Strain_t = Eigen::TensorFixedSize>; Strain_t A, B; A.setValues({{1, 2}, {3 ,7}}); B.setValues({{11, 13}, {17 ,19}}); Strain_t FF1 = A*B; // element-wise multiplication std::array, 1> prod_dims { Eigen::IndexPair{1, 0}}; Strain_t FF2 = A.contract(B, prod_dims); // correct option 1 Strain_t FF3; using Mat_t = Eigen::Map>; // following only works for evaluated tensors (which already have data()) Mat_t(FF3.data()) = Mat_t(A.data()) * Mat_t(B.data()); Strain_t ref; ref.setZero(); for (Dim_t i = 0; i < dim; ++i) { for (Dim_t j = 0; j < dim; ++j) { for (Dim_t a = 0; a < dim; ++a) { ref(i,j) += A(i, a) * B(a, j); } } } using Strain_tw = Eigen::TensorFixedSize>; Strain_tw C; C.setConstant(100); //static_assert(!std::is_convertible::value, // "Tensors not size-protected"); if (std::is_convertible::value) { //std::cout << "this is not good, should I abandon Tensors?"; } // this test seems useless. I use to detect if Eigen changed the // default tensor product Real error = TerrNorm(FF1-ref); if (error < tol) { std::cout << "A =" << std::endl << A << std::endl; std::cout << "B =" << std::endl << B << std::endl; std::cout << "FF1 =" << std::endl << FF1 << std::endl; std::cout << "ref =" << std::endl << ref << std::endl; } BOOST_CHECK_GT(error, tol); error = TerrNorm(FF2-ref); if (error > tol) { std::cout << "A =" << std::endl << A << std::endl; std::cout << "B =" << std::endl << B << std::endl; std::cout << "FF2 =" << std::endl << FF2 << std::endl; std::cout << "ref =" << std::endl << ref << std::endl; } BOOST_CHECK_LT(error, tol); error = TerrNorm(FF3-ref); if (error > tol) { std::cout << "A =" << std::endl << A << std::endl; std::cout << "B =" << std::endl << B << std::endl; std::cout << "FF3 =" << std::endl << FF3 << std::endl; std::cout << "ref =" << std::endl << ref << std::endl; } BOOST_CHECK_LT(error, tol); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_tensmult, Fix, testGoodies::dimlist, Fix) { using namespace Matrices; constexpr Dim_t dim{Fix::dim}; using T4 = Tens4_t; using T2 = Tens2_t; using V2 = Eigen::Matrix; T4 C; C.setRandom(); T2 E; E.setRandom(); Eigen::Map Ev(E.data()); T2 R = tensmult(C, E); auto error = (Eigen::Map(R.data())-C*Ev).norm(); BOOST_CHECK_LT(error, tol); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_tracer, Fix, testGoodies::dimlist, Fix) { using namespace Matrices; constexpr Dim_t dim{Fix::dim}; using T2 = Tens2_t; auto tracer = Itrac(); T2 F; F.setRandom(); auto Ftrac = tensmult(tracer, F); auto error = (Ftrac-F.trace()*F.Identity()).norm(); BOOST_CHECK_LT(error, tol); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_identity, Fix, testGoodies::dimlist, Fix) { using namespace Matrices; constexpr Dim_t dim{Fix::dim}; using T2 = Tens2_t; auto ident = Iiden(); T2 F; F.setRandom(); auto Fiden = tensmult(ident, F); auto error = (Fiden-F).norm(); BOOST_CHECK_LT(error, tol); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_transposer, Fix, testGoodies::dimlist, Fix) { using namespace Matrices; constexpr Dim_t dim{Fix::dim}; using T2 = Tens2_t; auto trnst = Itrns(); T2 F; F.setRandom(); auto Ftrns = tensmult(trnst, F); auto error = (Ftrns-F.transpose()).norm(); BOOST_CHECK_LT(error, tol); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_symmetriser, Fix, testGoodies::dimlist, Fix) { using namespace Matrices; constexpr Dim_t dim{Fix::dim}; using T2 = Tens2_t; auto symmt = Isymm(); T2 F; F.setRandom(); auto Fsymm = tensmult(symmt, F); auto error = (Fsymm-.5*(F+F.transpose())).norm(); BOOST_CHECK_LT(error, tol); } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/main_test_suite.cc b/tests/main_test_suite.cc index 9ed910a..ad4d698 100644 --- a/tests/main_test_suite.cc +++ b/tests/main_test_suite.cc @@ -1,33 +1,33 @@ /** * @file main_test_suite.cc * * @author Till Junge * * @date 01 May 2017 * * @brief Main test suite. Running this suite tests all available tests for * µSpectre * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #define BOOST_TEST_MODULE base_test test #define BOOST_TEST_MAIN #define BOOST_TEST_DYN_LINK #include diff --git a/tests/mpi_context.hh b/tests/mpi_context.hh index 2604555..d268c41 100644 --- a/tests/mpi_context.hh +++ b/tests/mpi_context.hh @@ -1,63 +1,63 @@ /** * @file mpi_initializer.cc * * @author Lars Pastewka * * @date 07 Mar 2018 * * @brief Singleton for initialization and tear down of MPI. * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef MPI_CONTEXT_H #define MPI_CONTEXT_H #include "common/communicator.hh" namespace muSpectre { /*! * MPI context singleton. Initialize MPI once when needed. */ class MPIContext { public: Communicator comm; static MPIContext &get_context() { static MPIContext context; return context; } private: MPIContext(): comm(Communicator(MPI_COMM_WORLD)) { MPI_Init(&boost::unit_test::framework::master_test_suite().argc, &boost::unit_test::framework::master_test_suite().argv); } ~MPIContext() { // Wait for all processes to finish before calling finalize. MPI_Barrier(comm.get_mpi_comm()); MPI_Finalize(); } public: MPIContext(MPIContext const&) = delete; void operator=(MPIContext const&) = delete; }; } -#endif /* MPI_CONTEXT_H */ \ No newline at end of file +#endif /* MPI_CONTEXT_H */ diff --git a/tests/mpi_main_test_suite.cc b/tests/mpi_main_test_suite.cc index fac1b42..10a628e 100644 --- a/tests/mpi_main_test_suite.cc +++ b/tests/mpi_main_test_suite.cc @@ -1,33 +1,33 @@ /** * @file mpi_main_test_suite.cc * * @author Lars Pastewka * * @date 07 Mar 2018 * * @brief Main test suite for MPI specific modules. Running this suite tests * all available tests for µSpectre that depend on MPI. * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #define BOOST_TEST_MODULE base_test test #define BOOST_TEST_MAIN #define BOOST_TEST_DYN_LINK #include diff --git a/tests/mpi_test_fft_engine.cc b/tests/mpi_test_fft_engine.cc index ec694f0..681861a 100644 --- a/tests/mpi_test_fft_engine.cc +++ b/tests/mpi_test_fft_engine.cc @@ -1,171 +1,171 @@ /** * @file mpi_test_fft_engine.cc * * @author Lars Pastewka * * @date 06 Mar 2017 * * @brief tests for MPI-parallel fft engine implementations * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #define BOOST_MPL_CFG_NO_PREPROCESSED_HEADERS #define BOOST_MPL_LIMIT_LIST_SIZE 50 #include #include "tests.hh" #include "mpi_context.hh" #include "fft/fftw_engine.hh" #ifdef WITH_FFTWMPI #include "fft/fftwmpi_engine.hh" #endif #ifdef WITH_PFFT #include "fft/pfft_engine.hh" #endif #include "common/ccoord_operations.hh" #include "common/field_collection.hh" #include "common/field_map.hh" #include "common/iterators.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(mpi_fft_engine); /* ---------------------------------------------------------------------- */ template struct FFTW_fixture { constexpr static Dim_t box_resolution{resolution}; constexpr static Dim_t serial_engine{serial}; constexpr static Real box_length{4.5}; constexpr static Dim_t sdim{Engine::sdim}; constexpr static Dim_t nb_components{sdim*sdim}; constexpr static Ccoord_t res() { return CcoordOps::get_cube(box_resolution); } FFTW_fixture(): engine(res(), nb_components, MPIContext::get_context().comm) {} Engine engine; }; template struct FFTW_fixture_python_segfault{ constexpr static Dim_t serial_engine{false}; constexpr static Dim_t dim{twoD}; constexpr static Dim_t sdim{twoD}; constexpr static Dim_t mdim{twoD}; constexpr static Ccoord_t res() {return {6, 4};} FFTW_fixture_python_segfault(): engine{res(), MPIContext::get_context().comm} {} Engine engine; }; using fixlist = boost::mpl::list< #ifdef WITH_FFTWMPI FFTW_fixture, 3>, FFTW_fixture, 3>, FFTW_fixture, 4>, FFTW_fixture, 4>, FFTW_fixture_python_segfault>, #endif #ifdef WITH_PFFT FFTW_fixture, 3>, FFTW_fixture, 3>, FFTW_fixture, 4>, FFTW_fixture, 4>, FFTW_fixture_python_segfault>, #endif FFTW_fixture, 3, true>>; /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(Constructor_test, Fix, fixlist, Fix) { Communicator &comm = MPIContext::get_context().comm; if (Fix::serial_engine && comm.size() > 1) { return; } else { BOOST_CHECK_NO_THROW(Fix::engine.initialise(FFT_PlanFlags::estimate)); } BOOST_CHECK_EQUAL(comm.sum(Fix::engine.size()), CcoordOps::get_size(Fix::res())); } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(fft_test, Fix, fixlist, Fix) { if (Fix::serial_engine && Fix::engine.get_communicator().size() > 1) { // dont test serial engies in parallel return; } else { Fix::engine.initialise(FFT_PlanFlags::estimate); } constexpr Dim_t order{2}; using FC_t = GlobalFieldCollection; FC_t fc; auto & input{make_field>("input", fc)}; auto & ref {make_field>("reference", fc)}; auto & result{make_field>("result", fc)}; fc.initialise(Fix::engine.get_subdomain_resolutions(), Fix::engine.get_subdomain_locations()); using map_t = MatrixFieldMap; map_t inmap{input}; auto refmap{map_t{ref}}; auto resultmap{map_t{result}}; size_t cntr{0}; for (auto tup: akantu::zip(inmap, refmap)) { cntr++; auto & in_{std::get<0>(tup)}; auto & ref_{std::get<1>(tup)}; in_.setRandom(); ref_ = in_; } auto & complex_field = Fix::engine.fft(input); using cmap_t = MatrixFieldMap, Complex, Fix::sdim, Fix::sdim>; cmap_t complex_map(complex_field); if (Fix::engine.get_subdomain_locations() == CcoordOps::get_cube(0)) { // Check that 0,0 location has no imaginary part. Real error = complex_map[0].imag().norm(); BOOST_CHECK_LT(error, tol); } /* make sure, the engine has not modified input (which is unfortunately const-casted internally, hence this test) */ for (auto && tup: akantu::zip(inmap, refmap)) { Real error{(std::get<0>(tup) - std::get<1>(tup)).norm()}; BOOST_CHECK_LT(error, tol); } /* make sure that the ifft of fft returns the original*/ Fix::engine.ifft(result); for (auto && tup: akantu::zip(resultmap, refmap)) { Real error{(std::get<0>(tup)*Fix::engine.normalisation() - std::get<1>(tup)).norm()}; BOOST_CHECK_LT(error, tol); if (error > tol) { std::cout << std::get<0>(tup).array()/std::get<1>(tup).array() << std::endl << std::endl; } } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/mpi_test_projection.hh b/tests/mpi_test_projection.hh index dfb8b34..4e482e2 100644 --- a/tests/mpi_test_projection.hh +++ b/tests/mpi_test_projection.hh @@ -1,89 +1,89 @@ /** * @file test_projection.hh * * @author Till Junge * * @date 16 Jan 2018 * * @brief common declarations for testing both the small and finite strain * projection operators * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "tests.hh" #include "mpi_context.hh" #include #include namespace muSpectre { /* ---------------------------------------------------------------------- */ template struct Sizes { }; template<> struct Sizes { constexpr static Ccoord_t get_resolution() { return Ccoord_t{3, 5};} constexpr static Rcoord_t get_lengths() { return Rcoord_t{3.4, 5.8};} }; template<> struct Sizes { constexpr static Ccoord_t get_resolution() { return Ccoord_t{3, 5, 7};} constexpr static Rcoord_t get_lengths() { return Rcoord_t{3.4, 5.8, 6.7};} }; template struct Squares { }; template<> struct Squares { constexpr static Ccoord_t get_resolution() { return Ccoord_t{5, 5};} constexpr static Rcoord_t get_lengths() { return Rcoord_t{5, 5};} }; template<> struct Squares { constexpr static Ccoord_t get_resolution() { return Ccoord_t{7, 7, 7};} constexpr static Rcoord_t get_lengths() { return Rcoord_t{7, 7, 7};} }; /* ---------------------------------------------------------------------- */ template struct ProjectionFixture { using Parent = Proj; constexpr static Dim_t sdim{DimS}; constexpr static Dim_t mdim{DimM}; constexpr static bool is_parallel{parallel}; ProjectionFixture() :projector(std::make_unique(SizeGiver::get_resolution(), ipow(mdim, 2), MPIContext::get_context().comm), SizeGiver::get_lengths()){} Parent projector; }; } // muSpectre diff --git a/tests/mpi_test_projection_finite.cc b/tests/mpi_test_projection_finite.cc index 5f28022..2d0fa30 100644 --- a/tests/mpi_test_projection_finite.cc +++ b/tests/mpi_test_projection_finite.cc @@ -1,185 +1,185 @@ /** * @file test_projection_finite.cc * * @author Till Junge * * @date 07 Dec 2017 * * @brief tests for standard finite strain projection operator * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #define BOOST_MPL_CFG_NO_PREPROCESSED_HEADERS #define BOOST_MPL_LIMIT_LIST_SIZE 50 #include "fft/projection_finite_strain.hh" #include "fft/projection_finite_strain_fast.hh" #include "fft/fft_utils.hh" #include "mpi_test_projection.hh" #include "fft/fftw_engine.hh" #ifdef WITH_FFTWMPI #include "fft/fftwmpi_engine.hh" #endif #ifdef WITH_PFFT #include "fft/pfft_engine.hh" #endif #include namespace muSpectre { BOOST_AUTO_TEST_SUITE(mpi_projection_finite_strain); /* ---------------------------------------------------------------------- */ using fixlist = boost::mpl::list< #ifdef WITH_FFTWMPI ProjectionFixture, ProjectionFiniteStrain, FFTWMPIEngine>, ProjectionFixture, ProjectionFiniteStrain, FFTWMPIEngine>, ProjectionFixture, ProjectionFiniteStrain, FFTWMPIEngine>, ProjectionFixture, ProjectionFiniteStrain, FFTWMPIEngine>, ProjectionFixture, ProjectionFiniteStrainFast, FFTWMPIEngine>, ProjectionFixture, ProjectionFiniteStrainFast, FFTWMPIEngine>, ProjectionFixture, ProjectionFiniteStrainFast, FFTWMPIEngine>, ProjectionFixture, ProjectionFiniteStrainFast, FFTWMPIEngine>, #endif #ifdef WITH_PFFT ProjectionFixture, ProjectionFiniteStrain, PFFTEngine>, ProjectionFixture, ProjectionFiniteStrain, PFFTEngine>, ProjectionFixture, ProjectionFiniteStrain, PFFTEngine>, ProjectionFixture, ProjectionFiniteStrain, PFFTEngine>, ProjectionFixture, ProjectionFiniteStrainFast, PFFTEngine>, ProjectionFixture, ProjectionFiniteStrainFast, PFFTEngine>, ProjectionFixture, ProjectionFiniteStrainFast, PFFTEngine>, ProjectionFixture, ProjectionFiniteStrainFast, PFFTEngine>, #endif ProjectionFixture, ProjectionFiniteStrain, FFTWEngine, false> >; /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(constructor_test, fix, fixlist, fix) { if (fix::is_parallel || fix::projector.get_communicator().size() == 1) { BOOST_CHECK_NO_THROW(fix::projector.initialise(FFT_PlanFlags::estimate)); } } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(Gradient_preservation_test, fix, fixlist, fix) { if (!fix::is_parallel || fix::projector.get_communicator().size() > 1) { return; } // create a gradient field with a zero mean gradient and verify // that the projection preserves it constexpr Dim_t dim{fix::sdim}, sdim{fix::sdim}, mdim{fix::mdim}; static_assert(dim == fix::mdim, "These tests assume that the material and spatial dimension are " "identical"); using Fields = GlobalFieldCollection; using FieldT = TensorField; using FieldMap = MatrixFieldMap; using Vector = Eigen::Matrix; Fields fields{}; FieldT & f_grad{make_field("gradient", fields)}; FieldT & f_var{make_field("working field", fields)}; FieldMap grad(f_grad); FieldMap var(f_var); fields.initialise(fix::projector.get_subdomain_resolutions(), fix::projector.get_subdomain_locations()); Vector k; for (Dim_t i = 0; i < dim; ++i) { // the wave vector has to be such that it leads to an integer // number of periods in each length of the domain k(i) = (i+1)*2*pi/fix::projector.get_domain_lengths()[i]; } for (auto && tup: akantu::zip(fields, grad, var)) { auto & ccoord = std::get<0>(tup); auto & g = std::get<1>(tup); auto & v = std::get<2>(tup); Vector vec = CcoordOps::get_vector(ccoord, fix::projector.get_domain_lengths()/ fix::projector.get_domain_resolutions()); g.row(0) = k.transpose() * cos(k.dot(vec)); v.row(0) = g.row(0); } fix::projector.initialise(FFT_PlanFlags::estimate); fix::projector.apply_projection(f_var); for (auto && tup: akantu::zip(fields, grad, var)) { auto & ccoord = std::get<0>(tup); auto & g = std::get<1>(tup); auto & v = std::get<2>(tup); Real error = (g-v).norm(); BOOST_CHECK_LT(error, tol); if (error >=tol) { Vector vec = CcoordOps::get_vector(ccoord, fix::projector.get_domain_lengths()/ fix::projector.get_domain_resolutions()); std::cout << std::endl << "grad_ref :" << std::endl << g << std::endl; std::cout << std::endl << "grad_proj :" << std::endl << v << std::endl; std::cout << std::endl << "ccoord :" << std::endl << ccoord << std::endl; std::cout << std::endl << "vector :" << std::endl << vec.transpose() << std::endl; } } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/mpi_test_projection_small.cc b/tests/mpi_test_projection_small.cc index ef0c0d5..c2b5def 100644 --- a/tests/mpi_test_projection_small.cc +++ b/tests/mpi_test_projection_small.cc @@ -1,170 +1,170 @@ /** * @file test_projection_small.cc * * @author Till Junge * * @date 16 Jan 2018 * * @brief tests for standard small strain projection operator * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #define BOOST_MPL_CFG_NO_PREPROCESSED_HEADERS #define BOOST_MPL_LIMIT_LIST_SIZE 50 #include "fft/projection_small_strain.hh" #include "mpi_test_projection.hh" #include "fft/fft_utils.hh" #include "fft/fftw_engine.hh" #ifdef WITH_FFTWMPI #include "fft/fftwmpi_engine.hh" #endif #ifdef WITH_PFFT #include "fft/pfft_engine.hh" #endif #include namespace muSpectre { BOOST_AUTO_TEST_SUITE(mpi_projection_small_strain); using fixlist = boost::mpl::list< #ifdef WITH_FFTWMPI ProjectionFixture, ProjectionSmallStrain, FFTWMPIEngine>, ProjectionFixture, ProjectionSmallStrain, FFTWMPIEngine>, ProjectionFixture, ProjectionSmallStrain, FFTWMPIEngine>, ProjectionFixture, ProjectionSmallStrain, FFTWMPIEngine>, #endif #ifdef WITH_PFFT ProjectionFixture, ProjectionSmallStrain, PFFTEngine>, ProjectionFixture, ProjectionSmallStrain, PFFTEngine>, ProjectionFixture, ProjectionSmallStrain, PFFTEngine>, ProjectionFixture, ProjectionSmallStrain, PFFTEngine>, #endif ProjectionFixture, ProjectionSmallStrain, FFTWEngine, false> >; /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(constructor_test, fix, fixlist, fix) { if (fix::is_parallel || fix::projector.get_communicator().size() == 1) { BOOST_CHECK_NO_THROW(fix::projector.initialise(FFT_PlanFlags::estimate)); } } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(Gradient_preservation_test, fix, fixlist, fix) { if (!fix::is_parallel || fix::projector.get_communicator().size() > 1) { return; } // create a gradient field with a zero mean gradient and verify // that the projection preserves it constexpr Dim_t dim{fix::sdim}, sdim{fix::sdim}, mdim{fix::mdim}; static_assert(dim == fix::mdim, "These tests assume that the material and spatial dimension are " "identical"); using Fields = GlobalFieldCollection; using FieldT = TensorField; using FieldMap = MatrixFieldMap; using Vector = Eigen::Matrix; Fields fields{}; FieldT & f_grad{make_field("strain", fields)}; FieldT & f_var{make_field("working field", fields)}; FieldMap grad(f_grad); FieldMap var(f_var); fields.initialise(fix::projector.get_subdomain_resolutions(), fix::projector.get_subdomain_locations()); Vector k; for (Dim_t i = 0; i < dim; ++i) { // the wave vector has to be such that it leads to an integer // number of periods in each length of the domain k(i) = (i+1)*2*pi/fix::projector.get_domain_lengths()[i]; } for (auto && tup: akantu::zip(fields, grad, var)) { auto & ccoord = std::get<0>(tup); auto & g = std::get<1>(tup); auto & v = std::get<2>(tup); Vector vec = CcoordOps::get_vector(ccoord, fix::projector.get_domain_lengths()/ fix::projector.get_domain_resolutions()); g.row(0) << k.transpose() * cos(k.dot(vec)); // We need to add I to the term, because this field has a net // zero gradient, which leads to a net -I strain g = 0.5*((g-g.Identity()).transpose() + (g-g.Identity())).eval()+g.Identity(); v = g; } fix::projector.initialise(FFT_PlanFlags::estimate); fix::projector.apply_projection(f_var); constexpr bool verbose{false}; for (auto && tup: akantu::zip(fields, grad, var)) { auto & ccoord = std::get<0>(tup); auto & g = std::get<1>(tup); auto & v = std::get<2>(tup); Vector vec = CcoordOps::get_vector(ccoord, fix::projector.get_domain_lengths()/ fix::projector.get_domain_resolutions()); Real error = (g-v).norm(); BOOST_CHECK_LT(error, tol); if ((error >=tol) || verbose) { std::cout << std::endl << "grad_ref :" << std::endl << g << std::endl; std::cout << std::endl << "grad_proj :" << std::endl << v << std::endl; std::cout << std::endl << "ccoord :" << std::endl << ccoord << std::endl; std::cout << std::endl << "vector :" << std::endl << vec.transpose() << std::endl; std::cout << "means:" << std::endl << ":" << std::endl << grad.mean() << std::endl << ":" << std::endl << var.mean(); } } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/mpi_test_solver_newton_cg.cc b/tests/mpi_test_solver_newton_cg.cc index c0b6c48..0f975b8 100644 --- a/tests/mpi_test_solver_newton_cg.cc +++ b/tests/mpi_test_solver_newton_cg.cc @@ -1,200 +1,200 @@ /** * @file test_solver_newton_cg.cc * * @author Till Junge * * @date 20 Dec 2017 * * @brief Tests for the standard Newton-Raphson + Conjugate Gradient solver * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "tests.hh" #include "mpi_context.hh" #include "solver/deprecated_solvers.hh" #include "solver/deprecated_solver_cg.hh" #include "solver/deprecated_solver_cg_eigen.hh" #include "fft/fftwmpi_engine.hh" #include "fft/projection_finite_strain_fast.hh" #include "materials/material_linear_elastic1.hh" #include "common/iterators.hh" #include "common/ccoord_operations.hh" #include "cell/cell_factory.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(newton_cg_tests); BOOST_AUTO_TEST_CASE(manual_construction_test) { const Communicator & comm = MPIContext::get_context().comm; // constexpr Dim_t dim{twoD}; constexpr Dim_t dim{threeD}; // constexpr Ccoord_t resolutions{3, 3}; // constexpr Rcoord_t lengths{2.3, 2.7}; constexpr Ccoord_t resolutions{5, 5, 5}; constexpr Rcoord_t lengths{5, 5, 5}; auto fft_ptr{std::make_unique>(resolutions, dim*dim, comm)}; auto proj_ptr{std::make_unique>(std::move(fft_ptr), lengths)}; CellBase sys(std::move(proj_ptr)); using Mat_t = MaterialLinearElastic1; //const Real Young{210e9}, Poisson{.33}; const Real Young{1.0030648180242636}, Poisson{0.29930675909878679}; // const Real lambda{Young*Poisson/((1+Poisson)*(1-2*Poisson))}; // const Real mu{Young/(2*(1+Poisson))}; auto& Material_hard = Mat_t::make(sys, "hard", 10*Young, Poisson); auto& Material_soft = Mat_t::make(sys, "soft", Young, Poisson); auto& loc = sys.get_subdomain_locations(); for (auto && tup: akantu::enumerate(sys)) { auto && pixel = std::get<1>(tup); if (loc == Ccoord_t{0, 0} && std::get<0>(tup) == 0) { Material_hard.add_pixel(pixel); } else { Material_soft.add_pixel(pixel); } } sys.initialise(); Grad_t delF0; delF0 << 0, 1., 0, 0, 0, 0, 0, 0, 0; constexpr Real cg_tol{1e-8}, newton_tol{1e-5}; constexpr Uint maxiter{CcoordOps::get_size(resolutions)*ipow(dim, secondOrder)*10}; constexpr bool verbose{false}; GradIncrements grads; grads.push_back(delF0); DeprecatedSolverCG cg{sys, cg_tol, maxiter, bool(verbose)}; Eigen::ArrayXXd res1{deprecated_de_geus(sys, grads, cg, newton_tol, verbose)[0].grad}; DeprecatedSolverCG cg2{sys, cg_tol, maxiter, bool(verbose)}; Eigen::ArrayXXd res2{deprecated_newton_cg(sys, grads, cg2, newton_tol, verbose)[0].grad}; BOOST_CHECK_LE(abs(res1-res2).mean(), cg_tol); } BOOST_AUTO_TEST_CASE(small_strain_patch_test) { const Communicator & comm = MPIContext::get_context().comm; constexpr Dim_t dim{twoD}; using Ccoord = Ccoord_t; using Rcoord = Rcoord_t; constexpr Ccoord resolutions{CcoordOps::get_cube(3)}; constexpr Rcoord lengths{CcoordOps::get_cube(1.)}; constexpr Formulation form{Formulation::small_strain}; // number of layers in the hard material constexpr Uint nb_lays{1}; constexpr Real contrast{2}; static_assert(nb_lays < resolutions[0], "the number or layers in the hard material must be smaller " "than the total number of layers in dimension 0"); auto sys{make_parallel_cell(resolutions, lengths, form, comm)}; using Mat_t = MaterialLinearElastic1; constexpr Real Young{2.}, Poisson{.33}; auto material_hard{std::make_unique("hard", contrast*Young, Poisson)}; auto material_soft{std::make_unique("soft", Young, Poisson)}; for (const auto & pixel: sys) { if (pixel[0] < Dim_t(nb_lays)) { material_hard->add_pixel(pixel); } else { material_soft->add_pixel(pixel); } } sys.add_material(std::move(material_hard)); sys.add_material(std::move(material_soft)); sys.initialise(); Grad_t delEps0{Grad_t::Zero()}; constexpr Real eps0 = 1.; //delEps0(0, 1) = delEps0(1, 0) = eps0; delEps0(0, 0) = eps0; constexpr Real cg_tol{1e-8}, newton_tol{1e-5}, equil_tol{1e-10}; constexpr Uint maxiter{dim*10}; constexpr Dim_t verbose{0}; DeprecatedSolverCGEigen cg{sys, cg_tol, maxiter, bool(verbose)}; auto result = deprecated_de_geus(sys, delEps0, cg, newton_tol, equil_tol, verbose); if (verbose) { std::cout << "result:" << std::endl << result.grad << std::endl; std::cout << "mean strain = " << std::endl << sys.get_strain().get_map().mean() << std::endl; } /** * verification of resultant strains: subscript ₕ for hard and ₛ * for soft, Nₕ is nb_lays and Nₜₒₜ is resolutions, k is contrast * * Δl = εl = Δlₕ + Δlₛ = εₕlₕ+εₛlₛ * => ε = εₕ Nₕ/Nₜₒₜ + εₛ (Nₜₒₜ-Nₕ)/Nₜₒₜ * * σ is constant across all layers * σₕ = σₛ * => Eₕ εₕ = Eₛ εₛ * => εₕ = 1/k εₛ * => ε / (1/k Nₕ/Nₜₒₜ + (Nₜₒₜ-Nₕ)/Nₜₒₜ) = εₛ */ constexpr Real factor{1/contrast * Real(nb_lays)/resolutions[0] + 1.-nb_lays/Real(resolutions[0])}; constexpr Real eps_soft{eps0/factor}; constexpr Real eps_hard{eps_soft/contrast}; if (verbose) { std::cout << "εₕ = " << eps_hard << ", εₛ = " << eps_soft << std::endl; std::cout << "ε = εₕ Nₕ/Nₜₒₜ + εₛ (Nₜₒₜ-Nₕ)/Nₜₒₜ" << std::endl; } Grad_t Eps_hard; Eps_hard << eps_hard, 0, 0, 0; Grad_t Eps_soft; Eps_soft << eps_soft, 0, 0, 0; // verify uniaxial tension patch test for (const auto & pixel: sys) { if (pixel[0] < Dim_t(nb_lays)) { BOOST_CHECK_LE((Eps_hard-sys.get_strain().get_map()[pixel]).norm(), tol); } else { BOOST_CHECK_LE((Eps_soft-sys.get_strain().get_map()[pixel]).norm(), tol); } } delEps0 = Grad_t::Zero(); delEps0(0, 1) = delEps0(1, 0) = eps0; DeprecatedSolverCG cg2{sys, cg_tol, maxiter, bool(verbose)}; result = deprecated_newton_cg(sys, delEps0, cg2, newton_tol, equil_tol, verbose); Eps_hard << 0, eps_hard, eps_hard, 0; Eps_soft << 0, eps_soft, eps_soft, 0; // verify pure shear patch test for (const auto & pixel: sys) { if (pixel[0] < Dim_t(nb_lays)) { BOOST_CHECK_LE((Eps_hard-sys.get_strain().get_map()[pixel]).norm(), tol); } else { BOOST_CHECK_LE((Eps_soft-sys.get_strain().get_map()[pixel]).norm(), tol); } } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/python_binding_tests.py b/tests/python_binding_tests.py index 33e2eb2..55becde 100755 --- a/tests/python_binding_tests.py +++ b/tests/python_binding_tests.py @@ -1,194 +1,194 @@ #!/usr/bin/env python3 """ file python_binding_tests.py @author Till Junge @date 09 Jan 2018 @brief Unit tests for python bindings @section LICENCE Copyright © 2018 Till Junge µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with µSpectre; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ import unittest import numpy as np from python_test_imports import µ from python_fft_tests import FFT_Check from python_projection_tests import * from python_material_linear_elastic3_test import MaterialLinearElastic3_Check from python_material_linear_elastic4_test import MaterialLinearElastic4_Check from python_field_tests import FieldCollection_Check class CellCheck(unittest.TestCase): def test_Construction(self): """ Simple check for cell constructors """ resolution = [5,7] lengths = [5.2, 8.3] formulation = µ.Formulation.small_strain try: sys = µ.Cell(resolution, lengths, formulation) mat = µ.material.MaterialLinearElastic1_2d.make(sys, "material", 210e9, .33) except Exception as err: print(err) raise err class MaterialLinearElastic1_2dCheck(unittest.TestCase): def setUp(self): self.resolution = [5,7] self.lengths = [5.2, 8.3] self.formulation = µ.Formulation.small_strain self.sys = µ.Cell(self.resolution, self.lengths, self.formulation) self.mat = µ.material.MaterialLinearElastic1_2d.make( self.sys, "material", 210e9, .33) def test_add_material(self): self.mat.add_pixel([2,1]) class SolverCheck(unittest.TestCase): def setUp(self): self.resolution = [3, 3]#[5,7] self.lengths = [3., 3.]#[5.2, 8.3] self.formulation = µ.Formulation.finite_strain self.sys = µ.Cell(self.resolution, self.lengths, self.formulation) self.hard = µ.material.MaterialLinearElastic1_2d.make( self.sys, "hard", 210e9, .33) self.soft = µ.material.MaterialLinearElastic1_2d.make( self.sys, "soft", 70e9, .33) def test_solve(self): for i, pixel in enumerate(self.sys): if i < 3: self.hard.add_pixel(pixel) else: self.soft.add_pixel(pixel) self.sys.initialise() tol = 1e-6 Del0 = np.array([[0, .1], [0, 0]]) maxiter = 100 verbose = 0 solver=µ.solvers.SolverCG(self.sys, tol, maxiter, verbose) r = µ.solvers.de_geus(self.sys, Del0, solver,tol, verbose) #print(r) class EigenStrainCheck(unittest.TestCase): def setUp(self): self.resolution = [3, 3]#[5,7] self.lengths = [3., 3.]#[5.2, 8.3] self.formulation = µ.Formulation.small_strain self.cell1 = µ.Cell(self.resolution, self.lengths, self.formulation) self.cell2 = µ.Cell(self.resolution, self.lengths, self.formulation) self.mat1 = µ.material.MaterialLinearElastic1_2d.make( self.cell1, "simple", 210e9, .33) self.mat2 = µ.material.MaterialLinearElastic2_2d.make( self.cell2, "eigen", 210e9, .33) self.mat3 = µ.material.MaterialLinearElastic2_2d.make( self.cell2, "eigen2", 120e9, .33) def test_globalisation(self): for pixel in self.cell2: self.mat2.add_pixel(pixel, np.random.rand(2,2)) loc_eigenstrain = self.mat2.collection.get_real_field("Eigenstrain").array glo_eigenstrain = self.cell2.get_globalised_internal_real_array("Eigenstrain") error = np.linalg.norm(loc_eigenstrain-glo_eigenstrain) self.assertEqual(error, 0) def test_globalisation_constant(self): for i, pixel in enumerate(self.cell2): if i%2 == 0: self.mat2.add_pixel(pixel, np.ones((2,2))) else: self.mat3.add_pixel(pixel, np.ones((2,2))) glo_eigenstrain = self.cell2.get_globalised_internal_real_array("Eigenstrain") error = np.linalg.norm(glo_eigenstrain-1) self.assertEqual(error, 0) def test_solve(self): verbose_test = False if verbose_test: print("start test_solve") grad = np.array([[1.1, .2], [ .3, 1.5]]) gl_strain = -0.5*(grad.T.dot(grad) - np.eye(2)) gl_strain = -0.5*(grad.T + grad - 2*np.eye(2)) grad = -gl_strain if verbose_test: print("grad =\n{}\ngl_strain =\n{}".format(grad, gl_strain)) for i, pixel in enumerate(self.cell1): self.mat1.add_pixel(pixel) self.mat2.add_pixel(pixel, gl_strain) self.cell1.initialise() self.cell2.initialise() tol = 1e-6 Del0_1 = grad Del0_2 = np.zeros_like(grad) maxiter = 2 verbose = 0 def solve(cell, grad): solver=µ.solvers.SolverCG(cell, tol, maxiter, verbose) r = µ.solvers.newton_cg(cell, grad, solver, tol, tol, verbose) return r results = [solve(cell, del0) for (cell, del0) in zip((self.cell1, self.cell2), (Del0_1, Del0_2))] P1 = results[0].stress P2 = results[1].stress error = np.linalg.norm(P1-P2)/np.linalg.norm(.5*(P1+P2)) if verbose_test: print("cell 1, no eigenstrain") print("P1:\n{}".format(P1[:,0])) print("F1:\n{}".format(results[0].grad[:,0])) print("cell 2, with eigenstrain") print("P2:\n{}".format(P2[:,0])) print("F2:\n{}".format(results[1].grad[:,0])) print("end test_solve") self.assertLess(error, tol) if __name__ == '__main__': unittest.main() diff --git a/tests/python_fft_tests.py b/tests/python_fft_tests.py index 9ba6d5a..2c25dd6 100644 --- a/tests/python_fft_tests.py +++ b/tests/python_fft_tests.py @@ -1,97 +1,97 @@ #!/usr/bin/env python3 # -*- coding:utf-8 -*- """ file python_fft_tests.py @author Till Junge @date 17 Jan 2018 @brief Compare µSpectre's fft implementations to numpy reference @section LICENSE Copyright © 2018 Till Junge µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with µSpectre; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ import unittest import numpy as np from python_test_imports import µ try: from mpi4py import MPI comm = MPI.COMM_WORLD except ImportError: comm = None class FFT_Check(unittest.TestCase): def setUp(self): self.resolution = [6, 4] self.dim = len(self.resolution) self.engines = [('fftw', False), ('fftwmpi', True), ('pfft', True)] self.tol = 1e-14 * np.prod(self.resolution) def test_forward_transform(self): for engine_str, transposed in self.engines: try: engine = µ.fft.FFT(self.resolution, self.dim**2, fft=engine_str) except KeyError: # This FFT engine has not been compiled into the code. Skip # test. continue engine.initialise() in_arr = np.random.random([*self.resolution, self.dim, self.dim]) out_ref = np.fft.rfftn(in_arr, axes=(0, 1)) if transposed: out_ref = out_ref.swapaxes(0, 1) out_msp = engine.fft(in_arr.reshape(-1, self.dim**2).T).T err = np.linalg.norm(out_ref - out_msp.reshape(out_ref.shape)) self.assertTrue(err < self.tol) def test_reverse_transform(self): for engine_str, transposed in self.engines: try: engine = µ.fft.FFT(self.resolution, self.dim**2, fft=engine_str) except KeyError: # This FFT engine has not been compiled into the code. Skip # test. continue engine.initialise() complex_res = µ.get_hermitian_sizes(self.resolution) in_arr = np.zeros([*complex_res, self.dim, self.dim], dtype=complex) in_arr.real = np.random.random(in_arr.shape) in_arr.imag = np.random.random(in_arr.shape) out_ref = np.fft.irfftn(in_arr, axes=(0, 1)) if transposed: in_arr = in_arr.swapaxes(0, 1) out_msp = engine.ifft(in_arr.reshape(-1, self.dim**2).T).T out_msp *= engine.normalisation() err = np.linalg.norm(out_ref - out_msp.reshape(out_ref.shape)) self.assertTrue(err < self.tol) if __name__ == '__main__': unittest.main() diff --git a/tests/python_field_tests.py b/tests/python_field_tests.py index 2850301..cc4cce5 100644 --- a/tests/python_field_tests.py +++ b/tests/python_field_tests.py @@ -1,71 +1,71 @@ """ file python_field_tests.py @author Till Junge @date 06 Jul 2018 @brief tests the python bindings for fieldcollections, fields, and statefields Copyright © 2018 Till Junge µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with µSpectre; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ import unittest import numpy as np from python_test_imports import µ class FieldCollection_Check(unittest.TestCase): """Because field collections do not have python-accessible constructors, this test creates a problem with a material with statefields """ def setUp(self): self.resolution = [3, 3] self.lengths = [1.58, 5.87] self.formulation = µ.Formulation.finite_strain self.cell = µ.Cell(self.resolution, self.lengths, self.formulation) self.dim = len(self.lengths) self.mat = µ.material.MaterialLinearElastic2_2d.make( self.cell, "material", 210e9, .33) def test_fields(self): eigen_strain = np.array([[.01, .02], [.03, -.01]]) for i, pixel in enumerate(self.cell): self.mat.add_pixel(pixel, i/self.cell.size*eigen_strain) self.cell.initialise() dir(µ.material.Material_2d) self.assertTrue(isinstance(self.mat, µ.material.Material_2d)) collection = self.mat.collection field_name = collection.field_names[0] self.assertRaises(Exception, collection.get_complex_field, field_name) self.assertRaises(Exception, collection.get_int_field, field_name) self.assertRaises(Exception, collection.get_uint_field, field_name) eigen_strain_field = collection.get_real_field(field_name) print(eigen_strain_field.array.T) for i, row in enumerate(eigen_strain_field.array.T): error = np.linalg.norm(i/self.cell.size*eigen_strain - row.reshape(eigen_strain.shape).T) self.assertEqual(0, error) diff --git a/tests/python_goose_ref.py b/tests/python_goose_ref.py index e647dcb..44fd05e 100644 --- a/tests/python_goose_ref.py +++ b/tests/python_goose_ref.py @@ -1,259 +1,259 @@ #!