diff --git a/python/wrap/model.cpp b/python/wrap/model.cpp index 3f4a636..1b5b106 100644 --- a/python/wrap/model.cpp +++ b/python/wrap/model.cpp @@ -1,508 +1,516 @@ /* * SPDX-License-Indentifier: AGPL-3.0-or-later * * Copyright (©) 2016-2022 EPFL (École Polytechnique Fédérale de Lausanne), * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "model.hh" #include "adhesion_functional.hh" +#include "elastic_functional.hh" #include "functional.hh" #include "integral_operator.hh" #include "model_dumper.hh" #include "model_extensions.hh" #include "model_factory.hh" #include "numpy.hh" #include "residual.hh" #include "wrap.hh" #include /* -------------------------------------------------------------------------- */ namespace tamaas { namespace wrap { using namespace py::literals; struct model_operator_accessor { Model& m; decltype(auto) get(const std::string& name) { return m.getIntegralOperator(name); } }; /// Wrap functional classes void wrapFunctionals(py::module& mod) { py::class_, functional::wrap::PyFunctional> func(mod, "Functional"); func.def(py::init<>()) .def("computeF", &functional::Functional::computeF, "Compute functional value") .def("computeGradF", &functional::Functional::computeGradF, "Compute functional gradient"); + py::class_( + mod, "ElasticFunctionalPressure", func) + .def(py::init&>()); + py::class_(mod, "ElasticFunctionalGap", + func) + .def(py::init&>()); + py::class_ adh(mod, "AdhesionFunctional", func); adh.def_property("parameters", &functional::AdhesionFunctional::getParameters, &functional::AdhesionFunctional::setParameters, "Parameters dictionary") .def("setParameters", [](functional::AdhesionFunctional& f, const std::map& m) { TAMAAS_DEPRECATE("setParameters()", "the parameters property"); f.setParameters(m); }); py::class_( mod, "ExponentialAdhesionFunctional", adh, "Potential of the form F = -γ·exp(-g/ρ)") .def(py::init&>(), "surface"_a); py::class_( mod, "MaugisAdhesionFunctional", adh, "Cohesive zone potential F = H(g - ρ)·γ/ρ") .def(py::init&>(), "surface"_a); py::class_( mod, "SquaredExponentialAdhesionFunctional", adh, "Potential of the form F = -γ·exp(-0.5·(g/ρ)²)") .def(py::init&>(), "surface"_a); } template std::unique_ptr> instanciateFromNumpy(numpy& num) { std::unique_ptr> result = nullptr; switch (num.ndim()) { case 2: result = std::make_unique>>(num); return result; case 3: result = std::make_unique>>(num); return result; case 4: result = std::make_unique>>(num); return result; default: TAMAAS_EXCEPTION("instanciateFromNumpy expects the last dimension of numpy " "array to be the number of components"); } } /// Wrap IntegralOperator void wrapIntegralOperator(py::module& mod) { py::class_(mod, "IntegralOperator") .def("apply", [](IntegralOperator& op, numpy input, numpy output) { TAMAAS_DEPRECATE("apply()", "the () operator"); auto in = instanciateFromNumpy(input); auto out = instanciateFromNumpy(output); op.apply(*in, *out); }) .def(TAMAAS_DEPRECATE_ACCESSOR(getModel, IntegralOperator, "model"), py::return_value_policy::reference) .def(TAMAAS_DEPRECATE_ACCESSOR(getKind, IntegralOperator, "kind")) .def(TAMAAS_DEPRECATE_ACCESSOR(getType, IntegralOperator, "type")) .def( "__call__", [](IntegralOperator& op, numpy input, numpy output) { auto in = instanciateFromNumpy(input); auto out = instanciateFromNumpy(output); op.apply(*in, *out); }, "Apply the integral operator") .def("updateFromModel", &IntegralOperator::updateFromModel, "Resets internal persistent variables from the model") .def_property_readonly("kind", &IntegralOperator::getKind) .def_property_readonly("model", &IntegralOperator::getModel) .def_property_readonly("type", &IntegralOperator::getType) .def_property_readonly("shape", &IntegralOperator::matvecShape) .def( "matvec", [](const IntegralOperator& op, numpy X) -> GridBase { GridBaseNumpy x(X); auto y = op.matvec(x); return y; }, py::return_value_policy::move); py::enum_(mod, "integration_method", "Integration method used for the computation " "of volumetric Fourier operators") .value("linear", integration_method::linear, "No approximation error, O(N₁·N₂·N₃) time complexity, may cause " "float overflow/underflow") .value("cutoff", integration_method::cutoff, "Approximation, O(sqrt(N₁²+N₂²)·N₃²) time complexity, no " "overflow/underflow risk"); } /// Wrap BEEngine classes void