
Programming Concept in Scientific Computing :
Ordinary Differential Equations

Nicolas Lesimple - Caroline Violot

Abstract—The goal of this project is to implement ex-
plicit methods to solve vectorial Ordinary Differential Equation
(ODEs). Thus, in this report, an introduction of the overall
vectorial ODE problem will be done. Then, in a second time
the program compilation and the program execution will be
explained. In a third part, an overview of all the classes
implemented with the corresponding hierarchy will be described
and implemented tests will also be illustrated. The report will
be concluded by showing the several issues faced during this
project and the potential improvements that can be added. Thus,
this ReadMe file explains how to use the implemented solvers.
Html and Latex documentation were created thanks to Doxygen.
Everything is stored in the Documentation folder. If the user
wants to re compile it, he just has to enter the following command
in the project folder : doxygen Doxyfile.

I. INTRODUCTION/PROBLEM

A differential equation is a mathematical equation that
relates some function with its derivatives. In applications, the
functions usually represent physical quantities, the derivatives
represent their rates of change, and the equation defines a
relationship between the two. Because such relations are ex-
tremely common, differential equations play a prominent role
in many disciplines including engineering, physics, economics,
and biology.

In pure mathematics, differential equations are studied from
several different perspectives, mostly concerned with their
solutions - the set of functions that satisfy the equation. Only
the simplest differential equations are solvable by explicit
formulas; however, some properties of solutions of a given
differential equation may be determined without finding their
exact form.

If a self-contained formula for the solution is not available,
the solution may be numerically approximated using computer
methods. In this last case, Adam-Bashforth or Runge-Kutta
methods play an important role : they are the definition of the
solver of the system.

As we said in the abstract, we focused on vectorial ODEs,
only using a linear function and we implemented several
different methods to approach a solution.

The vectorials ODE are in the form :

y′(t, x) = A ∗ x+ g(t)

II. COMPILE THE PROGRAM

In the CMakeList.txt, the main executable is called main.
Three test cases were implemented in the executable using
different systems but with different parameters. The overall
number of step is fixed to 10 and thus this output solution
matrix will have 10 columns.

The user will be able to defined some parameters of the
simulation but the prescribed inputs are:
• InitialCondition : Each column corresponds to one

initial condition for each variable. For Bashforth solvers
the number of columns should match the order of the
solver used. For Runge-Kutta just one initial condition
suffices.

• StateMatrix.csv: Defines the coefficient for each
variable of the system. The RHS of the ODE is taken to
be A ∗ x+ g(t) , A is the state matrix.

• FunctionMatrix.csv: The RHS of the ODE is taken to
be A ∗ x+ g(t) , g is the FunctionMatrix. Each column
corresponds to one time step. The other parameters
needed to be initialized, the system can be ask to the
user or taken directly from the code.

In fact, when user will run the program, he will directly be
asked to choose one option between the following three :

• Keyboard : User will need to enter with the keyboard
some parameter of the simulation. Timestep, NumberOf-
Step, Order, Dimension and WriteOutputTimestep are
choosen by the user thus it allows him to have a big set of
way to solve the system. InitialConditionMatrix, StateM-
atrix and FunctionMatrix are respectively : {{6}, {4}},
{{1,−1}, {−1, 1}} and a 2x10 matrix of zero. The
solution of this defined system is :

5 + exp 2 ∗ t (1)

and
5− exp 2 ∗ t (2)

If the user choose this option, it is more likely that
the program stops due to an assertion. In fact, input
have rules to be well defined and if the user did not
follows theses rules, the program will throw assertions.
Moreover, just in this keyboard case the user will have
to enter the entire path to an output csv file to allow
the program to save the solution in it. If the path is not
correct, an assertion will be thrown.

• SimpleTest : User will just have to select the method
he wants to use and the output will be printed in the
command line. Timestep = 1, NumberOfStep = 10,
Order = 1, Dimension = 4 and WriteOutputTimestep



= 1. Moreover, InitialConditionMatrix, StateMatrix and
FunctionMatrix are respectively : {{2}, {2}, {2}, {2}},
{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}} and
a 4x10 matrix of zero. The solution of this defined
homogeneous system where g(t)=0 is : y(t) = 2.