/usr/bin/env python3 # -*- coding:utf-8 -*- """ file python_goose_ref.py @author Till Junge @date 19 Jan 2018 @brief adapted scripts from GooseFFT, https://github.com/tdegeus/GooseFFT, which are MIT licensed @section LICENSE Copyright © 2018 Till Junge µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with µSpectre; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ import numpy as np import scipy.sparse.linalg as sp import itertools def get_bulk_shear(E, nu): return E/(3*(1-2*nu)), E/(2*(1+nu)) class ProjectionGooseFFT(object): def __init__(self, ndim, resolution, incl_size, E, nu, contrast): """ wraps the GooseFFT hyper-elasticity script into a more user-friendly class Keyword Arguments: ndim -- number of dimensions of the problem, should be 2 or 3 resolution -- pixel resolution, integer incl_size -- edge length of cubic hard inclusion in pixels E -- Young's modulus of soft phase nu -- Poisson's ratio constrast -- ratio between hard and soft Young's modulus """ self.ndim = ndim self.resolution = resolution self.incl_size = incl_size self.E = E self.nu = nu self.contrast = contrast self.Kval, self.mu = get_bulk_shear(E, nu) self.setup() def setup(self): ndim=self.ndim trans2 = lambda A2 : np.einsum('ij... ->ji... ',A2 ) ddot42 = lambda A4,B2: np.einsum('ijkl...,lk... ->ij... ',A4,B2) ddot44 = lambda A4,B4: np.einsum('ijkl...,lkmn...->ijmn...',A4,B4) dot22 = lambda A2,B2: np.einsum('ij... ,jk... ->ik... ',A2,B2) dot24 = lambda A2,B4: np.einsum('ij... ,jkmn...->ikmn...',A2,B4) dot42 = lambda A4,B2: np.einsum('ijkl...,lm... ->ijkm...',A4,B2) dyad22 = lambda A2,B2: np.einsum('ij... ,kl... ->ijkl...',A2,B2) i = np.eye(ndim) # identity tensors [grid of tensors] shape = tuple((self.resolution for _ in range(ndim))) oneblock = np.ones(shape) def expand(arr): new_shape = (np.prod(arr.shape), np.prod(shape)) ret_arr = np.zeros(new_shape) ret_arr[:] = arr.reshape(-1)[:, np.newaxis] return ret_arr.reshape((*arr.shape, *shape)) I = expand(i) self.I = I I4 = expand(np.einsum('il,jk',i,i)) I4rt = expand(np.einsum('ik,jl',i,i)) I4s = (I4+I4rt)/2. II = dyad22(I,I) # projection operator [grid of tensors] # NB can be vectorized (faster, less readable), see: "elasto-plasticity.py" # - support function / look-up list / zero initialize delta = lambda i,j: np.float(i==j) # Dirac delta function N = self.resolution freq = np.fft.fftfreq(N, 1/N) # coordinate axis -> freq. axis Ghat4 = np.zeros([ndim,ndim,ndim,ndim,*shape]) # zero initialize # - compute for xyz in itertools.product(range(N), repeat=self.ndim): q = np.array([freq[index] for index in xyz]) # frequency vector index = tuple((*(slice(None) for _ in range(4)), *xyz)) Ghat4[index] = self.comp_ghat(q) # (inverse) Fourier transform (for each tensor component in each direction) fft = lambda x : np.fft.fftn (x, shape) ifft = lambda x : np.fft.ifftn(x, shape) # functions for the projection 'G', and the product 'G : K^LT : (delta F)^T' G = lambda A2 : np.real( ifft( ddot42(Ghat4,fft(A2)) ) ).reshape(-1) K_dF = lambda dFm: trans2(ddot42(self.K4,trans2(dFm.reshape(ndim,ndim,*shape)))) G_K_dF = lambda dFm: G(K_dF(dFm)) K_deps = lambda depsm: ddot42(self.C4,depsm.reshape(ndim,ndim,N,N,N)) G_K_deps = lambda depsm: G(K_deps(depsm)) # ------------------- PROBLEM DEFINITION / CONSTITIVE MODEL ---------------- # phase indicator: cubical inclusion of volume fraction (9**3)/(31**3) incl = self.incl_size phase = np.zeros(shape) if self.ndim == 2: phase[-incl:,:incl] = 1. else: phase[-incl:,:incl,-incl:] = 1. # material parameters + function to convert to grid of scalars param = lambda M0,M1: M0*oneblock*(1.-phase)+M1*oneblock*phase K = param(self.Kval, self.contrast*self.Kval) mu = param(self.mu, self.contrast*self.mu) # constitutive model: grid of "F" -> grid of "P", "K4" [grid of tensors] self.C4 = K*II+2.*mu*(I4s-1./3.*II) def constitutive(F): C4 = self.C4 S = ddot42(C4,.5*(dot22(trans2(F),F)-I)) P = dot22(F,S) K4 = dot24(S,I4)+ddot44(ddot44(I4rt,dot42(dot24(F,C4),trans2(F))),I4rt) self.K4 = K4 self.P = P return P,K4 self.constitutive = constitutive self.G = G self.G_K_dF = G_K_dF self.Ghat4 = Ghat4 self.G_K_deps = G_K_deps class FiniteStrainProjectionGooseFFT(ProjectionGooseFFT): def __init__(self, ndim, resolution, incl_size, E, nu, contrast): super().__init__(ndim, resolution, incl_size, E, nu, contrast) def comp_ghat(self, q): temp = np.zeros((self.ndim, self.ndim, self.ndim, self.ndim)) delta = lambda i,j: np.float(i==j) # Dirac delta function if not q.dot(q) == 0: # zero freq. -> mean for i,j,l,m in itertools.product(range(self.ndim),repeat=4): temp[i, j, l, m] = delta(i,m)*q[j]*q[l]/(q.dot(q)) return temp def run(self): ndim = self.ndim shape = tuple((self.resolution for _ in range(ndim))) # ----------------------------- NEWTON ITERATIONS ----------------------------- # initialize deformation gradient, and stress/stiffness [grid of tensors] F = np.array(self.I,copy=True) P,K4 = self.constitutive(F) # set macroscopic loading zer_shap = (ndim, ndim, *shape) DbarF = np.zeros(zer_shap); DbarF[0,1] += 1.0 # initial residual: distribute "barF" over grid using "K4" b = -self.G_K_dF(DbarF) F += DbarF Fn = np.linalg.norm(F) iiter = 0 # iterate as long as the iterative update does not vanish class accumul(object): def __init__(self): self.counter = 0 def __call__(self, dummy): self.counter += 1 acc = accumul() while True: dFm,_ = sp.cg(tol=1.e-8, A = sp.LinearOperator(shape=( F.size,F.size),matvec=self.G_K_dF,dtype='float'), b = b, callback=acc ) # solve linear cell using CG F += dFm.reshape(ndim,ndim,*shape) # update DOFs (array -> tens.grid) P,K4 = self.constitutive(F) # new residual stress and tangent b = -self.G(P) # convert res.stress to residual print('%10.2e'%(np.linalg.norm(dFm)/Fn)) # print residual to the screen if np.linalg.norm(dFm)/Fn<1.e-5 and iiter>0: break # check convergence iiter += 1 print("nb_cg: {0}".format(acc.counter)) class SmallStrainProjectionGooseFFT(ProjectionGooseFFT): def __init__(self, ndim, resolution, incl_size, E, nu, contrast): super().__init__(ndim, resolution, incl_size, E, nu, contrast) def comp_ghat(self, q): temp = np.zeros((self.ndim, self.ndim, self.ndim, self.ndim)) delta = lambda i,j: np.float(i==j) # Dirac delta function if not q.dot(q) == 0: # zero freq. -> mean for i,j,l,m in itertools.product(range(self.ndim),repeat=4): temp[i, j, l, m] = -(q[i]*q[j]*q[l]*q[m])/(q.dot(q))**2+\ (delta(j,l)*q[i]*q[m]+delta(j,m)*q[i]*q[l]+\ delta(i,l)*q[j]*q[m]+delta(i,m)*q[j]*q[l])/(2.*q.dot(q)) return temp def tangent_stiffness(self, field): return self.constitutive(F)[0] def run(self): ndim = self.ndim shape = tuple((self.resolution for _ in range(ndim))) # ----------------------------- NEWTON ITERATIONS ----------------------------- # initialize stress and strain tensor [grid of tensors] sig = np.zeros([ndim,ndim,N,N,N]) eps = np.zeros([ndim,ndim,N,N,N]) # set macroscopic loading DE = np.zeros([ndim,ndim,N,N,N]) DE[0,1] += 0.01 DE[1,0] += 0.01 # initial residual: distribute "barF" over grid using "K4" b = -self.G_K_deps(DE) eps += DE En = np.linalg.norm(eps) iiter = 0 # iterate as long as the iterative update does not vanish class accumul(object): def __init__(self): self.counter = 0 def __call__(self, dummy): self.counter += 1 acc = accumul() while True: depsm,_ = sp.cg(tol=1.e-8, A = sp.LinearOperator(shape=( eps.size,eps.size),matvec=self.G_K_deps,dtype='float'), b = b, callback=acc ) # solve linear cell using CG eps += depsm.reshape(ndim,ndim,*shape) # update DOFs (array -> tens.grid) sig = ddot42(self.C4, eps) # new residual stress and tangent b = -self.G(sig) # convert res.stress to residual print('%10.2e'%(np.linalg.norm(depsm)/En)) # print residual to the screen if np.linalg.norm(depsm)/en<1.e-5 and iiter>0: break # check convergence iiter += 1 print("nb_cg: {0}".format(acc.counter)) diff --git a/tests/python_material_linear_elastic3_test.py b/tests/python_material_linear_elastic3_test.py index 9f6fc6a..67b53b8 100644 --- a/tests/python_material_linear_elastic3_test.py +++ b/tests/python_material_linear_elastic3_test.py @@ -1,78 +1,78 @@ #!/usr/bin/env python3 # -*- coding:utf-8 -*- """ @file python_material_linear_elastic3.py @author Richard Leute @date 20 Feb 2018 @brief description @section LICENSE Copyright © 2018 Till Junge µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with µSpectre; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ import unittest import numpy as np from python_test_imports import µ class MaterialLinearElastic3_Check(unittest.TestCase): """ Check the implementation of the fourth order stiffness tensor C for each cell. Assign the same Youngs modulus and Poisson ratio to each cell, calculate the stress and compare the result with stress=2*mu*Del0 (Hooke law for small symmetric strains). """ def setUp(self): self.resolution = [5,5] self.lengths = [2.5, 3.1] self.formulation = µ.Formulation.small_strain self.sys = µ.Cell(self.resolution, self.lengths, self.formulation) self.dim = len(self.lengths) self.mat = µ.material.MaterialLinearElastic3_2d.make( self.sys, "material") def test_solver(self): Young = 10. Poisson = 0.3 for i, pixel in enumerate(self.sys): self.mat.add_pixel(pixel, Young, Poisson) self.sys.initialise() tol = 1e-6 Del0 = np.array([[0, 0.025], [0.025, 0]]) maxiter = 100 verbose = False solver=µ.solvers.SolverCG(self.sys, tol, maxiter, verbose) r = µ.solvers.newton_cg(self.sys, Del0, solver, tol, tol, verbose) #compare the computed stress with the trivial by hand computed stress mu = (Young/(2*(1+Poisson))) stress = 2*mu*Del0 self.assertLess(np.linalg.norm(r.stress.reshape(-1, self.dim**2) - stress.reshape(1, self.dim**2)), 1e-8) diff --git a/tests/python_material_linear_elastic4_test.py b/tests/python_material_linear_elastic4_test.py index 25566ec..2490e2d 100644 --- a/tests/python_material_linear_elastic4_test.py +++ b/tests/python_material_linear_elastic4_test.py @@ -1,79 +1,79 @@ #!/usr/bin/env python3 # -*- coding:utf-8 -*- """ @file python_material_linear_elastic4_test.py @author Richard Leute @date 27 Mar 2018 @brief description @section LICENSE Copyright © 2018 Till Junge µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with µSpectre; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ import unittest import numpy as np from python_test_imports import µ class MaterialLinearElastic4_Check(unittest.TestCase): """ Check the implementation of storing the first and second Lame constant in each cell. Assign the same Youngs modulus and Poisson ratio to each cell, from which the two Lame constants are internally computed. Then calculate the stress and compare the result with stress=2*mu*Del0 (Hooke law for small symmetric strains). """ def setUp(self): self.resolution = [7,7] self.lengths = [2.3, 3.9] self.formulation = µ.Formulation.small_strain self.sys = µ.Cell(self.resolution, self.lengths, self.formulation) self.dim = len (self.lengths) self.mat = µ.material.MaterialLinearElastic4_2d.make( self.sys, "material") def test_solver(self): Youngs_modulus = 10. Poisson_ratio = 0.3 for i, pixel in enumerate(self.sys): self.mat.add_pixel(pixel, Youngs_modulus, Poisson_ratio) self.sys.initialise() tol = 1e-6 Del0 = np.array([[0, 0.025], [0.025, 0]]) maxiter = 100 verbose = False solver=µ.solvers.SolverCG(self.sys, tol, maxiter, verbose) r = µ.solvers.newton_cg(self.sys, Del0, solver, tol, tol, verbose) #compare the computed stress with the trivial by hand computed stress mu = (Youngs_modulus/(2*(1+Poisson_ratio))) stress = 2*mu*Del0 self.assertLess(np.linalg.norm(r.stress.reshape(-1, self.dim**2) - stress.reshape(1,self.dim**2)), 1e-8) diff --git a/tests/python_mpi_binding_tests.py b/tests/python_mpi_binding_tests.py index fe11bd9..5acaf54 100755 --- a/tests/python_mpi_binding_tests.py +++ b/tests/python_mpi_binding_tests.py @@ -1,40 +1,40 @@ #!/usr/bin/env python3 """ file python_mpi_binding_tests.py @author Till Junge @date 09 Jan 2018 @brief Unit tests for python bindings with MPI support @section LICENCE Copyright © 2018 Till Junge µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with µSpectre; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ import unittest import numpy as np from python_test_imports import µ from python_mpi_projection_tests import * from python_mpi_material_linear_elastic4_test import * if __name__ == '__main__': unittest.main() diff --git a/tests/python_mpi_material_linear_elastic4_test.py b/tests/python_mpi_material_linear_elastic4_test.py index 9b0d6c0..dbe2f15 100644 --- a/tests/python_mpi_material_linear_elastic4_test.py +++ b/tests/python_mpi_material_linear_elastic4_test.py @@ -1,96 +1,96 @@ #!/usr/bin/env python3 # -*- coding:utf-8 -*- """ @file python_mpi_material_linear_elastic4_test.py @author Richard Leute @date 27 Mar 2018 @brief test MPI-parallel linear elastic material @section LICENSE Copyright © 2018 Till Junge µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with µSpectre; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ try: from mpi4py import MPI except ImportError: MPI = None import unittest import numpy as np from python_test_imports import µ def build_test_classes(fft): class MaterialLinearElastic4_Check(unittest.TestCase): """ Check the implementation of storing the first and second Lame constant in each cell. Assign the same Youngs modulus and Poisson ratio to each cell, from which the two Lame constants are internally computed. Then calculate the stress and compare the result with stress=2*mu*Del0 (Hooke law for small symmetric strains). """ def setUp(self): self.resolution = [7,7] self.lengths = [2.3, 3.9] self.formulation = µ.Formulation.small_strain self.sys = µ.Cell(self.resolution, self.lengths, self.formulation, fft=fft, communicator=MPI.COMM_WORLD) self.mat = µ.material.MaterialLinearElastic4_2d.make( self.sys, "material") def test_solver(self): Youngs_modulus = 10. Poisson_ratio = 0.3 for i, pixel in enumerate(self.sys): self.mat.add_pixel(pixel, Youngs_modulus, Poisson_ratio) self.sys.initialise() tol = 1e-6 Del0 = np.array([[0, 0.025], [0.025, 0]]) maxiter = 100 verbose = 1 solver=µ.solvers.SolverCG(self.sys, tol, maxiter, verbose) r = µ.solvers.newton_cg(self.sys, Del0, solver, tol, tol, verbose) #compare the computed stress with the trivial by hand computed stress mu = (Youngs_modulus/(2*(1+Poisson_ratio))) stress = 2*mu*Del0 self.assertLess(np.linalg.norm(r.stress-stress.reshape(-1,1)), 1e-8) return MaterialLinearElastic4_Check linear_elastic4 = {} for fft, is_parallel in µ.fft.fft_engines: if is_parallel: linear_elastic4[fft] = build_test_classes(fft) if __name__ == "__main__": unittest.main() diff --git a/tests/python_mpi_projection_tests.py b/tests/python_mpi_projection_tests.py index 7e32223..29364a2 100644 --- a/tests/python_mpi_projection_tests.py +++ b/tests/python_mpi_projection_tests.py @@ -1,143 +1,143 @@ #! /usr/bin/env python3 # -*- coding:utf-8 -*- """ file python_mpi_projection_tests.py @author Till Junge @date 18 Jan 2018 @brief compare µSpectre's MPI-parallel projection operators to GooseFFT @section LICENSE Copyright © 2018 Till Junge µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with µSpectre; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ import unittest import numpy as np import itertools from mpi4py import MPI from python_test_imports import µ from python_goose_ref import (SmallStrainProjectionGooseFFT, FiniteStrainProjectionGooseFFT) from muSpectre import Formulation from muSpectre.fft import Projection, fft_engines def build_test_classes(formulation, RefProjection, fft): class ProjectionCheck(unittest.TestCase): def __init__(self, methodName='runTest'): super().