Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92334650
QuadGraph.pde
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 19, 11:45
Size
9 KB
Mime Type
text/x-c++
Expires
Thu, Nov 21, 11:45 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22423105
Attached To
rBAFOURPROJECT InfoVisuGit
QuadGraph.pde
View Options
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
class QuadGraph {
boolean verbose=false;
List<int[]> cycles = new ArrayList<int[]>();
int[][] graph;
List<PVector> findBestQuad(List<PVector> lines, int width, int height, int max_quad_area, int min_quad_area, boolean verbose) {
this.verbose=verbose;
build(lines, width, height); //<>//
findCycles(verbose);
ArrayList<PVector> bestQuad=new ArrayList<PVector>();
float bestQuadArea=0;
for (int [] cy : cycles) {
ArrayList<PVector> quad= new ArrayList<PVector>();
PVector l1 = lines.get(cy[0]);
PVector l2 = lines.get(cy[1]);
PVector l3 = lines.get(cy[2]);
PVector l4 = lines.get(cy[3]);
quad.add(intersection(l1, l2));
quad.add(intersection(l2, l3));
quad.add(intersection(l3, l4));
quad.add(intersection(l4, l1));
quad=sortCorners(quad);
PVector c1 = quad.get(0);
PVector c2 = quad.get(1);
PVector c3 = quad.get(2);
PVector c4 = quad.get(3);
if (isConvex(c1, c2, c3, c4) &&
nonFlatQuad(c1, c2, c3, c4)) {
float quadArea=validArea(c1, c2, c3, c4, max_quad_area, min_quad_area);
if (quadArea>0 && quadArea>bestQuadArea) {
bestQuadArea=quadArea;
bestQuad=quad;
}
}
}
if (bestQuadArea>0)
return bestQuad;
else
return new ArrayList<PVector>();
}
void build(List<PVector> lines, int width, int height) {
int n = lines.size();
// The maximum possible number of edges is n * (n - 1)/2
graph = new int[n * (n - 1)/2][2];
int idx =0;
for (int i = 0; i < lines.size(); i++) {
for (int j = i + 1; j < lines.size(); j++) {
if (intersect(lines.get(i), lines.get(j), width, height)) {
graph[idx][0]=i;
graph[idx][1]=j;
idx++;
}
}
}
}
/** Returns true if polar lines 1 and 2 intersect
* inside an area of size (width, height)
*/
boolean intersect(PVector line1, PVector line2, int width, int height) {
double sin_t1 = Math.sin(line1.y);
double sin_t2 = Math.sin(line2.y);
double cos_t1 = Math.cos(line1.y);
double cos_t2 = Math.cos(line2.y);
float r1 = line1.x;
float r2 = line2.x;
double denom = cos_t2 * sin_t1 - cos_t1 * sin_t2;
int x = (int) ((r2 * sin_t1 - r1 * sin_t2) / denom);
int y = (int) ((-r2 * cos_t1 + r1 * cos_t2) / denom);
if (0 <= x && 0 <= y && width >= x && height >= y)
return true;
else
return false;
}
PVector intersection(PVector line1, PVector line2) {
double sin_t1 = Math.sin(line1.y);
double sin_t2 = Math.sin(line2.y);
double cos_t1 = Math.cos(line1.y);
double cos_t2 = Math.cos(line2.y);
float r1 = line1.x;
float r2 = line2.x;
double denom = cos_t2 * sin_t1 - cos_t1 * sin_t2;
int x = (int) ((r2 * sin_t1 - r1 * sin_t2) / denom);
int y = (int) ((-r2 * cos_t1 + r1 * cos_t2) / denom);
return new PVector(x,y);
}
void findCycles(boolean verbose) {
cycles.clear();
for (int i = 0; i < graph.length; i++) {
for (int j = 0; j < graph[i].length; j++) {
findNewCycles(new int[] {graph[i][j]});
}
}
if (verbose) {
for (int[] cy : cycles) {
String s = "" + cy[0];
for (int i = 1; i < cy.length; i++) {
s += "," + cy[i];
}
System.out.println(s);
}
}
}
void findNewCycles(int[] path)
{
int n = path[0];
int x;
int[] sub = new int[path.length + 1];
for (int i = 0; i < graph.length; i++)
for (int y = 0; y <= 1; y++)
if (graph[i][y] == n)
// edge refers to our current node
{
x = graph[i][(y + 1) % 2];
if (!visited(x, path))
// neighbor node not on path yet
{
sub[0] = x;
System.arraycopy(path, 0, sub, 1, path.length);
// explore extended path
findNewCycles(sub);
} else if ((path.length == 4) && (x == path[path.length - 1]))
// cycle found
{
int[] p = normalize(path);
int[] inv = invert(p);
if (isNew(p) && isNew(inv))
{
cycles.add(p);
}
}
}
}
// check of both arrays have same lengths and contents
Boolean equals(int[] a, int[] b)
{
Boolean ret = (a[0] == b[0]) && (a.length == b.length);
for (int i = 1; ret && (i < a.length); i++)
{
if (a[i] != b[i])
{
ret = false;
}
}
return ret;
}
// create a path array with reversed order
int[] invert(int[] path)
{
int[] p = new int[path.length];
for (int i = 0; i < path.length; i++)
{
p[i] = path[path.length - 1 - i];
}
return normalize(p);
}
// rotate cycle path such that it begins with the smallest node
int[] normalize(int[] path)
{
int[] p = new int[path.length];
int x = smallest(path);
int n;
System.arraycopy(path, 0, p, 0, path.length);
while (p[0] != x)
{
n = p[0];
System.arraycopy(p, 1, p, 0, p.length - 1);
p[p.length - 1] = n;
}
return p;
}
// compare path against known cycles
// return true, iff path is not a known cycle
Boolean isNew(int[] path)
{
Boolean ret = true;
for (int[] p : cycles)
{
if (equals(p, path))
{
ret = false;
break;
}
}
return ret;
}
// return the int of the array which is the smallest
int smallest(int[] path)
{
int min = path[0];
for (int p : path)
{
if (p < min)
{
min = p;
}
}
return min;
}
// check if vertex n is contained in path
Boolean visited(int n, int[] path)
{
Boolean ret = false;
for (int p : path)
{
if (p == n)
{
ret = true;
break;
}
}
return ret;
}
/** Check if a quad is convex or not.