wrapBEEngine(py::module& mod) { py::class_(mod, "BEEngine") .def("solveNeumann", &BEEngine::solveNeumann) .def("solveDirichlet", &BEEngine::solveDirichlet) .def("registerNeumann", &BEEngine::registerNeumann) .def("registerDirichlet", &BEEngine::registerDirichlet) .def(TAMAAS_DEPRECATE_ACCESSOR(getModel, BEEngine, "model"), py::return_value_policy::reference) .def_property_readonly("model", &BEEngine::getModel); } template void wrapModelTypeTrait(py::module& mod) { using trait = model_type_traits; py::class_(mod, trait::repr) .def_property_readonly_static( "dimension", [](py::object) { return trait::dimension; }, "Dimension of computational domain") .def_property_readonly_static( "components", [](py::object) { return trait::components; }, "Number of components of vector fields") .def_property_readonly_static( "boundary_dimension", [](py::object) { return trait::boundary_dimension; }, "Dimension of boundary of computational domain") .def_property_readonly_static( "voigt", [](py::object) { return trait::voigt; }, "Number of components of symmetrical tensor fields") .def_property_readonly_static("indices", [](py::object) { return trait::indices; }); } /// Wrap Models void wrapModelClass(py::module& mod) { py::enum_(mod, "model_type") .value("basic_1d", model_type::basic_1d, "Normal contact with 1D interface") .value("basic_2d", model_type::basic_2d, "Normal contact with 2D interface") .value("surface_1d", model_type::surface_1d, "Normal & tangential contact with 1D interface") .value("surface_2d", model_type::surface_2d, "Normal & tangential contact with 2D interface") .value("volume_1d", model_type::volume_1d, "Contact with volumetric representation and 1D interface") .value("volume_2d", model_type::volume_2d, "Contact with volumetric representation and 2D interface"); auto trait_mod = mod.def_submodule("_type_traits"); wrapModelTypeTrait(trait_mod); wrapModelTypeTrait(trait_mod); wrapModelTypeTrait(trait_mod); wrapModelTypeTrait(trait_mod); wrapModelTypeTrait(trait_mod); wrapModelTypeTrait(trait_mod); py::class_(mod, "_model_operator_acessor") .def(py::init()) .def( "__getitem__", [](model_operator_accessor& acc, std::string name) { try { return acc.get(name); } catch (std::out_of_range&) { throw py::key_error(name); } }, py::return_value_policy::reference_internal) .def("__contains__", [](model_operator_accessor& acc, std::string key) { const auto ops = acc.m.getIntegralOperators(); return std::find(ops.begin(), ops.end(), key) != ops.end(); }) .def( "__iter__", [](const model_operator_accessor& acc) { const auto& ops = acc.m.getIntegralOperatorsMap(); return py::make_key_iterator(ops.cbegin(), ops.cend()); }, py::keep_alive<0, 1>()); py::class_(mod, "Model") .def(py::init(py::overload_cast&, const std::vector&>( &ModelFactory::createModel))) .def_property_readonly("type", &Model::getType) .def_property("E", &Model::getYoungModulus, &Model::setYoungModulus, "Young's modulus") .def_property("nu", &Model::getPoissonRatio, &Model::setPoissonRatio, "Poisson's ratio") .def_property_readonly("mu", &Model::getShearModulus, "Shear modulus") .def_property_readonly("E_star", &Model::getHertzModulus, "Contact (Hertz) modulus") .def_property_readonly("be_engine", &Model::getBEEngine, "Boundary element engine") .def( "setElasticity", [](Model& m, Real E, Real nu) { TAMAAS_DEPRECATE("setElasticity()", "the E and nu properties"); m.setElasticity(E, nu); }, "E"_a, "nu"_a) .def(TAMAAS_DEPRECATE_ACCESSOR(getHertzModulus, Model, "E_star")) .def(TAMAAS_DEPRECATE_ACCESSOR(getYoungModulus, Model, "E")) .def(TAMAAS_DEPRECATE_ACCESSOR(getShearModulus, Model, "mu")) .def(TAMAAS_DEPRECATE_ACCESSOR(getPoissonRatio, Model, "nu")) .def(TAMAAS_DEPRECATE_ACCESSOR(getTraction, Model, "traction"), py::return_value_policy::reference_internal) .def(TAMAAS_DEPRECATE_ACCESSOR(getDisplacement, Model, "displacement"), py::return_value_policy::reference_internal) .def(TAMAAS_DEPRECATE_ACCESSOR(getSystemSize, Model, "system_size")) .def(TAMAAS_DEPRECATE_ACCESSOR(getDiscretization, Model, "shape")) .def(TAMAAS_DEPRECATE_ACCESSOR(getBoundarySystemSize, Model, "boundary_system_size")) .def(TAMAAS_DEPRECATE_ACCESSOR(getBoundaryDiscretization, Model, "boundary_shape")) .def("solveNeumann", &Model::solveNeumann, "Solve surface tractions -> displacements") .def("solveDirichlet", &Model::solveDirichlet, "Solve surface displacemnts -> tractions") .def("dump", &Model::dump, "Write model data to registered dumpers") .def("addDumper", &Model::addDumper, "dumper"_a, py::keep_alive<1, 2>(), "Register a