diff --git a/python/tamaas/dumpers/_helper.py b/python/tamaas/dumpers/_helper.py index cfc11b0..fb55893 100644 --- a/python/tamaas/dumpers/_helper.py +++ b/python/tamaas/dumpers/_helper.py @@ -1,155 +1,153 @@ # -*- mode:python; coding: utf-8 -*- # # Copyright (©) 2016-2022 EPFL (École Polytechnique Fédérale de Lausanne), # Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see . """ Helper functions for dumpers """ from os import PathLike from functools import wraps from pathlib import Path import io import numpy as np from .. import model_type, type_traits, mpi __all__ = ["step_dump", "directory_dump"] _basic_types = [t for t, trait in type_traits.items() if trait.components == 1] def _is_surface_field(field, model): - bn = model.boundary_shape - gn = mpi.global_shape(bn) - shape = list(field.shape) + def _to_global(shape): + if len(shape) == len(model.boundary_shape) + 1: + return mpi.global_shape(model.boundary_shape) + [shape[-1]] + else: + return mpi.global_shape(shape) - # Also test number of components to weed out cases where shape is the same - # in all directions - if model.type not in _basic_types: - bn.append(type_traits[model.type].components) - gn.append(bn[-1]) - - # Testing works for both local and global fields - return shape == bn or shape == gn + b_shapes = [list(model[name].shape) for name in model.boundary_fields] + shape = list(field.shape) + return any(shape == s for s in b_shapes) \ + or any(shape == _to_global(s) for s in b_shapes) def local_slice(field, model): n = model.shape bn = model.boundary_shape gshape = mpi.global_shape(bn) offsets = np.zeros_like(gshape) offsets[0] = mpi.local_offset(gshape) if not _is_surface_field(field, model) and len(n) > len(bn): gshape = [n[0]] + gshape offsets = np.concatenate(([0], offsets)) shape = bn if _is_surface_field(field, model) else n if len(field.shape) > len(shape): shape += field.shape[len(shape):] def sgen(pair): offset, size = pair return slice(offset, offset + size, None) def sgen_basic(pair): offset, size = pair return slice(offset, offset + size) slice_gen = sgen_basic if model_type in _basic_types else sgen return tuple(map(slice_gen, zip(offsets, shape))) def step_dump(cls): """ Decorator for dumper with counter for steps """ orig_init = cls.__init__ orig_dump = cls.dump @wraps(cls.__init__) def __init__(obj, *args, **kwargs): orig_init(obj, *args, **kwargs) obj.count = 0 def postfix(obj): return "_{:04d}".format(obj.count) @wraps(cls.dump) def dump(obj, *args, **kwargs): orig_dump(obj, *args, **kwargs) obj.count += 1 cls.__init__ = __init__ cls.dump = dump cls.postfix = property(postfix) return cls def directory_dump(directory=""): "Decorator for dumper in a directory" directory = Path(directory) def actual_decorator(cls): orig_dump = cls.dump orig_filepath = cls.file_path.fget @wraps(cls.dump) def dump(obj, *args, **kwargs): if mpi.rank() == 0: directory.mkdir(parents=True, exist_ok=True) orig_dump(obj, *args, **kwargs) @wraps(cls.file_path.fget) def file_path(obj): return str(directory / orig_filepath(obj)) cls.dump = dump cls.file_path = property(file_path) return cls return actual_decorator def hdf5toVTK(inpath, outname): """Convert HDF5 dump of a model to VTK.""" from . import UVWDumper # noqa from . import H5Dumper # noqa UVWDumper(outname, all_fields=True) << H5Dumper("").read(inpath) def file_handler(mode): """Decorate a function to accept path-like or file handles.""" def _handler(func): @wraps(func) def _wrapped(self, fd, *args, **kwargs): if isinstance(fd, (str, PathLike)): with open(fd, mode) as fd: return _wrapped(self, fd, *args, **kwargs) elif isinstance(fd, io.TextIOBase): return func(self, fd, *args, **kwargs) raise TypeError( f"Expected a path-like or file handle, got {type(fd)}") return _wrapped return _handler diff --git a/python/wrap/model.cpp b/python/wrap/model.cpp index 35db870..b883fcb 100644 --- a/python/wrap/model.cpp +++ b/python/wrap/model.cpp @@ -1,498 +1,499 @@ /* * SPDX-License-Indentifier: AGPL-3.0-or-later * * Copyright (©) 2016-2022 EPFL (École Polytechnique Fédérale de Lausanne), * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "model.hh" #include "adhesion_functional.hh" #include "functional.hh" #include "integral_operator.hh" #include "model_dumper.hh" #include "model_extensions.hh" #include "model_factory.hh" #include "numpy.hh" #include "residual.hh" #include "wrap.hh" #include /* -------------------------------------------------------------------------- */ namespace tamaas { namespace wrap { using namespace py::literals; struct model_operator_accessor { Model& m; decltype(auto) get(const std::string& name) { return m.getIntegralOperator(name); } }; /// Wrap functional classes void wrapFunctionals(py::module& mod) { py::class_, functional::wrap::PyFunctional> func(mod, "Functional"); func.def(py::init<>()) .def("computeF", &functional::Functional::computeF, "Compute functional value") .def("computeGradF", &functional::Functional::computeGradF, "Compute functional gradient"); py::class_ adh(mod, "AdhesionFunctional", func); adh.def_property("parameters", &functional::AdhesionFunctional::getParameters, &functional::AdhesionFunctional::setParameters, "Parameters dictionary") .def("setParameters", [](functional::AdhesionFunctional& f, const std::map& m) { TAMAAS_DEPRECATE("setParameters()", "the parameters property"); f.setParameters(m); }); py::class_( mod, "ExponentialAdhesionFunctional", adh, "Potential of the form F = -γ·exp(-g/ρ)") .def(py::init&>(), "surface"_a); py::class_( mod, "MaugisAdhesionFunctional", adh, "Cohesive zone potential F = H(g - ρ)·γ/ρ") .def(py::init&>(), "surface"_a); py::class_( mod, "SquaredExponentialAdhesionFunctional", adh, "Potential of the form F = -γ·exp(-0.5·(g/ρ)²)") .def(py::init&>(), "surface"_a); } template std::unique_ptr> instanciateFromNumpy(numpy& num) { std::unique_ptr> result = nullptr; switch (num.ndim()) { case 2: result = std::make_unique>>(num); return result; case 3: result = std::make_unique>>(num); return result; case 4: result = std::make_unique>>(num); return result; default: TAMAAS_EXCEPTION("instanciateFromNumpy expects the last dimension of numpy " "array to be the number of components"); } } /// Wrap IntegralOperator void wrapIntegralOperator(py::module& mod) { py::class_(mod, "IntegralOperator") .def("apply", [](IntegralOperator& op, numpy input, numpy output) { TAMAAS_DEPRECATE("apply()", "the () operator"); auto in = instanciateFromNumpy(input); auto out = instanciateFromNumpy(output); op.apply(*in, *out); }) .def(TAMAAS_DEPRECATE_ACCESSOR(getModel, IntegralOperator, "model"), py::return_value_policy::reference) .def(TAMAAS_DEPRECATE_ACCESSOR(getKind, IntegralOperator, "kind")) .def(TAMAAS_DEPRECATE_ACCESSOR(getType, IntegralOperator, "type")) .def( "__call__", [](IntegralOperator& op, numpy input, numpy output) { auto in = instanciateFromNumpy(input); auto out = instanciateFromNumpy(output); op.apply(*in, *out); }, "Apply the integral operator") .def("updateFromModel", &IntegralOperator::updateFromModel, "Resets internal persistent variables from the model") .def_property_readonly("kind", &IntegralOperator::getKind) .def_property_readonly("model", &IntegralOperator::getModel) .def_property_readonly("type", &IntegralOperator::getType); py::enum_(mod, "integration_method", "Integration method used for the computation " "of volumetric Fourier operators") .value("linear", integration_method::linear, "No approximation error, O(N₁·N₂·N₃) time complexity, may cause " "float overflow/underflow") .value("cutoff", integration_method::cutoff, "Approximation, O(sqrt(N₁²+N₂²)·N₃²) time complexity, no " "overflow/underflow risk"); } /// Wrap BEEngine classes void wrapBEEngine(py::module& mod) { py::class_(mod, "BEEngine") .def("solveNeumann", &BEEngine::solveNeumann) .def("solveDirichlet", &BEEngine::solveDirichlet) .def("registerNeumann", &BEEngine::registerNeumann) .def("registerDirichlet", &BEEngine::registerDirichlet) .def(TAMAAS_DEPRECATE_ACCESSOR(getModel, BEEngine, "model"), py::return_value_policy::reference) .def_property_readonly("model", &BEEngine::getModel); } template