__init__(methodName) def setUp(self): self.ref = RefProjection self.resolution = self.ref.resolution self.ndim = self.ref.ndim self.shape = list((self.resolution for _ in range(self.ndim))) self.projection = Projection(self.shape, self.shape, formulation, fft, MPI.COMM_WORLD) self.projection.initialise() self.tol = 1e-12 * np.prod(self.shape) def test_projection_result(self): # create a bogus strain field in GooseFFT format # dim × dim × N × N (× N) strain_shape = (self.ndim, self.ndim, *self.shape) strain = np.arange(np.prod(strain_shape)).reshape(strain_shape) # if we're testing small strain projections, it needs to be symmetric if self.projection.get_formulation() == µ.Formulation.small_strain: strain += strain.transpose(1, 0, *range(2, len(strain.shape))) strain_g = strain.copy() b_g = self.ref.G(strain_g).reshape(strain_g.shape) strain_µ = np.zeros((*self.shape, self.ndim, self.ndim)) for ijk in itertools.product(range(self.resolution), repeat=self.ndim): index_µ = tuple((*ijk, slice(None), slice(None))) index_g = tuple((slice(None), slice(None), *ijk)) strain_µ[index_µ] = strain_g[index_g].T res = self.projection.get_subdomain_resolutions() loc = self.projection.get_subdomain_locations() if self.ref.ndim == 2: resx, resy = res locx, locy = loc subdomain_strain_µ = strain_µ[locx:locx+resx, locy:locy+resy] else: resx, resy, resz = res locx, locy, locz = loc subdomain_strain_µ = strain_µ[locx:locx+resx, locy:locy+resy, locz:locz+resz] b_µ = self.projection.apply_projection(subdomain_strain_µ.reshape( np.prod(res), self.ndim**2).T).T.reshape(subdomain_strain_µ.shape) for l in range(np.prod(res)): ijk = µ.get_domain_ccoord(res, l) index_µ = tuple((*ijk, slice(None), slice(None))) ijk = loc + np.array(ijk) index_g = tuple((slice(None), slice(None), *ijk)) b_µ_sl = b_µ[index_µ].T b_g_sl = b_g[index_g] error = np.linalg.norm(b_µ_sl - b_g_sl) condition = error < self.tol slice_printer = lambda tup: "({})".format( ", ".join("{}".format(":" if val == slice(None) else val) for val in tup)) if not condition: print("error = {}, tol = {}".format(error, self.tol)) print("b_µ{} =\n{}".format(slice_printer(index_µ), b_µ_sl)) print("b_g{} =\n{}".format(slice_printer(index_g), b_g_sl)) self.assertTrue(condition) return ProjectionCheck get_goose = lambda ndim, proj_type: proj_type( ndim, 5, 2, 70e9, .33, 3.) get_finite_goose = lambda ndim: get_goose(ndim, FiniteStrainProjectionGooseFFT) get_small_goose = lambda ndim: get_goose(ndim, SmallStrainProjectionGooseFFT) if ("fftwmpi", True) in fft_engines: small_default_fftwmpi_3 = build_test_classes(Formulation.small_strain, get_small_goose(3), "fftwmpi") small_default_fftwmpi_2 = build_test_classes(Formulation.small_strain, get_small_goose(2), "fftwmpi") finite_fast_fftwmpi_3 = build_test_classes(Formulation.finite_strain, get_finite_goose(3), "fftwmpi") finite_fast_fftwmpi_2 = build_test_classes(Formulation.finite_strain, get_finite_goose(2), "fftwmpi") if ("pfft", True) in fft_engines: small_default_pfft_3 = build_test_classes(Formulation.small_strain, get_small_goose(3), "pfft") small_default_pfft_2 = build_test_classes(Formulation.small_strain, get_small_goose(2), "pfft") finite_fast_pfft_3 = build_test_classes(Formulation.finite_strain, get_finite_goose(3), "pfft") finite_fast_pfft_2 = build_test_classes(Formulation.finite_strain, get_finite_goose(2), "pfft") if __name__ == "__main__": unittest.main() diff --git a/tests/python_projection_tests.py b/tests/python_projection_tests.py index 4ed76cc..ed17a22 100644 --- a/tests/python_projection_tests.py +++ b/tests/python_projection_tests.py @@ -1,155 +1,155 @@ #!/usr/bin/env python3 # -*- coding:utf-8 -*- """ file python_projection_tests.py @author Till Junge @date 18 Jan 2018 @brief compare µSpectre's projection operators to GooseFFT @section LICENSE Copyright © 2018 Till Junge µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with µSpectre; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ import unittest import numpy as np import itertools from python_test_imports import µ from python_goose_ref import SmallStrainProjectionGooseFFT, FiniteStrainProjectionGooseFFT import _muSpectre def build_test_classes(Projection, RefProjection, name): class ProjectionCheck(unittest.TestCase): def __init__(self, methodName='runTest'): super().__init__(methodName) self.__class__.__qualname__ = name def setUp(self): self.ref = RefProjection self.resolution = self.ref.resolution self.ndim = self.ref.ndim self.shape = list((self.resolution for _ in range(self.ndim))) self.projection = Projection(self.shape, self.shape) self.projection.initialise() self.tol = 1e-12*np.prod(self.shape) def test_CompareGhat4(self): # refG is rowmajor and the dims are i,j,k,l,x,y(,z) # reshape refG so they are n² × n² × ¶(resolution) refG = self.ref.Ghat4.reshape( self.ndim**2, self.ndim**2, np.prod(self.shape)) # mspG is colmajor (not sure what that's worth, though) with dims # ijkl, xy(z) # reshape mspG so they are ¶(hermitian) × n² × n² ref_sizes = self.shape msp_sizes = µ.get_hermitian_sizes(self.shape) hermitian_size = np.prod(msp_sizes) mspG = self.projection.get_operator() #this test only makes sense for fully stored ghats (i.e., #not for the faster alternative implementation if mspG.size != hermitian_size*self.ndim**4: return rando = np.random.random((self.ndim, self.ndim)) for i in range(hermitian_size): coord = µ.get_domain_ccoord(msp_sizes, i) ref_id = µ.get_domain_index(ref_sizes, coord) msp_id = µ.get_domain_index(msp_sizes, coord) # story behind this order vector: # There was this issue with the projection operator of # de Geus acting on the the transpose of the gradient. order = np.arange(self.ndim**2).reshape( self.ndim, self.ndim).T.reshape(-1) msp_g = mspG[:, msp_id].reshape(self.ndim**2, self.ndim**2)[order, :] error = np.linalg.norm(refG[:, :, ref_id] - msp_g) condition = error < self.tol if not condition: print("G_µ{}, at index {} =\n{}".format(coord, msp_id, msp_g)) print("G_g{}, at index {} =\n{}".format(coord, ref_id, refG[:, :, ref_id])) self.assertTrue(condition) def test_projection_result(self): # create a bogus strain field in GooseFFT format # dim × dim × N × N (× N) strain_shape = (self.ndim, self.ndim, *self.shape) strain = np.arange(np.prod(strain_shape)).reshape(strain_shape) # if we're testing small strain projections, it needs to be symmetric if self.projection.get_formulation() == µ.Formulation.small_strain: strain += strain.transpose(1, 0, *range(2, len(strain.shape))) strain_g = strain.copy() b_g = self.ref.G(strain_g).reshape(strain_g.shape) strain_µ = np.zeros((*self.shape, self.ndim, self.ndim)) for ijk in itertools.product(range(self.resolution), repeat=self.ndim): index_µ = tuple((*ijk, slice(None), slice(None))) index_g = tuple((slice(None), slice(None), *ijk)) strain_µ[index_µ] = strain_g[index_g].T b_µ = self.projection.apply_projection(strain_µ.reshape( np.prod(self.shape), self.ndim**2).T).T.reshape(strain_µ.shape) for ijk in itertools.product(range(self.resolution), repeat=self.ndim): index_µ = tuple((*ijk, slice(None), slice(None))) index_g = tuple((slice(None), slice(None), *ijk)) b_µ_sl = b_µ[index_µ].T b_g_sl = b_g[index_g] error = np.linalg.norm(b_µ_sl-b_g_sl) condition = error < self.tol slice_printer = lambda tup: "({})".format( ", ".join("{}".format(":" if val == slice(None) else val) for val in tup)) if not condition: print("error = {}, tol = {}".format(error, self.tol)) print("b_µ{} =\n{}".format(slice_printer(index_µ), b_µ_sl)) print("b_g{} =\n{}".format(slice_printer(index_g), b_g_sl)) self.assertTrue(condition) return ProjectionCheck get_goose = lambda ndim, proj_type: proj_type( ndim, 5, 2, 70e9, .33, 3.) get_finite_goose = lambda ndim: get_goose(ndim, FiniteStrainProjectionGooseFFT) get_small_goose = lambda ndim: get_goose(ndim, SmallStrainProjectionGooseFFT) small_default_3 = build_test_classes(_muSpectre.fft.ProjectionSmallStrain_3d, get_small_goose(3), "SmallStrainDefaultProjection3d") small_default_2 = build_test_classes(_muSpectre.fft.ProjectionSmallStrain_2d, get_small_goose(2), "SmallStrainDefaultProjection2d") finite_default_3 = build_test_classes(_muSpectre.fft.ProjectionFiniteStrain_3d, get_finite_goose(3), "FiniteStrainDefaultProjection3d") finite_default_2 = build_test_classes(_muSpectre.fft.ProjectionFiniteStrain_2d, get_finite_goose(2), "FiniteStrainDefaultProjection2d") finite_fast_3 = build_test_classes(_muSpectre.fft.ProjectionFiniteStrainFast_3d, get_finite_goose(3), "FiniteStrainFastProjection3d") finite_fast_2 = build_test_classes(_muSpectre.fft.ProjectionFiniteStrainFast_2d, get_finite_goose(2), "FiniteStrainFastProjection2d") if __name__ == "__main__": unittest.main() diff --git a/tests/python_test_imports.py b/tests/python_test_imports.py index ece0f32..2dab47b 100644 --- a/tests/python_test_imports.py +++ b/tests/python_test_imports.py @@ -1,41 +1,41 @@ #!/usr/bin/env python3 # -*- coding:utf-8 -*- """ file python_test_imports.py @author Till Junge @date 18 Jan 2018 @brief prepares sys.path to load muSpectre @section LICENSE Copyright © 2018 Till Junge µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version. µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GNU Emacs; see the file COPYING. If not, write to the +along with µSpectre; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ import sys import os sys.path.insert(0, os.path.join(os.getcwd(), "language_bindings/python")) try: import muSpectre as µ except ImportError as err: print(err) sys.exit(-1) diff --git a/tests/test_base.cc b/tests/test_base.cc index 621a6ee..e71dcad 100644 --- a/tests/test_base.cc +++ b/tests/test_base.cc @@ -1,34 +1,34 @@ /** * @file test_base.cc * * @author Till Junge * * @date 01 May 2017 * * @brief Base test (tests only whether the tests compile * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #define BOOST_TEST_DYN_LINK #include BOOST_AUTO_TEST_CASE(base_test) { BOOST_CHECK_EQUAL(1, 2-1); } diff --git a/tests/test_cell_base.cc b/tests/test_cell_base.cc index 105d65d..a286620 100644 --- a/tests/test_cell_base.cc +++ b/tests/test_cell_base.cc @@ -1,329 +1,329 @@ /** * @file test_cell_base.cc * * @author Till Junge * * @date 14 Dec 2017 * * @brief Tests for the basic cell class * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include "tests.hh" #include "common/common.hh" #include "common/iterators.hh" #include "common/field_map.hh" #include "tests/test_goodies.hh" #include "cell/cell_factory.hh" #include "materials/material_linear_elastic1.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(cell_base); template struct Sizes { }; template<> struct Sizes { constexpr static Dim_t sdim{twoD}; constexpr static Ccoord_t get_resolution() { return Ccoord_t{3, 5};} constexpr static Rcoord_t get_lengths() { return Rcoord_t{3.4, 5.8};} }; template<> struct Sizes { constexpr static Dim_t sdim{threeD}; constexpr static Ccoord_t get_resolution() { return Ccoord_t{3, 5, 7};} constexpr static Rcoord_t get_lengths() { return Rcoord_t{3.4, 5.8, 6.7};} }; template struct CellBaseFixture: CellBase { constexpr static Dim_t sdim{DimS}; constexpr static Dim_t mdim{DimM}; constexpr static Formulation formulation{form}; CellBaseFixture() :CellBase{ std::move(cell_input(Sizes::get_resolution(), Sizes::get_lengths(), form))} {} }; using fixlist = boost::mpl::list, CellBaseFixture, CellBaseFixture, CellBaseFixture>; BOOST_AUTO_TEST_CASE(manual_construction) { constexpr Dim_t dim{twoD}; Ccoord_t resolutions{3, 3}; Rcoord_t lengths{2.3, 2.7}; Formulation form{Formulation::finite_strain}; auto fft_ptr{std::make_unique>(resolutions, dim*dim)}; auto proj_ptr{std::make_unique>(std::move(fft_ptr), lengths)}; CellBase sys{std::move(proj_ptr)}; auto sys2{make_cell(resolutions, lengths, form)}; auto sys2b{std::move(sys2)}; BOOST_CHECK_EQUAL(sys2b.size(), sys.size()); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(constructor_test, fix, fixlist, fix) { BOOST_CHECK_THROW(fix::check_material_coverage(), std::runtime_error); BOOST_CHECK_THROW(fix::initialise(), std::runtime_error); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(add_material_test, fix, fixlist, fix) { constexpr Dim_t dim{fix::sdim}; using Material_t = MaterialLinearElastic1; auto Material_hard = std::make_unique("hard", 210e9, .33); BOOST_CHECK_NO_THROW(fix::add_material(std::move(Material_hard))); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(simple_evaluation_test, fix, fixlist, fix) { constexpr Dim_t dim{fix::sdim}; constexpr Formulation form{fix::formulation}; using Mat_t = MaterialLinearElastic1; const Real Young{210e9}, Poisson{.33}; const Real lambda{Young*Poisson/((1+Poisson)*(1-2*Poisson))}; const Real mu{Young/(2*(1+Poisson))}; auto Material_hard = std::make_unique("hard", Young, Poisson); for (auto && pixel: *this) { Material_hard->add_pixel(pixel); } fix::add_material(std::move(Material_hard)); auto & F = fix::get_strain(); auto F_map = F.get_map(); // finite strain formulation expects the deformation gradient F, // while small strain expects infinitesimal strain ε for (auto grad: F_map) { switch (form) { case Formulation::finite_strain: { grad = grad.Identity(); break; } case Formulation::small_strain: { grad = grad.Zero(); break; } default: BOOST_CHECK(false); break; } } auto res_tup{fix::evaluate_stress_tangent(F)}; auto stress{std::get<0>(res_tup).get_map()}; auto tangent{std::get<1>(res_tup).get_map()}; auto tup = testGoodies::objective_hooke_explicit (lambda, mu, Matrices::I2()); auto P_ref = std::get<0>(tup); for (auto mat: stress) { Real norm = (mat - P_ref).norm(); BOOST_CHECK_EQUAL(norm, 0.); } auto tan_ref = std::get<1>(tup); for (const auto tan: tangent) { Real norm = (tan - tan_ref).norm(); BOOST_CHECK_EQUAL(norm, 0.); } } BOOST_FIXTURE_TEST_CASE_TEMPLATE(evaluation_test, fix, fixlist, fix) { constexpr Dim_t dim{fix::sdim}; using Mat_t = MaterialLinearElastic1; auto Material_hard = std::make_unique("hard", 210e9, .33); auto Material_soft = std::make_unique("soft", 70e9, .3); for (auto && cnt_pixel: akantu::enumerate(*this)) { auto counter = std::get<0>(cnt_pixel); auto && pixel = std::get<1>(cnt_pixel); if (counter < 5) { Material_hard->add_pixel(pixel); } else { Material_soft->add_pixel(pixel); } } fix::add_material(std::move(Material_hard)); fix::add_material(std::move(Material_soft)); auto & F = fix::get_strain(); fix::evaluate_stress_tangent(F); fix::evaluate_stress_tangent(F); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(evaluation_test_new_interface, fix, fixlist, fix) { constexpr Dim_t dim{fix::sdim}; using Mat_t = MaterialLinearElastic1; auto Material_hard = std::make_unique("hard", 210e9, .33); auto Material_soft = std::make_unique("soft", 70e9, .3); for (auto && cnt_pixel: akantu::enumerate(*this)) { auto counter = std::get<0>(cnt_pixel); auto && pixel = std::get<1>(cnt_pixel); if (counter < 5) { Material_hard->add_pixel(pixel); } else { Material_soft->add_pixel(pixel); } } fix::add_material(std::move(Material_hard)); fix::add_material(std::move(Material_soft)); auto F_vec = fix::get_strain_vector(); F_vec.setZero(); fix::evaluate_stress_tangent(); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_managed_fields, Fix, fixlist, Fix) { Cell & dyn_handle{*this}; CellBase & base_handle{*this}; const std::string name1{"aaa"}; constexpr size_t nb_comp{5}; auto new_dyn_array{dyn_handle.get_managed_real_array(name1, nb_comp)}; BOOST_CHECK_EQUAL(new_dyn_array.rows(), nb_comp); BOOST_CHECK_EQUAL(new_dyn_array.cols(), dyn_handle.size()); BOOST_CHECK_THROW(dyn_handle.get_managed_real_array(name1, nb_comp+1), std::runtime_error); auto & new_field{base_handle.get_managed_real_field(name1, nb_comp)}; BOOST_CHECK_EQUAL(new_field.get_nb_components(), nb_comp); BOOST_CHECK_EQUAL(new_field.size(), dyn_handle.size()); BOOST_CHECK_THROW(base_handle.get_managed_real_field(name1, nb_comp+1), std::runtime_error); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_globalised_fields, Fix, fixlist, Fix) { constexpr Dim_t Dim{Fix::sdim}; using Mat_t = MaterialLinearElastic1; using LColl_t = typename Mat_t::MFieldCollection_t; auto & material_soft{Mat_t::make(*this, "soft", 70e9, .3)}; auto & material_hard{Mat_t::make(*this, "hard", 210e9, .3)}; for (auto && tup: akantu::enumerate(*this)) { const auto & i{std::get<0>(tup)}; const auto & pixel{std::get<1>(tup)}; if (i%2) { material_soft.add_pixel(pixel); } else { material_hard.add_pixel(pixel); } } material_soft.initialise(); material_hard.initialise(); auto & col_soft{material_soft.get_collection()}; auto & col_hard{material_hard.get_collection()}; // compatible fields: const std::string compatible_name{"compatible"}; auto & compatible_soft{ make_field>(compatible_name, col_soft, Dim)}; auto & compatible_hard{ make_field>(compatible_name, col_hard, Dim)}; auto pixler = [](auto& field) { for (auto && tup: field.get_map().enumerate()) { const auto & pixel{std::get<0>(tup)}; auto & val{std::get<1>(tup)}; for (Dim_t i{0}; i < Dim; ++i) { val(i) = pixel[i]; } } }; pixler(compatible_soft); pixler(compatible_hard); auto & global_compatible_field{ this->get_globalised_internal_real_field(compatible_name)}; auto glo_map{global_compatible_field.get_map()}; for (auto && tup: glo_map.enumerate()) { const auto & pixel{std::get<0>(tup)}; const auto & val(std::get<1>(tup)); using Map_t = Eigen::Map>; Real err {(val - Map_t(pixel.data()).template cast()).matrix().norm()}; BOOST_CHECK_LT(err, tol); } // incompatible fields: const std::string incompatible_name{"incompatible"}; make_field>(incompatible_name, col_soft, Dim); make_field>(incompatible_name, col_hard, Dim+1); BOOST_CHECK_THROW(this->get_globalised_internal_real_field(incompatible_name), std::runtime_error); // wrong name/ inexistant field const std::string wrong_name{"wrong_name"}; BOOST_CHECK_THROW(this->get_globalised_internal_real_field(wrong_name), std::runtime_error); // wrong scalar type: const std::string wrong_scalar_name{"wrong_scalar"}; make_field>(wrong_scalar_name, col_soft, Dim); make_field>(wrong_scalar_name, col_hard, Dim); BOOST_CHECK_THROW(this->get_globalised_internal_real_field(wrong_scalar_name), std::runtime_error); } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/test_fft_utils.cc b/tests/test_fft_utils.cc index 1599241..d73d46e 100644 --- a/tests/test_fft_utils.cc +++ b/tests/test_fft_utils.cc @@ -1,80 +1,80 @@ /** * @file test_fft_utils.cc * * @author Till Junge * * @date 11 Dec 2017 * * @brief test the small utility functions used by the fft engines and projections * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include "tests.hh" #include "fft/fft_utils.