Supplementary Material

1. Post-hoc assessment of mover subgroups

[ X [[ G [ G [ G [ G ] Y [[ G [ G [ G [ G |

Table 1: Post-hoc analysis of spatial motion across mover groups. For the six possible motion degrees of freedom (X, Y, Z, a, 8 and
), t-statistics for each group comparison (top right diagonal elements) and associated p-values (bottom left diagonal elements).



2. Robustness to parameter changes

We verified that modifications of the parameters used in our main analyses would not substantially affect our
results. We considered the followings:

e The threshold (in mm) above which a time point is censored. We compared our main choice of 0.3 mm
to values of 0.2 mm (case 1), 0.5 mm (case 2) and 1 mm (case 3).

o The number of frames to excise around corrupted time points. We compared the case of solely removing
the corrupted frames, as done in our main results, to the additional removal of one more frame at time
t+1 (case 4).

o The number of nearest neighbours used for graph construction; we contrasted our original value of 10
to alternative values of 5 (case 5) and 20 (case 6).

o The number of time bins into which to subdivide a resting-state session; in comparison with our original
choice of 6 bins, we probed values ranging from 4 (case 7) to 8 (case 10).

We assessed robustness of the clustering outcomes by computing the purity measure (Yang et al., 2012)), which
takes a value of 1 for perfect concordance of classification, and of 0 if no data point is clustered similarly.

For each set of saliences, we computed (1) the absolute valued Spearman’s correlation between the reference
and output saliences, and (2) their absolute valued dot product. The absolute value enables to account for
sign-flipped salience vectors across computations.

The results (computed only from session 1 data) are presented in Table[2] It can be seen that our analytical
outcomes were robust to all the investigated parameter changes.



Spearman’s correlation Dot product
| Purity | C1 | CZ | C3 | C4 C1 | Cz | C3 | C4
Case ] | 001 || Sz | 100099 099099 [1.00 [ 1.00 [ 0.99 [ 099
: Sy | 096|099 | 097 | 0.94 || 0.99 | 0.99 | 0.99 | 0.99
Sg | 1.00 | 1.00 | 0.98 | 0.98 || 1.00 | 1.00 | 0.99 | 0.99
Case2 | 095 11 ¢ | 097 | 098 | 0.95 | 0.95 || 1.00 | 0.99 | 0.99 | 0.98
Sg | 1.00 | 0.99 [ 0.94 | 0.95 || 1.00 | 0.99 | 0.97 | 0.97
Case3 | 094 11 ¢ 1 097 | 096 | 0.83 | 09 [ 099|099 | 0.96 | 0.96
Sg | 1.00 | 0.99 [ 0.98 | 0.99 |[ 1.00 | 0.99 | 0.99 | 0.99
Cased | 096 11 ¢ 1 099 | 097 | 0.95 | 0.94 || 1.00 | 0.99 | 0.99 | 0.99
Case 5 0.93
Case 6 0.72
Case 7 0.65
Case 8 0.69
S N Kz e K
o1 | oo 755 1099 | 098 | 057 | 096 | 1.00 | 099 | 095 | 097

Table 2: Robustness of the results to parameter changes. Cases 5 and 6 involved changes in the number of nearest neighbours, which
does not alter the generation of PLS components; for this reason, robustness quantification is not provided in these cases. Similarly,
spatio-temporal features generated with a different number of time bins (cases 7 to 10) do not enable to compare motion saliences. SB:
behavioural saliences. SM: motion saliences.



3. Additional mathematical details

Graph theory, spectral clustering and consensus clustering

There exist many ways to cluster a dataset into a subset of distinct groups. In our case, we applied spectral
clustering on our data matrix X € RS*M with S the number of data points at hand and M the number of
spatio-temporal motion features. Each data point can thus be expressed as a vector x; of size M, arranged as
the rows of X.

Spectral clustering necessitates (1) the definition of a graph summarising the data at hand, (2) the extraction
of meaningful components summarising the data based on the graph architecture (which can be understood as
a dimensionality reduction approach), and (3) classification using the extracted components. We go through
these three steps in details below.

Graph definition

Let us consider a graph G = (V, &), where V is its constituting set of nodes and & the set of edges linking
these nodes. We denote by w; ; the edge weight between nodes i and j; a larger value indicates a closer
similarity between the nodes.