void wrapModelTypeTrait(py::module& mod) { using trait = model_type_traits; py::class_(mod, trait::repr) .def_property_readonly_static( "dimension", [](py::object) { return trait::dimension; }, "Dimension of computational domain") .def_property_readonly_static( "components", [](py::object) { return trait::components; }, "Number of components of vector fields") .def_property_readonly_static( "boundary_dimension", [](py::object) { return trait::boundary_dimension; }, "Dimension of boundary of computational domain") .def_property_readonly_static( "voigt", [](py::object) { return trait::voigt; }, "Number of components of symmetrical tensor fields") .def_property_readonly_static("indices", [](py::object) { return trait::indices; }); } /// Wrap Models void wrapModelClass(py::module& mod) { py::enum_(mod, "model_type") .value("basic_1d", model_type::basic_1d, "Normal contact with 1D interface") .value("basic_2d", model_type::basic_2d, "Normal contact with 2D interface") .value("surface_1d", model_type::surface_1d, "Normal & tangential contact with 1D interface") .value("surface_2d", model_type::surface_2d, "Normal & tangential contact with 2D interface") .value("volume_1d", model_type::volume_1d, "Contact with volumetric representation and 1D interface") .value("volume_2d", model_type::volume_2d, "Contact with volumetric representation and 2D interface"); auto trait_mod = mod.def_submodule("_type_traits"); wrapModelTypeTrait(trait_mod); wrapModelTypeTrait(trait_mod); wrapModelTypeTrait(trait_mod); wrapModelTypeTrait(trait_mod); wrapModelTypeTrait(trait_mod); wrapModelTypeTrait(trait_mod); py::class_(mod, "_model_operator_acessor") .def(py::init()) .def( "__getitem__", [](model_operator_accessor& acc, std::string name) { try { return acc.get(name); } catch (std::out_of_range&) { throw py::key_error(name); } }, py::return_value_policy::reference_internal) .def("__contains__", [](model_operator_accessor& acc, std::string key) { const auto ops = acc.m.getIntegralOperators(); return std::find(ops.begin(), ops.end(), key) != ops.end(); }) .def( "__iter__", [](const model_operator_accessor& acc) { const auto& ops = acc.m.getIntegralOperatorsMap(); return py::make_key_iterator(ops.cbegin(), ops.cend()); }, py::keep_alive<0, 1>()); py::class_(mod, "Model") .def(py::init(py::overload_cast&, const std::vector&>( &ModelFactory::createModel))) .def_property_readonly("type", &Model::getType) .def_property("E", &Model::getYoungModulus, &Model::setYoungModulus, "Young's modulus") .def_property("nu", &Model::getPoissonRatio, &Model::setPoissonRatio, "Poisson's ratio") .def_property_readonly("mu", &Model::getShearModulus, "Shear modulus") .def_property_readonly("E_star", &Model::getHertzModulus, "Contact (Hertz) modulus") .def_property_readonly("be_engine", &Model::getBEEngine, "Boundary element engine") .def( "setElasticity", [](Model& m, Real E, Real nu) { TAMAAS_DEPRECATE("setElasticity()", "the E and nu properties"); m.setElasticity(E, nu); }, "E"_a, "nu"_a) .def(TAMAAS_DEPRECATE_ACCESSOR(getHertzModulus, Model, "E_star")) .def(TAMAAS_DEPRECATE_ACCESSOR(getYoungModulus, Model, "E")) .def(TAMAAS_DEPRECATE_ACCESSOR(getShearModulus, Model, "mu")) .def(TAMAAS_DEPRECATE_ACCESSOR(getPoissonRatio, Model, "nu")) .def(TAMAAS_DEPRECATE_ACCESSOR(getTraction, Model, "traction"), py::return_value_policy::reference_internal) .def(TAMAAS_DEPRECATE_ACCESSOR(getDisplacement, Model, "displacement"), py::return_value_policy::reference_internal) .def(TAMAAS_DEPRECATE_ACCESSOR(getSystemSize, Model, "system_size")) .def(TAMAAS_DEPRECATE_ACCESSOR(getDiscretization, Model, "shape")) .def(TAMAAS_DEPRECATE_ACCESSOR(getBoundarySystemSize, Model, "boundary_system_size")) .def(TAMAAS_DEPRECATE_ACCESSOR(getBoundaryDiscretization, Model, "boundary_shape")) .def("solveNeumann", &Model::solveNeumann, "Solve surface tractions -> displacements") .def("solveDirichlet", &Model::solveDirichlet, "Solve