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(fft_utils); BOOST_AUTO_TEST_CASE(fft_freqs_test) { //simply comparing to np.fft.fftfreq(12, 1/12.) const std::valarray ref{0., 1., 2., 3., 4., 5., -6., -5., -4., -3., -2., -1.}; auto res{fft_freqs(12)}; Real error = std::abs(res-ref).sum(); BOOST_CHECK_EQUAL(error, 0.); } BOOST_AUTO_TEST_CASE(fft_freqs_test_length) { //simply comparing to np.fft.fftfreq(10) const std::valarray ref{ 0. , 0.1, 0.2, 0.3, 0.4, -0.5, -0.4, -0.3, -0.2, -0.1}; auto res{fft_freqs(10, 10.)}; Real error = std::abs(res-ref).sum(); BOOST_CHECK_EQUAL(error, 0.); } BOOST_AUTO_TEST_CASE(wave_vector_computation) { // here, build a FFT_freqs and check it returns the correct xi's constexpr Dim_t dim{twoD}; FFT_freqs freq_struc{{12, 10}, {1., 10.}}; Ccoord_t ccoord1{2, 3}; auto xi{freq_struc.get_xi(ccoord1)}; auto unit_xi{freq_struc.get_unit_xi(ccoord1)}; typename FFT_freqs::Vector ref; ref << 2., .3; // from above tests BOOST_CHECK_LT((xi-ref).norm(), tol); BOOST_CHECK_LT(std::abs(xi.dot(unit_xi)-xi.norm()), xi.norm()*tol); BOOST_CHECK_LT(std::abs(unit_xi.norm()-1.), tol); ccoord1={7, 8}; xi = freq_struc.get_xi(ccoord1); unit_xi = freq_struc.get_unit_xi(ccoord1); ref << -5., -.2; BOOST_CHECK_LT((xi-ref).norm(), tol); BOOST_CHECK_LT(std::abs(xi.dot(unit_xi)-xi.norm()), xi.norm()*tol); BOOST_CHECK_LT(std::abs(unit_xi.norm()-1.), tol); } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/test_fftw_engine.cc b/tests/test_fftw_engine.cc index ff57ebe..968b617 100644 --- a/tests/test_fftw_engine.cc +++ b/tests/test_fftw_engine.cc @@ -1,132 +1,132 @@ /** * @file test_fftw_engine.cc * * @author Till Junge * * @date 05 Dec 2017 * * @brief tests for the fftw fft engine implementation * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include "tests.hh" #include "fft/fftw_engine.hh" #include "common/ccoord_operations.hh" #include "common/field_collection.hh" #include "common/field_map.hh" #include "common/iterators.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(fftw_engine); /* ---------------------------------------------------------------------- */ template struct FFTW_fixture { constexpr static Dim_t box_resolution{resolution}; constexpr static Real box_length{4.5}; constexpr static Dim_t sdim{DimS}; constexpr static Dim_t mdim{DimM}; constexpr static Ccoord_t res() { return CcoordOps::get_cube(box_resolution); } constexpr static Ccoord_t loc() { return CcoordOps::get_cube(0); } FFTW_fixture() : engine(res(), DimM*DimM) {} FFTWEngine engine; }; struct FFTW_fixture_python_segfault{ constexpr static Dim_t dim{twoD}; constexpr static Dim_t sdim{twoD}; constexpr static Dim_t mdim{twoD}; constexpr static Ccoord_t res() {return {6, 4};} constexpr static Ccoord_t loc() {return {0, 0};} FFTW_fixture_python_segfault() : engine{res(), mdim*mdim} {} FFTWEngine engine; }; using fixlist = boost::mpl::list, FFTW_fixture< twoD, threeD, 3>, FFTW_fixture, FFTW_fixture< twoD, twoD, 4>, FFTW_fixture< twoD, threeD, 4>, FFTW_fixture, FFTW_fixture_python_segfault>; /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(Constructor_test, Fix, fixlist, Fix) { BOOST_CHECK_NO_THROW(Fix::engine.initialise(FFT_PlanFlags::estimate)); BOOST_CHECK_EQUAL(Fix::engine.size(), CcoordOps::get_size(Fix::res())); } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(fft_test, Fix, fixlist, Fix) { Fix::engine.initialise(FFT_PlanFlags::estimate); constexpr Dim_t order{2}; using FC_t = GlobalFieldCollection; FC_t fc; auto & input{make_field>("input", fc)}; auto & ref {make_field>("reference", fc)}; auto & result{make_field>("result", fc)}; fc.initialise(Fix::res(), Fix::loc()); using map_t = MatrixFieldMap; map_t inmap{input}; auto refmap{map_t{ref}}; auto resultmap{map_t{result}}; size_t cntr{0}; for (auto tup: akantu::zip(inmap, refmap)) { cntr++; auto & in_{std::get<0>(tup)}; auto & ref_{std::get<1>(tup)}; in_.setRandom(); ref_ = in_; } auto & complex_field = Fix::engine.fft(input); using cmap_t = MatrixFieldMap, Complex, Fix::mdim, Fix::mdim>; cmap_t complex_map(complex_field); Real error = complex_map[0].imag().norm(); BOOST_CHECK_LT(error, tol); /* make sure, the engine has not modified input (which is unfortunately const-casted internally, hence this test) */ for (auto && tup: akantu::zip(inmap, refmap)) { Real error{(std::get<0>(tup) - std::get<1>(tup)).norm()}; BOOST_CHECK_LT(error, tol); } /* make sure that the ifft of fft returns the original*/ Fix::engine.ifft(result); for (auto && tup: akantu::zip(resultmap, refmap)) { Real error{(std::get<0>(tup)*Fix::engine.normalisation() - std::get<1>(tup)).norm()}; BOOST_CHECK_LT(error, tol); if (error > tol) { std::cout << std::get<0>(tup).array()/std::get<1>(tup).array() << std::endl << std::endl; } } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/test_field_collections.hh b/tests/test_field_collections.hh index 6457686..7e95672 100644 --- a/tests/test_field_collections.hh +++ b/tests/test_field_collections.hh @@ -1,166 +1,166 @@ /** * @file test_field_collections.hh * * @author Till Junge * * @date 23 Nov 2017 * * @brief declares fixtures for field_collection tests, so that they can be split * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef TEST_FIELD_COLLECTIONS_H #define TEST_FIELD_COLLECTIONS_H #include #include #include #include #include #include #include "common/common.hh" #include "common/ccoord_operations.hh" #include "tests/test_goodies.hh" #include "tests.hh" #include "common/field_collection.hh" #include "common/field.hh" #include "common/field_map.hh" namespace muSpectre { //! Test fixture for simple tests on single field in collection template struct FC_fixture: public std::conditional_t, LocalFieldCollection> { FC_fixture() :fc() {} inline static constexpr Dim_t sdim(){return DimS;} inline static constexpr Dim_t mdim(){return DimM;} inline static constexpr bool global(){return Global;} using FC_t = std::conditional_t, LocalFieldCollection>; FC_t fc; }; using test_collections = boost::mpl::list, FC_fixture<2, 3, true>, FC_fixture<3, 3, true>, FC_fixture<2, 2, false>, FC_fixture<2, 3, false>, FC_fixture<3, 3, false>>; constexpr Dim_t order{4}, matrix_order{2}; //! Test fixture for multiple fields in the collection template struct FC_multi_fixture{ using FC_t = std::conditional_t, LocalFieldCollection>; using T4_t = TensorField; using T2_t = TensorField; using Sc_t = ScalarField; using M2_t = MatrixField; using Dyn_t = TypedField; FC_multi_fixture() :fc(), t4_field{make_field("Tensorfield Real o4", fc)},//Real tensor field t2_field{make_field("Tensorfield Real o2", fc)},//Real tensor field sc_field{make_field("integer Scalar", fc)}, // integer scalar field m2_field{make_field("Matrixfield Complex sdim x mdim", fc)}, //complex matrix field dyn_field{make_field("Dynamically sized Field", fc, 12)} { } inline static constexpr Dim_t sdim(){return DimS;} inline static constexpr Dim_t mdim(){return DimM;} inline static constexpr bool global(){return Global;} FC_t fc; T4_t & t4_field; T2_t & t2_field; Sc_t & sc_field; M2_t & m2_field; Dyn_t & dyn_field; }; using mult_collections = boost::mpl::list, FC_multi_fixture<2, 3, true>, FC_multi_fixture<3, 3, true>, FC_multi_fixture<2, 2, false>, FC_multi_fixture<2, 3, false>, FC_multi_fixture<3, 3, false>>; //! Test fixture for iterators over multiple fields template struct FC_iterator_fixture : public FC_multi_fixture { using Parent = FC_multi_fixture; FC_iterator_fixture() :Parent() { this-> fill(); } template std::enable_if_t fill() { static_assert(Global==isGlobal, "You're breaking my SFINAE plan"); Ccoord_t size; Ccoord_t loc{}; for (auto && s: size) { s = cube_size(); } this->fc.initialise(size, loc); } template std::enable_if_t fill (int dummy = 0) { static_assert(notGlobal != Global, "You're breaking my SFINAE plan"); testGoodies::RandRange rng; this->fc.add_pixel({0,0}); for (int i = 0*dummy; i < sele_size(); ++i) { Ccoord_t pixel; for (auto && s: pixel) { s = rng.randval(0, 7); } this->fc.add_pixel(pixel); } this->fc.initialise(); } constexpr static Dim_t cube_size() {return 3;} constexpr static Dim_t sele_size() {return 7;} }; using iter_collections = boost::mpl::list, FC_iterator_fixture<2, 3, true>, FC_iterator_fixture<3, 3, true>, FC_iterator_fixture<2, 2, false>, FC_iterator_fixture<2, 3, false>, FC_iterator_fixture<3, 3, false>>; using glob_iter_colls = boost::mpl::list, FC_iterator_fixture<2, 3, true>, FC_iterator_fixture<3, 3, true>>; } // muSpectre #endif /* TEST_FIELD_COLLECTIONS_H */ diff --git a/tests/test_goodies.hh b/tests/test_goodies.hh index 692ff19..53f8af0 100644 --- a/tests/test_goodies.hh +++ b/tests/test_goodies.hh @@ -1,133 +1,133 @@ /** * @file test_goodies.hh * * @author Till Junge * * @date 27 Sep 2017 * * @brief helpers for testing * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef TEST_GOODIES_H #define TEST_GOODIES_H #include "common/tensor_algebra.hh" #include #include #include namespace muSpectre { namespace testGoodies { template struct dimFixture{ constexpr static Dim_t dim{Dim}; }; using dimlist = boost::mpl::list, dimFixture, dimFixture>; /* ---------------------------------------------------------------------- */ template class RandRange { public: RandRange(): rd(), gen(rd()) {} template std::enable_if_t::value, dummyT> randval(T&& lower, T&& upper) { static_assert(std::is_same::value, "SFINAE"); auto distro = std::uniform_real_distribution(lower, upper); return distro(this->gen); } template std::enable_if_t::value, dummyT> randval(T&& lower, T&& upper) { static_assert(std::is_same::value, "SFINAE"); auto distro = std::uniform_int_distribution(lower, upper); return distro(this->gen); } private: std::random_device rd; std::default_random_engine gen; }; /** * explicit computation of linearisation of PK1 stress for an * objective Hooke's law. This implementation is not meant to be * efficient, but te reflect exactly the formulation in Curnier * 2000, "Méthodes numériques en mécanique des solides" for * reference and testing */ template decltype(auto) objective_hooke_explicit(Real lambda, Real mu, const Matrices::Tens2_t& F) { using namespace Matrices; using T2 = Tens2_t; using T4 = Tens4_t; T2 P; T2 I = P.Identity(); T4 K; // See Curnier, 2000, "Méthodes numériques en mécanique des // solides", p 252, (6.95b) Real Fjrjr = (F.array()*F.array()).sum(); T2 Fjrjm = F.transpose()*F; P.setZero(); for (Dim_t i = 0; i < Dim; ++i) { for (Dim_t m = 0; m < Dim; ++m) { P(i,m) += lambda/2*(Fjrjr-Dim)*F(i,m); for (Dim_t r = 0; r < Dim; ++r) { P(i,m) += mu*F(i,r)*(Fjrjm(r,m) - I(r,m)); } } } // See Curnier, 2000, "Méthodes numériques en mécanique des solides", p 252 Real Fkrkr = (F.array()*F.array()).sum(); T2 Fkmkn = F.transpose()*F; T2 Fisjs = F*F.transpose(); K.setZero(); for (Dim_t i = 0; i < Dim; ++i) { for (Dim_t j = 0; j < Dim; ++j) { for (Dim_t m = 0; m < Dim; ++m) { for (Dim_t n = 0; n < Dim; ++n) { get(K, i, m, j, n) = (lambda*((Fkrkr-Dim)/2 * I(i,j)*I(m,n) + F(i,m)*F(j,n)) + mu * (I(i,j)*Fkmkn(m,n) + Fisjs(i,j)*I(m,n) - I(i,j) *I(m,n) + F(i,n)*F(j,m))); } } } } return std::make_tuple(P,K); } } // testGoodies } // muSpectre #endif /* TEST_GOODIES_H */ diff --git a/tests/test_material_hyper_elasto_plastic1.cc b/tests/test_material_hyper_elasto_plastic1.cc index f749892..1364adc 100644 --- a/tests/test_material_hyper_elasto_plastic1.cc +++ b/tests/test_material_hyper_elasto_plastic1.cc @@ -1,343 +1,343 @@ /** * @file test_material_hyper_elasto_plastic1.cc * * @author Till Junge * * @date 25 Feb 2018 * * @brief Tests for the large-strain Simo-type plastic law implemented * using MaterialMuSpectre * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "boost/mpl/list.hpp" #include "materials/material_hyper_elasto_plastic1.hh" #include "materials/materials_toolbox.hh" #include "tests.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(material_hyper_elasto_plastic_1); template struct MaterialFixture { using Mat = Mat_t; constexpr static Real K{.833}; // bulk modulus constexpr static Real mu{.386}; // shear modulus constexpr static Real H{.004}; // hardening modulus constexpr static Real tau_y0{.003}; // initial yield stress constexpr static Real young{ MatTB::convert_elastic_modulus(K, mu)}; constexpr static Real poisson{ MatTB::convert_elastic_modulus(K, mu)}; MaterialFixture():mat("Name", young, poisson, tau_y0, H){}; constexpr static Dim_t sdim{Mat_t::sdim()}; constexpr static Dim_t mdim{Mat_t::mdim()}; Mat_t mat; }; using mats = boost::mpl::list>, MaterialFixture>, MaterialFixture>>; BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_constructor, Fix, mats, Fix) { BOOST_CHECK_EQUAL("Name", Fix::mat.get_name()); auto & mat{Fix::mat}; auto sdim{Fix::sdim}; auto mdim{Fix::mdim}; BOOST_CHECK_EQUAL(sdim, mat.sdim()); BOOST_CHECK_EQUAL(mdim, mat.mdim()); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_evaluate_stress, Fix, mats, Fix) { // This test uses precomputed reference values (computed using // elasto-plasticity.py) for the 3d case only // need higher tol because of printout precision of reference solutions constexpr Real hi_tol{1e-8}; constexpr Dim_t mdim{Fix::mdim}, sdim{Fix::sdim}; constexpr bool has_precomputed_values{(mdim == sdim) && (mdim == threeD)}; constexpr bool verbose{false}; using Strain_t = Eigen::Matrix; using traits = MaterialMuSpectre_traits>; using LColl_t = typename traits::LFieldColl_t; using StrainStField_t = StateField< TensorField>; using FlowStField_t = StateField< ScalarField>; // using StrainStRef_t = typename traits::LStrainMap_t::reference; // using ScalarStRef_t = typename traits::LScalarMap_t::reference; // create statefields LColl_t coll{}; coll.add_pixel({0}); coll.initialise(); auto & F_{make_statefield("previous gradient", coll)}; auto & be_{make_statefield("previous elastic strain", coll)}; auto & eps_{make_statefield("plastic flow", coll)}; auto F_prev{F_.get_map()}; F_prev[0].current() = Strain_t::Identity(); auto be_prev{be_.get_map()}; be_prev[0].current() = Strain_t::Identity(); auto eps_prev{eps_.get_map()}; eps_prev[0].current() = 0; // elastic deformation Strain_t F{Strain_t::Identity()}; F(0, 1) = 1e-5; F_.cycle(); be_.cycle(); eps_.cycle(); Strain_t stress{Fix::mat.evaluate_stress(F, F_prev[0], be_prev[0], eps_prev[0])}; if (has_precomputed_values) { Strain_t tau_ref{}; tau_ref << 1.92999522e-11, 3.86000000e-06, 0.00000000e+00, 3.86000000e-06, -1.93000510e-11, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -2.95741950e-17; Real error{(tau_ref-stress).norm()}; BOOST_CHECK_LT(error, hi_tol); Strain_t be_ref{}; be_ref << 1.00000000e+00, 1.00000000e-05, 0.00000000e+00, 1.00000000e-05, 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00; error = (be_ref-be_prev[0].current()).norm(); BOOST_CHECK_LT(error, hi_tol); Real ep_ref{0}; error = ep_ref-eps_prev[0].current(); BOOST_CHECK_LT(error, hi_tol); } if (verbose) { std::cout << "τ =" << std::endl << stress << std::endl; std::cout << "F =" << std::endl << F << std::endl; std::cout << "Fₜ =" << std::endl << F_prev[0].current() << std::endl; std::cout << "bₑ =" << std::endl << be_prev[0].current() << std::endl; std::cout << "εₚ =" << std::endl << eps_prev[0].current() << std::endl; } F_.cycle(); be_.cycle(); eps_.cycle(); // plastic deformation F(0, 1) = .2; stress = Fix::mat.evaluate_stress(F, F_prev[0], be_prev[0], eps_prev[0]); if (has_precomputed_values) { Strain_t tau_ref{}; tau_ref << 1.98151335e-04, 1.98151335e-03, 0.00000000e+00, 1.98151335e-03, -1.98151335e-04, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.60615155e-16; Real error{(tau_ref-stress).norm()}; BOOST_CHECK_LT(error, hi_tol); Strain_t be_ref{}; be_ref << 1.00052666, 0.00513348, 0., 0.00513348, 0.99949996, 0., 0., 0., 1.; error = (be_ref-be_prev[0].current()).norm(); BOOST_CHECK_LT(error, hi_tol); Real ep_ref{0.11229988}; error = ep_ref-eps_prev[0].current(); BOOST_CHECK_LT(error, hi_tol); } if (verbose) { std::cout << "Post Cycle" << std::endl; std::cout << "τ =" << std::endl << stress << std::endl << "F =" << std::endl << F << std::endl << "Fₜ =" << std::endl << F_prev[0].current() << std::endl << "bₑ =" << std::endl << be_prev[0].current() << std::endl << "εₚ =" << std::endl << eps_prev[0].current() << std::endl; } } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_evaluate_stiffness, Fix, mats, Fix) { // This test uses precomputed reference values (computed using // elasto-plasticity.py) for the 3d case only // need higher tol because of printout precision of reference solutions constexpr Real hi_tol{1e-8}; constexpr