diff --git a/doc/dev-docs/logo_flat.png b/doc/dev-docs/logo_flat.png
new file mode 100644
index 0000000..ae34260
Binary files /dev/null and b/doc/dev-docs/logo_flat.png differ
diff --git a/doc/dev-docs/logo_square.png b/doc/dev-docs/logo_square.png
new file mode 100644
index 0000000..27ed5b0
Binary files /dev/null and b/doc/dev-docs/logo_square.png differ
diff --git a/doc/dev-docs/source/index.rst b/doc/dev-docs/source/index.rst
index 7f6ab42..53384b4 100644
--- a/doc/dev-docs/source/index.rst
+++ b/doc/dev-docs/source/index.rst
@@ -1,24 +1,23 @@
-.. µSpectre documentation master file, created by
-   sphinx-quickstart on Thu Feb  1 12:01:24 2018.
-   You can adapt this file completely to your liking, but it should at least
-   contain the root `toctree` directive.
+
+
+.. image:: ../logo_flat.png
 
 µSpectre, FFT-based Homogenisation without Linear Reference Medium
 ==================================================================
 
 .. toctree::
    :maxdepth: 2
    :caption: Contents:
 
    Summary
    Reference
    License
 
 
 
 Indices and tables
 ==================
 
 * :ref:`genindex`
 * :ref:`modindex`
 * :ref:`search`
diff --git a/src/materials/material_linear_elastic2.cc b/src/materials/material_linear_elastic2.cc
index 119cad0..4a4add0 100644
--- a/src/materials/material_linear_elastic2.cc
+++ b/src/materials/material_linear_elastic2.cc
@@ -1,65 +1,63 @@
 /**
- * @file   material_linear_elastic_eigenstrain.cc
+ * @file   material_linear_elastic2.cc
  *
  * @author Till Junge <till.junge@altermail.ch>
  *
  * @date   04 Feb 2018
  *
  * @brief  implementation for linear elastic material with eigenstrain
  *
- * @section LICENSE
- *
  * Copyright © 2018 Till Junge
  *
  * µSpectre is free software; you can redistribute it and/or
  * modify it under the terms of the GNU General Public License as
  * published by the Free Software Foundation, either version 3, or (at
  * your option) any later version.
  *
  * µSpectre is distributed in the hope that it will be useful, but
  * WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  * General Public License for more details.
  *
  * You should have received a copy of the GNU General Public License
  * along with GNU Emacs; see the file COPYING. If not, write to the
  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  * Boston, MA 02111-1307, USA.
  */
 
 #include "materials/material_linear_elastic2.hh"
 
 namespace muSpectre {
 
   /* ---------------------------------------------------------------------- */
   template <Dim_t DimS, Dim_t DimM>
   MaterialLinearElastic2<DimS, DimM>::
   MaterialLinearElastic2(std::string name, Real young, Real poisson)
     :Parent{name}, material{name, young, poisson},
      eigen_field{make_field<Field_t>("Eigenstrain", this->internal_fields)},
      internal_variables(eigen_field.get_const_map())
     {}
 
   /* ---------------------------------------------------------------------- */
   template <Dim_t DimS, Dim_t DimM>
   void MaterialLinearElastic2<DimS, DimM>::
   add_pixel(const Ccoord_t<DimS> & /*pixel*/) {
     throw std::runtime_error
       ("this material needs pixels with and eigenstrain");
   }
 
   /* ---------------------------------------------------------------------- */
   template <Dim_t DimS, Dim_t DimM>
   void MaterialLinearElastic2<DimS, DimM>::
   add_pixel(const Ccoord_t<DimS> & pixel,
             const StrainTensor & E_eig) {
     this->internal_fields.add_pixel(pixel);
     Eigen::Map<const Eigen::Array<Real, DimM*DimM, 1>> strain_array(E_eig.data());
     this->eigen_field.push_back(strain_array);
   }
 
   template class MaterialLinearElastic2<twoD, twoD>;
   template class MaterialLinearElastic2<twoD, threeD>;
   template class MaterialLinearElastic2<threeD, threeD>;
 