• ComplexTest : User will just have to select the method
he wants to use and the output will be printed in the com-
mand line. The solution of the system is more complex as
g(t)=cos(t). Timestep = 1, NumberOfStep = 10, Order =
1, Dimension = 2 and WriteOutputTimestep = 1. More-
over, InitialConditionMatrix, StateMatrix and Function-
Matrix are respectively : {{0}, {0}}, {{0, 0}, {0, 0}} and
{{1, 0.54,−0.41,−0.99,−0.66, 0.28, 0.96, 0.75,−0.14,
− 0.91}, {1, 0.54,−0.41,−0.99,−0.66, 0.28, 0.96, 0.75,
− 0.14,−0.91}} The solution of this system is more
complex as the system is not homogeneous.

Thus after obtaining the solution, the output can be com-
pared to the ’groundthruth equation’ values to see the per-
formance of each method on the different problems, varying
time step parameters. If you put for each run the same file-
path, output goes to the same file in the Output folder. Thus
when the program is run, the solution of the previous run will
be erase to save the new one.

III. TYPICAL PROGRAM EXECUTION

A. Input

The first step of the program execution is the declaration
and the initialization of the Input object. In fact, Input object
contains all the information needed to define and solve the
system of differential equation. In fact, upon executing, the
user needs to input the following values (all the italics writing
are the requirements per variable) :
• Timestep - DOUBLE - Defines the size of the time

step in seconds. This variable can be a double or a integer.

• System dimension - INTEGER - Defines the dimension
of the system, which means the different number of
states. Thus, the number of rows in the input matrices
that defines the system needs to be superior or equal
to this dimension value. If the input matrices have
additional rows, they are ignored.

• Solver Order - INTEGER - Defines the order of the
solver used. By taking into account the several methods
implemented in the project, this number need to be in
the range of [1,4].

• Overall Number of Timesteps - INTEGER and need
to be aa multiple of WriteOutputTimestep - Defines the
total number of steps considered for one system. This
value should be at most the number of columns in the
FunctionMatrix. Like before, if it is lesser the additional
values are ignored. Moreover, a distinction needs to be
done between the 2 implemented methods : in opposition

to Adam-Bashforth method, Runge-Kutta will need one
additional time step. For example, if the integration is
carried out for 10 steps, the FunctionMatrix will need to
contain 10+1 values which is equal to 11 columns.

• WriteOutputTimestep - INTEGER - Defines when the
solution is written in the solution object saving the
different step of the solver . This is a kind of interval
of time steps or a quantity of time step we need to wait
before this event.

In addition to theses variables, input object needs three
matrices. Theses 3 matrices information are hard coded in the
program to allow a working demo of our project. This infor-
mation can be easily changed in the input object constructor
or in the main (depending on the example you choose).
• InitialConditionMatrix -

VECTOR<VECTOR<DOUBLE>> - Defines the
matrix containing the initial condition of the system. The
number of rows of this matrix needs to be superior or
equal to the system dimension. Otherwise, an assertion
will be thrown.

• FunctionMatrix - VECTOR<VECTOR<DOUBLE>> -
Defines the matrix containing the values of the function
defining the system for all the step we want to compute.
The expression of this function can transform the system
from a homogeneous ODE to a inhomogeneous ODE.
In fact if this function is always 0, the system is in the
case of homogeneous solution. If not, which means if
the function is not null, the system is inhomogeneous.

• SystemMatrix - VECTOR<VECTOR<DOUBLE>> -
Defines the matrix containing the information to declare
and construct the RHS (rigth hand side) part of the ODE.

To define the input, two constructors were made. One of them
is the simplest one where user need to specify each variable
before in the code and put it as argument in the constructor.
This is done in Input class. This is a kind of ’hardcoded usage’.
Another way to declare this input is just to declare a Input
class. The constructor don’t have any arguments but user will
need to enter the parameters he wants for the calculations
in the command line. Thus in this case user needs to write
information on the interface.

B. Solution

Filename - STRING - Moreover, at the end of simu-
lations where user choose variables, the solution is writ-
ten in an output file. Thus, the program needs the output
filename. Be careful about the filename : the program do
not only need the filename but it needs the entire filepath,
the filename and the format of the output file in the same
string. Here is a example : C:/Users/nicol/Desktop/Group15
/pcsc VectorialODE group15/Output/solution.csv. In fact, if
you don’t define the path, errors can happen and the file can



be created in unwanted folder of the computer. The advised
format is .csv. Each column of the output corresponds to the
state at print time. If a file of the same name already exists,
the previous content is erased.