surface displacemnts -> tractions") .def("dump", &Model::dump, "Write model data to registered dumpers") .def("addDumper", &Model::addDumper, "dumper"_a, py::keep_alive<1, 2>(), "Register a dumper") .def( "getBEEngine", [](Model& m) -> decltype(m.getBEEngine()) { TAMAAS_DEPRECATE("getBEEngine()", "the be_engine property"); return m.getBEEngine(); }, py::return_value_policy::reference_internal) .def( "getIntegralOperator", [](const Model& m, std::string name) { TAMAAS_DEPRECATE("getIntegralOperator()", "the operators property"); return m.getIntegralOperator(name); }, "operator_name"_a, py::return_value_policy::reference_internal) .def( "registerField", [](Model& m, std::string name, numpy field) { TAMAAS_DEPRECATE("registerField()", "the [] operator"); auto f = instanciateFromNumpy(field); m.registerField(name, std::move(f)); }, "field_name"_a, "field"_a, py::keep_alive<1, 3>()) .def( "getField", [](const Model& m, std::string name) -> decltype(m.getField(name)) { TAMAAS_DEPRECATE("getField()", "the [] operator"); return m.getField(name); }, "field_name"_a, py::return_value_policy::reference_internal) .def( "getFields", [](const Model& m) { TAMAAS_DEPRECATE("getFields()", "list(model)"); return m.getFields(); }, "Return fields list") .def( "applyElasticity", [](Model& model, numpy stress, numpy strain) { auto out = instanciateFromNumpy(stress); auto in = instanciateFromNumpy(strain); model.applyElasticity(*out, *in); }, "Apply Hooke's law") // Python magic functions .def("__repr__", [](const Model& m) { std::stringstream ss; ss << m; return ss.str(); }) .def( "__getitem__", [](const Model& m, std::string key) -> decltype(m[key]) { try { return m[key]; } catch (std::out_of_range&) { throw py::key_error(key); } }, py::return_value_policy::reference_internal, "Get field") .def( "__setitem__", [](Model& m, std::string name, numpy field) { auto f = instanciateFromNumpy(field); m.registerField(name, std::move(f)); }, py::keep_alive<1, 3>(), "Register new field") .def( "__contains__", [](const Model& m, std::string key) { const auto fields = m.getFields(); return std::find(fields.begin(), fields.end(), key) != fields.end(); }, py::keep_alive<0, 1>(), "Test field existence") .def( "__iter__", [](const Model& m) { const auto& fields = m.getFieldsMap(); return py::make_key_iterator(fields.cbegin(), fields.cend()); }, py::keep_alive<0, 1>(), "Iterator on fields") .def( "__copy__", [](const Model&) { throw std::runtime_error("__copy__ not implemented"); }, "Shallow copy of model. Not implemented.") .def( "__deepcopy__", [](const Model& m, py::dict) { return ModelFactory::createModel(m); }, "Deep copy of model.") + .def_property_readonly("boundary_fields", &Model::getBoundaryFields) .def_property_readonly( "operators", [](Model& m) { return model_operator_accessor{m}; }, "Returns a dict-like object allowing access to the model's " "integral " "operators") // More python-like access to model properties .def_property_readonly("shape", &Model::getDiscretization, "Discretization (local in MPI environment)") .def_property_readonly("global_shape", &Model::getGlobalDiscretization, "Global discretization (in MPI environement)") .def_property_readonly("boundary_shape", &Model::getBoundaryDiscretization, "Number of points on boundary") .def_property_readonly("system_size", &Model::getSystemSize, "Size of physical domain") .def_property_readonly("boundary_system_size", &Model::getBoundarySystemSize, "Physical size of surface") .def_property_readonly("traction", (const GridBase& (Model::*)() const) & Model::getTraction, "Surface traction field") .def_property_readonly("displacement", (const GridBase& (Model::*)() const) & Model::getDisplacement, "Displacement field"); py::class_>( mod, "ModelDumper") .def(py::init<>()) .def("dump", &ModelDumper::dump, "model"_a, "Dump model") .def( "__lshift__", [](ModelDumper& dumper, Model& model) { dumper << model; }, "Dump model"); } /// Wrap factory for models void