Dim_t mdim{Fix::mdim}, sdim{Fix::sdim}; constexpr bool has_precomputed_values{(mdim == sdim) && (mdim == threeD)}; constexpr bool verbose{has_precomputed_values && false}; using Strain_t = Eigen::Matrix; using Stiffness_t = T4Mat; using traits = MaterialMuSpectre_traits>; using LColl_t = typename traits::LFieldColl_t; using StrainStField_t = StateField< TensorField>; using FlowStField_t = StateField< ScalarField>; // using StrainStRef_t = typename traits::LStrainMap_t::reference; // using ScalarStRef_t = typename traits::LScalarMap_t::reference; // create statefields LColl_t coll{}; coll.add_pixel({0}); coll.initialise(); auto & F_{make_statefield("previous gradient", coll)}; auto & be_{make_statefield("previous elastic strain", coll)}; auto & eps_{make_statefield("plastic flow", coll)}; auto F_prev{F_.get_map()}; F_prev[0].current() = Strain_t::Identity(); auto be_prev{be_.get_map()}; be_prev[0].current() = Strain_t::Identity(); auto eps_prev{eps_.get_map()}; eps_prev[0].current() = 0; // elastic deformation Strain_t F{Strain_t::Identity()}; F(0, 1) = 1e-5; F_.cycle(); be_.cycle(); eps_.cycle(); Strain_t stress{}; Stiffness_t stiffness{}; std::tie(stress, stiffness) = Fix::mat.evaluate_stress_tangent(F, F_prev[0], be_prev[0], eps_prev[0]); if (has_precomputed_values) { Strain_t tau_ref{}; tau_ref << 1.92999522e-11, 3.86000000e-06, 0.00000000e+00, 3.86000000e-06, -1.93000510e-11, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -2.95741950e-17; Real error{(tau_ref-stress).norm()}; BOOST_CHECK_LT(error, hi_tol); Strain_t be_ref{}; be_ref << 1.00000000e+00, 1.00000000e-05, 0.00000000e+00, 1.00000000e-05, 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00; error = (be_ref-be_prev[0].current()).norm(); BOOST_CHECK_LT(error, hi_tol); Real ep_ref{0}; error = ep_ref-eps_prev[0].current(); BOOST_CHECK_LT(error, hi_tol); Stiffness_t C4_ref{}; C4_ref << 0.67383333, 0., 0., 0., 0.28783333, 0., 0., 0., 0.28783333, 0., 0.193, 0., 0.193, 0., 0., 0., 0., 0., 0., 0., 0.193, 0., 0., 0., 0.193, 0., 0., 0., 0.193, 0., 0.193, 0., 0., 0., 0., 0., 0.28783333, 0., 0., 0., 0.67383333, 0., 0., 0., 0.28783333, 0., 0., 0., 0., 0., 0.193, 0., 0.193, 0., 0., 0., 0.193, 0., 0., 0., 0.193, 0., 0., 0., 0., 0., 0., 0., 0.193, 0., 0.193, 0., 0.28783333, 0., 0., 0., 0.28783333, 0., 0., 0., 0.67383333; error = (C4_ref - stiffness).norm(); BOOST_CHECK_LT(error, hi_tol); } if (verbose) { std::cout << "C₄ =" << std::endl << stiffness << std::endl; } F_.cycle(); be_.cycle(); eps_.cycle(); // plastic deformation F(0, 1) = .2; std::tie(stress, stiffness) = Fix::mat.evaluate_stress_tangent(F, F_prev[0], be_prev[0], eps_prev[0]); if (has_precomputed_values) { Strain_t tau_ref{}; tau_ref << 1.98151335e-04, 1.98151335e-03, 0.00000000e+00, 1.98151335e-03, -1.98151335e-04, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.60615155e-16; Real error{(tau_ref-stress).norm()}; BOOST_CHECK_LT(error, hi_tol); Strain_t be_ref{}; be_ref << 1.00052666, 0.00513348, 0., 0.00513348, 0.99949996, 0., 0., 0., 1.; error = (be_ref-be_prev[0].current()).norm(); BOOST_CHECK_LT(error, hi_tol); Real ep_ref{0.11229988}; error = ep_ref-eps_prev[0].current(); BOOST_CHECK_LT(error, hi_tol); Stiffness_t C4_ref{}; C4_ref << +4.23106224e-01, -4.27959704e-04, 0.00000000e+00, -4.27959704e-04, 4.13218286e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.13175490e-01, -4.27959704e-04, 7.07167743e-04, 0.00000000e+00, 7.07167743e-04, 4.27959704e-04, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.79121029e-18, +0.00000000e+00, 0.00000000e+00, 4.98676478e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.98676478e-03, 0.00000000e+00, 0.00000000e+00, -4.27959704e-04, 7.07167743e-04, 0.00000000e+00, 7.07167743e-04, 4.27959704e-04, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.79121029e-18, +4.13218286e-01, 4.27959704e-04, 0.00000000e+00, 4.27959704e-04, 4.23106224e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.13175490e-01, +0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.98676478e-03, 0.00000000e+00, 4.98676478e-03, 0.00000000e+00, +0.00000000e+00, 0.00000000e+00, 4.98676478e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.98676478e-03, 0.00000000e+00, 0.00000000e+00, +0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.98676478e-03, 0.00000000e+00, 4.98676478e-03, 0.00000000e+00, +4.13175490e-01, 2.79121029e-18, 0.00000000e+00, 2.79121029e-18, 4.13175490e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.23149020e-01; error = (C4_ref - stiffness).norm(); BOOST_CHECK_LT(error, hi_tol); } if (verbose) { std::cout << "Post Cycle" << std::endl; std::cout << "C₄ =" << std::endl << stiffness << std::endl; } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/test_material_linear_elastic1.cc b/tests/test_material_linear_elastic1.cc index b9a7902..35738d1 100644 --- a/tests/test_material_linear_elastic1.cc +++ b/tests/test_material_linear_elastic1.cc @@ -1,231 +1,231 @@ /** * @file test_material_linear_elastic1.cc * * @author Till Junge * * @date 28 Nov 2017 * * @brief Tests for the large-strain, objective Hooke's law, implemented in * the convenient strategy (i.e., using MaterialMuSpectre), also used * to test parts of MaterialLinearElastic2 * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include #include "materials/material_linear_elastic1.hh" #include "materials/material_linear_elastic2.hh" #include "tests.hh" #include "tests/test_goodies.hh" #include "common/field_collection.hh" #include "common/iterators.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(material_linear_elastic_1); template struct MaterialFixture { using Mat = Mat_t; constexpr static Real lambda{2}, mu{1.5}; constexpr static Real young{mu*(3*lambda + 2*mu)/(lambda + mu)}; constexpr static Real poisson{lambda/(2*(lambda + mu))}; MaterialFixture():mat("Name", young, poisson){}; constexpr static Dim_t sdim{Mat_t::sdim()}; constexpr static Dim_t mdim{Mat_t::mdim()}; Mat_t mat; }; template struct has_internals {constexpr static bool value{false};}; template struct has_internals> { constexpr static bool value{true}; }; using mat_list = boost::mpl::list >, MaterialFixture>, MaterialFixture>, MaterialFixture>, MaterialFixture>, MaterialFixture>>; BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_constructor, Fix, mat_list, Fix) { BOOST_CHECK_EQUAL("Name", Fix::mat.get_name()); auto & mat{Fix::mat}; auto sdim{Fix::sdim}; auto mdim{Fix::mdim}; BOOST_CHECK_EQUAL(sdim, mat.sdim()); BOOST_CHECK_EQUAL(mdim, mat.mdim()); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_add_pixel, Fix, mat_list, Fix) { auto & mat{Fix::mat}; constexpr Dim_t sdim{Fix::sdim}; testGoodies::RandRange rng;; const Dim_t nb_pixel{7}, box_size{17}; using Ccoord = Ccoord_t; for (Dim_t i = 0; i < nb_pixel; ++i) { Ccoord c; for (Dim_t j = 0; j < sdim; ++j) { c[j] = rng.randval(0, box_size); } if (!has_internals::value) { BOOST_CHECK_NO_THROW(mat.add_pixel(c)); } } BOOST_CHECK_NO_THROW(mat.initialise()); } template struct MaterialFixtureFilled: public MaterialFixture { using Mat = Mat_t; constexpr static Dim_t box_size{3}; MaterialFixtureFilled():MaterialFixture(){ using Ccoord = Ccoord_t; Ccoord cube{CcoordOps::get_cube(box_size)}; CcoordOps::Pixels pixels(cube); for (auto pixel: pixels) { this->mat.add_pixel(pixel); } this->mat.initialise(); }; }; using mat_fill = boost::mpl::list >, MaterialFixtureFilled>, MaterialFixtureFilled>>; BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_evaluate_law, Fix, mat_fill, Fix) { constexpr auto cube{CcoordOps::get_cube(Fix::box_size)}; constexpr auto loc{CcoordOps::get_cube(0)}; auto & mat{Fix::mat}; using FC_t = GlobalFieldCollection; FC_t globalfields; auto & F{make_field ("Transformation Gradient", globalfields)}; auto & P1 = make_field ("Nominal Stress1", globalfields); // to be computed alone auto & P2 = make_field ("Nominal Stress2", globalfields); // to be computed with tangent auto & K = make_field ("Tangent Moduli", globalfields); // to be computed with tangent auto & Pr = make_field ("Nominal Stress reference", globalfields); auto & Kr = make_field ("Tangent Moduli reference", globalfields); // to be computed with tangent globalfields.initialise(cube, loc); static_assert(std::is_same::value, "oh oh"); static_assert(std::is_same::value, "oh oh"); static_assert(std::is_same::value, "oh oh"); static_assert(std::is_same::value, "oh oh"); static_assert(std::is_same::value, "oh oh"); static_assert(std::is_same::value, "oh oh"); using traits = MaterialMuSpectre_traits; { // block to contain not-constant gradient map typename traits::StressMap_t grad_map (globalfields["Transformation Gradient"]); for (auto F_: grad_map) { F_.setRandom(); } grad_map[0] = grad_map[0].Identity(); // identifiable gradients for debug grad_map[1] = 1.2*grad_map[1].Identity(); // ditto } //compute stresses using material mat.compute_stresses(globalfields["Transformation Gradient"], globalfields["Nominal Stress1"], Formulation::finite_strain); //compute stresses and tangent moduli using material BOOST_CHECK_THROW (mat.compute_stresses_tangent(globalfields["Transformation Gradient"], globalfields["Nominal Stress2"], globalfields["Nominal Stress2"], Formulation::finite_strain), std::runtime_error); mat.compute_stresses_tangent(globalfields["Transformation Gradient"], globalfields["Nominal Stress2"], globalfields["Tangent Moduli"], Formulation::finite_strain); typename traits::StrainMap_t Fmap(globalfields["Transformation Gradient"]); typename traits::StressMap_t Pmap_ref(globalfields["Nominal Stress reference"]); typename traits::TangentMap_t Kmap_ref(globalfields["Tangent Moduli reference"]); for (auto tup: akantu::zip(Fmap, Pmap_ref, Kmap_ref)) { auto F_ = std::get<0>(tup); auto P_ = std::get<1>(tup); auto K_ = std::get<2>(tup); std::tie(P_,K_) = testGoodies::objective_hooke_explicit (Fix::lambda, Fix::mu, F_); } typename traits::StressMap_t Pmap_1(globalfields["Nominal Stress1"]); for (auto tup: akantu::zip(Pmap_ref, Pmap_1)) { auto P_r = std::get<0>(tup); auto P_1 = std::get<1>(tup); Real error = (P_r - P_1).norm(); BOOST_CHECK_LT(error, tol); } typename traits::StressMap_t Pmap_2(globalfields["Nominal Stress2"]); typename traits::TangentMap_t Kmap(globalfields["Tangent Moduli"]); for (auto tup: akantu::zip(Pmap_ref, Pmap_2, Kmap_ref, Kmap)) { auto P_r = std::get<0>(tup); auto P = std::get<1>(tup); Real error = (P_r - P).norm(); BOOST_CHECK_LT(error, tol); auto K_r = std::get<2>(tup); auto K = std::get<3>(tup); error = (K_r - K).norm(); BOOST_CHECK_LT(error, tol); } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/test_material_linear_elastic2.cc b/tests/test_material_linear_elastic2.cc index 66c7bbf..df74219 100644 --- a/tests/test_material_linear_elastic2.cc +++ b/tests/test_material_linear_elastic2.cc @@ -1,275 +1,275 @@ /** * @file test_material_linear_elastic2.cc * * @author Till Junge * * @date 04 Feb 2018 * * @brief Tests for the objective Hooke's law with eigenstrains, * (tests that do not require add_pixel are integrated into * `test_material_linear_elastic1.cc` * * @section LICENSE * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include #include "materials/material_linear_elastic2.hh" #include "tests.hh" #include "tests/test_goodies.hh" #include "common/field_collection.hh" #include "common/iterators.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(material_linear_elastic_2); template struct MaterialFixture { using Mat = Mat_t; constexpr static Real lambda{2}, mu{1.5}; constexpr static Real young{mu*(3*lambda + 2*mu)/(lambda + mu)}; constexpr static Real poisson{lambda/(2*(lambda + mu))}; MaterialFixture():mat("Name", young, poisson){}; constexpr static Dim_t sdim{Mat_t::sdim()}; constexpr static Dim_t mdim{Mat_t::mdim()}; Mat_t mat; }; using mat_list = boost::mpl::list< MaterialFixture>, MaterialFixture>, MaterialFixture>>; BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_constructor, Fix, mat_list, Fix) { BOOST_CHECK_EQUAL("Name", Fix::mat.get_name()); auto & mat{Fix::mat}; auto sdim{Fix::sdim}; auto mdim{Fix::mdim}; BOOST_CHECK_EQUAL(sdim, mat.sdim()); BOOST_CHECK_EQUAL(mdim, mat.mdim()); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_add_pixel, Fix, mat_list, Fix) { auto & mat{Fix::mat}; constexpr Dim_t sdim{Fix::sdim}; testGoodies::RandRange rng;; const Dim_t nb_pixel{7}, box_size{17}; using Ccoord = Ccoord_t; for (Dim_t i = 0; i < nb_pixel; ++i) { Ccoord c; for (Dim_t j = 0; j < sdim; ++j) { c[j] = rng.randval(0, box_size); } Eigen::Matrix Zero = Eigen::Matrix::Zero(); BOOST_CHECK_NO_THROW (mat.add_pixel(c, Zero)); } BOOST_CHECK_NO_THROW(mat.initialise()); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_eigenstrain_equivalence, Fix, mat_list, Fix) { auto & mat{Fix::mat}; const Dim_t nb_pixel{2}; constexpr auto cube{CcoordOps::get_cube(nb_pixel)}; constexpr auto loc{CcoordOps::get_cube(0)}; using Mat_t = Eigen::Matrix; using FC_t = GlobalFieldCollection; FC_t globalfields; auto & F_f{make_field ("Transformation Gradient", globalfields)}; auto & P1_f = make_field ("Nominal Stress1", globalfields); // to be computed alone auto & K_f = make_field ("Tangent Moduli", globalfields); // to be computed with tangent globalfields.initialise(cube, loc); Mat_t zero{Mat_t::Zero()}; Mat_t F{Mat_t::Random()/100 + Mat_t::Identity()}; Mat_t strain{-.5*(F+F.transpose())-Mat_t::Identity()}; using Ccoord = Ccoord_t; Ccoord pix0{0}; Ccoord pix1{1}; mat.add_pixel(pix0, zero); mat.add_pixel(pix1, strain); mat.initialise(); F_f.get_map()[pix0] = -strain; F_f.get_map()[pix1] = zero; mat.compute_stresses_tangent(F_f, P1_f, K_f, Formulation::small_strain); Real error{(P1_f.get_map()[pix0]-P1_f.get_map()[pix1]).norm()}; Real tol{1e-12}; if (error >= tol) { std::cout << "error = " << error << " >= " << tol << " = tol" << std::endl; std::cout << "P(0) =" << std::endl << P1_f.get_map()[pix0] << std::endl; std::cout << "P(1) =" << std::endl << P1_f.get_map()[pix1] << std::endl; } BOOST_CHECK_LT(error, tol); } template struct MaterialFixtureFilled: public MaterialFixture { using Par = MaterialFixture; using Mat = Mat_t; constexpr static Dim_t box_size{3}; MaterialFixtureFilled():MaterialFixture(){ using Ccoord = Ccoord_t; Ccoord cube{CcoordOps::get_cube(box_size)}; CcoordOps::Pixels pixels(cube); for (auto pixel: pixels) { Eigen::Matrix Zero = Eigen::Matrix::Zero(); this->mat.add_pixel(pixel, Zero); } this->mat.initialise(); }; }; using mat_fill = boost::mpl::list >, MaterialFixtureFilled>, MaterialFixtureFilled>>; BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_evaluate_law, Fix, mat_fill, Fix) { constexpr auto cube{CcoordOps::get_cube(Fix::box_size)}; constexpr auto loc{CcoordOps::get_cube(0)}; auto & mat{Fix::mat}; using FC_t = GlobalFieldCollection; FC_t globalfields; auto & F{make_field ("Transformation Gradient", globalfields)}; auto & P1 = make_field ("Nominal Stress1", globalfields); // to be computed alone auto & P2 = make_field ("Nominal Stress2", globalfields); // to be computed with tangent auto & K = make_field ("Tangent Moduli", globalfields); // to be computed with tangent auto & Pr = make_field ("Nominal Stress reference", globalfields); auto & Kr = make_field ("Tangent Moduli reference", globalfields); // to be computed with tangent globalfields.initialise(cube, loc); static_assert(std::is_same::value, "oh oh"); static_assert(std::is_same::value, "oh oh"); static_assert(std::is_same::value, "oh oh"); static_assert(std::is_same::value, "oh oh"); static_assert(std::is_same::value, "oh oh"); static_assert(std::is_same::value, "oh oh"); using traits = MaterialMuSpectre_traits; { // block to contain not-constant gradient map typename traits::StressMap_t grad_map (globalfields["Transformation Gradient"]); for (auto F_: grad_map) { F_.setRandom(); } grad_map[0] = grad_map[0].Identity(); // identifiable gradients for debug grad_map[1] = 1.2*grad_map[1].Identity(); // ditto } //compute stresses using material mat.compute_stresses(globalfields["Transformation Gradient"], globalfields["Nominal Stress1"], Formulation::finite_strain); //compute stresses and tangent moduli using material BOOST_CHECK_THROW (mat.compute_stresses_tangent(globalfields["Transformation Gradient"], globalfields["Nominal Stress2"], globalfields["Nominal Stress2"], Formulation::finite_strain), std::runtime_error); mat.compute_stresses_tangent(globalfields["Transformation Gradient"], globalfields["Nominal Stress2"], globalfields["Tangent Moduli"], Formulation::finite_strain); typename traits::StrainMap_t Fmap(globalfields["Transformation Gradient"]); typename traits::StressMap_t Pmap_ref(globalfields["Nominal Stress reference"]); typename traits::TangentMap_t Kmap_ref(globalfields["Tangent Moduli reference"]); for (auto tup: akantu::zip(Fmap, Pmap_ref, Kmap_ref)) { auto F_ = std::get<0>(tup); auto P_ = std::get<1>(tup); auto K_ = std::get<2>(tup); std::tie(P_,K_) = testGoodies::objective_hooke_explicit (Fix::lambda, Fix::mu, F_); } typename traits::StressMap_t Pmap_1(globalfields["Nominal Stress1"]); for (auto tup: akantu::zip(Pmap_ref, Pmap_1)) { auto P_r = std::get<0>(tup); auto P_1 = std::get<1>(tup); Real error = (P_r - P_1).norm(); BOOST_CHECK_LT(error, tol); } typename traits::StressMap_t Pmap_2(globalfields["Nominal Stress2"]); typename