 }  // muSpectre
diff --git a/src/materials/material_linear_elastic2.hh b/src/materials/material_linear_elastic2.hh
index e4eb8e6..a109ddc 100644
--- a/src/materials/material_linear_elastic2.hh
+++ b/src/materials/material_linear_elastic2.hh
@@ -1,205 +1,205 @@
 /**
  * @file   material_linear_elastic2.hh
  *
  * @author Till Junge <till.junge@altermail.ch>
  *
  * @date   03 Feb 2018
  *
  * @brief linear elastic material with imposed eigenstrain and its
  *        type traits. Uses the MaterialMuSpectre facilities to keep it
  *        simple
  *
- * @section LICENSE
- *
  * Copyright © 2018 Till Junge
  *
  * µSpectre is free software; you can redistribute it and/or
  * modify it under the terms of the GNU General Public License as
  * published by the Free Software Foundation, either version 3, or (at
  * your option) any later version.
  *
  * µSpectre is distributed in the hope that it will be useful, but
  * WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  * General Public License for more details.
  *
  * You should have received a copy of the GNU General Public License
  * along with GNU Emacs; see the file COPYING. If not, write to the
  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  * Boston, MA 02111-1307, USA.
  */
 
 #ifndef MATERIAL_LINEAR_ELASTIC_EIGENSTRAIN_H
 #define MATERIAL_LINEAR_ELASTIC_EIGENSTRAIN_H
 
 #include "materials/material_linear_elastic1.hh"
 #include "common/field.hh"
 
 #include <Eigen/Dense>
 
 namespace muSpectre {
 
   template <Dim_t DimS, Dim_t DimM>
   class MaterialLinearElastic2;
 
   /**
    * traits for objective linear elasticity with eigenstrain
    */
   template <Dim_t DimS, Dim_t DimM>
   struct MaterialMuSpectre_traits<MaterialLinearElastic2<DimS, DimM>>
   {
     //! global field collection
     using GFieldCollection_t = typename
       MaterialBase<DimS, DimM>::GFieldCollection_t;
 
     //! expected map type for strain fields
     using StrainMap_t = MatrixFieldMap<GFieldCollection_t, Real, DimM, DimM, true>;
     //! expected map type for stress fields
     using StressMap_t = MatrixFieldMap<GFieldCollection_t, Real, DimM, DimM>;
     //! expected map type for tangent stiffness fields
     using TangentMap_t = T4MatrixFieldMap<GFieldCollection_t, Real, DimM>;
 
     //! declare what type of strain measure your law takes as input
     constexpr static auto strain_measure{StrainMeasure::GreenLagrange};
     //! declare what type of stress measure your law yields as output
     constexpr static auto stress_measure{StressMeasure::PK2};
 
     //! local field_collections used for internals
     using LFieldColl_t = LocalFieldCollection<DimS, DimM>;
     //! local strain type
     using LStrainMap_t = MatrixFieldMap<LFieldColl_t, Real, DimM, DimM, true>;
     //! elasticity without internal variables
     using InternalVariables = std::tuple<LStrainMap_t>;
 
   };
 
   /**
    * implements objective linear elasticity with an eigenstrain per pixel
    */
   template <Dim_t DimS, Dim_t DimM>
   class MaterialLinearElastic2:
     public MaterialMuSpectre<MaterialLinearElastic2<DimS, DimM>, DimS, DimM>
   {
   public:
 
     //! base class
     using Parent = MaterialMuSpectre<MaterialLinearElastic2, DimS, DimM>;
     /**
      * type used to determine whether the
      * `muSpectre::MaterialMuSpectre::iterable_proxy` evaluate only
      * stresses or also tangent stiffnesses
      */
     using NeedTangent = typename Parent::NeedTangent;
     //! global field collection
 
     using Stiffness_t = Eigen::TensorFixedSize
       <Real, Eigen::Sizes<DimM, DimM, DimM, DimM>>;
 
     //! traits of this material
     using traits = MaterialMuSpectre_traits<MaterialLinearElastic2>;
 
+    //! Type of container used for storing eigenstrain
     using InternalVariables = typename traits::InternalVariables;
 
     //! Hooke's law implementation
     using Hooke = typename
       MatTB::Hooke<DimM,
                    typename traits::StrainMap_t::reference,
                    typename traits::TangentMap_t::reference>;
 
     //! reference to any type that casts to a matrix
     using StrainTensor = Eigen::Ref<Eigen::Matrix<Real, DimM, DimM>>;
     //! Default constructor
     MaterialLinearElastic2() = delete;
 
     //! Construct by name, Young's modulus and Poisson's ratio
     MaterialLinearElastic2(std::string name, Real young, Real poisson);
 
 
     //! Copy constructor
     MaterialLinearElastic2(const MaterialLinearElastic2 &other) = delete;
 