IV. LIST OF FEATURES

A. Overview
To represent the matrix input needed to define the system,

we decided to use the vector class. In fact, thanks to this class,
a vector can be define as vector<double> and a matrix can be
defined as vector<vector<double>>. One problem of doing
that is the fact that usual operator like + or - or * can not
be applied between this type of variable. Thus we need to
create function allowing this kind of operation. This was done
in the VectorialODE class which includes all members of the
classes while children classes implement the solver method.
Two general solvers are inherited from VectorialODE class
which are Runge-Kutta and Bashforth class. Theses classes
are abstract classes making difference between the two type
of solver. Then, the individual solvers are inherited from one
of these two parent classes. As we said before, all variables
needed to initialize the system are stored in an input object
coming from Input class and the solution is stored in a solution
object coming from Solution class.

B. Input
This class is used to keep all the information about the

system of ODE the program has to solve. This class defined
several public methods such as constructors, a destructor, few
getters and an asking function. The input is never modified
during the execution of the program. The more important
functions are the two different constructors. The first one
takes as arguments all the variables described above and thus
everything need to be hard coded in the main function of the
executable. In this case, the user is not asked to enter any
information and the solver is based on hard coded information.
The other constructor do not need any argument. In fact, during
the initialization of the input object, when the constructor
is called, input variables will be asked to the user. He will
have to enter the desired simulation parameter in the interface
thanks to the keyboard. The 3 matrices input (which are
InitialConditionMatrix, StateMatrix and FunctionMatrix) and
the order were hard coded in this function to show a defined
example of usage of our code.

C. Vectorial ODE
The Vectorial ODE class is a virtual class as the method

SolveVectorialODE will be defined in the child classes. How-
ever, this class is used to implement all the algorithms used
to solve the differential equations. Two types of solver were
defined with two virtual classes which are Bashforth and
Runge-Kutta. Constructors of theses classes are used to create
assertions and thus to check coherence of the variables.

The vectorial ODE class constructor needs two argument :
an input object and a solution object to define the system and
write the solution.

1) Bashforth class: The Bashforth classes inherit from the
VetorialODE class, an abstract class with a virtual SolveVec-
torialODE method, facilitating the definition of its inherited
classes.

The Adams Bashforth method is an explicit linear multistep
method. It can be made of different order (up to four in our
case) where the order is the number of previous results (yn−1,
yn−2, ...) used to approach the current step result (yn). It
implies the need of different vectorial operations (addition,
multiplication with scaler, etc. ) and the need to keep a few
of the previous solutions in memory.

Therefore the general Bashforth class from which the dif-
ferent Bashforth classes inherit include a few methods for
handling the vectorial operations.

Then in each BashforthNumberStep classes the method
SolveVectorialODE is implemented using the following defi-
nitions :
• BashforthFirstStep : ~x(tk+1) = ~x(tk) + hf(x(tk), tk)

• BashforthSecondSteps : ~x(tk+1) = ~x(tk) +
3h
2 f(x(tk), tk)− h

2 f(x(tk−1), tk−1)

• BashforthThirdSteps : ~x(tk+1) = ~x(tk) +
23h
12 f(x(tk), tk) − 4h

3 f(x(tk−1), tk−1) +
5h
12 f(x(tk−2), tk−2)

• BashforthFourthSteps : ~x(tk+1) = ~x(tk) +
55h
24 f(x(tk), tk) − 59h

24 f(x(tk−1), tk−1) +
37h
24 f(x(tk−2), tk−2)− 3h

8 f(x(tk−3), tk−3)

2) Runge-Kutta: The Runge-Kutta classes inherit from the
VectorialODE abstract class as well.

This method is also an explicit iterative method to solve
ODEs, but there is only a single step needed (yn+1 only
depends on yn). Indeed, instead of using multistep to get closer
of the accurate solution, Runge-Kutta methods are based on
evaluating the function a certain number of time at each step,
this number being the order of the method. The solution of
each step is then a combination of the different evaluation of
the function at this step.

In each Runge-KuttaNumberStep classes the method
SolveVectorialODE is implemented using the following defi-
nitions :
• 2nd order Runge-Kutta (RK2) : ~x(tk+1) = ~x(tk) + hk2

with k2 = f(x(tk)+
hk1

2 , tk+
∆t
2 ) and k1 = f(x(tk), tk)

• 4th order Runge-Kutta (RK4) : ~x(tk+1) =
~x(tk) +

h
6 (k1 + 2k2 + 2k3 + k4) with k1 = f(x(tk), tk),

k2 = f(x(tk)+
h
2k1, tk+

h
2 ), k3 = f(x(tk)+

h
2k2, tk+

h
2 )

and k4 = f(x(tk) + hk3, tk + h)

D. Solution and output file

This class is made to store the solution for each writing step
and to save it in a output file. The solution class contains just
a few private features :



• number of rows : an integer representing the number of
row wanted in the solution matrix. This number needs
to correspond to the system dimension.