Graphs can be used to represent a wide array of systems, such as transportation networks, metabolic networks
or social networks. In neuroscience, a classical approach has been to define nodes as brain regions, and edges
as their structural or functional connectivity.

Here, we adopt another approach in which we define the nodes as the S sessions considered in our analyses.
Edge weights were set using an N-nearest neighbour criterion, in which each node was linked to its NV closest
neighbours (as quantified from cosine similarity) only. Let A; the N-neighbourhood of node i; edge weights
were initialised as:

wiy=qe Tt eN; M

where d; ; is the cosine distance between data points i and j, and o7 is the average of all distances between i
and its N nearest neighbours. Weights can take values between O (infinitely distant/non-neighbouring data
points) and 1 (identical data points).

Edge weights can be efficiently summarised into the adjacency matrix A of the system. The adjacency matrix
obtained in our main analyses (from session 1 data) is displayed in Figure [T} From this description, it is
already quite clear that subdividing the data into four clusters (as explained below) provides a very good
solution.

Dimensionality reduction

We first define the symmetric, positive-definite Laplacian matrix of the system as L = D — A, where D
is a diagonal matrix containing nodal degrees. The nodal degree of node i is the sum of incoming edges:
d; = Y jen; wi,j- In our analyses, we considered the normalised version of the Laplacian, given by:

Ly =D LD :. )
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Figure 1: Adjacency matrix of spatio-temporal movers. Unsorted (left) and sorted (right) adjacency matrices of the data.

Ly can equivalently be expressed, using an eigenvalue decomposition, as Ly = UZU". In this expression,
U is the matrix of eigenvectors (arranged in columns) and X is a diagonal matrix containing the associated
eigenvalues in its diagonal. We consider sorted eigenvalue/eigenvector pairs in decreasing eigenvalue order.

The first three eigenvectors with non-null eigenvalue happen to be an optimal basis for classification;
expressing our M-dimensional data points in this three-dimensional space thus operates as a nonlinear
dimensionality reduction approach. To illustrate this, we plot the representation of these three eigenvectors
(for our main analyses) in Figure

Clustering

To partition the data into clusters, k-means clustering is performed on the S X 3 dimensionally reduced
dataset. To select the optimal number of clusters, we used consensus clustering (Monti et al.l 2003), a
subsampling-based assessment of robustness.

In more details, the clustering process was repeatedly run (100 times) over 80% of the data points, for
increasing cluster number values K. in each case, a consensus matrix summarising how frequently two data
points would be clustered together was derived. Since the goal in a good clustering scheme is to either
always cluster two data points together, or to never do so, the goal is to find a K for which the proportion of
ambiguously clustered pairs—PAC (Senbabaoglu et al., [2014), linked to intermediate consensus values, is the
lowest.

In Figure 3| we provide (for our main analyses centred on session 1 data) the consensus matrices obtained for
K =2to K = 17. Their inspection further confirms our choice of K = 4.
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Figure 2: First three discriminating eigenvectors. For u; (left column), uy (middle column) and u3 (right column), representations of
the eigenvectors along two selected dimensions. Each rectangle highlights one subject of the analysis, with larger width along the first,
second and third dimensions respectively indicating larger average movement along the X, Y and Z axes.

Partial Least Square (PLS) analysis

PLS is a multivariate approach that enables to extract co-varying components between two types of measures.
In what follows, we will be considering the matrix of spatio-temporal motion features X € RS and
the matrix of behavioural domain scores Y € RB*S where S is the number of subjects, M the number of
spatio-temporal motion features, and B the number of behavioural measures.

The goal in PLS analysis is to extract covariance components from the data. To do so, we first consider the
covariance matrix between spatio-temporal motion features and behavioural domain scores:

R = XY € RM*5, (3)

This matrix can be equivalently expressed in the form of a singular value decomposition:
R=UZV". “
In the above equation, the matrix U contains the left singular vectors of R, arranged in successive columns.

These vectors form an orthonormal basis; i.e., UTU = I. The same property applies to the right singular
vectors, arranged in the columns of the matrix V. As for X, it is a diagonal matrix containing the singular
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Figure 3: Consensus matrices across cluster number values. For K from 2 (top left) to 17 (bottom right), consensus matrices reflecting
robustness of the partitioning across folds.

values {o},i = 1,2, ...,min(B, M) as its diagonal elements. We assume here that singular vectors and singular
values are sorted in decreasing singular value order.