*
* Algo: take two adjacent edges and compute their cross-product.
* The sign of the z-component of all the cross-products is the
* same for a convex polygon.
*
* See http://debian.fmi.uni-sofia.bg/~sergei/cgsr/docs/clockwise.htm
* for justification.
*
* @param c1
*/
boolean isConvex(PVector c1, PVector c2, PVector c3, PVector c4) {
PVector v21= PVector.sub(c1, c2);
PVector v32= PVector.sub(c2, c3);
PVector v43= PVector.sub(c3, c4);
PVector v14= PVector.sub(c4, c1);
float i1=v21.cross(v32).z;
float i2=v32.cross(v43).z;
float i3=v43.cross(v14).z;
float i4=v14.cross(v21).z;
if ( (i1>0 && i2>0 && i3>0 && i4>0)
|| (i1<0 && i2<0 && i3<0 && i4<0))
return true;
else if(verbose)
System.out.println("Eliminating non-convex quad");
return false;
}
/** Compute the area of a quad, and check it lays within a specific range
*/
float validArea(PVector c1, PVector c2, PVector c3, PVector c4, float max_area, float min_area) {
float i1=c1.cross(c2).z;
float i2=c2.cross(c3).z;
float i3=c3.cross(c4).z;
float i4=c4.cross(c1).z;
float area = Math.abs(0.5f * (i1 + i2 + i3 + i4));
if (area < max_area && area > min_area){
return area;
}
return 0;
}
/** Compute the (cosine) of the four angles of the quad, and check they are all large enough
* (the quad representing our board should be close to a rectangle)
*/
boolean nonFlatQuad(PVector c1, PVector c2, PVector c3, PVector c4) {
// cos(70deg) ~= 0.3
float min_cos = 0.5f;
PVector v21= PVector.sub(c1, c2);
PVector v32= PVector.sub(c2, c3);
PVector v43= PVector.sub(c3, c4);
PVector v14= PVector.sub(c4, c1);
float cos1=Math.abs(v21.dot(v32) / (v21.mag() * v32.mag()));
float cos2=Math.abs(v32.dot(v43) / (v32.mag() * v43.mag()));
float cos3=Math.abs(v43.dot(v14) / (v43.mag() * v14.mag()));
float cos4=Math.abs(v14.dot(v21) / (v14.mag() * v21.mag()));
if (cos1 < min_cos && cos2 < min_cos && cos3 < min_cos && cos4 < min_cos)
return true;
else {
if(verbose)
System.out.println("Flat quad");
return false;
}
}
ArrayList<PVector> sortCorners(ArrayList<PVector> quad) {
// 1 - Sort corners so that they are ordered clockwise
PVector a = quad.get(0);
PVector b = quad.get(2);
PVector center = new PVector((a.x+b.x)/2, (a.y+b.y)/2);
Collections.sort(quad, new CWComparator(center));
// 2 - Sort by upper left most corner
PVector origin = new PVector(0, 0);
float distToOrigin = 1000;
for (PVector p : quad) {
if (p.dist(origin) < distToOrigin) distToOrigin = p.dist(origin);
}
while (quad.get(0).dist(origin) != distToOrigin)
Collections.rotate(quad, 1);
return quad;
}
}
class CWComparator implements Comparator<PVector> {
PVector center;
public CWComparator(PVector center) {
this.center = center;
}
@Override
public int compare(PVector b, PVector d) {
if (Math.atan2(b.y-center.y, b.x-center.x)<Math.atan2(d.y-center.y, d.x-center.x))
return -1;
else return 1;
}
}
Event Timeline
Log In to Comment