dumper") .def( "getBEEngine", [](Model& m) -> decltype(m.getBEEngine()) { TAMAAS_DEPRECATE("getBEEngine()", "the be_engine property"); return m.getBEEngine(); }, py::return_value_policy::reference_internal) .def( "getIntegralOperator", [](const Model& m, std::string name) { TAMAAS_DEPRECATE("getIntegralOperator()", "the operators property"); return m.getIntegralOperator(name); }, "operator_name"_a, py::return_value_policy::reference_internal) .def( "registerField", [](Model& m, std::string name, numpy field) { TAMAAS_DEPRECATE("registerField()", "the [] operator"); auto f = instanciateFromNumpy(field); m.registerField(name, std::move(f)); }, "field_name"_a, "field"_a, py::keep_alive<1, 3>()) .def( "getField", [](const Model& m, std::string name) -> decltype(m.getField(name)) { TAMAAS_DEPRECATE("getField()", "the [] operator"); return m.getField(name); }, "field_name"_a, py::return_value_policy::reference_internal) .def( "getFields", [](const Model& m) { TAMAAS_DEPRECATE("getFields()", "list(model)"); return m.getFields(); }, "Return fields list") .def( "applyElasticity", [](Model& model, numpy stress, numpy strain) { auto out = instanciateFromNumpy(stress); auto in = instanciateFromNumpy(strain); model.applyElasticity(*out, *in); }, "Apply Hooke's law") // Python magic functions .def("__repr__", [](const Model& m) { std::stringstream ss; ss << m; return ss.str(); }) .def( "__getitem__", [](const Model& m, std::string key) -> decltype(m[key]) { try { return m[key]; } catch (std::out_of_range&) { throw py::key_error(key); } }, py::return_value_policy::reference_internal, "Get field") .def( "__setitem__", [](Model& m, std::string name, numpy field) { auto f = instanciateFromNumpy(field); m.registerField(name, std::move(f)); }, py::keep_alive<1, 3>(), "Register new field") .def( "__contains__", [](const Model& m, std::string key) { const auto fields = m.getFields(); return std::find(fields.begin(), fields.end(), key) != fields.end(); }, py::keep_alive<0, 1>(), "Test field existence") .def( "__iter__", [](const Model& m) { const auto& fields = m.getFieldsMap(); return py::make_key_iterator(fields.cbegin(), fields.cend()); }, py::keep_alive<0, 1>(), "Iterator on fields") .def( "__copy__", [](const Model&) { throw std::runtime_error("__copy__ not implemented"); }, "Shallow copy of model. Not implemented.") .def( "__deepcopy__", [](const Model& m, py::dict) { return ModelFactory::createModel(m); }, "Deep copy of model.") .def_property_readonly("boundary_fields", &Model::getBoundaryFields) .def_property_readonly( "operators", [](Model& m) { return model_operator_accessor{m}; }, "Returns a dict-like object allowing access to the model's " "integral " "operators") // More python-like access to model properties .def_property_readonly("shape", &Model::getDiscretization, "Discretization (local in MPI environment)") .def_property_readonly("global_shape", &Model::getGlobalDiscretization, "Global discretization (in MPI environement)") .def_property_readonly("boundary_shape", &Model::getBoundaryDiscretization, "Number of points on boundary") .def_property_readonly("system_size", &Model::getSystemSize, "Size of physical domain") .def_property_readonly("boundary_system_size", &Model::getBoundarySystemSize, "Physical size of surface") .def_property_readonly("traction", (const GridBase& (Model::*)() const) & Model::getTraction, "Surface traction field") .def_property_readonly("displacement", (const GridBase& (Model::*)() const) & Model::getDisplacement, "Displacement field"); py::class_>( mod, "ModelDumper") .def(py::init<>()) .def("dump", &ModelDumper::dump, "model"_a, "Dump model") .def( "__lshift__", [](ModelDumper& dumper, Model& model) { dumper << model; }, "Dump model"); } /// Wrap factory for models void wrapModelFactory(py::module& mod) { py::class_(mod, "ModelFactory") .def_static( "createModel", py::overload_cast&, const std::vector&>( &ModelFactory::createModel), "model_type"_a, "system_size"_a, "global_discretization"_a, R"-(Create a new model of a given type, physical size and *global* discretization. :param model_type: the type of desired model :param system_size: the physical size of the domain in each direction :param global_discretization: number of points in each direction)-") .def_static("createModel", py::overload_cast(&ModelFactory::createModel), "model"_a, "Create a deep copy of a model.") .def_static("createResidual", &ModelFactory::createResidual, "model"_a, "sigma_y"_a, "hardening"_a = 0., R"-(Create an