Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120651890
plot.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jul 6, 00:12
Size
3 KB
Mime Type
text/x-python
Expires
Tue, Jul 8, 00:12 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
27222373
Attached To
rMLECMO Machine Learning ECMO
plot.py
View Options
import
numpy
as
np
import
matplotlib
from
matplotlib
import
pyplot
as
plt
import
os
def
plot
(
test_target
,
test_input
,
train_input
,
predictions
,
train_loss_tab
,
t
,
nb_epochs
,
dim_recurrent
,
batch_size
,
nb_test
,
Nt
):
"""
Plot training loss and samples of predictions, targets and inputs in newly created directory.
:param test_target: Test labels, target tensor
:param test_input: Test input tensor
:param train_input: Train input tensor
:param predictions: Predictions made by the model
:param train_loss_tab: List containing value of the loss for every batch iteration and every time
:param t: Time interval
:param nb_epochs: Number of epochs used to train the model
:param dim_recurrent: Dimension of the recurrent space
:param batch_size: Batch size used to train with mini-batch stochastic gradient descent
:param nb_test: NUmber of samples to plot
:param Nt: Id of the directory where to put the plots
"""
# Make directory
os
.
mkdir
(
'Try_'
+
str
(
Nt
))
# Write with Latex font
matplotlib
.
rcParams
[
'text.usetex'
]
=
True
# Plot some random samples
nb_samples
,
dim_input
,
dim_output
=
test_input
.
shape
[
0
]
.
value
,
test_input
.
shape
[
2
]
.
value
,
test_target
.
shape
[
2
]
.
value
random_samples
=
np
.
random
.
randint
(
nb_samples
,
size
=
nb_test
)
random_output_parameters
=
np
.
random
.
randint
(
dim_output
,
size
=
nb_test
)
random_input_parameters
=
np
.
random
.
randint
(
dim_input
,
size
=
nb_test
)
for
i
in
range
(
nb_test
):
plt
.
plot
(
t
,
test_target
[
random_samples
[
i
],
:,
random_output_parameters
[
i
]],
color
=
'green'
,
label
=
'target'
)
plt
.
plot
(
t
,
predictions
[
random_samples
[
i
],
:,
random_output_parameters
[
i
]],
color
=
'red'
,
label
=
'prediction'
)
plt
.
legend
()
plt
.
title
(
r'$N_{epochs}='
+
str
(
nb_epochs
)
+
'$, $|B|='
+
str
(
batch_size
)
+
'$, $N_{Samples}='
+
str
(
nb_samples
)
+
'$, $N_{in}=N_{out}='
+
str
(
dim_input
)
+
'$, $N_{rec}='
+
str
(
dim_recurrent
)
+
'$'
)
plt
.
savefig
(
'Try_'
+
str
(
Nt
)
+
'/predictions_'
+
str
(
i
))
plt
.
show
()
for
i
in
range
(
nb_test
):
plt
.
plot
(
t
,
test_input
[
random_samples
[
i
],
:,
random_input_parameters
[
i
]],
color
=
'blue'
,
label
=
'input'
)
plt
.
title
(
r'$N_{epochs}='
+
str
(
nb_epochs
)
+
'$, $|B|='
+
str
(
batch_size
)
+
'$, $N_{Samples}='
+
str
(
nb_samples
)
+
'$, $N_{in}=N_{out}='
+
str
(
dim_input
)
+
'$, $N_{rec}='
+
str
(
dim_recurrent
)
+
'$'
)
plt
.
legend
()
plt
.
savefig
(
'Try_'
+
str
(
Nt
)
+
'/input_'
+
str
(
i
))
plt
.
show
()
if
train_loss_tab
==
[]:
pass
else
:
# Plot the training loss
axis
=
[
i
for
i
in
range
(
nb_epochs
*
train_input
.
shape
[
0
]
//
batch_size
)]
plt
.
semilogy
(
axis
,
train_loss_tab
,
color
=
'black'
)
plt
.
xlabel
(
r'Number of epochs $\times$ Number of samples $/$ Batch size'
)
plt
.
title
(
r'Loss for $N_{epochs}='
+
str
(
nb_epochs
)
+
'$, $|B|='
+
str
(
batch_size
)
+
'$, $N_{Samples}='
+
str
(
nb_samples
)
+
'$, $N_{in}=N_{out}='
+
str
(
dim_input
)
+
'$, $N_{rec}='
+
str
(
dim_recurrent
)
+
'$'
)
plt
.
savefig
(
'Try_'
+
str
(
Nt
)
+
'/loss_multistep_'
+
str
(
Nt
))
plt
.
show
()
Event Timeline
Log In to Comment