wrapModelFactory(py::module& mod) { py::class_(mod, "ModelFactory") .def_static( "createModel", py::overload_cast&, const std::vector&>( &ModelFactory::createModel), "model_type"_a, "system_size"_a, "global_discretization"_a, R"-(Create a new model of a given type, physical size and *global* discretization. :param model_type: the type of desired model :param system_size: the physical size of the domain in each direction :param global_discretization: number of points in each direction)-") .def_static("createModel", py::overload_cast(&ModelFactory::createModel), "model"_a, "Create a deep copy of a model.") .def_static("createResidual", &ModelFactory::createResidual, "model"_a, "sigma_y"_a, "hardening"_a = 0., R"-(Create an isotropic linear hardening residual. :param model: the model on which to define the residual :param sigma_y: the (von Mises) yield stress :param hardening: the hardening modulus)-") .def_static("registerVolumeOperators", &ModelFactory::registerVolumeOperators, "model"_a, "Register Boussinesq and Mindlin operators to model."); } /// Wrap residual class void wrapResidual(py::module& mod) { // TODO adapt to n-dim py::class_(mod, "Residual") .def(py::init()) .def("computeResidual", [](Residual& res, numpy& x) { auto in = instanciateFromNumpy(x); res.computeResidual(*in); }) .def("computeStress", [](Residual& res, numpy& x) { auto in = instanciateFromNumpy(x); res.computeStress(*in); }) .def("updateState", [](Residual& res, numpy& x) { auto in = instanciateFromNumpy(x); res.updateState(*in); }) .def("computeResidualDisplacement", [](Residual& res, numpy& x) { auto in = instanciateFromNumpy(x); res.computeResidualDisplacement(*in); }) .def( "applyTangent", [](Residual& res, numpy& output, numpy& input, numpy& current_strain_inc) { auto out = instanciateFromNumpy(output); auto in = instanciateFromNumpy(input); auto inc = instanciateFromNumpy(current_strain_inc); res.applyTangent(*out, *in, *inc); }, "output"_a, "input"_a, "current_strain_increment"_a) .def("getVector", &Residual::getVector, py::return_value_policy::reference_internal) .def("getPlasticStrain", &Residual::getPlasticStrain, py::return_value_policy::reference_internal) .def("getStress", &Residual::getStress, py::return_value_policy::reference_internal) .def("setIntegrationMethod", &Residual::setIntegrationMethod, "method"_a, "cutoff"_a = 1e-12) .def_property("yield_stress", &Residual::getYieldStress, &Residual::setYieldStress) .def_property("hardening_modulus", &Residual::getHardeningModulus, &Residual::setHardeningModulus) .def_property_readonly("model", &Residual::getModel); } void wrapModel(py::module& mod) { wrapBEEngine(mod); wrapModelClass(mod); wrapModelFactory(mod); wrapFunctionals(mod); wrapResidual(mod); wrapIntegralOperator(mod); } } // namespace wrap } // namespace tamaas diff --git a/src/model/model.cpp b/src/model/model.cpp index c74dd93..da722bd 100644 --- a/src/model/model.cpp +++ b/src/model/model.cpp @@ -1,183 +1,192 @@ /* * SPDX-License-Indentifier: AGPL-3.0-or-later * * Copyright (©) 2016-2022 EPFL (École Polytechnique Fédérale de Lausanne), * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * */ /* -------------------------------------------------------------------------- */ #include "model.hh" #include "be_engine.hh" #include "logger.hh" /* -------------------------------------------------------------------------- */ namespace tamaas { /* -------------------------------------------------------------------------- */ void Model::setElasticity(Real E_, Real nu_) { setYoungModulus(E_); setPoissonRatio(nu_); updateOperators(); } /* -------------------------------------------------------------------------- */ void Model::applyElasticity(GridBase& stress, const GridBase& strain) const { operators.at("hooke")->apply(const_cast&>(strain), stress); } /* -------------------------------------------------------------------------- */ GridBase& Model::getTraction() { return getField("traction"); } const GridBase& Model::getTraction() const { return (*this)["traction"]; } /* -------------------------------------------------------------------------- */ GridBase& Model::getDisplacement() { return getField("displacement"); } const GridBase& Model::getDisplacement() const { return (*this)["displacement"]; } /* -------------------------------------------------------------------------- */ const std::vector& Model::getSystemSize() const { return system_size; } /* -------------------------------------------------------------------------- */ const std::vector& Model::getDiscretization() const { return discretization; } /* -------------------------------------------------------------------------- */ void Model::solveNeumann() { engine->registerNeumann(); engine->solveNeumann(getTraction(), getDisplacement()); } void Model::solveDirichlet() { engine->registerDirichlet(); engine->solveDirichlet(getDisplacement(), getTraction()); } /* -------------------------------------------------------------------------- */ IntegralOperator* Model::getIntegralOperator(const std::string& name) const { return operators.at(name).get(); } /* -------------------------------------------------------------------------- */ std::vector Model::getIntegralOperators() const { std::vector keys; keys.reserve(operators.size()); std::transform(operators.begin(), operators.end(), std::back_inserter(keys), [](auto&& pair) { return pair.first; }); return keys; } /* -------------------------------------------------------------------------- */ void Model::updateOperators() { for (auto& op : operators) op.second->updateFromModel(); } /* -------------------------------------------------------------------------- */ void Model::addDumper(std::shared_ptr dumper) { this->dumpers.push_back(std::move(dumper)); } void Model::dump() const { for (const auto& dumper : dumpers) if (dumper) dumper->dump(*this); } /* -------------------------------------------------------------------------- */ void Model::registerField(const std::string& name, std::shared_ptr> field) { fields[name] = std::move(field); } const GridBase& Model::getField(const std::string& name) const try { return *fields.at(name); } catch (std::out_of_range& e) { Logger().get(LogLevel::warning) << "Field " << name << " not registered in model\n"; throw e; } GridBase& Model::getField(const std::string& name) try { return *fields.at(name); } catch (std::out_of_range& e) { Logger().get(LogLevel::warning) << "Field " << name << " not registered in model\n"; throw e; } std::vector Model::getFields() const { std::vector keys; keys.reserve(fields.size()); std::transform(fields.begin(), fields.end(), std::back_inserter(keys), [](auto&& pair) { return pair.first; }); return keys; } const GridBase& Model::operator[](const std::string& name) const { return getField(name); } GridBase& Model::operator[](const std::string& name) { return getField(name); } +std::vector Model::getBoundaryFields() const { + std::vector boundary_fields; + const auto& fields = this->getFields(); + std::copy_if( + fields.begin(), fields.end(), std::back_inserter(boundary_fields), + [&](const auto& name) { return this->isBoundaryField((*this)[name]); }); + return boundary_fields; +} + /* -------------------------------------------------------------------------- */ std::ostream& operator<<(std::ostream& o, const Model& _this) { o << "Model<" << _this.getType() << "> (E = " << _this.getYoungModulus() << ", nu = " << _this.getPoissonRatio() << ")\n"; auto out_collec = [&o](auto&& collec) { std::for_each(collec.begin(), collec.end() - 1, [&o](const auto& x) { o << x << ", "; }); o << collec.back(); }; // Printing domain size o << " - domain = ["; out_collec(_this.getSystemSize()); o << "]\n"; // Printing discretization o << " - discretization = ["; out_collec(_this.getDiscretization()); o << "]\n"; if (mpi::size() > 1) { o << " - global discretization = ["; out_collec(_this.getGlobalDiscretization()); o << "]\n"; } // Print fields o << " - registered fields = ["; out_collec(_this.getFields()); o << "]\n"; o << " - registered operators = ["; out_collec(_this.getIntegralOperators()); o << "]"; if (not _this.dumpers.empty()) o << "\n - " << _this.dumpers.size() << " registered dumpers"; return o; } /* -------------------------------------------------------------------------- */ } // namespace tamaas diff --git a/src/model/model.hh b/src/model/model.hh index 916d122..8cc2711 100644 --- a/src/model/model.hh +++ b/src/model/model.hh @@ -1,209 +1,213 @@ /* * SPDX-License-Indentifier: AGPL-3.0-or-later * * Copyright (©) 2016-2022 EPFL (École Polytechnique Fédérale de Lausanne), * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * */ /* -------------------------------------------------------------------------- */ #ifndef MODEL_HH #define MODEL_HH /* -------------------------------------------------------------------------- */ #include "be_engine.hh" #include "grid_base.hh" #include "integral_operator.hh" #include "model_dumper.hh" #include "model_type.hh" #include "tamaas.hh" #include #include #include #include /* -------------------------------------------------------------------------- */ namespace tamaas { /* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */ /** * @brief Model containing pressure and displacement * This class is a container for the model fields. It is supposed to be * dimension agnostic, hence the GridBase members. */ class Model { protected: /// Constructor Model(std::vector system_size, std::vector discretization) : system_size(std::move(system_size)), discretization(std::move(discretization)) {} public: /// Destructor virtual ~Model() = default; public: /// Set elasticity parameters void setElasticity(Real E, Real nu); /// Get Hertz contact modulus Real getHertzModulus() const { return E / (1 - nu * nu); } /// Get Young's modulus Real getYoungModulus() const { return E; } /// Get Poisson's ratio Real getPoissonRatio() const { return nu; } /// Get shear modulus Real getShearModulus() const { return E / (2 * (1 + nu)); } /// Set Young's modulus void setYoungModulus(Real E_) { if (E_ < 0) TAMAAS_EXCEPTION("Elastic modulus should be positive"); this->E = E_; updateOperators(); } /// Set Poisson's ratio void setPoissonRatio(Real nu_) { if (nu_ > 0.5 or nu_ <= -1) TAMAAS_EXCEPTION("Poisson ratio should be in ]-1, 0.5]"); this->nu = nu_; updateOperators(); } // Model info accessors public: /// Get model type virtual model_type getType() const = 0; /// Get system physical size const std::vector& getSystemSize() const; /// Get boundary system physical size virtual std::vector getBoundarySystemSize() const = 0; /// Get discretization const std::vector& getDiscretization() const; /// Get discretization of global MPI system virtual std::vector getGlobalDiscretization() const = 0; /// Get boundary discretization virtual std::vector getBoundaryDiscretization() const = 0; /// Get boundary element engine BEEngine& getBEEngine() { TAMAAS_ASSERT(engine, "BEEngine was not initialized"); return *engine; } // Exposing some common operators public: /// Apply Hooke's law void applyElasticity(GridBase& stress, const GridBase& strain) const; /// Solve Neumann problem using default neumann operator void solveNeumann(); /// Solve Dirichlet problem using default dirichlet operator void solveDirichlet(); public: /// Register a new integral operator template IntegralOperator* registerIntegralOperator(const std::string& name); /// Get a registerd integral operator IntegralOperator* getIntegralOperator(const std::string& name) const; /// Get list of integral operators std::vector getIntegralOperators() const; /// Get operators mapcar const auto& getIntegralOperatorsMap() const { return operators; } /// Tell operators to update their cache void updateOperators(); public: /// Get pressure GridBase& getTraction(); /// Get pressure const GridBase& getTraction() const; /// Get displacement GridBase& getDisplacement(); /// Get displacement const GridBase& getDisplacement() const; /// Register a field void registerField(const std::string& name, std::shared_ptr> field); /// Get a field const