     //! Move constructor
     MaterialLinearElastic2(MaterialLinearElastic2 &&other) = delete;
 
     //! Destructor
     virtual ~MaterialLinearElastic2() = default;
 
     //! Copy assignment operator
     MaterialLinearElastic2& operator=(const MaterialLinearElastic2 &other) = delete;
 
     //! Move assignment operator
     MaterialLinearElastic2& operator=(MaterialLinearElastic2 &&other) = delete;
 
     /**
      * evaluates second Piola-Kirchhoff stress given the Green-Lagrange
      * strain (or Cauchy stress if called with a small strain tensor)
      */
     template <class s_t, class eigen_s_t>
     inline decltype(auto) evaluate_stress(s_t && E, eigen_s_t && E_eig);
 
     /**
      * evaluates both second Piola-Kirchhoff stress and stiffness given
      * the Green-Lagrange strain (or Cauchy stress and stiffness if
      * called with a small strain tensor)
      */
     template <class s_t, class eigen_s_t>
     inline decltype(auto)
     evaluate_stress_tangent(s_t &&  E, eigen_s_t && E_eig);
 
     /**
      * return the empty internals tuple
      */
     InternalVariables & get_internals() {
       return this->internal_variables;};
 
     /**
      * overload add_pixel to write into eigenstrain
      */
     void add_pixel(const Ccoord_t<DimS> & pixel) override final;
 
     /**
      * overload add_pixel to write into eigenstrain
      */
     void add_pixel(const Ccoord_t<DimS> & pixel,
                    const StrainTensor & E_eig);
 
   protected:
+    //! linear material without eigenstrain used to compute response
     MaterialLinearElastic1<DimS, DimM> material;
     //! storage for eigenstrain
     using Field_t =
       TensorField<LocalFieldCollection<DimS,DimM>, Real, secondOrder, DimM>;
-    Field_t & eigen_field;
+    Field_t & eigen_field; //!< field of eigenstrains
     //! tuple for iterable eigen_field
     InternalVariables internal_variables;
   private:
   };
 
   /* ---------------------------------------------------------------------- */
   template <Dim_t DimS, Dim_t DimM>
   template <class s_t, class eigen_s_t>
   decltype(auto)
   MaterialLinearElastic2<DimS, DimM>::
   evaluate_stress(s_t && E, eigen_s_t && E_eig) {
     return this->material.evaluate_stress(E-E_eig);
   }
 
   /* ---------------------------------------------------------------------- */
   template <Dim_t DimS, Dim_t DimM>
   template <class s_t, class eigen_s_t>
   decltype(auto)
   MaterialLinearElastic2<DimS, DimM>::
   evaluate_stress_tangent(s_t && E, eigen_s_t && E_eig) {
     // using mat = Eigen::Matrix<Real, DimM, DimM>;
     // mat ecopy{E};
     // mat eig_copy{E_eig};
     // mat ediff{ecopy-eig_copy};
     // std::cout << "eidff - (E-E_eig)" << std::endl << ediff-(E-E_eig) << std::endl;
     // std::cout << "P1 <internal>" << std::endl << mat{std::get<0>(this->material.evaluate_stress_tangent(E-E_eig))} << "</internal>" << std::endl;
     // std::cout << "P2" << std::endl << mat{std::get<0>(this->material.evaluate_stress_tangent(std::move(ediff)))} << std::endl;
     return this->material.evaluate_stress_tangent(E-E_eig);
   }
 
 
 }  // muSpectre
 
 #endif /* MATERIAL_LINEAR_ELASTIC_EIGENSTRAIN_H */
diff --git a/src/materials/materials_toolbox.hh b/src/materials/materials_toolbox.hh
index 9fde2e1..76261e4 100644
--- a/src/materials/materials_toolbox.hh
+++ b/src/materials/materials_toolbox.hh
@@ -1,393 +1,394 @@
 /**
  * @file   materials_toolbox.hh
  *
  * @author Till Junge <till.junge@epfl.ch>
  *
  * @date   02 Nov 2017
  *
  * @brief  collection of common continuum mechanics tools
  *
  * Copyright © 2017 Till Junge
  *
  * µSpectre is free software; you can redistribute it and/or
  * modify it under the terms of the GNU General Public License as
  * published by the Free Software Foundation, either version 3, or (at
  * your option) any later version.
  *
  * µSpectre is distributed in the hope that it will be useful, but
  * WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  * General Public License for more details.
  *
  * You should have received a copy of the GNU General Public License
  * along with GNU Emacs; see the file COPYING. If not, write to the
  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  * Boston, MA 02111-1307, USA.
  */
 