traits::TangentMap_t Kmap(globalfields["Tangent Moduli"]); for (auto tup: akantu::zip(Pmap_ref, Pmap_2, Kmap_ref, Kmap)) { auto P_r = std::get<0>(tup); auto P = std::get<1>(tup); Real error = (P_r - P).norm(); if (error >= tol) { std::cout << "error = " << error << " >= " << tol << " = tol" << std::endl; std::cout << "P(0) =" << std::endl << P_r << std::endl; std::cout << "P(1) =" << std::endl << P << std::endl; } BOOST_CHECK_LT(error, tol); auto K_r = std::get<2>(tup); auto K = std::get<3>(tup); error = (K_r - K).norm(); BOOST_CHECK_LT(error, tol); } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/test_material_linear_elastic3.cc b/tests/test_material_linear_elastic3.cc index 446a560..42e3972 100644 --- a/tests/test_material_linear_elastic3.cc +++ b/tests/test_material_linear_elastic3.cc @@ -1,91 +1,91 @@ /** * @file test_material_linear_elastic3.cc * * @author Richard Leute * * @date 21 Feb 2018 * * @brief description * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include "tests.hh" #include "materials/material_linear_elastic3.hh" #include "materials/materials_toolbox.hh" #include "common/T4_map_proxy.hh" #include "cmath" namespace muSpectre { BOOST_AUTO_TEST_SUITE(material_linear_elastic_3); template struct MaterialFixture { using Material_t = Mat_t; Material_t mat; MaterialFixture():mat("name"){ mat.add_pixel({0}, Young, Poisson); } Real Young{10}; Real Poisson{0.3}; }; using mat_list = boost::mpl::list< MaterialFixture>, MaterialFixture>, MaterialFixture> >; BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_constructor, Fix, mat_list, Fix) { }; BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_response, Fix, mat_list, Fix) { constexpr Dim_t Dim{Fix::Material_t::Parent::Parent::mdim()}; Eigen::MatrixE; E.setZero(); E(0,0) = 0.001; E(1,0) = E(0,1) = 0.005; using Hooke = MatTB::Hooke, T4Mat >; Real lambda = Hooke::compute_lambda(Fix::Young, Fix::Poisson); Real mu = Hooke::compute_mu(Fix::Young, Fix::Poisson); auto C = Hooke::compute_C(lambda, mu); T4MatMap Cmap{C.data()}; Eigen::Matrix stress = Fix::mat.evaluate_stress(E, Cmap); Real sigma00 = lambda*E(0,0) + 2*mu*E(0,0); Real sigma01 = 2*mu*E(0,1); Real sigma11 = lambda*E(0,0); BOOST_CHECK_LT( std::abs(stress(0,0)- sigma00), tol); BOOST_CHECK_LT( std::abs(stress(0,1)- sigma01), tol); BOOST_CHECK_LT( std::abs(stress(1,0)- sigma01), tol); BOOST_CHECK_LT( std::abs(stress(1,1)- sigma11), tol); if (Dim == threeD){ for (int i=0; i * * @date 27 Mar 2018 * * @brief description * * Copyright © 2018 Richard Leute * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include "tests.hh" #include "materials/material_linear_elastic4.hh" #include "materials/materials_toolbox.hh" #include "common/T4_map_proxy.hh" #include "cmath" namespace muSpectre { BOOST_AUTO_TEST_SUITE(material_linear_elastic_4); template struct MaterialFixture { using Material_t = Mat_t; Material_t mat; MaterialFixture():mat("name"){ mat.add_pixel({0}, Youngs_modulus, Poisson_ratio); } Real Youngs_modulus{10}; Real Poisson_ratio{0.3}; }; using mat_list = boost::mpl::list< MaterialFixture>, MaterialFixture>, MaterialFixture> >; BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_constructor, Fix, mat_list, Fix) { }; BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_response, Fix, mat_list, Fix) { constexpr Dim_t Dim{Fix::Material_t::Parent::Parent::mdim()}; Eigen::Matrix E; E.setZero(); E(0,0) = 0.001; E(1,0) = E(0,1) = 0.005; using Hooke = MatTB:: Hooke, T4Mat >; Real lambda = Hooke:: compute_lambda(Fix::Youngs_modulus, Fix::Poisson_ratio); Real mu = Hooke:: compute_mu(Fix::Youngs_modulus, Fix::Poisson_ratio); Eigen::Matrix stress = Fix::mat. evaluate_stress(E, lambda, mu); Real sigma00 = lambda*E(0,0) + 2*mu*E(0,0); Real sigma01 = 2*mu*E(0,1); Real sigma11 = lambda*E(0,0); BOOST_CHECK_LT( std::abs(stress(0,0)- sigma00), tol); BOOST_CHECK_LT( std::abs(stress(0,1)- sigma01), tol); BOOST_CHECK_LT( std::abs(stress(1,0)- sigma01), tol); BOOST_CHECK_LT( std::abs(stress(1,1)- sigma11), tol); if (Dim == threeD){ for (int i=0; i * * @date 21 Sep 2018 * * @brief test for the generic linear elastic law * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "tests.hh" #include "materials/material_linear_elastic_generic.cc" #include "materials/materials_toolbox.hh" #include namespace muSpectre { BOOST_AUTO_TEST_SUITE(material_linear_elastic_generic); template struct MatFixture { using Mat_t = MaterialLinearElasticGeneric; using T2_t = Eigen::Matrix; using T4_t = T4Mat; using V_t = Eigen::Matrix; constexpr static Real lambda{2}, mu{1.5}; constexpr static Real get_lambda() {return lambda;} constexpr static Real get_mu() {return mu;} constexpr static Real young{mu*(3*lambda + 2*mu)/(lambda + mu)}; constexpr static Real poisson{lambda/(2*(lambda + mu))}; using Hooke = MatTB::Hooke; MatFixture(): C_voigt{get_C_voigt()}, mat("material", this->C_voigt) {} static V_t get_C_voigt() { V_t C{}; C.setZero(); C.template topLeftCorner().setConstant(get_lambda()); C.template topLeftCorner() += 2*get_mu()*T2_t::Identity(); constexpr Dim_t Rest{vsize(Dim)-Dim}; using Rest_t = Eigen::Matrix; C.template bottomRightCorner() += get_mu()*Rest_t::Identity(); return C; } V_t C_voigt; Mat_t mat; }; using mats = boost::mpl::list , MatFixture>; BOOST_FIXTURE_TEST_CASE_TEMPLATE(C_test, Fix, mats, Fix) { const auto ref_C{Fix::Hooke::compute_C_T4(Fix::get_lambda(), Fix::get_mu())}; Real error{(ref_C-Fix::mat.get_C()).norm()}; BOOST_CHECK_LT(error, tol); if (not (error < tol)) { std::cout << "ref:" << std::endl << ref_C << std::endl; std::cout << "new:" << std::endl << Fix::mat.get_C() << std::endl; } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/test_materials_toolbox.cc b/tests/test_materials_toolbox.cc index 24405b8..cee323d 100644 --- a/tests/test_materials_toolbox.cc +++ b/tests/test_materials_toolbox.cc @@ -1,265 +1,265 @@ /** * @file test_materials_toolbox.cc * * @author Till Junge * * @date 05 Nov 2017 * * @brief Tests for the materials toolbox * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include "tests.hh" #include "materials/materials_toolbox.hh" #include "common/T4_map_proxy.hh" #include "common/tensor_algebra.hh" #include "tests/test_goodies.hh" namespace muSpectre { BOOST_AUTO_TEST_SUITE(materials_toolbox) BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_strain_conversion, Fix, testGoodies::dimlist, Fix){ constexpr Dim_t dim{Fix::dim}; using T2 = Eigen::Matrix; T2 F{(T2::Random() -.5*T2::Ones())/20 + T2::Identity()}; // checking Green-Lagrange T2 Eref = .5*(F.transpose()*F-T2::Identity()); T2 E_tb = MatTB::convert_strain (Eigen::Map>(F.data())); Real error = (Eref-E_tb).norm(); BOOST_CHECK_LT(error, tol); // checking Left Cauchy-Green Eref = F*F.transpose(); E_tb = MatTB::convert_strain(F); error = (Eref-E_tb).norm(); BOOST_CHECK_LT(error, tol); // checking Right Cauchy-Green Eref = F.transpose()*F; E_tb = MatTB::convert_strain(F); error = (Eref-E_tb).norm(); BOOST_CHECK_LT(error, tol); // checking Hencky (logarithmic) strain Eref = F.transpose()*F; Eigen::SelfAdjointEigenSolver EigSolv(Eref); Eref.setZero(); for (size_t i{0}; i < dim; ++i) { auto && vec = EigSolv.eigenvectors().col(i); auto && val = EigSolv.eigenvalues()(i); Eref += .5*std::log(val) * vec*vec.transpose(); } E_tb = MatTB::convert_strain(F); error = (Eref-E_tb).norm(); BOOST_CHECK_LT(error, tol); auto F_tb = MatTB::convert_strain(F); error = (F-F_tb).norm(); BOOST_CHECK_LT(error, tol); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(dumb_tensor_mult_test, Fix, testGoodies::dimlist, Fix) { constexpr Dim_t dim{Fix::dim}; using T4 = T4Mat; T4 A,B, R1, R2; A.setRandom(); B.setRandom(); R1 = A*B; R2.setZero(); for (Dim_t i = 0; i < dim; ++i) { for (Dim_t j = 0; j < dim; ++j) { for (Dim_t a = 0; a < dim; ++a) { for (Dim_t b = 0; b < dim; ++b) { for (Dim_t k = 0; k < dim; ++k) { for (Dim_t l = 0; l < dim; ++l) { get(R2,i,j,k,l) += get(A, i,j,a,b)*get(B, a,b, k,l); } } } } } } auto error{(R1-R2).norm()}; BOOST_CHECK_LT(error, tol); } BOOST_FIXTURE_TEST_CASE_TEMPLATE(test_PK1_stress, Fix, testGoodies::dimlist, Fix) { using namespace Matrices; constexpr Dim_t dim{Fix::dim}; using T2 = Eigen::Matrix; using T4 = T4Mat; testGoodies::RandRange rng; T2 F=T2::Identity()*2 ; //F.setRandom(); T2 E_tb = MatTB::convert_strain (Eigen::Map>(F.data())); Real lambda = 3;//rng.randval(1, 2); Real mu = 4;//rng.randval(1,2); T4 J = Itrac(); T2 I = I2(); T4 I4 = Isymm(); T4 C = lambda*J + 2*mu*I4; T2 S = tensmult(C, E_tb); T2 Sref = lambda*E_tb.trace()*I + 2*mu*E_tb; auto error{(Sref-S).norm()}; BOOST_CHECK_LT(error, tol); T4 K = outer_under(I,S) + outer_under(F,I)*C*outer_under(F.transpose(),I); // See Curnier, 2000, "Méthodes numériques en mécanique des solides", p 252 T4 Kref; Real Fkrkr = (F.array()*F.array()).sum(); T2 Fkmkn = F.transpose()*F; T2 Fisjs = F*F.transpose(); Kref.setZero(); for (Dim_t i = 0; i < dim; ++i) { for (Dim_t j = 0; j < dim; ++j) { for (Dim_t m = 0; m < dim; ++m) { for (Dim_t n = 0; n < dim; ++n) { get(Kref, i, m, j, n) = (lambda*((Fkrkr-dim)/2 * I(i,j)*I(m,n) + F(i,m)*F(j,n)) + mu * (I(i,j)*Fkmkn(m,n) + Fisjs(i,j)*I(m,n) - I(i,j) *I(m,n) + F(i,n)*F(j,m))); } } } } error = (Kref-K).norm(); BOOST_CHECK_LT(error, tol); T2 P = MatTB::PK1_stress(F, S); T2 Pref = F*S; error = (P-Pref).norm(); BOOST_CHECK_LT(error, tol); auto && stress_tgt = MatTB::PK1_stress(F, S, C); T2 P_t = std::move(std::get<0>(stress_tgt)); T4 K_t = std::move(std::get<1>(stress_tgt)); error = (P_t-Pref).norm(); BOOST_CHECK_LT(error, tol); error = (K_t-Kref).norm(); BOOST_CHECK_LT(error, tol); auto && stress_tgt_trivial = MatTB::PK1_stress(F, P, K); T2 P_u = std::move(std::get<0>(stress_tgt_trivial)); T4 K_u = std::move(std::get<1>(stress_tgt_trivial)); error = (P_u-Pref).norm(); BOOST_CHECK_LT(error, tol); error = (K_u-Kref).norm(); BOOST_CHECK_LT(error, tol); T2 P_g; T4 K_g; std::tie(P_g, K_g) = testGoodies::objective_hooke_explicit(lambda, mu, F); error = (P_g-Pref).norm(); BOOST_CHECK_LT(error, tol); error = (K_g-Kref).norm(); BOOST_CHECK_LT(error, tol); } BOOST_AUTO_TEST_CASE(elastic_modulus_conversions) { // define original input constexpr Real E{123.456}; constexpr Real nu{.3}; using namespace MatTB; // derived values constexpr Real K{convert_elastic_modulus(E, nu)}; constexpr Real lambda{convert_elastic_modulus(E, nu)}; constexpr Real mu{convert_elastic_modulus(E, nu)}; // recover original inputs Real comp = convert_elastic_modulus(K, mu); Real err = E - comp; BOOST_CHECK_LT(err, tol); comp = convert_elastic_modulus(K, mu); err = nu - comp; BOOST_CHECK_LT(err, tol); comp = convert_elastic_modulus(lambda, mu); err = E - comp; BOOST_CHECK_LT(err, tol); // check inversion resistance Real compA = convert_elastic_modulus(K, mu); Real compB = convert_elastic_modulus(mu, K); BOOST_CHECK_EQUAL(compA, compB); // check trivial self-returning comp = convert_elastic_modulus(K, mu); BOOST_CHECK_EQUAL(K, comp); comp = convert_elastic_modulus(K, mu); BOOST_CHECK_EQUAL(mu, comp); } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/test_projection.hh b/tests/test_projection.hh index d3b4d68..919d427 100644 --- a/tests/test_projection.hh +++ b/tests/test_projection.hh @@ -1,86 +1,86 @@ /** * @file test_projection.hh * * @author Till Junge * * @date 16 Jan 2018 * * @brief common declarations for testing both the small and finite strain * projection operators * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "tests.hh" #include "fft/fftw_engine.hh" #include #include namespace muSpectre { /* ---------------------------------------------------------------------- */ template struct Sizes { }; template<> struct Sizes { constexpr static Ccoord_t get_resolution() { return Ccoord_t{3, 5};} constexpr static Rcoord_t get_lengths() { return Rcoord_t{3.4, 5.8};} }; template<> struct Sizes { constexpr static Ccoord_t get_resolution() { return Ccoord_t{3, 5, 7};} constexpr static Rcoord_t get_lengths() { return Rcoord_t{3.4, 5.8, 6.7};} }; template struct Squares { }; template<> struct Squares { constexpr static Ccoord_t get_resolution() { return Ccoord_t{5, 5};} constexpr static Rcoord_t get_lengths() { return Rcoord_t{5, 5};} }; template<> struct Squares { constexpr static Ccoord_t get_resolution() { return Ccoord_t{7, 7, 7};} constexpr static Rcoord_t get_lengths() { return Rcoord_t{7, 7, 7};} }; /* ---------------------------------------------------------------------- */ template struct ProjectionFixture { using Engine = FFTWEngine; using Parent = Proj; constexpr static Dim_t sdim{DimS}; constexpr static Dim_t mdim{DimM}; ProjectionFixture() : projector(std::make_unique(SizeGiver::get_resolution(), mdim*mdim), SizeGiver::get_lengths()) {} Parent projector; }; } // muSpectre diff --git a/tests/test_projection_finite.cc b/tests/test_projection_finite.cc index d1e5145..8f4182b 100644 --- a/tests/test_projection_finite.cc +++ b/tests/test_projection_finite.cc @@ -1,137 +1,137 @@ /** * @file test_projection_finite.cc * * @author Till Junge * * @date 07 Dec 2017 * * @brief tests for standard finite strain projection operator * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "fft/projection_finite_strain.hh" #include "fft/projection_finite_strain_fast.hh" #include "fft/fft_utils.hh" #include "test_projection.hh" #include namespace muSpectre { BOOST_AUTO_TEST_SUITE(projection_finite_strain); /* ---------------------------------------------------------------------- */ using fixlist = boost::mpl::list< ProjectionFixture, ProjectionFiniteStrain>, ProjectionFixture, ProjectionFiniteStrain>, ProjectionFixture, ProjectionFiniteStrain>, ProjectionFixture, ProjectionFiniteStrain>, ProjectionFixture, ProjectionFiniteStrainFast>, ProjectionFixture, ProjectionFiniteStrainFast>, ProjectionFixture, ProjectionFiniteStrainFast>, ProjectionFixture, ProjectionFiniteStrainFast>>; /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(constructor_test, fix, fixlist, fix) { BOOST_CHECK_NO_THROW(fix::projector.initialise(FFT_PlanFlags::estimate)); } /* ---------------------------------------------------------------------- */ BOOST_AUTO_TEST_CASE(even_grid_test) { using Engine = FFTWEngine; using proj = ProjectionFiniteStrainFast; auto engine = std::make_unique(Ccoord_t{2, 2}, 2*2); BOOST_CHECK_THROW(proj(std::move(engine), Rcoord_t{4.3, 4.3}), std::runtime_error); } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(Gradient_preservation_test, fix, fixlist, fix) { // create a gradient field with a zero mean gradient and verify // that the projection preserves it constexpr Dim_t dim{fix::sdim}, sdim{fix::sdim}, mdim{fix::mdim}; static_assert(dim == fix::mdim, "These tests assume that the material and spatial dimension are " "identical"); using Fields = GlobalFieldCollection; using FieldT = TensorField; using FieldMap = MatrixFieldMap; using Vector = Eigen::Matrix; Fields fields{}; FieldT & f_grad{make_field("gradient", fields)}; FieldT & f_var{make_field("working field", fields)}; FieldMap grad(f_grad); FieldMap var(f_var); fields.initialise(fix::projector.get_subdomain_resolutions(), fix::projector.get_subdomain_locations()); FFT_freqs freqs{fix::projector.get_domain_resolutions(), fix::projector.get_domain_lengths()}; Vector k; for (Dim_t i = 0; i < dim; ++i) { // the wave vector has to be such that it leads to an integer // number of periods in each length of the domain k(i) = (i+1)*2*pi/fix::projector.get_domain_lengths()[i]; ; } for (auto && tup: akantu::zip(fields, grad, var)) { auto & ccoord = std::get<0>(tup); auto & g = std::get<1>(tup); auto & v = std::get<2>(tup); Vector vec = CcoordOps::get_vector(ccoord, fix::projector.get_domain_lengths()/ fix::projector.get_domain_resolutions()); g.row(0) = k.transpose() * cos(k.dot(vec)); v.row(0) = g.row(0); } fix::projector.initialise(FFT_PlanFlags::estimate); fix::projector.apply_projection(f_var); for (auto && tup: akantu::zip(fields, grad, var)) { auto & ccoord = std::get<0>(tup); auto & g = std::get<1>(tup); auto & v = std::get<2>(tup); Vector vec = CcoordOps::get_vector(ccoord, fix::projector.get_domain_lengths()/ fix::projector.get_domain_resolutions()); Real error = (g-v).norm(); BOOST_CHECK_LT(error, tol); if (error >=tol) { std::cout << std::endl << "grad_ref :" << std::endl << g << std::endl; std::cout << std::endl << "grad_proj :" << std::endl << v << std::endl; std::cout << std::endl << "ccoord :" << std::endl << ccoord << std::endl; std::cout << std::endl << "vector :" << std::endl << vec.transpose() << std::endl; } } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/test_projection_small.cc b/tests/test_projection_small.cc index f8ae988..983163d 100644 --- a/tests/test_projection_small.cc +++ b/tests/test_projection_small.cc @@ -1,130 +1,130 @@ /** * @file test_projection_small.cc * * @author Till Junge * * @date 16 Jan 2018 * * @brief tests for standard small strain projection operator * * Copyright © 2018 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "fft/projection_small_strain.hh" #include "test_projection.hh" #include "fft/fft_utils.hh" #include namespace muSpectre { BOOST_AUTO_TEST_SUITE(projection_small_strain); using fixlist = boost::mpl::list< ProjectionFixture, ProjectionSmallStrain>, ProjectionFixture, ProjectionSmallStrain>, ProjectionFixture, ProjectionSmallStrain>, ProjectionFixture, ProjectionSmallStrain>>; /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(constructor_test, fix, fixlist, fix) { BOOST_CHECK_NO_THROW(fix::projector.initialise(FFT_PlanFlags::estimate)); } /* ---------------------------------------------------------------------- */ BOOST_FIXTURE_TEST_CASE_TEMPLATE(Gradient_preservation_test, fix, fixlist, fix) { // create a gradient field with a zero mean gradient and verify // that the projection preserves it constexpr Dim_t dim{fix::sdim}, sdim{fix::sdim}, mdim{fix::mdim}; static_assert(dim == fix::mdim, "These tests assume that the material and spatial dimension are " "identical"); using Fields = GlobalFieldCollection; using FieldT = TensorField; using FieldMap = MatrixFieldMap; using Vector = Eigen::Matrix; Fields fields{}; FieldT & f_grad{make_field("strain", fields)}; FieldT & f_var{make_field("working field", fields)}; FieldMap grad(f_grad); FieldMap var(f_var); fields.initialise(fix::projector.get_subdomain_resolutions(), fix::projector.get_subdomain_locations()); FFT_freqs freqs{fix::projector.get_domain_resolutions(), fix::projector.get_domain_lengths()}; Vector k; for (Dim_t i = 0; i < dim; ++i) { // the wave vector has to be such that it leads to an integer // number of periods in each length of the domain k(i) = (i+1)*2*pi/fix::projector.get_domain_lengths()[i]; } for (auto && tup: akantu::zip(fields, grad, var)) { auto & ccoord = std::get<0>(tup); auto & g = std::get<1>(tup); auto & v = std::get<2>(tup); Vector vec = CcoordOps::get_vector(ccoord, fix::projector.get_domain_lengths()/ fix::projector.get_domain_resolutions()); g.row(0) << k.transpose() * cos(k.dot(vec)); // We need to add I to the term, because this field has a net // zero gradient, which leads to a net -I strain g = 0.5*((g-g.Identity()).transpose() + (g-g.Identity())).eval()+g.Identity(); v = g; } fix::projector.initialise(FFT_PlanFlags::estimate); fix::projector.apply_projection(f_var); constexpr bool verbose{false}; for (auto && tup: akantu::zip(fields, grad, var)) { auto & ccoord = std::get<0>(tup); auto & g = std::get<1>(tup); auto & v = std::get<2>(tup); Vector vec = CcoordOps::get_vector(ccoord, fix::projector.get_domain_lengths()/ fix::projector.get_domain_resolutions()); Real error = (g-v).norm(); BOOST_CHECK_LT(error, tol); if ((error >=tol) || verbose) { std::cout << std::endl << "grad_ref :" << std::endl << g << std::endl; std::cout << std::endl << "grad_proj :" << std::endl << v << std::endl; std::cout << std::endl << "ccoord :" << std::endl << ccoord << std::endl; std::cout << std::endl << "vector :" << std::endl << vec.transpose() << std::endl; std::cout << "means:" << std::endl << ":" << std::endl << grad.mean() << std::endl << ":" << std::endl << var.mean(); } } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/test_solver_newton_cg.cc b/tests/test_solver_newton_cg.cc index f32b9c2..3811818 100644 --- a/tests/test_solver_newton_cg.cc +++ b/tests/test_solver_newton_cg.cc @@ -1,446 +1,446 @@ /** * @file test_solver_newton_cg.cc * * @author Till Junge * * @date 20 Dec 2017 * * @brief Tests for the standard Newton-Raphson + Conjugate Gradient solver * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "tests.hh" #include "solver/solvers.hh" #include "solver/solver_cg.hh" #include "solver/solver_eigen.hh" #include "solver/deprecated_solvers.hh" #include "solver/deprecated_solver_cg.hh" #include "solver/deprecated_solver_cg_eigen.hh" #include "fft/fftw_engine.hh" #include "fft/projection_finite_strain_fast.hh" #include "materials/material_linear_elastic1.hh" #include "common/iterators.hh" #include "common/ccoord_operations.hh" #include "cell/cell_factory.hh" #include namespace muSpectre { BOOST_AUTO_TEST_SUITE(newton_cg_tests); BOOST_AUTO_TEST_CASE(manual_construction_test) { // constexpr Dim_t dim{twoD}; constexpr Dim_t dim{threeD}; // constexpr Ccoord_t resolutions{3, 3}; // constexpr Rcoord_t lengths{2.3, 2.7}; constexpr Ccoord_t resolutions{5, 5, 5}; constexpr Rcoord_t lengths{5, 5, 5}; auto fft_ptr{std::make_unique>(resolutions, ipow(dim, 2))}; auto proj_ptr{std::make_unique>(std::move(fft_ptr), lengths)}; CellBase sys(std::move(proj_ptr)); using Mat_t = MaterialLinearElastic1; //const Real Young{210e9}, Poisson{.33}; const Real Young{1.0030648180242636}, Poisson{0.29930675909878679}; // const Real lambda{Young*Poisson/((1+Poisson)*(1-2*Poisson))}; // const Real mu{Young/(2*(1+Poisson))}; auto& Material_hard = Mat_t::make(sys, "hard", 10*Young, Poisson); auto& Material_soft = Mat_t::make(sys, "soft", Young, Poisson); for (auto && tup: akantu::enumerate(sys)) { auto && pixel = std::get<1>(tup); if (std::get<0>(tup) == 0) { Material_hard.add_pixel(pixel); } else { Material_soft.add_pixel(pixel); } } sys.initialise(); Grad_t delF0; delF0 << 0, 1., 0, 0, 0, 0, 0, 0, 0; constexpr Real cg_tol{1e-8}, newton_tol{1e-5}; constexpr Uint maxiter{CcoordOps::get_size(resolutions)*ipow(dim, secondOrder)*10}; constexpr bool verbose{false}; GradIncrements grads; grads.push_back(delF0); DeprecatedSolverCG cg{sys, cg_tol, maxiter, bool(verbose)}; Eigen::ArrayXXd res1{deprecated_de_geus(sys, grads, cg, newton_tol, verbose)[0].grad}; DeprecatedSolverCG cg2{sys, cg_tol, maxiter, bool(verbose)}; Eigen::ArrayXXd res2{deprecated_newton_cg(sys, grads, cg2, newton_tol, verbose)[0].grad}; BOOST_CHECK_LE(abs(res1-res2).mean(), cg_tol); } BOOST_AUTO_TEST_CASE(small_strain_patch_test) { constexpr Dim_t dim{twoD}; using Ccoord = Ccoord_t; using Rcoord = Rcoord_t; constexpr Ccoord resolutions{CcoordOps::get_cube(3)}; constexpr Rcoord lengths{CcoordOps::get_cube(1.)}; constexpr Formulation form{Formulation::small_strain}; // number of layers in the hard material constexpr Uint nb_lays{1}; constexpr Real contrast{2}; static_assert(nb_lays < resolutions[0], "the number or layers in the hard material must be smaller " "than the total number of layers in dimension 0"); auto sys{make_cell(resolutions, lengths, form)}; using Mat_t = MaterialLinearElastic1; constexpr Real Young{2.}, Poisson{.33}; auto material_hard{std::make_unique("hard", contrast*Young, Poisson)}; auto material_soft{std::make_unique("soft", Young, Poisson)}; for (const auto & pixel: sys) { if (pixel[0] < Dim_t(nb_lays)) { material_hard->add_pixel(pixel); } else { material_soft->add_pixel(pixel); } } sys.add_material(std::move(material_hard)); sys.add_material(std::move(material_soft)); sys.initialise(); Grad_t delEps0{Grad_t::Zero()}; constexpr Real eps0 = 1.; //delEps0(0, 1) = delEps0(1, 0) = eps0; delEps0(0, 0) = eps0; constexpr Real cg_tol{1e-8}, newton_tol{1e-5}, equil_tol{1e-10}; constexpr Uint maxiter{dim*10}; constexpr Dim_t verbose{0}; DeprecatedSolverCGEigen cg{sys, cg_tol, maxiter, bool(verbose)}; auto result = deprecated_newton_cg(sys, delEps0, cg, newton_tol,//de_geus(sys, delEps0, cg, newton_tol, equil_tol, verbose); if (verbose) { std::cout << "result:" << std::endl << result.grad << std::endl; std::cout << "mean strain = " << std::endl << sys.get_strain().get_map().mean() << std::endl; } /** * verification of resultant strains: subscript ₕ for hard and ₛ * for soft, Nₕ is nb_lays and Nₜₒₜ is resolutions, k is contrast * * Δl = εl = Δlₕ + Δlₛ = εₕlₕ+εₛlₛ * => ε = εₕ Nₕ/Nₜₒₜ + εₛ (Nₜₒₜ-Nₕ)/Nₜₒₜ * * σ is constant across all layers * σₕ = σₛ * => Eₕ εₕ = Eₛ εₛ * => εₕ = 1/k εₛ * => ε / (1/k Nₕ/Nₜₒₜ + (Nₜₒₜ-Nₕ)/Nₜₒₜ) = εₛ */ constexpr Real factor{1/contrast * Real(nb_lays)/resolutions[0] + 1.-nb_lays/Real(resolutions[0])}; constexpr Real eps_soft{eps0/factor}; constexpr Real eps_hard{eps_soft/contrast}; if (verbose) { std::cout << "εₕ = " << eps_hard << ", εₛ = " << eps_soft << std::endl; std::cout << "ε = εₕ Nₕ/Nₜₒₜ + εₛ (Nₜₒₜ-Nₕ)/Nₜₒₜ" << std::endl; } Grad_t Eps_hard; Eps_hard << eps_hard, 0, 0, 0; Grad_t Eps_soft; Eps_soft << eps_soft, 0, 0, 0; // verify uniaxial tension patch test for (const auto & pixel: sys) { if (pixel[0] < Dim_t(nb_lays)) { BOOST_CHECK_LE((Eps_hard-sys.get_strain().get_map()[pixel]).norm(), tol); } else { BOOST_CHECK_LE((Eps_soft-sys.get_strain().get_map()[pixel]).norm(), tol); } } delEps0 = Grad_t::Zero(); delEps0(0, 1) = delEps0(1, 0) = eps0; DeprecatedSolverCG cg2{sys, cg_tol, maxiter, bool(verbose)}; result = deprecated_newton_cg(sys, delEps0, cg2, newton_tol, equil_tol, verbose); Eps_hard << 0, eps_hard, eps_hard, 0; Eps_soft << 0, eps_soft, eps_soft, 0; // verify pure shear patch test for (const auto & pixel: sys) { if (pixel[0] < Dim_t(nb_lays)) { BOOST_CHECK_LE((Eps_hard-sys.get_strain().get_map()[pixel]).norm(), tol); } else { BOOST_CHECK_LE((Eps_soft-sys.get_strain().get_map()[pixel]).norm(), tol); } } } template struct SolverFixture { using type = SolverType; }; using SolverList = boost::mpl::list, SolverFixture, SolverFixture, SolverFixture, SolverFixture, SolverFixture>; BOOST_FIXTURE_TEST_CASE_TEMPLATE(small_strain_patch_dynamic_solver, Fix, SolverList, Fix) { // BOOST_AUTO_TEST_CASE(small_strain_patch_test_dynamic_solver) { constexpr Dim_t dim{twoD}; using Ccoord = Ccoord_t; using Rcoord = Rcoord_t; constexpr Ccoord resolutions{CcoordOps::get_cube(3)}; constexpr Rcoord lengths{CcoordOps::get_cube(1.)}; constexpr Formulation form{Formulation::small_strain}; // number of layers in the hard material constexpr Uint nb_lays{1}; constexpr Real contrast{2}; static_assert(nb_lays < resolutions[0], "the number or layers in the hard material must be smaller " "than the total number of layers in dimension 0"); auto sys{make_cell(resolutions, lengths, form)}; using Mat_t = MaterialLinearElastic1; constexpr Real Young{2.}, Poisson{.33}; auto material_hard{std::make_unique("hard", contrast*Young, Poisson)}; auto material_soft{std::make_unique("soft", Young, Poisson)}; for (const auto & pixel: sys) { if (pixel[0] < Dim_t(nb_lays)) { material_hard->add_pixel(pixel); } else { material_soft->add_pixel(pixel); } } sys.add_material(std::move(material_hard)); sys.add_material(std::move(material_soft)); sys.initialise(); Grad_t delEps0{Grad_t::Zero()}; constexpr Real eps0 = 1.; //delEps0(0, 1) = delEps0(1, 0) = eps0; delEps0(0, 0) = eps0; constexpr Real cg_tol{1e-8}, newton_tol{1e-5}, equil_tol{1e-10}; constexpr Uint maxiter{dim*10}; constexpr Dim_t verbose{0}; using Solver_t = typename Fix::type; Solver_t cg{sys, cg_tol, maxiter, bool(verbose)}; auto result = newton_cg(sys, delEps0, cg, newton_tol, equil_tol, verbose); if (verbose) { std::cout << "result:" << std::endl << result.grad << std::endl; std::cout << "mean strain = " << std::endl << sys.get_strain().get_map().mean() << std::endl; } /** * verification of resultant strains: subscript ₕ for hard and ₛ * for soft, Nₕ is nb_lays and Nₜₒₜ is resolutions, k is contrast * * Δl = εl = Δlₕ + Δlₛ = εₕlₕ+εₛlₛ * => ε = εₕ Nₕ/Nₜₒₜ + εₛ (Nₜₒₜ-Nₕ)/Nₜₒₜ * * σ is constant across all layers * σₕ = σₛ * => Eₕ εₕ = Eₛ εₛ * => εₕ = 1/k εₛ * => ε / (1/k Nₕ/Nₜₒₜ + (Nₜₒₜ-Nₕ)/Nₜₒₜ) = εₛ */ constexpr Real factor{1/contrast * Real(nb_lays)/resolutions[0] + 1.-nb_lays/Real(resolutions[0])}; constexpr Real eps_soft{eps0/factor}; constexpr Real eps_hard{eps_soft/contrast}; if (verbose) { std::cout << "εₕ = " << eps_hard << ", εₛ = " << eps_soft << std::endl; std::cout << "ε = εₕ Nₕ/Nₜₒₜ + εₛ (Nₜₒₜ-Nₕ)/Nₜₒₜ" << std::endl; } Grad_t Eps_hard; Eps_hard << eps_hard, 0, 0, 0; Grad_t Eps_soft; Eps_soft << eps_soft, 0, 0, 0; // verify uniaxial tension patch test for (const auto & pixel: sys) { if (pixel[0] < Dim_t(nb_lays)) { BOOST_CHECK_LE((Eps_hard-sys.get_strain().get_map()[pixel]).norm(), tol); } else { BOOST_CHECK_LE((Eps_soft-sys.get_strain().get_map()[pixel]).norm(), tol); } } delEps0 = Grad_t::Zero(); delEps0(0, 1) = delEps0(1, 0) = eps0; Solver_t cg2{sys, cg_tol, maxiter, bool(verbose)}; result = de_geus(sys, delEps0, cg2, newton_tol, equil_tol, verbose); Eps_hard << 0, eps_hard, eps_hard, 0; Eps_soft << 0, eps_soft, eps_soft, 0; // verify pure shear patch test for (const auto & pixel: sys) { if (pixel[0] < Dim_t(nb_lays)) { BOOST_CHECK_LE((Eps_hard-sys.get_strain().get_map()[pixel]).norm(), tol); } else { BOOST_CHECK_LE((Eps_soft-sys.get_strain().get_map()[pixel]).norm(), tol); } } } BOOST_AUTO_TEST_CASE(small_strain_patch_test_new_interface_manual) { constexpr Dim_t dim{twoD}; using Ccoord = Ccoord_t; using Rcoord = Rcoord_t; constexpr Ccoord resolutions{CcoordOps::get_cube(3)}; constexpr Rcoord lengths{CcoordOps::get_cube(1.)}; constexpr Formulation form{Formulation::small_strain}; // number of layers in the hard material constexpr Uint nb_lays{1}; constexpr Real contrast{2}; static_assert(nb_lays < resolutions[0], "the number or layers in the hard material must be smaller " "than the total number of layers in dimension 0"); auto sys{make_cell(resolutions, lengths, form)}; using Mat_t = MaterialLinearElastic1; constexpr Real Young{2.}, Poisson{.33}; auto material_hard{std::make_unique("hard", contrast*Young, Poisson)}; auto material_soft{std::make_unique("soft", Young, Poisson)}; for (const auto & pixel: sys) { if (pixel[0] < Dim_t(nb_lays)) { material_hard->add_pixel(pixel); } else { material_soft->add_pixel(pixel); } } sys.add_material(std::move(material_hard)); sys.add_material(std::move(material_soft)); Grad_t delEps0{Grad_t::Zero()}; constexpr Real eps0 = 1.; //delEps0(0, 1) = delEps0(1, 0) = eps0; delEps0(0, 0) = eps0; constexpr Real cg_tol{1e-8}; constexpr Uint maxiter{dim*10}; constexpr Dim_t verbose{0}; DeprecatedSolverCGEigen cg{sys, cg_tol, maxiter, bool(verbose)}; auto F = sys.get_strain_vector(); F.setZero(); sys.evaluate_stress_tangent(); Eigen::VectorXd DelF(sys.get_nb_dof()); using RMap_t = RawFieldMap>>; for (auto tmp: RMap_t(DelF)) { tmp = delEps0; } Eigen::VectorXd rhs = -sys.evaluate_projected_directional_stiffness(DelF); F += DelF; DelF.setZero(); cg.initialise(); Eigen::Map(DelF.data(), DelF.size()) = cg.solve(rhs, DelF); F += DelF; if (verbose) { std::cout << "result:" << std::endl << F << std::endl; std::cout << "mean strain = " << std::endl << sys.get_strain().get_map().mean() << std::endl; } /** * verification of resultant strains: subscript ₕ for hard and ₛ * for soft, Nₕ is nb_lays and Nₜₒₜ is resolutions, k is contrast * * Δl = εl = Δlₕ + Δlₛ = εₕlₕ+εₛlₛ * => ε = εₕ Nₕ/Nₜₒₜ + εₛ (Nₜₒₜ-Nₕ)/Nₜₒₜ * * σ is constant across all layers * σₕ = σₛ * => Eₕ εₕ = Eₛ εₛ * => εₕ = 1/k εₛ * => ε / (1/k Nₕ/Nₜₒₜ + (Nₜₒₜ-Nₕ)/Nₜₒₜ) = εₛ */ constexpr Real factor{1/contrast * Real(nb_lays)/resolutions[0] + 1.-nb_lays/Real(resolutions[0])}; constexpr Real eps_soft{eps0/factor}; constexpr Real eps_hard{eps_soft/contrast}; if (verbose) { std::cout << "εₕ = " << eps_hard << ", εₛ = " << eps_soft << std::endl; std::cout << "ε = εₕ Nₕ/Nₜₒₜ + εₛ (Nₜₒₜ-Nₕ)/Nₜₒₜ" << std::endl; } Grad_t Eps_hard; Eps_hard << eps_hard, 0, 0, 0; Grad_t Eps_soft; Eps_soft << eps_soft, 0, 0, 0; // verify uniaxial tension patch test for (const auto & pixel: sys) { if (pixel[0] < Dim_t(nb_lays)) { BOOST_CHECK_LE((Eps_hard-sys.get_strain().get_map()[pixel]).norm(), tol); } else { BOOST_CHECK_LE((Eps_soft-sys.get_strain().get_map()[pixel]).norm(), tol); } } delEps0.setZero(); delEps0(0, 1) = delEps0(1, 0) = eps0; DeprecatedSolverCG cg2{sys, cg_tol, maxiter, bool(verbose)}; F.setZero(); sys.evaluate_stress_tangent(); for (auto tmp: RMap_t(DelF)) { tmp = delEps0; } rhs = -sys.evaluate_projected_directional_stiffness(DelF); F += DelF; DelF.setZero(); cg2.initialise(); DelF = cg2.solve(rhs, DelF); F += DelF; Eps_hard << 0, eps_hard, eps_hard, 0; Eps_soft << 0, eps_soft, eps_soft, 0; // verify pure shear patch test for (const auto & pixel: sys) { if (pixel[0] < Dim_t(nb_lays)) { BOOST_CHECK_LE((Eps_hard-sys.get_strain().get_map()[pixel]).norm(), tol); } else { BOOST_CHECK_LE((Eps_soft-sys.get_strain().get_map()[pixel]).norm(), tol); } } } BOOST_AUTO_TEST_SUITE_END(); } // muSpectre diff --git a/tests/tests.hh b/tests/tests.hh index 1c83eb3..350efc9 100644 --- a/tests/tests.hh +++ b/tests/tests.hh @@ -1,61 +1,61 @@ /** * @file tests.hh * * @author Till Junge * * @date 10 May 2017 * * @brief common defs for tests * * Copyright © 2017 Till Junge * * µSpectre is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3, or (at * your option) any later version. * * µSpectre is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with GNU Emacs; see the file COPYING. If not, write to the + * along with µSpectre; see the file COPYING. If not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "common/common.hh" # if defined(__INTEL_COMPILER) //# pragma warning ( disable : 383 ) # elif defined (__clang__) // test clang to be sure that when we test for gnu it is only gnu # pragma clang diagnostic push # pragma clang diagnostic ignored "-Weffc++" # elif (defined(__GNUC__) || defined(__GNUG__)) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Weffc++" # endif #include #include # if defined(__INTEL_COMPILER) //# pragma warning ( disable : 383 ) # elif defined (__clang__) // test clang to be sure that when we test for gnu it is only gnu # pragma clang diagnostic pop # pragma clang diagnostic ignored "-Weffc++" # elif (defined(__GNUC__) || defined(__GNUG__)) # pragma GCC diagnostic pop # pragma GCC diagnostic ignored "-Weffc++" # endif #ifndef TESTS_H #define TESTS_H namespace muSpectre { constexpr Real tol = 1e-14*100; //it's in percent } // muSpectre #endif /* TESTS_H */