• number of columns : an integer representing the number
of columns wanted in the solution matrix. This number
need to correspond to the overall number of time steps.

• solutionODE : a matrix (vector<vector<double>>)
where the solution will be stored.

In addition to constructors, destructors and getter public
methods, it also has a ModifySolutionByColumns method to
write values by columns in the solutionODE variable for each
writing timestep and a SolutionToFile method which exports
the solution in a csv file (our output file). The getter allows
to access private attribute.

V. LIST OF TESTS:

Googletest was used to test a majority of the function of the
program. In fact, it is a cross platform system that provides
automatic test discovery. In other words, we do not have to
enumerate all of the tests in our test suite manually. It supports
a rich set of assertions such as fatal assertions (ASSERT ),
non-fatal assertions (EXPECT ), and death test which checks
that a program terminates expectedly. In total 16 tests have
been implemented. To make it run, the user needs to compile
the executable called Test. All the tests should run and the
user should see the output of all the test : how many failed
and how many passed.

Here is a list of the implemented test.

• MultiplyMatrixScalar : Test the function MultiplyMa-
trixScalar() defined in the VectorialODE class.

• Addition : Test the function MultiplyMatrixScalar() de-
fined in the VectorialODE class.

• MultiplyMatrixScalar : Test the function Addition() de-
fined in the VectorialODE class

• MultiplyMatrixVector : Test the function MultiplyWith-
VectorByRight() defined in the VectorialODE class.

• MultiplyVectorAndScalar : Test the function MultiplyVec-
torAndScalar() defined in the VectorialODE class.

• AddTwoVector : Test the function AddTwoVector() de-
fined in the VectorialODE class.

• SubtractTwoVector : Test the function SubtractTwoVec-
tor() defined in the VectorialODE class.

• BashforthFirstStep : Test the function SolveVectori-
alODE() defined in the BashforthFirstStep class.

• BashforthSecondStep : Test the function SolveVectori-
alODE() defined in the BashforthSecondStep class.

• BashforthThirdStep : Test the function SolveVectori-
alODE() defined in the BashforthThirdStep class.

• BashforthFourthStep : Test the function SolveVectori-
alODE() defined in the BashforthFourthStep class.

• RungeKuttaOrder2 : Test the function SolveVectori-
alODE() defined in the RungeKuttaOrder2 class.

• RungeKuttaOrder4 : Test the function SolveVectori-
alODE() defined in the RungeKuttaOrder4 class.

• GetColumnsOfMatrix : Test the function GetColumnsOf-
Matrix() defined in the vectorialODE class.

• GetSolutionValueFromIndex : Test the function GetSolu-
tionValueFromIndex() defined in the Solution class.

• ModifySolutionByColumns : Test the function ModifySo-
lutionByColumns() defined in the Solution class.

• ModifySolutionByColumns : Test the class Input by test-
ing all the getter in teh same test.

We try to apply the concept of unit testing and thus we try
to reach a high percentage of coverage of the code. Here, the
more important tests are the one testing the solver definition
like BashforthFirstStep or RungeKuttaOrder2. To test them,
we used the ’simple’ hard coded example. In fact output
coming from this system definition should always be 2. Thus,
it makes things easy to test.

Performing these tests allow to show that the algorithms are
properly implemented and that the approximation using proper
time step and solver is correct.

VI. ISSUES AND PERSPECTIVES

The most important issue we faced was to choose the format
of input we used to define our system. Theses three matrices
representation comes with the definition of the RHS found on
several online documentations. This way of doing is optimal
for the program but the declaration of theses matrices is harder.
In fact, for now, user can choose some parameters of the
simulation but all theses input matrices are hard coded in the
code. The InitialConditionMatrix and the StateMatrix could
have been asked to the user using interface and command
line. However, the problematic part is the FunctionMatrix.
Indeed, in our project, it is impossible to produce this kind
of matrix. The solution could be to create a dictionary with
keys corresponding to a string describing the function and
values of the dictionary would be the FunctionMatrix. External
libraries could also be used to define this matrix automatically.
In addition, more solver could have been implemented like
Runge-Kutta order 3.


	Introduction/Problem
	Compile the program
	Typical program execution
	Input
	Solution

	List of features
	Overview
	Input
	Vectorial ODE
	Bashforth class
	Runge-Kutta

	Solution and output file

	List of tests:
	Issues and perspectives