 #ifndef MATERIALS_TOOLBOX_H
 #define MATERIALS_TOOLBOX_H
 
 #include "common/common.hh"
 #include "common/tensor_algebra.hh"
 #include "common/eigen_tools.hh"
 #include "common/T4_map_proxy.hh"
 
 #include <Eigen/Dense>
 
 #include <exception>
 #include <sstream>
 #include <iostream>
 #include <tuple>
 #include <type_traits>
 
 namespace muSpectre {
 
   namespace MatTB {
     /**
      * thrown when generic materials-related runtime errors occur
      * (mostly continuum mechanics problems)
      */
     class MaterialsToolboxError:public std::runtime_error{
     public:
       //! constructor
       explicit MaterialsToolboxError(const std::string& what)
         :std::runtime_error(what){}
       //! constructor
       explicit MaterialsToolboxError(const char * what)
         :std::runtime_error(what){}
     };
 
 
     /* ---------------------------------------------------------------------- */
     /**
      * Flag used to designate whether the material should compute both stress
      * and tangent moduli or only stress
      */
     enum class NeedTangent {
       yes, //!< compute both stress and tangent moduli
       no   //!< compute only stress
     };
 
     /**
      * struct used to determine the exact type of a tuple of references obtained
      * when a bunch of iterators over fiel_maps are dereferenced and their
      * results are concatenated into a tuple
      */
     template <class... T>
     struct ReferenceTuple {
       //! use this type
       using type = std::tuple<typename T::reference ...>;
     };
 
     /**
      * specialisation for tuples
      */
     //template <>
     template <class... T>
     struct ReferenceTuple<std::tuple<T...>> {
       //! use this type
       using type = typename ReferenceTuple<T...>::type;
     };
 
     /**
      * helper type for ReferenceTuple
      */
     template <class... T>
     using ReferenceTuple_t = typename ReferenceTuple<T...>::type;
 
     /* ---------------------------------------------------------------------- */
     namespace internal {
 
       /** Structure for functions returning one strain measure as a
        *  function of another
        **/
       template <StrainMeasure In, StrainMeasure Out = In>
       struct ConvertStrain {
         static_assert((In == StrainMeasure::Gradient) ||
                       (In == StrainMeasure::Infinitesimal),
                       "This situation makes me suspect that you are not using "
                       "MatTb as intended. Disable this assert only if you are "
                       "sure about what you are doing.");
 
         //! returns the converted strain
         template <class Strain_t>
         inline static decltype(auto)
         compute(Strain_t&& input) {
           // transparent case, in which no conversion is required:
           // just a perfect forwarding
           static_assert
             ((In == Out),
              "This particular strain conversion is not implemented");
           return std::forward<Strain_t>(input);
         }
       };
 
       /* ---------------------------------------------------------------------- */
       /** Specialisation for getting Green-Lagrange strain from the
           transformation gradient
       **/
       template <>
       struct ConvertStrain<StrainMeasure::Gradient, StrainMeasure::GreenLagrange> {
 
         //! returns the converted strain
         template <class Strain_t>
         inline static decltype(auto)
         compute(Strain_t&& F) {
           return .5*(F.transpose()*F - Strain_t::PlainObject::Identity());
         }
       };
 
     }  // internal
 
     /* ---------------------------------------------------------------------- */
     //! set of functions returning one strain measure as a function of
     //! another
     template <StrainMeasure In, StrainMeasure Out,
               class Strain_t>
     decltype(auto) convert_strain(Strain_t && strain) {
       return internal::ConvertStrain<In, Out>::compute(std::move(strain));
     };
 
 
 
     /* ---------------------------------------------------------------------- */
     namespace internal {
 
       /** Structure for functions returning PK1 stress from other stress measures
        **/
       template <Dim_t Dim,
                 StressMeasure StressM,
                 StrainMeasure StrainM>
       struct PK1_stress {
 
         //! returns the converted stress
         template <class Strain_t, class Stress_t>
         inline static decltype(auto)
         compute(Strain_t && /*strain*/, Stress_t && /*stress*/) {
           // the following test always fails to generate a compile-time error
           static_assert((StressM == StressMeasure::Cauchy) &&
                         (StressM == StressMeasure::PK1),
                         "The requested Stress conversion is not implemented. "
                         "You either made a programming mistake or need to "
                         "implement it as a specialisation of this function. "
                         "See PK2stress<PK1,T1, T2> for an example.");
         }
 
