Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F121701849
makeIC.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jul 13, 07:17
Size
1 KB
Mime Type
text/x-python
Expires
Tue, Jul 15, 07:17 (2 d)
Engine
blob
Format
Raw Data
Handle
27376851
Attached To
R12859 GalacticDynamicsExamples
makeIC.py
View Options
import
numpy
as
np
from
pNbody
import
ic
import
argparse
parser
=
argparse
.
ArgumentParser
(
description
=
"Create IC of a homogeneous slab"
)
parser
.
add_argument
(
"-l"
,
type
=
float
,
default
=
0.25
,
help
=
"wavelength of the perturbation"
)
parser
.
add_argument
(
"-lJ"
,
type
=
float
,
default
=
0.25
,
help
=
"Jeans Wavelength"
)
parser
.
add_argument
(
"-o"
,
type
=
str
,
default
=
"slab.hdf5"
,
help
=
"Output Filename"
)
parser
.
add_argument
(
"-N"
,
type
=
int
,
default
=
250000
,
help
=
"Number of Particles"
)
parser
.
add_argument
(
"-f"
,
type
=
str
,
default
=
'swift'
,
help
=
"Format of the IC file (swift,gadget"
)
args
=
parser
.
parse_args
()
# Box Parameters
l
=
args
.
l
# Wavelength of the perturbation if < lJ => stable
lJ
=
args
.
lJ
# Jeans wavelength
n
=
int
(
args
.
N
)
# Number of particles
L
=
1.
# Simulation Box Size
m
=
5
# Perturbation Mode
G
=
1.
# Gravitational Constant
rho
=
1.
# Mean mass density of box
# Find dispersion from Jeans length
if
lJ
!=
0.0
:
kJ
=
2
*
np
.
pi
/
lJ
sigma
=
np
.
sqrt
(
4
*
np
.
pi
*
G
*
rho
)
/
kJ
else
:
sigma
=
0.0
print
(
f
"Sigma = {sigma:.3f}"
)
k
=
2
*
np
.
pi
/
l
# wave number
# Create Nbody object from IC module and set unit system
nb
=
ic
.
box
(
n
,
L
/
2.
,
L
/
2.
,
0.0
,
irand
=
1
,
name
=
args
.
o
,
ftype
=
args
.
f
)
nb
.
set_tpe
(
1
)
nb
.
verbose
=
1
nb
.
UnitLength_in_cm
=
3.086e+21
nb
.
UnitVelocity_in_cm_per_s
=
9.78469e+07
nb
.
UnitMass_in_g
=
4.4356e+44
nb
.
boxsize
=
L
# Shift Positions to fit in box
nb
.
pos
+=
L
/
2.0
# Perturbations
#nb.pos[:,0] = nb.x() + e*np.cos(k*nb.x()) / k
# Set Velocities
nb
.
vel
[:,
0
]
=
np
.
random
.
normal
(
scale
=
sigma
/
np
.
sqrt
(
2
),
size
=
n
)
nb
.
vel
[:,
1
]
=
np
.
random
.
normal
(
scale
=
sigma
/
np
.
sqrt
(
2
),
size
=
n
)
print
(
"vmax = {}"
.
format
(
nb
.
vx
()
.
max
()))
# Set Mass
nb
.
mass
=
np
.
ones
(
n
)
/
n
*
rho
*
L
**
3
nb
.
write
()
Event Timeline
Log In to Comment