The intuition behind this decomposition is that the full covariance between both datasets is expressed as a

weighted low-rank approximation:
min(B,M)

R= > omv’, ©)
i=1
where u; and v; are the i left and right singular vectors, respectively. Since U and V can both be seen as
orthonormal bases, it follows that the strength of expression of the components in the investigated pool of
subjects can be simply expressed as a projection:

{LM -U'X ©

Lg=V'Y,

with Ly denoting the strength of expression of spatio-temporal motion features, or motion latent weights,



across subjects, and Ly that of behavioural domain scores (called behavioural latent weights). The i column
of Ly or Ly contains the weights associated to the i component, while the j™ row contains all weights
associated to subject j.



4. Details on the generation of behavioural summarising measures

Selection of individual scores

We chose not to include some types of HCP scores into our analysis, because they highlighted family
relationships or attributes falling beyond the scope of the present work, or were available in a too limited
fraction of subjects. This included:

o Family relationships between subjects and twin status.

e Psychiatric history of the mother or father.

o Scores reflective of the menstrual cycle (only available in female subjects).

e Other irrelevant scores to the present study (for instance, ”Is the subject born in Missouri? ).

In addition, some scores were also not retained because they were considered too specific (that is, would
induce overfitting if included), or overlapped with others (for example, scores reflective of task performance
in a given condition were sometimes discarded if they strongly correlated with the more general performance
measures available across conditions). In several cases, age adjusted and unadjusted scores are provided,;
both were kept and aggregated in further processing steps.

Conversion into summarising behavioural measures

Because some behavioural domains included many more scores than others, and in order to conduct a
balanced analysis, we converted the scores of each domain into only one value through probabilistic principal
component analysis—PPCA (Bishopl [1999), which enabled, at the same time, to fill in the few missing entries
in each case.

Following PPCA, we only retained the domain scores that were sufficiently accurate, according to criteria
proposed by [Smith et al.|(2015). Exclusion criteria were:

e More than 5 unavailable entries (in the case of domain scores that were derived from only one HCP
score and did thus not undergo PPCA).

e The case max(z) > 100z, with z = (b — I med(b))?, b € RS*! the values for a given score across
subjects, and I a unitary vector of appropriate size.

e More than 95% of subjects showing the same score value.

Finally, the remaining domain scores underwent rank-based inverse Gaussian transformation. The final matrix
of behavioural information used for the analyses had size 951 x 60.

List of considered scores and derived summarising measures (HCP dataset)

Below, we provide details regarding the sets of original HCP scores that were considered together in generating
a given behavioural summarising measure. We provide correlation values across subjects between individual
scores and their associated output summarising measure, and also give the percentage of unavailable entries



across subjects for each individual score. In the cases where only one score was available (i.e., no need of a
PPCA step), “n.a.” is reported as a table entry.

Bodily features [[ Weight | Height | Blood pressure | Pyuv[%] |
Height
Weight
BMI
BPSystolic
BPDiastolic

Table 3: Components constructed from scores indicative of bodily features. Rows stand for individual scores, and columns for
behavioural summarising measures. The last column contains the percentage of unavailable data entries across subjects for each score.

Arousal [[ MMSE | Sleep | Pyan[%] |

MMSE_Score
PSQI_Compl
PSQI_Comp?2
PSQI_Comp3
PSQI_Comp4
PSQI_Comp5
PSQI_Comp6
PSQI_Comp7

Table 4: Components constructed from scores indicative of arousal. Rows stand for individual scores, and columns for behavioural
summarising measures. The last column contains the percentage of unavailable data entries across subjects for each score. MMSE: mini
mental state examination.
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Affect [[ Negative emotions | Positive emotions | Support [NEG] | Self efficacy - Stress | Pnan[%] |
AngAffect_Unadj
AngHostil_Unadj
AngAggr_Unadj
FearAffect_Unadj
FearSomat_Unadj
Sadness_Unadj
LifeSatisf_Unadj
MeanPurp_Unadj
PosAffect_Unadj
Friendship_Unadj
Loneliness_Unadj
PercHostil_Unadj
PercReject_Unadj
EmotSupp_Unadj
InstruSupp_Unadj
PercStress_Unadj
SelfEff_Unadj

COOoOOoOOoCoCcOoOOooOo oo o oo Cocoo

Table 6: Components constructed from scores indicative of affect. Rows stand for individual scores, and columns for behavioural
summarising measures. The last column contains the percentage of unavailable data entries across subjects for each score.