GridBase& getField(const std::string& name) const; /// Get a non-const field GridBase& getField(const std::string& name); /// Get fields std::vector getFields() const; /// Get fields map const auto& getFieldsMap() const { return fields; } /// Get a field const GridBase& operator[](const std::string& name) const; /// Get a non-const field GridBase& operator[](const std::string& name); + /// Determine if a field is defined on boundary + virtual bool isBoundaryField(const GridBase& field) const = 0; + /// Return list of fields defined on boundary + std::vector getBoundaryFields() const; public: /// Set the dumper object void addDumper(std::shared_ptr dumper); /// Dump the model void dump() const; friend std::ostream& operator<<(std::ostream& o, const Model& _this); protected: Real E = 1, nu = 0; std::vector system_size; std::vector discretization; std::unique_ptr engine = nullptr; std::unordered_map> operators; std::unordered_map>> fields; std::vector> dumpers; }; /* -------------------------------------------------------------------------- */ /* Template functions */ /* -------------------------------------------------------------------------- */ template IntegralOperator* Model::registerIntegralOperator(const std::string& name) { Logger().get(LogLevel::debug) << TAMAAS_DEBUG_MSG("registering operator " + name); operators[name] = std::make_unique(this); return operators[name].get(); } /* -------------------------------------------------------------------------- */ /* Output model to stream */ /* -------------------------------------------------------------------------- */ std::ostream& operator<<(std::ostream& o, const Model& _this); /* -------------------------------------------------------------------------- */ /* Simpler grid allocation */ /* -------------------------------------------------------------------------- */ template std::unique_ptr> allocateGrid(Model& model) { return allocateGrid( model.getType(), (boundary) ? model.getBoundaryDiscretization() : model.getDiscretization()); } template std::unique_ptr> allocateGrid(Model& model, UInt nc) { return allocateGrid(model.getType(), (boundary) ? model.getBoundaryDiscretization() : model.getDiscretization(), nc); } } // namespace tamaas #endif // MODEL_HH diff --git a/src/model/model_template.hh b/src/model/model_template.hh index 934e156..a71ca65 100644 --- a/src/model/model_template.hh +++ b/src/model/model_template.hh @@ -1,63 +1,67 @@ /* * SPDX-License-Indentifier: AGPL-3.0-or-later * * Copyright (©) 2016-2022 EPFL (École Polytechnique Fédérale de Lausanne), * Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * */ /* -------------------------------------------------------------------------- */ #ifndef MODEL_TEMPLATE_HH #define MODEL_TEMPLATE_HH /* -------------------------------------------------------------------------- */ #include "grid_view.hh" #include "model.hh" #include "model_type.hh" /* -------------------------------------------------------------------------- */ namespace tamaas { /** * @brief Model class templated with model type * Specializations of this class should take care of dimension specific code */ template class ModelTemplate : public Model { using trait = model_type_traits; static constexpr UInt dim = trait::dimension; using ViewType = GridView; public: /// Constructor ModelTemplate(std::vector system_size, std::vector discretization); // Get model type model_type getType() const override { return type; } std::vector getGlobalDiscretization() const override; std::vector getBoundaryDiscretization() const override; std::vector getBoundarySystemSize() const override; + bool isBoundaryField(const GridBase& field) const override { + return field.getDimension() == trait::boundary_dimension; + } + protected: void initializeBEEngine(); protected: std::unique_ptr displacement_view = nullptr; std::unique_ptr traction_view = nullptr; }; } // namespace tamaas /* -------------------------------------------------------------------------- */ #endif // MODEL_TEMPLATE_HH