         //! returns the converted stress and stiffness
         template <class Strain_t, class Stress_t, class Tangent_t>
         inline static decltype(auto)
         compute(Strain_t && /*strain*/, Stress_t && /*stress*/,
                 Tangent_t && /*stiffness*/) {
           // the following test always fails to generate a compile-time error
           static_assert((StressM == StressMeasure::Cauchy) &&
                         (StressM == StressMeasure::PK1),
                         "The requested Stress conversion is not implemented. "
                         "You either made a programming mistake or need to "
                         "implement it as a specialisation of this function. "
                         "See PK2stress<PK1,T1, T2> for an example.");
         }
       };
 
       /* ---------------------------------------------------------------------- */
       /** Specialisation for the transparent case, where we already
           have PK1 stress
        **/
       template <Dim_t Dim, StrainMeasure StrainM>
       struct PK1_stress<Dim, StressMeasure::PK1, StrainM>:
         public PK1_stress<Dim, StressMeasure::no_stress_,
                           StrainMeasure::no_strain_> {
 
         //! returns the converted stress
         template <class Strain_t, class Stress_t>
         inline static decltype(auto)
         compute(Strain_t && /*dummy*/, Stress_t && P) {
           return std::forward<Stress_t>(P);
         }
       };
 
       /* ---------------------------------------------------------------------- */
       /** Specialisation for the transparent case, where we already have PK1
           stress *and* stiffness is given with respect to the transformation
           gradient
        **/
       template <Dim_t Dim>
       struct PK1_stress<Dim, StressMeasure::PK1, StrainMeasure::Gradient>:
         public PK1_stress<Dim, StressMeasure::PK1,
                           StrainMeasure::no_strain_> {
 
         //! base class
         using Parent = PK1_stress<Dim, StressMeasure::PK1,
                                   StrainMeasure::no_strain_>;
         using Parent::compute;
 
         //! returns the converted stress and stiffness
         template <class Strain_t, class Stress_t, class Tangent_t>
         inline static decltype(auto)
         compute(Strain_t && /*dummy*/, Stress_t && P, Tangent_t && K) {
           return std::make_tuple(std::forward<Stress_t>(P),
                                  std::forward<Tangent_t>(K));
         }
       };
 
       /* ---------------------------------------------------------------------- */
       /**
        * Specialisation for the case where we get material stress (PK2)
        */
       template <Dim_t Dim, StrainMeasure StrainM>
       struct PK1_stress<Dim, StressMeasure::PK2, StrainM>:
         public PK1_stress<Dim, StressMeasure::no_stress_,
                           StrainMeasure::no_strain_> {
 
         //! returns the converted stress
         template <class Strain_t, class Stress_t>
         inline static decltype(auto)
         compute(Strain_t && F, Stress_t && S) {
           return F*S;
         }
       };
 
       /* ---------------------------------------------------------------------- */
       /**
        * Specialisation for the case where we get material stress (PK2) derived
        * with respect to Green-Lagrange strain
        */
       template <Dim_t Dim>
       struct PK1_stress<Dim, StressMeasure::PK2, StrainMeasure::GreenLagrange>:
         public PK1_stress<Dim, StressMeasure::PK2,
                           StrainMeasure::no_strain_> {
         //! base class
         using Parent = PK1_stress<Dim, StressMeasure::PK2,
                                   StrainMeasure::no_strain_>;
         using Parent::compute;
 
         //! returns the converted stress and stiffness
         template <class Strain_t, class Stress_t, class Tangent_t>
         inline static decltype(auto)
         compute(Strain_t && F, Stress_t && S, Tangent_t && C) {
           using T4 = typename std::remove_reference_t<Tangent_t>::PlainObject;
           using Tmap = T4MatMap<Real, Dim>;
           T4 K;
           Tmap Kmap{K.data()};
           K.setZero();
 
           for (int i = 0; i < Dim; ++i) {
             for (int m = 0; m < Dim; ++m) {
               for (int n = 0; n < Dim; ++n) {
                 get(Kmap,i,m,i,n) += S(m,n);
                 for (int j = 0; j < Dim; ++j) {
                   for (int r = 0; r < Dim; ++r) {
                     for (int s = 0; s < Dim; ++s) {
                       get(Kmap,i,m,j,n) += F(i,r)*get(C,r,m,n,s)*(F(j,s));
                     }
                   }
                 }
               }
             }
           }
           auto && P = compute(std::forward<Strain_t>(F),
                               std::forward<Stress_t>(S));
           return std::make_tuple(std::move(P), std::move(K));
         }
       };
 