isotropic linear hardening residual. :param model: the model on which to define the residual :param sigma_y: the (von Mises) yield stress :param hardening: the hardening modulus)-") .def_static("registerVolumeOperators", &ModelFactory::registerVolumeOperators, "model"_a, "Register Boussinesq and Mindlin operators to model."); } /// Wrap residual class void wrapResidual(py::module& mod) { // TODO adapt to n-dim py::class_(mod, "Residual") .def(py::init()) .def("computeResidual", [](Residual& res, numpy& x) { auto in = instanciateFromNumpy(x); res.computeResidual(*in); }) .def("computeStress", [](Residual& res, numpy& x) { auto in = instanciateFromNumpy(x); res.computeStress(*in); }) .def("updateState", [](Residual& res, numpy& x) { auto in = instanciateFromNumpy(x); res.updateState(*in); }) .def("computeResidualDisplacement", [](Residual& res, numpy& x) { auto in = instanciateFromNumpy(x); res.computeResidualDisplacement(*in); }) .def( "applyTangent", [](Residual& res, numpy& output, numpy& input, numpy& current_strain_inc) { auto out = instanciateFromNumpy(output); auto in = instanciateFromNumpy(input); auto inc = instanciateFromNumpy(current_strain_inc); res.applyTangent(*out, *in, *inc); }, "output"_a, "input"_a, "current_strain_increment"_a) .def("getVector", &Residual::getVector, py::return_value_policy::reference_internal) .def("getPlasticStrain", &Residual::getPlasticStrain, py::return_value_policy::reference_internal) .def("getStress", &Residual::getStress, py::return_value_policy::reference_internal) .def("setIntegrationMethod", &Residual::setIntegrationMethod, "method"_a, "cutoff"_a = 1e-12) .def_property("yield_stress", &Residual::getYieldStress, &Residual::setYieldStress) .def_property("hardening_modulus", &Residual::getHardeningModulus, &Residual::setHardeningModulus) .def_property_readonly("model", &Residual::getModel); } void wrapModel(py::module& mod) { wrapBEEngine(mod); wrapModelClass(mod); wrapModelFactory(mod); wrapFunctionals(mod); wrapResidual(mod); wrapIntegralOperator(mod); } } // namespace wrap } // namespace tamaas diff --git a/src/model/elastic_functional.hh b/src/model/elastic_functional.hh index a73cea1..031c8a3 100644 --- a/src/model/elastic_functional.hh +++ b/src/model/elastic_functional.hh @@ -1,79 +1,80 @@ /* * SPDX-License-Indentifier: AGPL-3.0-or-later * * Copyright (©) 2016-2022 EPFL (École Polytechnique Fédérale de Lausanne), * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * */ /* -------------------------------------------------------------------------- */ #ifndef ELASTIC_FUNCTIONAL_HH #define ELASTIC_FUNCTIONAL_HH /* -------------------------------------------------------------------------- */ #include "functional.hh" #include "model.hh" #include "tamaas.hh" /* -------------------------------------------------------------------------- */ namespace tamaas { namespace functional { /// Generic functional for elastic energy class ElasticFunctional : public Functional { public: ElasticFunctional(const IntegralOperator& op, const GridBase& surface) - : op(op), surface(surface) { + : op(op), surface() { + this->surface.wrap(surface); const Model& model = op.getModel(); buffer = allocateGrid(op.getType(), model.getBoundaryDiscretization()); } protected: const IntegralOperator& op; - const GridBase& surface; + GridBase surface; std::unique_ptr> mutable buffer; }; /* -------------------------------------------------------------------------- */ /// Functional with pressure as primal field class ElasticFunctionalPressure : public ElasticFunctional { public: using ElasticFunctional::ElasticFunctional; /// Compute functional with input pressure Real computeF(GridBase& pressure, GridBase& dual) const override; /// Compute functional gradient with input pressure void computeGradF(GridBase& pressure, GridBase& gradient) const override; }; /* -------------------------------------------------------------------------- */ /// Functional with gap as primal field class ElasticFunctionalGap : public ElasticFunctional { public: using ElasticFunctional::ElasticFunctional; /// Compute functional with input gap Real computeF(GridBase& gap, GridBase& dual) const override; /// Compute functional gradient with input gap void computeGradF(GridBase& gap, GridBase& gradient) const override; }; } // namespace functional } // namespace tamaas /* -------------------------------------------------------------------------- */ #endif // ELASTIC_FUNCTIONAL_HH