Personality [[ NEOFAC (Introverted) | NEOFAC (Daring) | Pyan|%]

NEOFAC_A -0.60 0.27 0.11
NEOFAC_O 0.03 0.90 0.11
NEOFAC_C -0.68 -0.35 0.11
NEOFAC_M 0.77 0.06 0.11
NEOFAC_E -0.67 0.22 0.11

Table 7: Components constructed from scores indicative of personality. Rows stand for individual scores, and columns for be-
havioural summarising measures. The last column contains the percentage of unavailable data entries across subjects for each score.
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Motor abilities [[ Endurance | Gait speed | Dexterity | Strength | Pyan[%] |

Endurance_Unadj 0.21
Endurance_AgeAdj 0.21
GaitSpeed_Comp 0
Dexterity_Unadj 0
Dexterity_AgeAdj 0
Strength_Unadj 0.11
Strength_AgeAdj 0.11

Table 9: Components constructed from scores indicative of motor abilities. Rows stand for individual scores, and columns for
behavioural summarising measures. The last column contains the percentage of unavailable data entries across subjects for each score.

Sensory perception [[ Odour | Pain | Taste | Pyan%] |

Odor_Unadj
Odor_AgeAdj
Painlnterf_Tscore
Taste_Unadj
Taste_AgeAdj

Table 10: Components constructed from scores indicative of sensory perception. Rows stand for individual scores, and columns for
behavioural summarising measures. The last column contains the percentage of unavailable data entries across subjects for each score.

Substance use [[ Alcohol | Drugs | Pnan[%] |

Total_Drinks_7days
Num_Days_Drank_7days
SSAGA_Alc_D4_Dp_Sx
SSAGA_Alc_D4_Ab_Sx
SSAGA_Alc_I12_Drinks_Per_Day
SSAGA_Alc_12_Frg
SSAGA_Alc_12_Frq_Drk
SSAGA_Times_Used_lllicits
SSAGA_Times_Used_Cocaine
SSAGA_Times_Used_Hallucinogens
SSAGA_Times_Used_Opiates
SSAGA_Times_Used_Sedatives
SSAGA_Times_Used_Stimulants
SSAGA_Mj_Times_Used

0.49
0930092 | 0

Table 11: Components constructed from scores indicative of substance use. Rows stand for individual scores, and columns for
behavioural summarising measures. The last column contains the percentage of unavailable data entries across subjects for each score.
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List of considered scores and derived summarising measures (UCLA dataset)

Below, we provide details regarding the sets of original UCLA dataset scores that were considered together in
generating a given behavioural summarising measure. We provide correlation values across subjects between
individual scores and their associated output summarising measure. There were no missing entries in the pool
of subjects that we analysed.

Bodily features || Weight [ Height |
weight_pounds n.a.

height_inches m

Table 13: Components constructed from scores indicative of bodily features. Rows stand for individual scores, and columns for
behavioural summarising measures.

[ Arousal — [[ Chronotype (MCTQ) |
[ chronotype ] n.a. |

Table 14: Components constructed from scores indicative of arousal. Rows stand for individual scores, and columns for behavioural
summarising measures.

Cognitive functions [[ Verbal learning (CVLT) | Intelligence (WAIS) | Memory (WMS) |

SDfreeRecall
SDcuedRecall
LDfreeRecall
LDcuedRecall
LDrecognition
wais_letterNumberSequ
wais_vocabulary
wais_matrixReasoning
wms_vr_immRec
wms_vr_delRec
WmS_vr_recog
wms_symbolSpan
wms_digitSpan_fwd
wms_digitSpan_bwd
wms_digitSpan_seq

Table 15: Components constructed from scores indicative of cognitive functions. Rows stand for individual scores, and columns for
behavioural summarising measures.
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[ Personality [[ Personality (MPQ) |
[ mpq I n.a. |

Table 17: Components constructed from scores indicative of personality. Rows stand for individual scores, and columns for
behavioural summarising measures.

[ Substance cc ption [[ Tobacco | Alcohol |
smoking_current n.a.
alcohol n.a

Table 18: Components constructed from scores indicative of substance consumption. Rows stand for individual scores, and columns
for behavioural summarising measures. The last column contains the percentage of unavailable data entries across subjects for each
score.
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