     }  // internal
     /* ---------------------------------------------------------------------- */
     //! set of functions returning an expression for PK2 stress based on
     template <StressMeasure StressM, StrainMeasure StrainM,
               class Stress_t, class Strain_t>
     decltype(auto) PK1_stress(Strain_t && strain, Stress_t && stress) {
       constexpr Dim_t dim{EigenCheck::tensor_dim<Strain_t>::value};
       static_assert((dim == EigenCheck::tensor_dim<Stress_t>::value),
                     "Stress and strain tensors have differing dimensions");
       return internal::PK1_stress<dim, StressM, StrainM>::compute
         (std::forward<Strain_t>(strain),
          std::forward<Stress_t>(stress));
     };
 
     /* ---------------------------------------------------------------------- */
     //! set of functions returning an expression for PK2 stress based on
     template <StressMeasure StressM, StrainMeasure StrainM,
               class Stress_t, class Strain_t, class Tangent_t>
     decltype(auto) PK1_stress(Strain_t  && strain,
                               Stress_t  && stress,
                               Tangent_t && tangent) {
       constexpr Dim_t dim{EigenCheck::tensor_dim<Strain_t>::value};
       static_assert((dim == EigenCheck::tensor_dim<Stress_t>::value),
                     "Stress and strain tensors have differing dimensions");
       static_assert((dim == EigenCheck::tensor_4_dim<Tangent_t>::value),
                     "Stress and tangent tensors have differing dimensions");
 
       return internal::PK1_stress<dim, StressM, StrainM>::compute
         (std::forward<Strain_t>(strain),
          std::forward<Stress_t>(stress),
          std::forward<Tangent_t>(tangent));
     };
 
     //! static inline implementation of Hooke's law
     template <Dim_t Dim, class Strain_t, class Tangent_t>
     struct Hooke {
       /**
        * compute Lamé's first constant
        * @param young: Young's modulus
        * @param poisson: Poisson's ratio
        */
       inline static constexpr Real
       compute_lambda(const Real & young, const Real & poisson) {
         return young*poisson/((1+poisson)*(1-2*poisson));
       }
 
       /**
        * compute Lamé's second constant (i.e., shear modulus)
        * @param young: Young's modulus
        * @param poisson: Poisson's ratio
        */
       inline static constexpr Real
       compute_mu(const Real & young, const Real & poisson) {
         return young/(2*(1+poisson));
       }
 
       /**
        * compute the stiffness tensor
        * @param lambda: Lamé's first constant
        * @param mu: Lamé's second constant (i.e., shear modulus)
        */
       inline static Eigen::TensorFixedSize<Real, Eigen::Sizes<Dim, Dim, Dim, Dim>>
       compute_C(const Real & lambda, const Real & mu) {
         return lambda*Tensors::outer<Dim>(Tensors::I2<Dim>(),Tensors::I2<Dim>()) +
           2*mu*Tensors::I4S<Dim>();
       }
 
       /**
        * return stress
        * @param lambda: First Lamé's constant
        * @param mu: Second Lamé's constant (i.e. shear modulus)
        * @param E: Green-Lagrange or small strain tensor
        */
       template <class s_t>
       inline static decltype(auto)
       evaluate_stress(const Real & lambda, const Real & mu, s_t && E) {
         return E.trace()*lambda * Strain_t::Identity() + 2*mu*E;
       }
 
       /**
        * return stress and tangent stiffness
        * @param lambda: First Lamé's constant
        * @param mu: Second Lamé's constant (i.e. shear modulus)
        * @param E: Green-Lagrange or small strain tensor
+       * @param C: stiffness tensor (wrt. Piola-Kirchhoff 2)
        */
       template <class s_t>
       inline static decltype(auto)
       evaluate_stress(const Real & lambda, const Real & mu,
                       Tangent_t && C, s_t && E) {
         return std::make_tuple
           (std::move(evaluate_stress(lambda, mu, std::move(E))),
            std::move(C));
       }
     };
 
   }  // MatTB
 
 }  // muSpectre
 
 #endif /* MATERIALS_TOOLBOX_H */